A metamathematical theorem on functions.

By Gaisi Takeuti

(Received July 2, 1955)

In our former paper [2], [3], we have introduced a logical system $G L C$ and a subsystem $G^{1} L C$ of $G L C$, as generalizations of Gentzen's $L K$ (cf. [1]). We have also defined the notion of functions in GLC in [2]. This paper is most related to [3], where we have dealt with $G^{1} L C$ without bound functions. We shall introduce in this paper another logical system called HLC ('hierarchical' logic calculus) lying between $G^{1} L C$ and $L K$ (§1). We shall define also 'functionals' in generalization of the notion of functions.

The purpose of the present paper is to prove that the consistent system under $G^{1} L C$ without bound function or under HLC remains consistent after 'adjunction' of the concept of functionals, under certain conditions. Our Main Theorem will read as follows:

Main Theorem: Let Γ_{0} be a system of axioms consistent under $G^{1} L C$ without bound function or under HLC. Suppose Γ_{0} contains axioms of equality (See § 1 for definition), and let the following sequences be provable.

$$
\begin{aligned}
& \Gamma_{0} \rightarrow \forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} \exists y F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, y\right) \\
& \Gamma_{0} \rightarrow \forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} \forall y \forall z\left(F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, y\right)\right. \\
& \left.\quad \wedge F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m} z\right) \vdash y=z\right) .
\end{aligned}
$$

Let M be a functional not contained in Γ_{0}, and suppose further, in case of HLC, that $F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, b\right)$ does not contain \forall on f variables. Then Γ_{0} and the following axiom are consistent.
$\forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} F\left(\boldsymbol{\varphi}_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, M\left(\boldsymbol{\varphi}_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right)\right)$.
The conclusion of this theorem holds also in $L K$ by theorem 2, proved in § 1.

After some preparations in §1, we shall prove our main theorem
in §2. In §3 we shall apply this theorem to improve our result in [4] on the theory of ordinal numbers. It allows us replace an axiom by a stronger one. In $\S 4$ we shall prove the consistency of the ' theory of linear continuum'.

§ 1. The logical systems.

We shall begin with generalizing ' $G^{1} L C$ without bound function' as follows.

We introduce the functional of type $\left(i_{1}, \cdots, i_{n} ; m\right)$, denoted by M, K etc., and add the following rule of construction of the term to the ones given in [3]. 'If H_{j} is a formula with i_{j} argument-places for each $j(1 \leqq j \leqq n)$ and T_{1}, \cdots, T_{m} are terms and K is an arbitrary functional of type $\left(i_{1}, \cdots, i_{n} ; m\right)$, then $K\left(H_{1}, \cdots, H_{n}, T_{1}, \cdots T_{m}\right)$ is a term'.

A function (cf. [3]) may be considered as a special case of functional.

In this paper $L K$ is also considered as generalized by introducing functionals as above. Except in §4, we use only $7, \wedge$ and \forall as logical symbols. \vee, \vdash, \mapsto and \exists can be considered as combinations of these symbols.

Definition of HLC A proof-figure \mathfrak{B} of $G^{1} L C$ without bound function is called a proof-figure of $H L C$, if and only if the following condition is fulfilled. In an inference \forall left on f-variable of the form

$$
\begin{array}{r}
F(H), \Gamma \rightarrow \Delta \\
\forall \varphi F(\varphi), \Gamma \rightarrow \Delta
\end{array}
$$

is used in \mathfrak{P}, then H contains no logical symbol \forall on f-variable.
We consider also in $H L C$ the functionals M, K, \cdots of type $\left(i_{1}, \cdots, i_{n} ; m\right)$ and construct the forms such as $K\left(H_{1}, \cdots, H_{n}, T_{1}, \cdots, T_{m}\right)$ with these functionals. Thereby we shall assume however that H_{1}, \cdots, H_{n} contain no logical symbol \forall on f-variable.

In the same way as in Gentzen [1], we see the following theorem.
THEOREM 1. If a sequence \mathfrak{S} is provable in HLC, then \mathfrak{S} is provable without cut in HLC.

In $L K$, the axiom of mathematical induction is expressed as the system of axioms

$$
\forall z_{1} \forall z_{2} \cdots \forall z_{n} \forall x(A(0) \wedge \forall y(A(y) \vdash A(y+1)) \vdash A(x)),
$$

where $\{x\} A(x)$ runs over all the formulas with an argument-place. More precisely should be written as $\{x\} A\left(x, z_{1}, \cdots, z_{n}\right)$ and n depends on A. In this paper, such system of the axioms is denoted simply by

$$
\forall A \forall x(A(0) \wedge \forall y(A(y) \vdash A(y+1)) \vdash A(x)) .
$$

In the same way, notations such as $\forall A_{1} \cdots \forall A_{n} F\left(A_{1}, \cdots, A_{n}\right)$ will be used, where the number of argument-places of A_{i} is uniquely determined by F for each $i(1 \leqq i \leqq n)$.

Then by theorem 1 the following theorem is easily proved.
THEOREM 2. The axioms $A_{1}, \cdots, A_{N}, \forall A_{1}^{1} \cdots \forall A_{i_{1}}^{1} F^{1}\left(A_{1}^{1}, \cdots, A_{i_{1}}^{1}\right), \cdots, \forall A_{1}^{n}$ $\cdots \forall A_{i_{n}}^{n} F^{n}\left(A_{1}^{n}, \cdots, A_{i_{n}}^{n}\right)$ are consistent in $L K$, if and only if A_{1}, \cdots, A_{N}, $\forall \varphi_{1}^{1} \cdots \forall \varphi_{i_{1}}^{1} F^{1}\left(\varphi_{1}^{1}, \cdots, \varphi_{i_{1}}^{1}\right), \cdots, \forall \varphi_{1}^{n} \cdots \forall \varphi_{i_{n}}^{n} F^{n}\left(\varphi_{1}^{n}, \cdots, \varphi_{i_{n}}^{n}\right)$ are consistent in HLC.

As we have remarked in the introduction, it follows from this theorem, that our main theorem once proved for HLC will imply the same conclusion for $L K$.

Let A and B be two formulas with i argument-places. Then $A \equiv B$ is an abbreviation of the formula

$$
\forall x_{1} \cdots \forall x_{i}\left(A\left(x_{1}, \cdots, x_{i}\right) \longmapsto B\left(x_{1}, \cdots, x_{i}\right)\right) .
$$

Let Γ_{0} be a system of axioms in $G^{1} L C$ without bound functions or in HLC. ' Γ_{0} contains equality axiom' means that Γ_{0} fulfils the following conditions

1. Γ_{0} contains $\forall \varphi \forall x \forall y(x=y \vdash(\varphi[x] \mapsto \varphi[y]))$ and $\forall x(x=x)$
2. If functional K of type $\left(i_{1}, \cdots, i_{n} ; m\right)$ is contained in Γ_{0}, then Γ_{0} contains $\forall \varphi_{1} \cdots \forall \varphi_{n} \forall \psi_{1} \cdots \forall \psi_{n} \forall x_{1} \cdots \forall x_{n}\left(\varphi \equiv \psi \wedge \cdots \wedge \varphi \equiv \psi \vdash K\left(\varphi_{1}, \cdots, \varphi_{n}\right.\right.$, $\left.\left.x_{1}, \cdots, x_{m}\right)=K\left(\psi_{1}, \cdots, \psi_{n}, x_{1}, \cdots, x_{m}\right)\right)$.

Then, from the main theorem follows the following theorem
Theorem on function. Under the hypothesis of the main theorem the following axioms are consistent

$$
\begin{aligned}
& \Gamma_{0}, \\
& \forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, M\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right)\right), \\
& \forall \varphi_{1} \cdots \forall \varphi_{n} \forall \psi_{1} \cdots \forall \psi_{n} \forall x_{1} \cdots \forall x_{m}\left(\varphi_{1} \equiv \psi_{1} \wedge \cdots \wedge \varphi_{n} \equiv \psi_{n} \vdash\right. \\
& \left.\quad M\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right)=M\left(\psi_{1}, \cdots, \psi_{n}, x_{1}, \cdots, x_{m}\right)\right) .
\end{aligned}
$$

Proof. We set A_{0} as $\forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right.$, $\left.M\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right)\right)$. Then we have only to prove that the following sequence is provable

$$
\begin{aligned}
\Gamma_{0}, A_{0}, \alpha_{1} & \equiv \beta_{1}, \cdots, \alpha_{n} \equiv \beta_{n} \rightarrow M\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}\right) \\
& =M\left(\beta_{1}, \cdots, \beta_{n}, a_{1}, \cdots, a_{m}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{array}{r}
A_{0} \rightarrow F\left(\alpha,, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, M\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}\right)\right) \\
\quad \wedge F\left(\beta_{1}, \cdots, \beta_{n}, a_{1}, \cdots, a_{m}, M\left(\beta_{1}, \cdots, \beta_{n}, a_{1}, \cdots, a_{m}\right)\right)
\end{array}
$$

and

$$
\Gamma_{0}, F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, b\right), F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, c\right) \rightarrow b=c
$$

Therefore we have only to prove that the following sequence is provable

$$
\begin{aligned}
\Gamma_{0}, \alpha_{1} & \equiv \beta_{1}, \cdots, \alpha_{n} \equiv \beta_{n}, F\left(\beta_{1}, \cdots, \beta_{n}, a_{1}, \cdots, a_{m}, b\right) \\
& \rightarrow F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, b\right)
\end{aligned}
$$

which is easily seen.

§ 2. Proof of the main theorem.

In this section, Γ_{0} and M fulfil the condition of the main theorem Moreover the functionals except M considered in this section are assumed as contained in Γ_{0}.

*-operation

Let Q be a formula or a term. We define Q^{*} recursively by the following 1-5. $\quad\left(Q\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}\right)\right)^{*}$ is also denoted by $Q^{*}\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}\right) . \quad\left\{\left\{x_{1}, \cdots, x_{n}\right\} A\left(x_{1}, \cdots, x_{n}\right)\right)^{*}$ is defined by $\left\{x_{1}, \cdots, x_{n}\right\}$ $A^{*}\left(x_{1}, \cdots, x_{n}\right)$.

If Q is a formula, then Q^{*} is a formula.
If Q is a term, then Q^{*} is a formula with an argument-place. And in this case, if Q^{*} is of the form $\{x\} B(x), Q^{*}(X)$ means $B(X)$.

1. a^{*} is $\{x\}(x=a)$.
2. If K is a functional other than M, then $\left(K\left(A_{1}, \cdots, A_{n}, T_{1}, \cdots, T_{m}\right)\right)^{*}$
is $\{x\}\left(\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \vdash x=K\left(A_{1}^{*}, \cdots, A_{n}^{*}, x_{1}, \cdots, x_{m}\right)\right)\right)$
3. $\left(M\left(A_{1} \cdots, A_{n}, T_{1}, \cdots, T_{m}\right)\right)^{*}$ is $\{x\}\left(\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \vdash\right.\right.$ $\left.\left.F\left(A_{1}^{*}, \cdots, A_{n}^{*}, x_{1}, \cdots, x_{m}, x\right)\right)\right)$.
4. $\left(\alpha\left[T_{1}, \cdots, T_{n}\right]\right)^{*}$ is $\forall x_{1} \cdots \forall x_{n}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{n}^{*}\left(x_{n}\right) \vdash \alpha\left[x_{1}, \cdots, x_{n}\right]\right)$.
5. $(\neg A)^{*},(A \wedge B)^{*},(\forall x A(x))$ and $(\forall \varphi F(\varphi))^{*}$ are $\neg A^{*}, A^{*} \wedge B^{*}, \forall x A^{*}(x)$ and $\forall \varphi F^{*}(\varphi)$ respectively.

Proposition 1. Let T be a term. Then the following sequences are provable

$$
\Gamma_{0}, T^{*}(a), T^{*}(b) \rightarrow a=b
$$

and

$$
\Gamma_{0} \rightarrow \exists x\left(T^{*}(x)\right) .
$$

Proof. We prove this by the mathematical induction on the number of stages to construct T. If T is a free variable, then the proposition is clear. Now we consider T is of the form $K\left(A_{1}, \cdots\right.$, $\left.A_{n}, T_{1}, \cdots, T_{m}\right)$. Then by the hypothesis of the induction, the proposition holds for T_{1}, \cdots, T_{m}. Therefore

$$
\Gamma_{0}, T^{*}(a), T^{*}(b) \rightarrow a=b
$$

and

$$
\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \vdash a=K\left(A_{1}^{*}, \cdots, A_{n}^{*}, x_{1}, \cdots, x_{n}\right)\right)
$$

is equivalent to $\exists x_{1} \cdots \exists x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \wedge a=K\left(a_{1}^{*}, \cdots, A_{n}^{*}, x_{1}, \cdots, x_{m}\right)\right)$ under Γ_{0}. Therefore $\Gamma_{0} \rightarrow \exists x T^{*}(x)$ is clear.

Proposition 2. Let A and T be a formula and a term respectively and M be not contained in A and T. Then the following sequences are provable

$$
\Gamma_{0} \rightarrow A^{*} \mapsto A
$$

and

$$
\Gamma_{0} \rightarrow T^{*}(a) \mapsto a=T
$$

Proof. We prove this by the mathematical induction on the number of stages to construct A or T. If T is a free variable, then the proposition is clear. We have now to consider several different cases.

1) Let T be of the form $K\left(A_{1}, \cdots, A_{n}, T_{1}, \cdots, T_{m}\right)$. Then, under Γ_{0}, the following formula is equivaleht to $T^{*}(a)$:

$$
\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \vdash a=K\left(A_{1}^{*}, \cdots, A_{m}^{*}, x_{1}, \cdots, x_{m}\right)\right)
$$

and this is equivalent to the following (by the hypothesis of induction)

$$
\forall x_{1} \cdots \forall x_{m}\left(x_{1}=T_{1} \wedge \cdots \wedge x_{m}=T_{m} \vdash a=K\left(A_{1}, \cdots, A_{n}, x_{1}, \cdots, x_{m}\right)\right)
$$

and this again clearly to $a=T$.
In such cases of 'continued equivalence', we shall hereafter simply when the formulas one after another, in such a way that the equivalence of succesive formulas will be clear to the reader.
2) Let A be $\alpha\left[T_{1}, \cdots, T_{m}\right]$. Then, holds under Γ_{0}, the following continued equivalence:

$$
\begin{aligned}
& A^{*} \\
& \forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(x_{m}\right) \vdash \alpha\left[x_{1}, \cdots, x_{m}\right]\right) \\
& \forall x_{1} \cdots \forall x_{m}\left(x_{1}=T_{1} \wedge \cdots \wedge x_{m}=T_{m} \vdash \alpha\left[x_{1}, \cdots, x_{m}\right]\right)
\end{aligned}
$$

A.
3) If A is $7 B, C \wedge B, \forall x D(x), \forall \varphi F(\varphi)$, the proposition is clear.

Proposition 3. The following sequences are provable.

$$
\begin{aligned}
& \Gamma_{0} \rightarrow(F(A))^{*} \mapsto F^{*}\left(A^{*}\right) \\
& \Gamma_{0} \rightarrow(T(A))^{*}(a) \mapsto T^{*}\left(A^{*}\right)(a)
\end{aligned}
$$

and
Proof. If $T(A)$ and $F(A)$ contain no A, then the proposition is clear. Now we separate the cases.

1) Let $T(A)$ be $K\left(A_{1}(A), \cdots, A_{n}(A), T_{m}(A), \cdots, T_{m}(A)\right)$. Then the following continued equivalence holds under Γ_{0} :

$$
\begin{aligned}
& \begin{array}{l}
(T(A))^{*}(a) \\
\forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(A)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(\mathrm{~A})\right)^{*}\left(x_{m}\right) \vdash\right. \\
\left.a=K\left(\left(A_{1}(A)\right)^{*}, \cdots,\left(A_{n}(A)\right)^{*}, x_{1}, \cdots, x_{m}\right)\right) \\
\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(A^{*}\right)\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(A^{*}\right)\left(x_{m}\right) \vdash\right. \\
\left.a=K\left(A_{1}\left(A^{*}\right), \cdots, A_{n}\left(A^{*}\right), x_{1}, \cdots, x_{m}\right)\right) \\
\text { (by the hypothesis of the induction) }
\end{array} \\
& T^{*}\left(A^{*}\right)(a) .
\end{aligned}
$$

2) Let $T(A)$ be $M\left(A_{1}(A), \cdots, A_{n}(A), T_{1}(A), \cdots, T_{m}(A)\right)$. Then the following continued equivalence holds under Γ_{0} :
```
\((T(A))^{*}(a)\)
\(\forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(A)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(A)\right)^{*}\left(x_{m}\right) \longmapsto\right.\)
        \(\left.F\left(\left(A_{1}(A)\right)^{*}, \cdots,\left(A_{n}(A)\right)^{*}, x_{1}, \cdots, x_{m}, a\right)\right)\)
\(\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(A^{*}\right)\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(A^{*}\right)\left(x_{m}\right) \longmapsto\right.\)
\(\left.F\left(A_{1}^{*}\left(A^{*}\right), \cdots, A_{n}^{*}\left(A^{*}\right), x_{1}, \cdots, x_{m}, a\right)\right)\)
```

$T^{*}\left(A^{*}\right)(a)$.
3) Let $F(A)$ be $\alpha\left[T_{1}(A), \cdots, T_{m}(A)\right]$. Then the following continued equivalence holds under Γ_{0} :

```
( \(F(A))^{*}\)
\(\forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(A)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(A)\right)^{*}\left(x_{m}\right) \vdash \alpha\left[x_{1}, \cdots, x_{m}\right]\right)\)
\(\forall x_{1} \cdots \forall x_{m}\left(T_{1}^{*}\left(A^{*}\right)\left(x_{1}\right) \wedge \cdots \wedge T_{m}^{*}\left(A^{*}\right)\left(x_{m}\right) \longmapsto \alpha\left[x_{1}, \cdots, x_{m}\right]\right)\)
```

$F^{*}\left(A^{*}\right)$.
4) The other cases are clear.

Proposition 4. The following sequences are provable:
and

$$
\begin{aligned}
& \Gamma_{0} \rightarrow(A(T))^{*} \longmapsto \forall x\left(T^{*}(x) \longmapsto A^{*}(x)\right) \\
& \Gamma_{0} \rightarrow\left(T_{0}(T)\right)^{*}(a) \longmapsto \forall x\left(T^{*}(x) \longmapsto\left(T_{0}(x)\right)^{*}(a)\right) .
\end{aligned}
$$

Proof. We prove this by the mathematical induction on the number of stages to construct $A(T)$ or $T_{0}(T)$. We have to consider the following several cases.

1) Let $T_{0}(T)$ be T itself. In this cases $\left(T_{0}(T)\right)^{*}(a)$ is $T^{*}(a)$ and $\left(T_{0}(x)\right)^{*}(a)$ is $a=x$. Therefore the proposition is clear by proposition 1.
2) Let $T_{0}(T)$ be $K\left(A_{1}(T), \cdots, A_{n}(T), T_{1}(T), \cdots, T_{m}(T)\right)$: Then the following continued equivalence holds under Γ_{0} :

$$
\begin{aligned}
& \left(T_{0}(T)\right)^{*}(a) \\
& \forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(T)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(T)\right)^{*}\left(x_{m}\right) \vdash\right. \\
& \left.\quad a=K\left(\left(A_{1}(T)\right)^{*}, \cdots,\left(A_{n}(T)\right)^{*}, x_{1}, \cdots, x_{m}\right)\right) \\
& \forall x_{1} \cdots \forall x_{m}\left(\forall y\left(T^{*}(y) \vdash\left(T_{1}(y)\right)^{*}\left(x_{1}\right)\right) \wedge \cdots \wedge \forall y\left(T^{*}(y) \vdash\left(T_{m}(y)\right)^{*}\left(x_{m}\right)\right)\right. \\
& \left.\vdash \cdot a=K\left(\forall z\left(T^{*}(z) \vdash A_{1}^{*}(z)\right), \cdots, \forall z\left(T^{*}(z) \vdash A_{n}^{*}(z)\right), x_{1}, \cdots, x_{m}\right)\right) \\
& \quad(\text { by the hypothesis of the induction) } \\
& \forall x_{1} \cdots \forall x_{m}\left(\exists y \left(T^{*}(y) \wedge\left(T_{1}(y)^{*}\left(x_{1}\right)\right) \wedge \cdots \wedge \exists y\left(T^{*}(y) \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right)\right)\right.\right. \\
& \left.\vdash a=K\left(\forall z\left(T^{*}(z) \vdash A_{1}^{*}(z)\right), \cdots, \forall z\left(T^{*}(z) \vdash A_{n}^{*}(z)\right), x_{1}, \cdots, x_{m}\right)\right)
\end{aligned}
$$

(by the proposition 1)

$$
\forall y \forall x_{1} \cdots \forall x_{m}\left(T^{*}(y) \wedge\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \longmapsto a=K\left(\forall z \left(T^{*}(z)\right.\right.\right.
$$

$$
\left.\left.\left.\vdash A_{1}^{*}(z)\right), \cdots, \forall z\left(T^{*}(z) \vdash A_{n}^{*}(z)\right), x_{1}, \cdots, x_{m}\right)\right)(\text { By the proposition } 1)
$$

On the other hand, $\forall x\left(T^{*}(x) \longmapsto(T(x))^{*}(a)\right)$ is

$$
\begin{aligned}
& \forall x\left(T ^ { * } (x) \vdash \forall x \cdots \forall x _ { m } \left(\left(T_{1}(x)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(x)\right)^{*}\left(x_{m}\right) \vdash\right.\right. \\
& a\left.=K\left(A_{1}^{*}(x), \cdots, A_{n}^{*}(x), x_{1}, \cdots, x_{m}\right)\right),
\end{aligned}
$$

so it is equivalent to

$$
\begin{aligned}
\forall y \forall x_{1} \cdots \forall x_{m}\left(T^{*}(y) \wedge\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots\right. & \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \vdash \\
a & \left.=K\left(A_{1}^{*}(y), \cdots, A_{n}^{*}(y), x_{1}, \cdots, x_{m}\right)\right) .
\end{aligned}
$$

Therefore we have only to prove

$$
\Gamma_{0}, T^{*}(b) \rightarrow A_{i}^{*}(b) \equiv \forall z\left(T^{*}(z) \vdash A_{i}^{*}(z)\right)
$$

for each i, which is easily proved by proposition 1.
3) Let $T_{0}(T)$ be $M\left(A_{1}(T), \cdots, A_{n}(T), T_{1}(T), \cdots, T_{m}(T)\right)$. In the same way as in the case 2), the following continued equivalence holds under Γ_{0} :

$$
\begin{aligned}
& \left(T_{0}(T)\right)^{*}(a) \\
& \forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(T)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(T)\right)^{*}\left(x_{m}\right) \longmapsto\right. \\
& \left.F\left(\left(A_{1}(T)\right)^{*}, \cdots,\left(A_{n}(T)\right)^{*}, x_{1}, \cdots, x_{m}, a\right)\right) \\
& \forall x_{1} \cdots \forall x_{m}\left(\forall y\left(T^{*}(y) \vdash\left(T_{1}(y)\right)^{*}\left(x_{1}\right)\right) \wedge \cdots \wedge \forall y\left(T^{*}(y) \vdash\left(T_{m}(y)\right)^{*}\left(x_{m}\right)\right)\right. \\
& \vdash F\left(\forall y\left(T^{*}(y) \vdash A_{1}^{*}(y), \cdots, \forall y\left(T^{*}(y) \vdash A_{n}^{*}(y)\right), x_{1}, \cdots, x_{m}, a\right)\right) \\
& \forall y \forall x_{1} \cdots \forall x_{m}\left(T^{*}(y) \wedge\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \longmapsto\right. \\
& F\left(\forall z\left(T^{*}(z) \vdash A_{1}^{*}(z), \cdots, \forall z\left(T^{*}(z) \vdash A_{n}^{*}(z)\right), x_{1}, \cdots, x_{m}, a\right)\right) \\
& \forall y \forall x_{1} \cdots \forall x_{m}\left(T^{*}(y) \wedge\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \longmapsto\right. \\
& \left.F\left(A_{1}^{*}(y), \cdots, A_{n}^{*}(y), x_{1}, \cdots, x_{m}, a\right)\right) \\
& \forall y\left(T^{*}(y) \longmapsto\left(T_{0}(y)\right)^{*}(a)\right) .
\end{aligned}
$$

4) Let $A(T)$ be $\alpha\left[T_{1}(T), \cdots, T_{m}(T)\right]$. Then the following continued equivalence holds under Γ_{0} :
$(A(T))^{*}$

$$
\begin{aligned}
& \forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(T)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(T)\right)^{*}\left(x_{m}\right) \longmapsto \alpha\left[x_{1}, \cdots, x_{m}\right]\right) \\
& \forall x_{1} \cdots \forall x_{m}\left(\forall y\left(T^{*}(y) \longmapsto\left(T_{1}(y)\right)^{*}\left(x_{1}\right)\right) \wedge \cdots \wedge \forall y\left(T^{*}(y) \longmapsto\left(T_{m}(y)\right)^{*}\left(x_{m}\right)\right)\right. \\
& \\
& \left.\mapsto \alpha\left[x_{1}, \cdots, x_{m}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \forall y \forall x_{1} \cdots \forall x_{m}\left(T^{*}(y) \wedge\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \vdash \alpha\left[x_{1}, \cdots, x_{m}\right]\right) \\
& \forall y\left(T^{*}(y) \vdash \forall x_{1} \cdots \forall x_{m}\left(\left(T_{1}(y)\right)^{*}\left(x_{1}\right) \wedge \cdots \wedge\left(T_{m}(y)\right)^{*}\left(x_{m}\right) \vdash \alpha\left[x_{1}, \cdots, x_{\dot{m}}\right]\right)\right. \\
& \forall y\left(T^{*}(y) \vdash A^{*}(y)\right) .
\end{aligned}
$$

5) The other cases are clear.

Proposition 5. Let A_{0} be $\forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} F\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1} \cdots, x_{m}\right.$, $\left.M\left(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}\right)\right)$. Then $\Gamma_{0} \rightarrow A_{0}^{*}$ is provable.

Proof. We have only to prove that

$$
\Gamma_{0} \rightarrow\left(F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, M\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}\right)\right)\right)^{*} .
$$

To show this by the proposition 2 and 4, we have only to prove

$$
\Gamma_{0} \rightarrow \forall x\left(\left(M\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{n}\right)\right)^{*}(x) \vdash F\left(\alpha_{1}, \cdots, \alpha_{n}, a_{1}, \cdots, a_{m}, x\right)\right),
$$

which is clear.
PROPOSITION 6. If $\Gamma \rightarrow \Delta$ is provable, then $\Gamma_{0}, \Gamma^{*} \rightarrow \Delta^{*}$ is provable, where Γ^{*} means $A_{1}^{*}, \cdots, A_{n}^{*}$ provided that Γ is A_{1}, \cdots, A_{n}.

Proof. We prove this by the mathematical induction on the number of inference-figures in the proof-figure to $\Gamma \rightarrow \Delta$. Then, in case of $G L^{1} C$ without bound function, the proposition is clear by the propositions 2,3 and 4. In case of HLC, we have only to prove the following fact: If A contains no \forall on f-variable, then A^{*} contains no \forall on f-variable. But this is clear by definition.

On main theorem follows now immediately from Propositions 2, 5, 6.

§ 3. An application.

By the theorem 1, the following proposition follows easily from our former paper [4].

Proposition 7. The following axioms are consistent in HLC.

1. $\forall x(x=x)$
2. $0<\omega$
3. $\forall x \forall y(x<y \bigvee x=y \bigvee y<x)$
4. $\forall x \forall y>(x=y \wedge x<y)$
5. $\forall x \forall y>(x<y \wedge x<y)$
6. $\forall x \forall y \forall z(x<y \wedge y<z$ - $x<z)$
7. $\forall x(0<x \bigvee 0=x)$
8. $\forall x \forall y\left(x<y \vdash x^{\prime}=y \bigvee x^{\prime}<y\right)$
9. $\forall x\left(x<x^{\prime}\right)$
10. $\forall x \forall y\left(x^{\prime}=y^{\prime} \vdash x=y\right)$
11. $\forall x\left(x<\omega \vdash x^{\prime}<\omega\right)$
12. $\forall \varphi \forall x \forall y(x=y \vdash(\varphi[x] \mapsto \varphi[y]))$
13. $\forall \varphi \forall x\left(\varphi[0] \wedge \forall y\left(\varphi[y] \vdash \varphi\left[y^{\prime}\right]\right) \wedge x<\omega \vdash \varphi[x]\right)$
14. $\forall \varphi \forall x(\varphi[0] \wedge \forall y(\forall u(u<y \vdash \varphi[u]) \vdash \varphi[y] \vdash \varphi[x])$
15. $\forall \varphi_{2} \forall u\left(\forall x \forall y \forall s\left(\varphi_{2}[x, s] \wedge \varphi_{2}[y, s] \vdash x=y\right)\right.$

$$
\left.\vdash \exists x \forall y\left(\exists s\left(\varphi_{2}[y, s] \wedge s<u\right) \dashv y<x\right)\right)
$$

16. $\forall u \exists v \forall \varphi_{2}\left(\forall x \forall y \forall s\left(\varphi_{2}[x, s] \wedge \varphi_{2}[y, s] \vdash x=y\right)\right.$

$$
\left.\vdash \exists x\left(x<v \wedge \forall y>\left(\varphi_{2}[x, y] \wedge y<u\right)\right)\right) .
$$

From our main theorem follows now the following theorem.
THEOREM 3. In the proposition 7, the axiom 14 can be replaced by $\forall \varphi((\forall x>\varphi[x] \mapsto \operatorname{Min}(z) \varphi[z]=0) \wedge(\exists z \varphi[x] \mapsto \varphi[\operatorname{Min}(z) \varphi[z]])$
$\wedge \forall x(\boldsymbol{\varphi}[x] \longmapsto x \geqq \operatorname{Min}(z) \varphi[z]))$.

§4. A consistency proof of the theory of linear continuum.

We shall mean here by the 'theory of linear continuum' the theory on real numbers, which contains the concepts $=,<,+$, sup, inf, ${ }^{1}(a)(n=2,3,4, \cdots)$, but does not contain the concept of multiplication. Here $\begin{aligned} & 1 \\ & 2\end{aligned}(a), \begin{aligned} & 1 \\ & 3\end{aligned}(a), \ldots$ mean $\begin{aligned} & a \\ & 2\end{aligned}, \begin{aligned} & a \\ & 3\end{aligned}, \ldots$ respectively and $\frac{1}{2}(*), \frac{1}{3}(*), \cdots$ are considered as functions.

Formally this theory is characterized by the following axioms 4.1.1-4.1.3.
4.1.1. $\forall x(x=x)$

$$
\begin{aligned}
& \forall x \forall y(x=y \vdash y=x) \\
& \forall x \forall y \forall z(x=y \wedge y=z \dashv x=z) \\
& \forall x \forall y \forall z(x=y \vdash x+z=y+z)
\end{aligned}
$$

$$
\begin{aligned}
& \forall x(0+x=x) \\
& \forall x \forall y(x+y=y+x) \\
& \forall x \forall y \forall z((x+y)+z=x+(y+z)) \\
& \forall x \forall y(x=y \vdash-x=-y) \\
& \forall x \forall y \forall z((x=y \wedge y>z \vdash x<z) \\
& \forall x \forall y \forall z(x=y \wedge z<y \vdash z<x) \\
& 0<1 \\
& \forall x \forall y(x=y \bigvee x<y \bigvee y<x) \\
& \forall x \forall y>(x<y \wedge x=y) \\
& \forall x \forall y>(x<y \wedge y<x) \\
& \forall x \forall y \forall z(x<y \wedge y<z \vdash x<z) \\
& \forall x \forall y \forall z(x<y \mapsto x+z<y+z)
\end{aligned}
$$

4.1.2. $\forall x(x=\underbrace{\frac{1}{n}(x)+\cdots+\frac{1}{n}}_{n}(x))$ for each $n=2,3, \cdots$
4.1.3. $\quad \forall A(\forall x>A(x)-\sup (x) A(x)=0)$

$$
\begin{aligned}
& \forall A(\forall x \exists y(x \leqq y \wedge A(y)) \vdash \sup (x) A(x)=0) \\
& \forall A(\exists x A(x) \wedge \exists x \forall y(A(y) \longmapsto y<x) \longmapsto \forall x(A(x) \vdash x \leqq \sup (x) A(x)) \\
& \wedge \forall x(\forall y(A(y) \longmapsto y \leqq x) \longmapsto \sup (x) A(x) \leqq y)) .
\end{aligned}
$$

The purpose of this paragraph is to give a consistency proof of these axioms. Now 4.1.3. may be replaced by the following weaker axiom 4.1.3'. By our main theorem, the consistency of 4.1.1-4.1.3 follows namely from that of 4.1.1., 4.1.2. and 4.1.3'
4.1.3'. $\quad \forall A(\exists x A(x) \wedge \exists x \forall y(A(y) \vdash y \leqq x) \vdash$

$$
\exists x(\forall y(\forall(y \vdash y \leqq x) \wedge \forall y(\forall z(A(z) \vdash z \leqq y) \vdash x \leqq y))) .
$$

Hereafter we assume without loss of generality, that every formula is constructed from logical symbols, free variables, bound variables, $=,<,+,-\frac{1}{n}(*)(n=2,3, \cdots), 0$ and 1. And we denote 4.1.1 and 4.1.2 simply by Γ_{a}. Then we have the following lemma.

Lemma. Let $A\left(a_{1}, \cdots, a_{i}\right)$ be a formula such that $A(0, \cdots, 0)$ does not contain free variables. Then there exists a formula $B\left(a_{1}, \cdots, a_{i}\right)$, which
does not contain logical symbols other than \wedge, \vee and such that the following sequence is provable.

$$
\Gamma_{a} \rightarrow \forall x_{1} \cdots \forall x_{i}\left(A\left(x_{1}, \cdots, x_{i}\right) \longmapsto B\left(x_{1}, \cdots, x_{i}\right)\right) .
$$

Proof. We shall prove this lemma by the induction on the number of \forall and \exists contained in $A\left(a_{1}, \cdots, a_{i}\right)$.

If $A\left(a_{1}, \cdots, a_{i}\right)$ has no \forall nor \exists, then the lemma is clear. Therefore we have only to prove the lemma in the case, when $A\left(a_{1}, \cdots, a_{i}\right)$ is of the form $\exists x A_{0}\left(x, a_{1}, \cdots, a_{i}\right)$ and $A_{0}\left(a_{0}, a_{1}, \cdots, a_{i}\right)$ contains no \forall nor \exists nor 7. Moreover, we may assume that $A_{0}\left(a_{0}, a_{1}, \cdots, a_{i}\right)$ is of the form $A_{1}\left(a_{0}, a_{1}, \cdots, a_{i}\right) \bigvee \cdots \vee A_{a}\left(a_{0}, a_{1}, \cdots, a_{i}\right)$ and $A_{j}\left(a_{0}, a_{1}, \cdots, a_{i}\right)(j=1, \cdots, n)$ has no logical symbol other than \wedge.

In this circumstance, we see easily

$$
\Gamma_{a} \rightarrow \forall x_{1} \cdots \forall x_{i}\left(A\left(x_{1}, \cdots, x_{i}\right) \mapsto \exists x A_{1}\left(x, x_{1}, \cdots, x_{i}\right) \bigvee \cdots \vee \exists x A_{n}\left(x, x_{1}, \cdots, x_{i}\right)\right) .
$$

Hence we have only to prove that there exist formulas $B_{j}\left(a_{1}, \cdots, a_{i}\right)$ $(j=1, \cdots, n)$ which have neither \forall nor \exists, such that the following sequences are provable for each $j(j=1, \cdots, n)$

$$
\Gamma_{a} \rightarrow \forall x_{1} \cdots \forall x_{i}\left(\mathrm{Ex} A_{j}\left(x, x_{1}, \cdots, x_{i}\right) \mapsto B_{j}\left(x_{1}, \cdots, x_{i}\right)\right) .
$$

Here $A_{j}\left(a, a_{1}, \cdots, a_{i}\right)$ is a combination of formulas of the form $T_{1}=T_{2}$, $T_{1}<T_{2}$ by \wedge alone.

By simple calculation, we see that formulas of the form are equivalent to some formulas of the form $a=S_{1}, a<S_{2}, S_{3}<a, S_{4}=S_{5}$ or $S_{6}<S_{7}$ under Γ_{a}, where $S_{1}, S_{2}, \cdots, S_{6}$ and S_{7} are terms without a.

By this reduction we can assume, without loss of generality, that $A_{j}\left(a, a_{1}, \cdots, a_{i}\right)$ is a combination of the form

$$
a<S, \quad a=S, \quad a>S \quad \text { by } \quad \wedge .
$$

Moreover, if $A_{j}\left(a, a_{1}, \cdots, a_{i}\right)$ contains a figure of the type $a=S$, say $a=S_{0}$, then the lemma is obvious; $B_{j}\left(a_{1}, \cdots, a_{i}\right)$ is obtained in combining

$$
S_{0}<S, \quad S_{0}=S, \quad S_{0}>S \quad \text { by } \quad \wedge .
$$

So we may assume that $A_{j}\left(a, a_{1}, \cdots, a_{i}\right)$ is a combination of

$$
a<S, \quad a>S \quad \text { by } \quad \wedge .
$$

So we may assume that $\exists x A_{j}\left(x, a_{1}, \cdots, a_{i}\right)$ is of the form

$$
\exists x\left(x<S_{1} \wedge \cdots \wedge x<S_{n} \wedge x>S^{1} \wedge \cdots \wedge x>S^{m}\right)
$$

Let i_{1}, \cdots, i_{n} be any permutation of $1, \cdots, n$; and let j_{1}, \cdots, j_{m} be any permutation of $1, \cdots, m$. Then we have the sequence

$$
\begin{aligned}
& \Gamma_{a} \rightarrow \exists x A_{j}\left(x, a_{1}, \cdots, a_{i}\right) \vdash \\
& \quad\left(\left(S_{1} \leqq \cdots \leqq S_{n} \wedge S^{1} \geqq \cdots \geqq S^{m} \wedge \exists x A_{j}\left(x, a_{1}, \cdots, a_{i}\right)\right)\right. \\
& \vee \cdots \cdots \\
& \quad \cdots \cdots \\
& \vee\left(S_{i_{1}} \leqq \cdots \leqq S_{i_{n}} \wedge S^{j_{1}} \geqq \cdots \geqq S^{j_{m}} \wedge \exists x A_{j}\left(x, a_{1}, \cdots, a_{i}\right)\right) \\
& \quad \cdots \cdots \\
& \vee \cdots \cdots
\end{aligned}
$$

Hence we have only to consider the formula

$$
S_{1} \leqq \cdots \leqq S_{n} \wedge S^{1} \geqq \cdots \geqq S^{m} \wedge \exists x A_{j}\left(x, a_{1} \cdots, a_{i}\right)
$$

This is equivalent to

$$
S_{1} \leqq \cdots \leqq S_{n} \wedge S^{1} \geqq \cdots \geqq S^{m} \wedge \exists x\left(x<S_{1} \wedge x>S^{1}\right)
$$

under Γ_{a}.
Therefore we may restrict our considerations to the formulas of the following three types:

$$
\begin{aligned}
& \exists x(x<S) \\
& \exists x(x>S) \\
& \exists x\left(x<S_{1} \wedge x>S_{2}\right) .
\end{aligned}
$$

Since the formulas of the first and the second of these types are equivalent to $0=0$ and those of the third type are equivalent to $S_{2}<S_{1}$ under Γ_{a}, our lemma is proved.

Now we shall prove that the following sequence is provable

$$
\Gamma_{a} \rightarrow 4.1 .3^{\prime}
$$

that is, the following sequence is provable

$$
\begin{aligned}
& \Gamma_{a}, \exists x A(x), \exists x \forall y(A(y) \vdash y<x) \\
& \quad \rightarrow \exists x(\forall y(A(y) \vdash y \leqq x) \wedge \forall y) \forall z(A(z) \vdash z \leqq y) \vdash x \leqq y)) .
\end{aligned}
$$

We first make use of the lemma and then, in the same way as in the proof of the lemma, transform $A(x)$ to the form $B_{1}(x) \vee \cdots \vee B_{n}(x)$,
where $B_{i}(x)(i=1, \cdots, n)$ is of the form $C_{i} \wedge\left(x<S_{i}^{1} \wedge x>S_{i}^{2}\right)$ and C_{i} has no x.

Clearly, we have only to prove that the following sequence is provable for each $i(i=1, \cdots, n)$;

$$
\begin{aligned}
\Gamma_{a}, & \exists x B_{i}(x), \exists x \forall y\left(B_{i}(y) \vdash y \leqq x\right) \\
& \rightarrow \exists x\left(\forall y\left(B_{i}(y) \vdash y \leqq x\right) \wedge \forall y\left(\forall z\left(B_{i}(z) \vdash z \leqq y\right) \vdash x \leqq y\right) .\right.
\end{aligned}
$$

Hence we have only to prove that this sequence is provable in case, when $B_{i}(x)$ is of the form

$$
(x<S), \quad(x>S) \quad \text { or } \quad\left(x<S_{i}^{1} \wedge x>S_{i}^{?}\right) .
$$

Since this is clear, the purpose of this paragraph is attained.

> Departments of Mathematics
> Faculty of Science
> Tokyo University of Education.

References

[1] G. Gentzen: Untersuchungen über das logische Schließen I, II. Math. Zeitschr. 39 (1934).
[2] G. Takeuti: On a generalized logic calculus Jap. J. Math, 23 (1953)
Errata to ' On a generalized logic calculus' Jap. J. Math. 24 (1954)
[3] G. Takeuti: On the fundamental conjecture of GLC I. J. Math. Soc. Japan 7 (1955)
[4] G. Takeuti: A metamathematical theorem on the theory of ordinal numbers. J. Math. Soc. Japan. 4 (1952)

