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In our former paper [2], [3], we have introduced a logical system
$GLC$ and a subsystem $G^{1}LC$ of $GLC$, as generalizations of Gentzen’s
$LK$ (cf. [1]). We have also defined the notion of functions in $GLC$

in [2]. This paper is most related to [3], where we have dealt with
$G^{1}LC$ without bound functions. We shall introduce in this paper
another logical system called $HLC$ (‘ hierarchical ’ logic calculus) lying
between $G^{1}LC$ and $LK$ (\S 1). We shall define also ‘ functionals ‘ in
generalization of the notion of functions.

The purpose of the present paper is to prove that the consistent
system under $G^{1}LC$ without bound function or under $HLC$ remains
consistent after ‘ adjunction’ of the concept of functionals, under
certain conditions. Our Main Theorem will read as follows:

MAIN THEOREM: Let $\Gamma_{0}$ be a system of axioms consistent under
$G^{1}LC$ without bound function or under $HLC$. Suppose $\Gamma_{0}$ contains
axioms of equality (See \S 1 for definition), and let the following sequ-
ences be provable.

$\Gamma_{0}\rightarrow\forall\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}\exists yF(\varphi_{1},\cdots, \varphi_{n}, x_{1},\cdots, x_{m},y)$

$\Gamma_{0}\rightarrow\forall\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}\forall y\forall z(F(\varphi_{1},\cdots, \varphi_{n}, x_{1},\ldots, x_{m}, y)$

$\wedge F(\varphi_{1},\cdots, \varphi_{n}, x_{1},\ldots, x_{m}z)_{1}-y=z)$ .
Let $M$ be a functional not contained in $\Gamma_{0}$ , and suppose further, in
case of $HLC$, that $F(\alpha_{1},\ldots, \alpha_{n}, a_{1},\cdots, a_{m}, b)$ does not contain $\forall$ on f-
variables. Then $\Gamma_{0}$ and the following axiom are consistent.

$\forall\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}F(\varphi_{1},\cdots, \varphi_{n}, x_{1},\cdots, x_{m}, M(\varphi_{1},\cdots, \varphi_{n}, x_{1},\cdots, x_{m}))$ .
The conclusion of this theorem holds also in $LK$ by theorem 2,

proved in \S 1.
After some preparations in \S 1, we shall prove our main theorem
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in \S 2. In \S 3 we shall apply this theorem to improve our result in
[4] on the theory of ordinal numbers. It allows us replace an axiom
by a stronger one. In \S 4 we shall prove the consistency of the
‘ theory of linear continuum ’.

\S I. The logical systems.

We shall begin with generalizing ‘ $G^{1}LC$ without bound function ‘

as follows.
We introduce the functional of type $(i_{1},\cdots, i_{n} ; m)$ , denoted by $M$,

$K$ etc., and add the following rule of construction of the term to the
ones given in [3]. ‘ If $H_{j}$ is a formula with $i_{j}$ argument-places for
each $j(1\leqq j\leqq n)$ and $T_{1},\cdots,$ $T_{m}$ are terms and $K$ is an arbitrary func-
tional of type $(i_{1},\cdots, i_{n};m)$ , then $K(H_{1},\cdots, H_{n}, T_{1},\cdots T_{m})$ is a term’.

A function (cf. [3]) may be considered as a special case of func-
tional.

In this paper $LK$ is also considered as generalized by introducing
functionals as above. Except in \S 4, we use only 7, $\wedge$ and $\forall$ as
logical symbols. $\vee,$ $|-$ $ $ and $\exists$ can be considered as combinations
of these symbols.

DEFINITION of $HLC$ A proof-figure $\mathfrak{P}$ of $G^{1}LC$ without bound
function is called a proof-figure of $HLC$, if and only if the following
condition is fulfilled. In an inference $\forall$ left on $f$-variable of the
form

$F(H),$ $\Gamma\rightarrow\Delta$

$\overline{\forall}\varphi F(\varphi),$
$\overline{\Gamma}\overline{\rightarrow\Delta}$

is used in $\mathfrak{P}$ , then $H$ contains no logical symbol $\forall$ on $f$-variable.
We consider also in $HLC$ the functionals $M,$ $ K,\cdots$ of type $(i_{1},\cdots,i_{n} ; m)$

and construct the forms such as $K(H_{1},\cdots, H_{n}, T_{1},\cdots, T_{m})$ with these
functionals. Thereby we shall assume however that $H_{1},\cdots,$ $H_{n}$ contain
no logical symbol $\forall$ on $f$-variable.

In the same way as in Gentzen [1], we see the following theorem.
THEOREM 1. If a sequence $\mathfrak{S}$ is provable in $HLC$, then $\mathfrak{S}$ is provable

without cut in $HLC$.
In $LK$, the axiom of mathematical induction is expressed as the

system of axioms
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$\forall z_{1}\forall z_{2}\cdots\forall z_{n}\forall x(A(0)\wedge\forall y(A(y)1-A(y+1))I-A(x))$ ,

where $\{x\}A(x)$ runs over all the formulas with an argument-place.
More precisely should be written as $\{x\}A(x_{f}z_{1},\cdots, z_{n})$ and $n$ depends on
$A$ . In this paper, such system of the axioms is denoted simply by

$\forall A\forall x(A(O)\wedge\forall y(A(y)_{1}-A(y+1))\leftarrow A(x))$ .
In the same way, notations such as $\forall A_{1}\cdots\forall A_{n}F(A_{1},\cdots, A_{n})$ will be
used, where the number of argument-places of $A_{i}$ is uniquely deter-
mined by $F$ for each $i(1\leqq i\leqq n)$ .

Then by theorem 1 the following theorem is easily proved.
THEOREM 2. The axioms $A_{1},\cdots,$ $A_{N},$ $\forall A_{1}^{1}\cdots\forall A_{i_{1}}^{1}F^{1}(A_{1}^{1},\cdots, A_{i_{1}}^{1}),\cdots,$ $\forall A_{1}^{n}$

... $\forall A^{n_{{}^{t}n}}F^{n}(A_{\perp}^{n},\cdots, A_{i_{n}}^{n})$ are consistent in $LK$, if and only if $A_{1},\cdots,$ $A_{N}$,
$\forall\varphi_{1}^{1}\cdots\forall\varphi_{i_{1}}^{1}F^{1}(\varphi_{1}^{1},\cdots, \varphi_{i_{1}^{1}}),\cdots,$ $\forall\varphi_{1}^{n}\cdots\forall\varphi_{i_{n}}^{n}F^{n}(\varphi_{1}^{\eta},\cdots, \varphi_{i_{n}}^{n})$ are consistent in $HLC$.

As we have remarked in the introduction, it follows from this
theorem, that our main theorem once proved for $HLC$ will imply the
same conclusion for $LK$.

Let $A$ and $B$ be two formulas with $i$ argument-places. Then
$A\equiv B$ is an abbreviation of the formula

$\forall x_{1}\cdots\forall x_{t}(A(x_{1},\cdots, x_{i})-|B(x_{1},\cdots, x_{i}))$ .
Let $\Gamma_{0}$ be a system of axioms in $G^{1}LC$ without bound functions

or in $HLC$. ‘
$\Gamma_{0}$ contains equality axiom’ means that $\Gamma_{0}$ fulfils the

following conditions
1. $\Gamma_{0}$ contains $\forall\varphi\forall x\forall y(x=y\leftarrow\cdot(\varphi[x]r\varphi[y]))$ and $\forall x(x=x)$

2. If functional $K$ of type $(i_{1},\cdots, i_{n} ; m)$ is contained in $\Gamma_{0}$ , then $\Gamma_{0}$

contains $\forall\varphi_{1}\cdots\forall\varphi_{n}\forall\psi_{1}\cdots\forall\psi_{n}\forall x_{1}\cdots\forall x_{n}(\varphi\equiv\psi\wedge\cdots\wedge\varphi\equiv\psi_{I}-K(\varphi_{1},\ldots,$ $\varphi_{n}$ ,
$x_{1},\cdots,$ $x_{m}$ ) $=K(\psi_{1},\ldots, \psi_{n}, x_{1},\cdots, x_{m}))$ .

Then, from the main theorem follows the following theorem
THEOREM ON FUNCTION. Under the hypothesis of the main theorem

the following axioms are consistent
$\Gamma_{0}$ ,

V $\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}F(\varphi_{I},\cdots, \varphi_{n}, x_{1},\cdots, x_{m}, M(\varphi_{1},\ldots, \varphi_{n}, x_{1},\cdots, x_{m}))$ ,

$\forall\varphi_{1}\cdots\forall\varphi_{n}\forall\psi_{1}\cdots\forall\psi_{n}\forall x_{1}\cdots\forall x_{m}(\varphi_{1}\equiv\psi_{1}\wedge\cdots\wedge\varphi_{n}\equiv\psi_{n}-$

$M(\varphi_{1},\cdots,, \varphi_{n}, x_{1},\cdots, x_{m})=M(\psi_{1},\cdots, \psi_{n}, x_{1},\cdots, x_{m}))$ .
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PROOF. We set $A_{0}$ as $\forall\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}F(\varphi_{1},$
$\ldots,$ $\varphi_{n},$ $x_{1},\cdots,$ $x_{m}$ ,

$M(\varphi_{1},\ldots, \varphi_{n}, x_{1},\ldots, x_{m}))$ . Then we have only to prove that the following
sequence is provable

$\Gamma_{0},$ $A_{0},$ $\alpha_{1}\equiv\beta_{1},\cdots,$ $\alpha_{n}\equiv\beta_{n}\rightarrow M(\alpha_{1},\cdots, \alpha_{n}, a_{1},\cdots, a_{m})$

$=M(\beta_{1},\cdots, \beta_{n}, a_{1},\cdots, a_{m})$

On the other hand, we have

$A_{0}\rightarrow F(\alpha,,\cdots, \alpha_{n}, a_{1},\cdots, a_{m}, M(\alpha_{1},\cdots, \alpha_{n}, a_{1},\cdots, a_{m}))$

$\wedge F(\beta_{1},\ldots, \beta_{n}, a_{1},\ldots, a_{m}, M(\beta_{1},\cdots, \beta_{n}, a_{1},\ldots, a_{m}))$

and

$\Gamma_{0},$ $F(\alpha_{1},\ldots, \alpha_{n}, a_{1},\ldots, a_{m}, b),$ $F(\alpha_{1},\cdots, \alpha_{n}, a_{1},\ldots, a_{m}, c)\rightarrow b=c$ .
Therefore we have only to prove that the following sequence is
provable

$\Gamma_{0},$ $\alpha_{1}\equiv\beta_{1},\cdots,$ $\alpha_{n}\equiv\beta_{n},$ $F(\beta_{1},\cdots, \beta_{n}, a_{1},\ldots, a_{m}, b)$

$\rightarrow F(\alpha_{1},\ldots, \alpha_{n}, a_{1},\ldots, a_{m}, b)$ ,

which is easily seen.

\S 2. Proof of the main theorem.

In this section, $\Gamma_{0}$ and $M$ fulfil the condition of the main theorem
Moreover the functionals except $M$ considered in this section are
assumed as contained in $\Gamma_{0}$ .
$*$ -operation

Let $Q$ be a formula or a term. We define $Q$“ recursively by
the following 1-5. $(Q(\alpha_{1},\cdots, \alpha_{n}, a_{1},\ldots, a_{m}))$ “ is also denoted by
$Q^{\star}(\alpha_{1},\ldots, \alpha_{n}, a_{1},\ldots, a_{m})$ . { $\{x_{1},\ldots, x_{n}\}A(x_{1},\cdots, x_{n}))^{\star}$ is defined by $\{x_{1},\ldots, x_{n}\}$

$A^{\star}(x_{1},\ldots, x_{n})$ .
If $Q$ is a formula, then $Q^{\star}$ is a formula.
If $Q$ is a term, then $Q^{\star}$ is a formula with an argument-place.

And in this case, if $Q^{\star}$ is of the form $\{x\}B(x),$ $Q^{\star}(X)$ means $B(X)$ .
1. $a^{\star}$ is $\{x\}(x=a)$ .
2. If $K$ is a functional other than $M$, then $(K(A_{1},\cdots, A_{n}, T_{I},\ldots, T_{m}))^{\star}$
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is $\{x\}(\forall x_{1}\cdots\forall x_{m}(T_{1}^{\star}(x_{1})\wedge\cdots\wedge T_{m}^{*}(x_{m})\leftarrow x=K(A_{1}^{\star},\cdots, A_{n}^{\star}, x_{1\prime}\cdots, x_{m})))$

3. $(M(A_{1}\cdots, A_{n}, T_{1},\cdots, T_{m}))^{\star}$ is $\{x\}(\forall x_{1}\cdots\forall x_{m}(T_{1}^{\star}(x_{1})\wedge\cdots\wedge T_{m}^{*}(x_{m})\mapsto$

$F(A_{1}^{*},\cdots, A_{n}^{\star}, x_{1},\cdots, x_{m}, x)))$ .
4. $(\alpha[T_{1},\cdots, T_{n}])^{\star}$ is $\forall x_{1}\cdots\forall x_{n}(T_{1^{\star}}(x_{1})\wedge\cdots\wedge T_{n}^{*}(x_{n})-\alpha[x_{1},\ldots, x_{n}])$ .
5. $(7 A)^{\star},$ $(A\wedge B)^{\star},$ $(\forall xA(x))$ and $(\forall\varphi F(\varphi))^{\star}$ are 7 $A^{\star},$ $A^{\star}\wedge B^{\star},$ $\forall xA^{\star}(x)$

and $\forall\varphi F^{\star}(\varphi)$ respectively.

PROPOSITION 1. Let $T$ be a term. Then the following sequences
are provable

$\Gamma_{0},$ $T^{\star}(a),$ $T^{\star}(b)\rightarrow a=b$

and
$r_{0}\rightarrow\exists^{x(T^{\star}(x))}$ .

PROOF. We prove this by the mathematical induction on the
number of stages to construct $T$. If $T$ is a free variable, then the
proposition is clear. Now we consider $T$ is of the form $ K(A_{1},\cdots$ ,
$A_{n},$ $T_{1},\cdots,$ $T_{m}$). Then by the hypothesis of the induction, the proposi-
tion holds for $T_{1},\ldots,$ $T_{m}$. Therefore

$\Gamma_{0},$ $T^{\star}(a),$ $T^{\star}(b)\rightarrow a=b$

and
$\forall x_{1}\cdots\forall x_{m}(T|^{e}(x_{1})\wedge\cdots\wedge T_{m^{\angle}}(x_{m})1-a=K(A_{1}^{\Delta}\epsilon\ldots, A_{n}^{\star}, x_{1},\cdots, x_{n}))$

is equivalent to $\exists^{x_{1}}\ldots\exists^{x_{m}(T_{1}^{\star}(x_{1})}\wedge\cdots\wedge T_{m}^{*}(x_{m})\wedge a=K(a_{1}^{*},\ldots, A_{n}^{*},x_{1},\cdots, x_{m}))$

under $\Gamma_{0}$ . Therefore $\Gamma_{0}\rightarrow\exists^{xT^{\star}(x)}$ is clear.
PROPOSITION 2. Let $A$ and $T$ be a formula and a term respectively

and $M$ be not contained in $A$ and T. Then the following sequences are
provable

$r_{0}\rightarrow A^{\star} A$

and
$\Gamma_{0}\rightarrow T^{\star}(a) a=T$ .

PROOF. We prove this by the mathematical induction on the
number of stages to construct $A$ or $T$. If $T$ is a free variable, then
the proposition is clear. We have now to consider several different
cases.
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1) Let $T$ be of the form $K(A_{1},\cdots, A_{n}, T_{1},\ldots, T_{m})$ . Then, under $\Gamma_{0}$ ,
the following formula is equivaleht to $T^{\star}(a)$ :

$\forall x_{1}\cdots\forall x_{m}(T_{1^{*}}(x_{1})\wedge\cdots\wedge T_{m}^{\star}(x_{m})\leftarrow a=K(A_{1}^{*},\cdots, A_{m}^{*}, x_{1},\cdots, x_{m}))$

and this is equivalent to the following (by the hypothesis of induction)

$\forall x_{1}\cdots\forall x_{m}(x_{1}=T_{1}\wedge\cdots\wedge x_{m}=T_{m}\leftarrow a=K(A_{1},\ldots, A_{n}, x_{1},\cdots, x_{m}))$

and this again clearly to $a=T$.
In such cases of ‘ continued equivalence’, we shall hereafter simply

when the formulas one after another, in such a way that the equi-
valence of succesive formulas will be clear to the reader.
2) Let $A$ be $\alpha[T_{1},\cdots, T_{m}]$ . Then, holds under $\Gamma_{0}$ , the following
continued equivalence:

$A^{\star}$

$\forall x_{1}\cdots\forall x_{m}(T_{1}^{*}(x_{1})\wedge\cdots\wedge T_{m}^{*}(x_{m})_{I}-\alpha[x_{1},\cdots, x_{m}])$

$\forall x_{1}\cdots\forall x_{m}(x_{1}=T_{1}\wedge\cdots\wedge x_{m}=T_{m}-\alpha[x_{t},\cdots,x_{m}])$ .
$A$ .

3) If $A$ is $7B,$ $C\wedge B,$ $\forall xD(x),$ $\forall\varphi F(\varphi)$ , the proposition is clear.
PROPOSITION 3. The following sequences are provable.

$\Gamma_{0}\rightarrow(F(A))^{\star}\mapsto F^{\star}(A^{\star})$

and $\Gamma_{0}\rightarrow(T(A))^{\star}(a)-1T^{\star}(A^{\star})(a)$ .
PROOF. If $T(A)$ and $F(A)$ contain no $A$ , then the proposition is

clear. Now we separate the cases.
1) Let $T(A)$ be $K(A_{1}(A),\cdots, A_{n}(A), T_{m}(A),\cdots, T_{m}(A))$ . Then the fol-
lowing continued equivalence holds under $\Gamma_{0}$ :

$(T(A))^{\star}(a)$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(A))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(A))^{\star}(x_{m})-$

$a=K((A_{1}(A))^{\star},\cdots, (A_{n}(A))^{\star}, x_{1},\cdots, x_{m}))$

$\forall x_{1}\cdots\forall x_{m}(T_{1}^{*}(A^{\star})(x_{1})\wedge\cdots\wedge T_{m}^{*}(A^{\star})(x_{m})\leftarrow$

$a=K(A_{1}(A^{\star}),\cdots,A_{n}(A^{\star}), x_{1},\cdots, x_{m}))$

(by the hypothesis of the induction)

$T^{\star}(A^{\star})(a)$ .
2) Let $T(A)$ be $M(A_{1}(A),\cdots, A_{n}(A), T_{1}(A),\cdots, T_{m}(A))$ . Then the fol-
lowing continued equivalence holds under $\Gamma_{0}$ :
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$(T(A))^{\star}(a)$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(A))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(A))^{\star}(x_{m})-$

$F((A_{1}(A))^{\star},\cdots, (A_{n}(A))^{\star}, x_{1},\ldots, x_{m}, a))$

$\forall x_{1}\cdots\forall x_{m}(T_{1}^{*}(A^{\star})(x_{1})\wedge\cdots\wedge T_{m}^{*}(A^{\star})(x_{m})|-$

$F(A_{1}^{*}(A^{\star}),\cdots, A_{n^{\star}}(A^{\star}), x_{1},\cdots, x_{m}, a))$

$T^{\star}(A^{\star})(a)$ .
3) Let $F(A)$ be $\alpha[T_{1}(A),\cdots. T_{m}(A)]$ . Then the following continued
equivalence holds under $\Gamma_{0}$ :

$(F(A))^{\star}$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(A))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(A))^{\star}(x_{m})1-\alpha[x_{1},\cdots, x_{m}])$

$\forall x_{1}\cdots\forall x_{m}(T_{1}^{\star}(A^{\star})(x_{1})\wedge\cdots\wedge T_{m}^{\star}(A^{\star})(x_{m})|-\alpha[x_{1},\cdots, x_{m}])$

$F^{\star}(A^{\star})$ .
4) The other cases are clear.

PROPOSITION 4. The following sequences are provable:
$\Gamma_{0}\rightarrow(A(T))^{\star}\forall x(T^{\star}(x)-A^{\star}(x))$

and $\Gamma_{0}\rightarrow(T_{0}(T))^{\star}(a)r\forall x(T^{\star}(x)|-(T_{0}(x))^{\star}(a))$ .
PROOF. We prove this by the mathematical induction on the

number of stages to construct $A(T)$ or $T_{0}(T)$ . We have to consider
the following several cases.
1) Let $T_{0}(T)$ be $T$ itself. In this cases $(T_{0}(T))^{\star}(a)$ is $T^{\star}(a)$ and
$(T_{0}(x))^{\star}(a)$ is $a=x$. Therefore the proposition is clear by proposition
1.
2) Let $T_{0}(T)$ be $K(A_{1}(T),\cdots, A_{n}(T), T_{1}(T),\cdots, T_{m}(T))$ : Then the fol-
lowing continued equivalence holds under $\Gamma_{0}$ :

$(T_{0}(T))^{\star}(a)$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(T))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(T))^{\star}(x_{m})-$

$a=K((A_{1}(T))^{\star},\cdots, (A_{n}(T))^{\star}, x_{1},\cdots, x_{m}))$

$\forall x_{1}\cdots\forall x_{m}(\forall y(T^{\star}(y)-(T_{1}(y))^{\star}(x_{1}))\wedge\cdots\wedge\forall y(T^{\star}(y)I-(T_{m}(y))^{\star}(x_{m}))$

$1-a=K(\forall z(T^{\star}(z)|-A_{1}^{*}(z)),\cdots’\forall z(T^{\star}(z)\mapsto A_{n}^{\star}(z)),x_{1},\ldots,$ $x_{m}$))

(by the hypothesis of the induction)

$\forall x_{1}\cdots\forall x_{m}(\exists y(T^{\star}(y)\wedge(T_{1}(y)^{\star}(x_{1}))\wedge\cdots\wedge\exists y(T^{\star}(y)\wedge(T_{m}(y))^{\star}(x_{m}))$

$l-a=K(\forall z(T^{\star}(z)-A_{1}^{*}(z)),\cdots, \forall z(T^{\star}(z)-A_{n^{:-\prime}}(z)), x_{1},\cdots, x_{m}))$
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(by the proposition 1)

$\forall y\forall x_{1}\cdots\forall x_{m}(T^{\star}(y)\wedge(T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})-a=K(\forall z(T^{\star}(z)$

$-A_{1}^{*}(z)),\cdots,$ $\forall z(T^{\star}(z)\mapsto A_{n}^{*}(z)),$ $x_{1},\cdots,$ $x_{m}$)) (By the proposition 1)

On the other hand, $\forall x(T^{\star}(x)_{1-}(T(x))^{\star}(a))$ is
$\forall x(T^{\star}(x)-\forall x\cdots\forall x_{m}((T_{1}(x))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(x))^{\star}(x_{m})-$

$a=K(A_{1}^{*}(x),\cdots, A_{n}^{*}(x), x_{1},\cdots, x_{m}))$ ,
so it is equivalent to

$\forall y\forall x_{1}\cdots\forall x_{m}(T^{\star}(y)\wedge(T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})-$

$a=K(A_{1}^{\nu}(y),\cdots, A_{n}^{\star}(y), x_{1},\cdots, x_{m}))$ .
Therefore we have only to prove

$\Gamma_{0},$ $T^{\star}(b)\rightarrow A_{i}^{*}(b)\equiv\forall z(T^{\star}(z)|-A_{i^{*}}(z))$

for each $i$, which is easily proved by proposition 1.
3) Let $T_{0}(T)$ be $M(A_{1}(T),\cdots, A_{n}(T), T_{1}(T),\cdots, T_{m}(T))$ . In the same
way as in the case 2), the following continued equivalence holds
under $\Gamma_{0}$ :

$(T_{0}(T))^{\star}(a)$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(T))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(T))^{\star}(x_{m})-$

$F((A_{1}(T))^{\star},\cdots, (A_{n}(T))^{\star}, x_{1},\cdots, x_{m}, a))$

V $x_{1}\cdots\forall x_{m}(\forall y(T^{\star}(y)-(T_{1}(y))^{\star}(x_{1}))\wedge\cdots\wedge\forall y(T^{\star}(y)|-(T_{m}(y))^{\star}(x_{m}))$

$|-F(\forall y(T^{\star}(y)-A_{1}^{*}(y),\cdots, \forall y(T^{\star}(y)_{1}-A_{n}^{*}(y)), x_{1},\cdots, x_{m}, a))$

$\forall y\forall x_{1}\cdots\forall x_{m}(T^{\star}(y)\wedge(T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})\mapsto$

$F(\forall z(T^{\star}(z)-A_{1}^{*}(z),\cdots. \forall z(T‘‘(z)_{1}-A_{n^{\backslash }}(z)), x_{1},\ldots, x_{m}, a))$

$\forall y\forall x_{1}\cdots\forall x_{m}(T^{\star}(y)\wedge(T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})-$

$F(A_{1}^{*}(y),\cdots, A_{n}^{*}(y), x_{1},\cdots, x_{m}, a))$

$\forall y(T\star(y)1-(T_{0}(y))^{\star}(a))$ .
4) Let $A(T)$ be $\alpha[T_{1}(T),\cdots, T_{m}(T)]$ . Then the following continued
equivalence holds under $\Gamma_{0}$ :

$(A(T))^{\star}$

$\forall x_{1}\cdots\forall x_{m}((T_{1}(T))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(T))^{\star}(x_{m})-\alpha[x_{1},\cdots, x_{m}])$

$\forall x_{1}\cdots\forall x_{m}(\forall y(T^{\star}(y)|-(T_{1}(y))^{\star}(x_{1}))\wedge\cdots\wedge\forall y(T^{\star}(y)-(T_{m}(y))^{\star}(x_{m}))$

$-\alpha[x_{1},\ldots, x_{m}])$
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$\forall y\forall x_{1}\cdots\forall x_{m}(T^{\star}(y)\wedge(T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})-\alpha[x_{1},\cdots, x_{m}])$

$\forall y(T^{\star}(y)-\forall x_{1}\cdots\forall x_{m}((T_{1}(y))^{\star}(x_{1})\wedge\cdots\wedge(T_{m}(y))^{\star}(x_{m})\mapsto\alpha[x_{1},\cdots, x_{m}])$

$\forall y(T^{\star}(y)\leftarrow A^{\star}(y))$ .
5) The other cases are clear.

PROPOSITION 5. Let $A_{0}$ be $\forall\varphi_{1}\cdots\forall\varphi_{n}\forall x_{1}\cdots\forall x_{m}F(\varphi_{1},\ldots,$
$\varphi_{n},$ $x_{1}\ldots.,$ $x_{m}$ ,

$M(\varphi_{1},\cdots, \varphi_{n}, x_{1},\cdots, x_{m}))$ . Then $\Gamma_{0}\rightarrow A_{0}^{*}$ is provable.
PROOF. We have only to prove that
$\Gamma_{0}\rightarrow(F(\alpha_{1},\cdots, \alpha_{n}, a_{1},\cdots, a_{m}. M(\alpha_{1},\cdots, \alpha_{n}, a_{1},\cdots, a_{m})))^{\star}$ .

To show this by the proposition 2 and 4, we have only to prove
$\Gamma_{0}\rightarrow\forall x((M(\alpha_{1},\ldots, \alpha_{n}, a_{1},\cdots, a_{n}))^{\star}(x)\}-F(\alpha_{1},\cdots, \alpha_{n}, a_{1},\ldots, a_{m}, x))$ ,

which is clear.
PROPOSITION 6. If $\Gamma\rightarrow\Delta$ is provable, then $\Gamma_{0},$

$\Gamma^{\star}\rightarrow\Delta^{\star}$ is provable,
where $\Gamma^{\star}$ means $A_{1}^{*},\ldots,$ $A_{n}^{*}$ provided that $\Gamma$ is $A_{1},\ldots,$ $A_{n}$ .

PROOF. We prove this by the mathematical induction on the
number of inference-figures in the proof-figure to $\Gamma\rightarrow\Delta$. Then, in
case of $GL^{1}C$ without bound function, the proposition is clear by the
propositions 2, 3 and 4. In case of $HLC$, we have only to prove the
following fact: If $A$ contains no $\forall$ on $f$-variable, then $A^{\star}$ contains
no $\forall$ on $f$-variable. But this is clear by definition.

On main theorem follows now immediately from Propositions 2,
5, 6.

\S 3. An application.

By the theorem 1, the following proposition follows easily from
our former paper [4].

PROPOSITION 7. The following axioms are consistent in $HLC$ .
1. $\forall x(x=x)$

2. $ 0<\omega$

3. $\forall x\forall y(x<yVx=y\ovalbox{\tt\small REJECT} y<x)$

4. $\forall x\forall y7(x=y\wedge x<y)$

5. $\forall x\forall y7(x<y\wedge x<y)$

6. $\forall x\forall y\forall z(x<y\wedge y<z-x<z)$

7. $\forall x(0<x\ovalbox{\tt\small REJECT} 0=x)$
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8. $\forall x\forall y(x<y1-x^{\prime}=y\ovalbox{\tt\small REJECT} x^{\prime}<y)$

9. $\forall x(x<x^{;})$

10. $\forall x\forall y(x^{f}=y^{\prime}\leftarrow x=y)$

11. $\forall x(x<\omega|-X^{\prime}<\omega)$

12. $\forall\varphi\forall x\forall y(x=y|-(\varphi[x]\varphi[y]))$

13. $\forall\varphi\forall x(\varphi[0]\wedge\forall y(\varphi[y]\}-\varphi[y^{\prime}])\wedge x<\omega-\varphi[x])$

14. $\forall\varphi\forall x(\varphi[0]\wedge\forall y(\forall u(u<y|-\varphi[u])-\varphi[y]|-\varphi[x])$

15. $\forall\varphi_{2}\forall u(\forall x\forall y\forall s(\varphi_{2}[x, s]\wedge\varphi_{2}[y, s]-x=y)$

$\vdash\exists^{x\forall y(\exists^{s(\varphi_{2}[y,s]\wedge s<u)-1y<x))}}$

16. $\forall u\exists^{v\forall\varphi_{2}(\forall X\forall y\forall s(\varphi_{2}[x,s]\wedge\varphi_{2}[y,s]-X=y)}$

$-\exists^{x(x<v\wedge\forall y7(\varphi_{2}[x,y]\wedge y<u)))}$ .
From our main theorem follows now the following theorem.
THEOREM 3. In the proposition 7, the axiom 14 can be replaced by
$\forall\varphi((\forall x7\varphi[x]-{\rm Min}(z)\varphi[z]=0)\wedge(\exists^{z}\varphi[x]|-\varphi[{\rm Min}(z)\varphi[z]])$

$\wedge\forall x(\varphi[x][-x\geqq{\rm Min}(z)\varphi[z]))$ .

\S 4. A consistency proof of the theory
of linear continuum

We shall mean here by the ‘ theory of linear continuum ’ the
theory on real numbers, which contains the concepts $=,$ $<,$ $+,$ $\sup$ ,
$\inf$, $1n(a)(n=2,3,4,\cdots)$ , but does not contain the concept of multi-

plication. Here $12$ $(a)$ , $13$ $(a),\cdots$ mean $a2$ , $a3$ , ... respectively and

$--21(*)$ , $1_{-(*}3$ ), $\cdots are$ considered as functions.

Formally this theory is characterized by the following axioms
4.1.1-4.1.3.
4.1.1. $\forall x(x=x)$

$\forall x\forall y(x=yl-y=x)$

$\forall x\forall y\forall z(x=y\wedge y=z\rightarrow x=z)$

$\forall x\forall y\forall z(x=y\}-x+z=y+z)$
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$\forall x(0+x=x)$

$\forall x\forall y(x+y=y+x)$

$\forall x\forall y\forall z((x+y)+z=x+(y+z))$

$\forall x\forall y(x=y\mapsto-x=-y)$

$\forall x\forall y\forall z((x=y\wedge y>zl-x<z)$

$\forall x\forall y\forall z(x=y\wedge z<y\leftarrow z<x)$

$0<1$

$\forall x\forall y(x=y\ovalbox{\tt\small REJECT} x<y\ovalbox{\tt\small REJECT} y<x)$

$\forall x\forall y7(x<y\wedge x=y)$

$\forall x\forall\gamma 7(x<y\wedge y<x)$

$\forall x\forall y\forall z(x<y\wedge y<z-x<z)$

$\forall x\forall y\forall z(x<\gamma x+z<y+z)$

4.1.2. $\forall x(x=\frac{1}{n}(x)+\cdots+\underline{1}n-(x))$ for each $ n=2,3,\cdots$

$\sim n$
4.1.3. $\forall A(\forall x7A(x)\leftarrow\sup(x)A(x)=0)$

$\forall A(\forall x_{\exists y(X}\leqq y\wedge A(y))\leftarrow\sup(x)A(x)=0)$

$\forall A(\exists^{xA(x)}\wedge\exists^{x}\forall y(A(y)\leftarrow y<x)\vdash\forall x(A(x)\leftarrow x\leqq\sup(x)A(x))$

$\wedge\forall x(\forall y(A(y)-y\leqq x)|-\sup(x)A(x)\leqq y))$ .
The purpose of this paragraph is to give a consistency proof of

these axioms. Now 4.1.3. may be replaced by the following weaker
axiom 4.1.3‘. By our main theorem, the consistency of 4.1.1-4.1.3
follows namely from that of 4.1.1., 4.1.2. and $4.1.3^{\prime}$ .
4.1.3‘. $\forall A(\exists^{xA(x)}\wedge\exists^{x}\forall y(A(y)-y\leqq x)\leftarrow$

$\exists^{x}(\forall y(\forall(y-y\leqq x)\wedge\forall y(\forall z(A(z)-z\leqq y)-x\leqq y)))$ .
Hereafter we assume without loss of generality, that every

formula is constructed from logical symbols, free variables, bound
variables, $=,$ $<,$ $+,$ $-,$ $\frac{1}{n}(*)(n=2,3,\cdots),$ $0$ and 1. And we denote

4.1.1 and 4.1.2 simply by $\Gamma_{a}$ . Then we have the following lemma.
LEMMA. Let $A(a_{1},\cdots, a_{i})$ be a formula such that $A(O,\cdots, 0)$ does not

contain free variables. Then there exists a formula $B(a_{1},\cdots, a_{i})$ , which
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does not contain logical symbols other than $\wedge,$ $\vee$ and such that the
following sequence is provable.

$\Gamma_{a}\rightarrow\forall x_{1}\cdots\forall x_{i}(A(x_{1},\cdots, x_{i})-B(x_{1},\cdots, x_{i}))$ .
PROOF. We shall prove this lemma by the induction on the

number of $\forall$ and $\exists$ contained in $A(a_{1},\cdots, a_{i})$ .
If $A(a_{1},\cdots, a_{i})$ has no $\forall$ nor $\exists$ , then the lemma is clear. There-

fore we have only to prove the lemma in the case, when $A(a_{1},\cdots, a_{i})$

is of the form $\exists^{xA_{0}(x,a_{1},\cdots,a_{i})}$ and $A_{0}(a_{0}, a_{1},\cdots, a_{i})$ contains no $\forall$ nor
$\exists$ nor 7. Moreover, we may assume that $A_{0}(a_{0}, a_{1},\cdots, a_{i})$ is of the
form $A_{1}(a_{0}, a_{1},\cdots, a_{i})\vee\cdots\ovalbox{\tt\small REJECT} A_{a}(a_{0}, a_{1},\cdots, a_{i})$ and $A_{j}(a_{0}, a_{1},\cdots, a_{j})(j=1,\cdots, n)$

has no logical symbol other than $\wedge\cdot$

In this circumstance, we see easily

$\Gamma_{a}\rightarrow\forall x_{1}\cdots\forall x_{i}(A(x_{1},\cdots, x_{i})\exists^{xA_{1}}(x, x_{1},\cdots, x_{i})\vee\cdots\vee\exists xA_{n}(x, x_{1},\ldots, x_{i}))$ .
Hence we have only to prove that there exist formulas $B_{j}(a_{1},\cdots, a_{i})$

$(j=1,\cdots, n)$ which have neither $\forall$ nor $\exists$ , such that the following
sequences are provable for each $j(j=1,\cdots, n)$

$\Gamma_{a}\rightarrow\forall x_{1}\cdots\forall x_{i}(ExA_{j}(x, x_{1},\cdots, x_{i})\mapsto B_{j}(x_{1},\cdots, x_{i}))$ .
Here $A_{j}(a, a_{1},\cdots, a_{i})$ is a combination of formulas of the form $T_{1}=T_{2}$ ,
$T_{1}<T_{2}$ by $\wedge$ alone.

By simple calculation, we see that formulas of the form are
equivalent to some formulas of the form $a=S_{1},$ $a<S_{2},$ $S_{3}<a,$ $S_{4}=S_{5}$

or $S_{6}<S_{7}$ under $\Gamma_{a}$ , where $S_{1},$ $S_{2},\cdots,$ $S_{6}$ and $S_{7}$ are terms without $a$.
By this reduction we can assume, without loss of generality, that

$A_{j}(a, a_{1},\cdots, a_{i})$ is a combination of the form

$a<S$, $a=S$, $a>S$ by $\wedge\cdot$

Moreover, if $A_{j}(a, a_{1},\cdots, a_{i})$ contains a figure of the type $a=S$,
say $a=S_{0}$ , then the lemma is obvious; $B_{j}(a_{1},\cdots, a_{i})$ is obtained in
combining

$S_{0}<S$, $S_{0}=S$, $S_{0}>S$ by $\wedge\cdot$

So we may assume that $A_{j}(a, a_{1},\ldots, a_{i})$ is a combination of

$a<S$, $a>S$ by $\wedge$

So we may assume that $\exists^{xA_{j}(x,a_{1},\cdots,a_{i})}$ is of the form
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$\exists^{x}(x<S_{1}\wedge\cdots\wedge x<S_{n}\wedge x>S^{1}\wedge\cdots\wedge x>S^{m})$ .
Let $i_{1},\cdots,$ $i_{n}$ be any permutation of 1, $\cdot$ .., $n$ ; and let $j_{1},\cdots,j_{m}$ be any

permutation of 1, $\cdot$ .., $m$. Then we have the sequence

$\tau_{a}\rightarrow\exists^{xA_{j}(x,a_{1},\ldots,a_{i})\leftarrow}$

$((S_{1}\leqq...\leqq S_{n}\wedge S^{1}\geqq\cdots\geqq S^{m}\wedge\exists xA_{j}(x, a_{1},\cdots, a_{i}))$

$\vee\cdots\cdots$

V $(S_{i_{1}}\leqq\cdots\leqq S_{i_{n}}\wedge S^{j_{1}}\geqq\cdots\geqq S^{j_{m}}\wedge\exists xA_{j}(x, a_{1},\cdots, a_{i}))$

$\vee\cdots\cdots$

Hence we have only to consider the formula
$S_{1}\leqq\cdots\leqq S_{n}\wedge S^{1}\geqq\cdots\geqq S^{m}\wedge\exists^{xA_{j}(x,a_{1}\cdots,a_{i})}$ .

This is equivalent to
$S_{1}\leqq\cdots\leqq S_{n}\wedge S^{1}\geqq\cdots\geqq S^{m}\wedge\exists^{x(x<S_{1}}\wedge x>S^{1})$

under $\Gamma_{a}$ .
Therefore we may restrict our considerations to the formulas of

the following three types:

$\exists^{x(x<S)}$

$\exists^{x(x>S)}$

$\exists^{x(x<S_{1}\wedge x>S_{2})}$ .
Since the formulas of the first and the second of these types are
equivalent to $0=0$ and those of the third type are equivalent to
$S_{2}<S_{1}$ under $\Gamma_{a}$, our lemma is proved.

Now we shall prove that the following sequence is provable

$\Gamma_{a}\rightarrow 4.1.3^{\prime}$

that is, the following sequence is provable

$\Gamma_{a},$ $\exists^{xA(x)},$ $\exists^{x\forall y(A(y)1-y<x)}$

$\rightarrow\exists^{x(\forall y(A(y)-y\leqq x)\wedge\forall y)\forall z(A(z)\leftarrow z\leqq y)-x\leqq y))}$ .
We first make use of the lemma and then, in the same way as in
the proof of the lemma, transform $A(x)$ to the form $B_{1}(x)\vee\cdots\ovalbox{\tt\small REJECT} B_{n}(x)$ ,



78 G. TAKEUTI

where $B_{i}(x)(i=1,\cdots, n)$ is of the form $C_{i}\wedge(x<S_{i}^{1}\wedge x>S_{i}^{2})$ and $C_{i}$ has
no $x$.

Clearly, we have only to prove that the following sequence is
provable for each $i(i=1,\cdots, n)$ ;

$\Gamma_{a},$ $\exists^{xB_{i}(x)},$ $\exists^{x\forall y(B_{i}(y)\leftarrow y\leqq x)}$

$\rightarrow\exists^{x(\forall y(B_{i}(y)-y\leqq x)\wedge\forall y(\forall z(B_{i}(z)\mapsto z\leqq y)\leftarrow x\leqq y)}$ .
Hence we have only to prove that this sequence is provable in

case, when $B_{i}(x)$ is of the form
$(x<S)$ , $(x>S)$ or $(x<S_{i}^{1}\wedge x>S_{i}^{2})$ .

Since this is clear, the purpose of this paragraph is attained.
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