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Harmonic analysis of the axially symmetrical
incompressible viscous flow.
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Introduction: The present paper has been inspired by a similar
one for the two-dimensional case*. For an axially symmetrical three-
dimensional flow, the paper gives the differential equations connecting
the Fourier transforms of the velocity components, the stream function
and the vorticity. Equivalent integro-differential equation of the
Navier-Stokes equation of motion has been given and thus the Fourier
transform Z of the vorticity being known, those of the velocity
components and the stream function are given; also the spectral
function of the kinetic energy of the flow is determined.

Flow being axially symmetrical it will be the same in all the
planes passing through the axis. We therefore consider the flow in
half of one of these planes bounded by a domain D in this plane,
velocity vanishing on the boundary B of D. We take x along the
axis and w» perpendicular to it as the coordinates of any point in
this half-plane. If the fluid extends up to infinity, the velocity is
zero there. If Y be the stream function the two components «, v of
the velocity are given by

ux, @, t)=— + W (1)
w 0&
1 oy
v 0= O @)

According to boundary conditions we have

* J. Kampé de Fériet, Harmonic analysis of the two-dimensional flow of an incom-
pressible viscous fluid, Quart. Appl. Math., (1) VI, 1-13 (1948).
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u(x, @,t)=0, v(x,@,t)=0 on B, 3)
i.e.
vz, & 6)=0, ¥ _0 on B. (4)
o0x

The vorticity is given by
2 2
¢(x, @, t):L(i‘lfﬂL@«Ir B

ox> 0@

ox 0@

0‘1’):6’” ou (5)

—_— 1* —— —
& 0@

The cross-differentiated Navier-Stokes equation of motion is

or ot or  wt (a% ot 1 ot ¢
2 U2 v 2 — = R e 6
ot ¥ ox oo o low Tt o s & ©)

where v is the kinematic coefficient of viscosity.

Substituting the values (1), (2) and (5) into (6) we obtain a partial
(non-linear) differential equation for yr(x, @,¢) which is characterestic
for the three-dimensional axially symmetrical flow of an incompres-
sible viscous fluid. As in the two-dimensional problem, we shall only
deal with regular flows i.e. with stream functions such that the
functions

oy ou ov ot ot ot 9

\1’7”71)7 c,iat”’a'tf’at 77ét'7’) 69{;"65 ?VC (7)
are continuous and finite in x,@,¢ for (x,®) in D+ B and ¢ <t<t,.
Besides these (as pointed out very kindly by Porf. Kampé de Iériet)
the appearance of @ in the denominators of v, ¢ etc. might cause
difficulty in operating Green’s formulae and taking Fourier trans-
forms in some cases if the region occupied by the fluid includes the
axis @=0. For this we have to impose the following restrictions;

é together with its first derivative with respect to @ is finite on
(4]

the axis, so are \\f and 7_1’1&/{ together with its first and second

w w
derivatives.
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&l

0 x

This paper is divided into five parts. In the first part the
Fourier transforms ¥(w,, o, 1), U(»,, »,t), V(o,, »,,t) and Z(w,, »,,t) of
the stream function ., the velocity components #,v and the vorticity
¢ are introduced and simple linear partial differential equations are
obtained connecting ¥,U, V, Z. This part of the paper uses only the
definitions of v, «, v, {, their continuity condition and the boundary
condition; the results are valid whether the fluid is viscous or not.

In the second part the kinetic energy of the fluid

E:KS a3+ v)do, (do—dxda) 8)
2 D
and its spectral decomposition

E:S ¥(®,, 0, t)do, (do=do dw,) 9)
Q2

are considered and it is shown that the spectral function (e, ,,?)
has a simple expression in terms of ¥ and Z

In the third part an integro-differential equation equivalent to
the Navier-Stokes equation of motion (6) has been derived in terms
of the Fourier transforms Z, U, V.

In the fourth part the case that the fluid occupies the entire
half-plane

X(-—-co<<x<<co, 0<<® <o)

has been considered as the limit of the flow in a bounded domain, the
fluid being at rest at infinity. The integro-differential equation
simplifies considerably in this case.

In the fifth part a further special class of flows characterised
by ¢=wf(¥), also called the self-superposable flows, has been studied



The axially symmetrical incompressible viscous flow. 105

and one application of the foregoing theory has been given.
If f(x,») is a real function of the real variables x and & defined
and continuous in D -+ B, its Fourier transform is given by

Flo, »,)= 4;17_2

S f(%, Yoo (10)
D

where the frequencies o, and w, are real. We shall use the following
well-known properties of the Fourier transforms.
(a) F(o, »,) is.a complex function of two real variables w,, w, defined
in the entire plane

.Q(——c/o<wl<m’ —o/o<w2<o/o).

(b) F(w, »,) is a continuous function of the variables o, 0, at every
point of L.

() If |o|+]|w,|—co, then F(w,, ®,)—0.
(d) If F(w, w,) is absolutely integrable
\ | Flw, o) ldo<c,

the integral
S F(wl, mz)e’.(“’l"*“’ﬂ)dw
2

defines a continuous function of x,» for all values of x and @ in
D-+B:

fa @)=\ Flo, o)erPdo,
while
0— SQ Flo,, o,)ef@s0de
outside D+ B. Since the integral is continuous for all values of x
and @ the function f(x, ) must vanish on B. Thus if a given function

f(x, @) does not vanish on B its Fourier transform cannot be absolutely
integrable.

(e) If f(x, ®) has continuous derivatives gi:,;g{; in D+B (which
»

is always the case for the functions considered here), one has
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flx, ®) = SQF(wl, w,)eioErody (11)

at every point of D, the integral being now an improper integral
defined as the limit

limg F(o,, ,)e/{orx+o:®)de 12)
A—eoJCR

C\ being the circle o]+ w;<A* (Cauchy’s principal value). As a rule
does not hold on the boundary B.

(f) f(x, @), g(x, ) being continuous functions with continuous deriva-
tives in D+B and F(e, »,), G(o, »,) their Fourier transforms, we
have

'1 o'S f(x; @)g(x, E)e_iw“mga)dd :S F(wn "’z)a—(wl +6, a’z+02)d“’ ’ (13)
Am® Jp 2
the meaning of the integral being the same as in[II]. Here 6, and
6, are arbitrary real variables; in particular for 6,=6,=60 one has
Parseval’s formula

1 S flx, ®)g(x, G)dais Flo, ©)C(o, o,)do, (14)
dm* Jp 2
G denoting the conjugate of G.
I. We now introduce the Fourier transforms of the stream func-
tion, the velocity components and the vorticity

(@, oy t)= - L S V(x, B, e iomtors)dy (15)
4= Jp

U(a’u W), t) = 1’6'8 u(x, o, t)e—i(wlx+w"a)da' (16)
477'.' D

Vie, w, t)= T S v(x, B, t)e—iors @) dg (17)
477'2 D .

Zw, w0y )= 1 £ 5, heiosords . (18)
47* Jp

This part of the paper deals with the purely kinematical signi-
ficance of v, u#,v,¢, all computations being supposed to be made at a
given time t&. For the sake of brevity we shall therefore write
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YV(x, @), ¥(w,, w,) ete. for Y (x, @, t), ¥ (w0, w,, t) ete.

THEOREM 1. The following partial differential equations connect
the Fourier transforms of the stream function, velocity components and
the vorticity.

w,
7671: o, -~ (20)
w,
2
L _Bioy +i(i+w) OF . (21)
0w lw,

Substituting (1) into we get

U= — 1 S _i_m@\k e~ 013+ 02®) ]

4 p ® 03
. - “ - .
so that, since the integrand concerned is continuous

oU _ i

w, A4’

S . 6‘;" e~ i(01x+0e®) f

b 08

l

27{ S a- (\I/-e~x'(w1r +w56))do. + i("zg \P.e—-i(wlx+wza)do_
47T D 03 I

- 4;2‘{“8 B‘l’e"'(“"““’@ds+4W2w2”’} (21a)
B

by the Green’s formula.
= —w,?, since ¥+=0 on B by (4). Thus we get [19). Substituting
(2) into we get by similar considerations. Substituting (5)

into we get
Z = 1 S _1 (_aj‘l" -+_62\,’__,:!'_'__6\11)e—i(w1x+wnﬁ)do-
D

o \ ox? 072 ® 0o

47t
so that,
_ai: _ ”‘i"“g ( QQ_‘E-{—G?\PL) e—i(w1t+w23)do- 4 i#S_]L ?‘ke—i(ajlx+wgfﬁ)do— . (22)
dw, 4 Jp\ 0x® 0w 47 J o 0w

We now make use of Green’s formula
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2 2
g — gr*f)d. —_-—S (6g of )ds: . 0 +.,8~~ 22a
SD(fvg gr'fide——\ (2% —g 7. p= 0, @)
Putting f=+, g=e iw1v+2® we get on account of (4) and the fact

V2e—-i(w1x+wam) _— (w'l’ + wg)e—i(ww*wz?ﬁ) , (23)
. ((D + wZ)S \lre—i(wlx twew )da- — S V2\l,e—i(a)lx+waaj)do- R
D

so that (22) gives
YA

w0,

=i(w} +w)¥ —iU .
Differentiating once more with respect to w, and using we get
(21). Since by
C(x, 6) = S Z(“’u wz)e—i(wlr+wgm)dw
2

Ao

= ]img Z(w,, w,)e 015+ o1®) e (24)
Ci

we can interpret Z(w, w,)dw dw, as the contribution of vortices the
frequencies of which are between o, and o, +dw, and o, and ,+dw,.

2. Since the kinetic energy of an element of fluid contained be-
tween the two semi-cylindrical surfaces of length dx, o=@ and
o= +d> is

;~ mro(u’ +v°)do ,

the kinetic energy of the entire fluid is

g 5, L8] (5% e

This can be written as

I s v
AR

a
+_"_SD(L 6‘1’ ‘1’) (25)

.+_



The axially symmetrical incompressible viscous flow. 109

To the first integral on the right-hand side of we apply Green’s

formula (which requires that _‘{"/2 together with its derivatives should
> .

be finite).
(e ()L oo
Putting fz%»"f;i in this we get
Lo (o |+ Lo (e == o0 (e
SESAEAT e

by the boundary condition (4) the last integral on the right-hand
side of this equation is zere. Hence

I 2 e, e

L1 ey 1 6~P+,3‘1£)da.

o2 0a: @ 0w Ao

Substituting this in we get
Eee (g L(2% 0% 1o, w1y or ¥,
D

2 ox> 0@ @ 0@ @ s @

2|

D @

z_wngpcdﬁL.}S o (¥)de: by )

2 p 0o \ @°
2
—— 7 wedo— T B Y as, (25b)
2 D 4 B (02
by Green’s formula, provided {IQ is finite and continuous.
(0]
= —277"38 v Zdo
e

by applying Parseval’s formula to the first and boundary condition
(4) to the second integral on the right-hand side. Hence, by (9) we
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have
V@, 0, )= — 27T (0, 0, ) Z(@,; 0, 1) . (26)

Given Z, ¥ is known from [21), v from [26) and U and V from
and [20). Thus theorem I and reduce the harmonic analysis
of the flow to the study of the Fourier transform Z of the vorticity.

From (9) we can interpret v(w, w, t)dwdw, as the amount of
kinetic energy coming from the vortices with frequencies between
o, and o,+dw,, and o, and o,+dw,, The Fourier transforms ¥ and
Z being continuous and bounded in the entire plane £, we see from
that vy(w,, w,) is also continuous and bounded in the entire £ plane.

3. To make any study of the Fourier transforms Z, U, V,% and
the spectral function with time and following the motion of the fluid,
we must obtain the equivalent relation between Z, U, V etc. to the
equation of motion (6). To this end we take the Fourier transform
of both sides of (6) and rearrange as

*'1-—8 6;‘ g o1+ 0By | ! 2 S (u ag +v a_g_ — 11;‘ )e—i(w1x+wgm)do_
D

Am* J, ot 47 0x s o
(27)
_ _,y,,,S ( 6"{,‘ + 62§ ) e w11+ 0:8) o +_”_S ~ _]_-- i ( ag _ g,,,)e—i(wlx roe®)do |
A7 )\ 0x 0w’ Am® ) @ \ 0w @

Since ¢ and Zf are continuous in ¢, the functions Z and ZtZ are also

continuous in ¢£. Thus

5 1 ¢ ot oo
Z(w,, @,y 1) = S Kooy | 28
ot A D= ) ot 7 (28)

To compute the second Fourier transform on the left-hand side of
(27) we start from the equation

(u ¢, 09 ) e-iowiom) — 0 (yro—iorrom)
ox 0w 0x

+ —a—a_d)_ {Uce'i(an:ﬁ w,a)} + i(w,uC + wzvg)e—i(wlxhgza)

_g(au_‘_‘av )e—-—i((olr+m25) .
ox 0w
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By the equation of continuity in axially symmetrical flows

azft_[_;azi_;_?_, =0,

0x 0w w

the above equation reduces to

u 7@5 _|_v;gé; . Z)C e——i(a)1x+w26) — ,”7677 {u:e—l‘(a)lx-%a)gm)}
ox 0w [7) 0x

L e ) i+ w0 pE e O,
@

We integrate this equation over D and note that by Green’s formula

S 0 (Ul i1+ o)) o — HS aute i@t 0®)ds — () (29)
pox B
S j;, {vge*i(w1x+wzm)} do = _S Bvé‘e~i(m1x+(n2a)d8:0 (30)
Da(ﬂ B
on account of the boundary condition (8). Accordingly _C_,f being
w

finite)

{ (uf”‘f 4o 08 2t )e—ﬂwwz%
L\ 0x 0o @

= iwlS uce—i(wuw 0@l 5 A iwz S vge—i(mlxa W ®)
D D

=47, S ue., 92)2(01 + @,,0, + 0,)d6 + 47"21.("25 Vv, 92)2—(01 + o, 6,+ w,)do
6 ]

by the formula (18), where the variables of integration are now
6,,6, and d6=d0,df,, the integral being exteneded to the entire plane
®. Thus we have

1, S (u 6,§,+,,70£_ vE )e—i(w1x+wza)do_
Am? Jp\ ox 0w @

=i\ (0,00, 6)+0,V(6,,0.)Z6, 1 w, 6, + 0,)db . (31)
JO

To compute the first Fourier transform on the right-hand side of
(27) let us put
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Cloy o, )=+, | prpeeiorromds. (32)
47

D

Applying Green’s formula

S (P2L s g ilorx: 020) §V2e—i(m1x+wgm)}do_
D
== _g \ ag e_i(wli' “’2—“—’)~§ ,a* (e—i(wlx+w2'u7))}ds ,
Jpl 0x ox
and putting

Py out)= 1| | % oo o, o fpe oo ]ds.  (@3)
Az? Jpl 0x

we get
C(wn @5, l)y=— (("’fll_l~ mg)Z(a’v @y, t) — @ (@, @, l). (34)

To compute the second Fourier transform on the right-hand side of
(27) we observe that

1 6:_ Ci e—i(w1x~!-wzm)do-: v ,S V_a.;( g_ e—i(w1x+¢025) da-
D

® 0w ®® 47t 7]

.
47 Jp

20 L e,
™ Yp

By Green’s formula this is

= — 4V 2 S B E e“““’l"*“’ﬂa)dsﬂLIZa’;S ' S g0t 0By |
T Jp @ T Jp @

Putting
1

2

Py(w,, w,, t) = S B é- g iorro)ds | (35)

B

(02

v S ( }- 8@; . E )e-—i(wlt-l-wgm)da--—_— _V¢2(w17 ®,, t)
D w w

viw, S é; | eitoromdy | (36)

4m? ) @

Now substituting from [28), [31)---(86) into (27) we get
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gt Z(wu @,. 1) +ZS {w1U(91: 92) + wzv(en 02)}2—(91 T+, 82 +‘"2)d9

+V(w%+ wg)Z(mp @,y t) +V¢1(w1, @y, t) _i"vq):z(wn @,y t)

_ viw, S £ it 0@ gy — (36a)
D

(O]

Differentiating this equation twice with respect to », we get
THEOREM II:—

3 2 —
% Ze,ept)+i 0 S (U8, 8,) + 0,V (6., 0,))Z(0, + o, 0, + w,)d6
otow? Bk

(37)

6 s o 0 0
+v (P, +P,) + (0] + w)) - Lw,, o, t)+3vw, - - Lo, w,t)=0.

0w, 0w; lw,
This integro-differential’ equation is fully equivalent to the Navier-
Stokes equation of motion and therefore, as remarked by Kampé de
Fériet, is the rational starting point of any rigorous study of the
Fourier transform of the vorticity and hence of the velocity com-
ponents, the stream function and the spectral function. As regards
the scope of application of this equation, we refer to the remark of
Kampé de Fériet upon equation (50) of his paper cited above.

4. We now consider the case where the flow extends over the
entire half plane

X(— co<<x <o, 0<<®<<0).

This case may be regarded as a limiting case of the previous problem.
The boundary condition (8) nmow means that the fluid is at rest at
infinity :

lim u(x, @, t)=0, limv(x, ®,t)=0, (38)

 Gandaad y—rco
r=(x+a)2.
If the kinetic energy is to remain finite

E-= 72’8 B0 +07)do < oo . (39)
X

To ensure the existence of the Fourier transforms Z, #, U, V it is



114 P. PrakAsH

sufficient to assume that ¢, u#,v are absolutely integrable that is,
S |&lda etc. are finite. This condition is satified provided &, v, u, v
X ;

are at the most of order »3 for large values of . And in that
case and are automatically satisfied. Also in that case all
the properties (a) to (f) enumerated for the Fourier transform [10)
still hold for the Fourier transform of ¢, Yy, #, v when the fluid
occupies the entire half plane X; also the relations to and
hold between them by virtue of the limit considerations of the
following discussion.

To compute the Fourier transform of (6) we can use the same
process as before, taking for D the semi-circle x’-+@*<<R?® and then
letting R tend to . We must note however that we no longer
have #u=v=0 on the boundary B; we must examine therefore some
terms in our equations.

In the evaluation of the Fourier transform of # of +v6§,—3§ ,
ox 0w @

the two terms and no longer vanish. According to Schwarz’
inequality we have

172 1/2

TS aué‘e‘“‘"ﬂ*"’ﬂa)dsigg lul]é‘]dsg[s u?ds] [S é‘?ds]
| JB | B B B
From our assumption concerning the decrease of # and ¢&,

limS u’ds=0, limS &ds=0.
R—eJ B R-=JB
Similar considerations apply to and with a little modification to
(25a). Thus in the limit the exprssion for the Fourier transform
of (6) and (25b) still hold.

In the evaluation of the Fourier transform of p?¢, we have
from (33)

% |\ (o] +]w,D)IE] lds.
o0x

‘7T2

mlg; SB\

The assmption of decreasing of ¢ yields

.limS 0% | gs—o, limS 1E]ds—0;
R-=Jp 6x| R-=Jp
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thus

lim @, =0.

R —oeo

The Fourier transforms C and Z being extended to the whole plane,
we have thus now

C=—(ol+)Z.
By the same considerations we have from

lim@,=0,

R—oo
and the first terms on the right-hand side of (21a) and (22a) (with
f=v, g=e¢ {or+o®) tend to zero as R—co, so that in the limit the
expressions [(19), and still hold. Also by the same limiting
process the second integral on the right-hand side of (25b) tends to
zero and the expression holds for the case of fluid occupying the
entire half plane.

THEOREM III. In the case of a flow extending over the entire half
plane X, wherve the fluid is at rest at infinity and where &y, u, v
decrease so rapidly that their Fourier transforms exist, equation (37)
reduces to

3 _
"*@- Z(wu W, t) +1- "6j‘" S {wlU(an 92) + w2V9(1, 62)}2(61 +w,, 92 + wz)de
0l w; 0w Jg ‘
to(@i+ o) O Zw, w0, 8) +3v0, O Zo, v, 8)=0. (40)
0w} lw, ‘

5. The equation further simplifies in the case of self-super-
posable flows characterised by &=wf(y); in that case the non-linear
terms ugéw gg_zf. on the left-hand side of identically

X @ @
vanish and so does their Fourier transform. Hence further
reduces to

0?3 0’ 0
*ai’a*wg' Z(wn @y, 1) +v(w] + 3) 6&:% Z(wn @y, 1) +3ve, ds, Z(wn w,t)=0. (41)

The order of (41) can further be reduced by putting X=v~64»~ we get

@,
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in that case

X

n 0
stow, + v(w?+ ) 'ax +8vaw,x=0. (42)

w,
Assuming that Z should decrease with time let us take
X:XOe—VA(wl.a)g)t R (43)

where x, is a function of o, and w, only. Substituting in we
get

i+ wi—n) X0 18w, Pt P i a) |x, =0,
lw, w, Jw,
or
o + 3w,
1 6’x0____vt on _ 0w, 7
X, 0w, 0w, o +w;— N "

. / . . .
Since ,axl/xo cannot be a function of £, 28 =0, i.e. A must be inde-

6(,)2/ 6(01
pendent of w,. So that we get
Xo=Fk (@) (0] + @3 —N)",

where k(o) is an arbitrary complex function of »,. Hence from
(43) we have

x=ke (o] +oj—N)"",

and from the relation xz.aé
lw,
Z:e—vlt[_,k,l e g2ﬁ_,,w+k2(wl)} .
o} —A (@] +@;—2A)”

,

But since Z has to satisfy ultimately Eq. (36a) modified for the self-
superposable flows extending over the entire plane, 2,(w,)=0 or A=
But A =e! makes Z independent of w, which contradicts the property
(a) of the Fourier transform Z. Hence

Z =g vionitp (w,) ‘(’w”%__,’_'f_;:x)l/i ’ (44)
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or if Z, be an arbitrary value of Z at t=0, (44) can also be written
as

7= Z;)e—wl(au)t . (45)

Now, since it is essential to differentiate Eq. (86a) at least once to
get a differential equation in Z alone, Eq. contains derivative
with respect to o, and hence whatever solution we might get instead
of (44) or Z, will be arbitrary only as regards its behaviour
with respect to w,. Also as regards the exponential decay of Z with
time, we know that A must be independent of w,, These two features
for the case of axially symmetrical three-dimensional flow are in
contrast to the solution obtained by Kampé de Fériet for the two-
dimensional problem.

Thus exhibits the decrease of Z with £, ®,, due to the viscosity
of the fluid.

I am grateful to Prof. R. Ballabh for guidance in this work. I
also express my indebtedness to Prof. Kampé de Fériet who pointed
out to me a shortcoming in an earlier version of the paper and
suggested its remedy.

Lucknow University, India.




	Harmonic analysis of the ...
	Introduction:
	I.
	THEOREM I. ...

	2.
	3.
	THEOREM $II:-$ ...

	4.
	THEOREM III. ...

	5.


