Journal of the Mathematical Society of Japan

On the Eilenberg-MacLane invariants of loop spaces.

By Haruo Suzuki

(Received Dec. 16, 1954)

1. Let X be a simply connected topological space and let E be the space of all paths in X starting from a fixed point $x_0 \in X$, topologized by compact-open topology. Then E is contractible, and with the projection $\rho: E \to X$ which associates each path to its terminal point, (E, ρ, X) is a fiber space in the sense of Serre [1], where the fiber at x_0 is the loop space \mathcal{Q}_X of X. It is well known that we have $\pi_i(X) \approx \pi_{i-1}(\mathcal{Q}_X), i=2,3,\cdots$.

Fixing integers p, q such that 2 , we assume in the follow $ing that <math>\pi_i(X) = 0$ for $p \neq i < q$ and put $\pi_p(X) = \pi_p, \ \pi_q(X) = \pi_q$. Then $\pi_i(\mathcal{Q}_X) = 0$ for $p \neq i+1 < q$, and $\pi_{p-1}(\mathcal{Q}_X) \approx \pi_p, \ \pi_{q-1}(\mathcal{Q}_X) \approx \pi_q$. We shall put $\pi_{p-1}(\mathcal{Q}_X) = \pi_{p-1}, \ \pi_{q-1}(\mathcal{Q}_X) = \pi_{q-1}$, and consider these groups with the canonical isomorphisms $\pi_p \approx \pi_{p-1}, \ \pi_q \approx \pi_{q-1}$.

Now, the spaces X and \mathcal{Q}_X determine the Eilenberg-MacLane invariants $\mathbf{k}_p^{q+1}(X) \in H^{q+1}(\pi_p, p, \pi_q)$ and $\mathbf{k}_{p-1}^q(\mathcal{Q}_X) \in H^q(\pi_{p-1}, p-1, \pi_{q-1})$ respectively. As will be shown, the latter invariant $\mathbf{k}_{p-1}^q(\mathcal{Q}_X)$ is the image of the former $\mathbf{k}_p^{q+1}(X)$ under the suspension homomorphism S of the cohomology groups (Theorem 2 below). Therefore, if we associate to any system $(\pi, \pi', \mathbf{k}_p^{q+1})$ consisting of abelian groups π, π' and an element \mathbf{k}_p^{q+1} in $H^{q+1}(\pi, p, \pi')$ the system $S^*(\pi, \pi', \mathbf{k}_p^{q+1}) = (\pi, \pi', \mathbf{k}_p^{q+1})$, then the correspondence S^* has a geometrical meaning.

If q is sufficiently small, we can define the inverse of this operation. When X is a CW-complex the homotopy type of X is determined by that of $\mathcal{Q}_{X}^{(1)}$ (see § 3 Cor. 4 below). There is also an analogous relation about invariants of J. H. C. Whitehead which we shall show for standard complexes and standard loop spaces [5].

¹⁾ Conversely, in arcwise connected spaces, homotopy types of loop spaces are determined by those of original spaces (see §5 below).

2. Eilenberg-MacLane complexes $K(\pi_p, p)$. We shall first give a short description of complexes $K(\pi_p, p)$ and suspension homomorphisms of Eilenberg-MacLane cohomology groups [2]. For each positive integer n, let Δ_n be a standard n-simplex with ordered vertices $(0, \dots, n)$. By e_n^i $(i=0,\dots, n)$ we denote the mapping of Δ_{n-1} to Δ_n which maps the vertices $0, 1, \dots, n-1$ of Δ_{n-1} on the vertices of Δ_n , omitting the vertex i of Δ_n and preserving their order. The q-cells of $K(\pi_p, p)$ are cocycles of $Z^p(\Delta_n, \pi_p)$. For each $g \in Z^p(\Delta_n, \pi_p)$ the mapping e_n^i gives a cocycle $F_i g = g e_n^i \in Z^p(\Delta_{n-1}, \pi_p)$. We define the boundary of the n-cell g by $\partial g = \sum_{i=0}^n (-1)^i F_i g$. The addition in the right hand side of the last equation is to be regarded as a formal sum of cells.

DEFINITION. For each (p-1)-cocycle $g \in Z^{p-1}(\Delta_{n-1}, \pi_{p-1})$ the suspended *p*-cocycle Tg is defined for each *p*-dimensional ordered simplex (r_0, \dots, r_p) of Δ_n by

(1)
$$Tg(r_0, \dots, r_p) = g(r_0, \dots, r_{p-1})$$
 if $r_p = n$,
=0 if $r_p < n$.

If by g_0 we denote the cocycle which is identically zero, in the appropriate dimensions, then the suspension mapping S is defined by

$$Sg = Tg - g_0.$$

This is a chain transformation (raising dimensions by 1) of $K(\pi_{p-1}, p-1)$ into $K(\pi_p, p)$ and hence induces homomorphisms

S:
$$H^{p+k}(\pi_p, p; G) \rightarrow H^{p-1+k}(\pi_{p-1}, p-1; G)$$

between corresponding cohomology groups, where G is any abelian group and $k=0,1,\cdots$. In the following we take $\pi_{q}=\pi_{q-1}$ for G.

THEOREM 1. For k < p-1. the suspension homomorphism S is an isomorphism onto. For k = p-1 it is an isomorphism into.

This theorem is proved by the singular cohomology theory of a fiber structure of the path space E, using the theory of spectral sequence (see [1], Proposition 10, p. 483). On the other hand this is shown by a purely algebraic method (see [2], [7], [8]).

3. THEOREM 2. Let S be the suspension homomorphism of cohomology groups and let $\mathbf{k}_{p}^{q+1}(X)$ and $\mathbf{k}_{p-1}^{q}(\Omega_{X})$ be Eilenberg-MacLane

94

invariants of spaces X and Ω_X respectively. We have

$$(3) S(\boldsymbol{k}_{\boldsymbol{b}}^{q+1}(X)) = \boldsymbol{k}_{\boldsymbol{b}-1}^{q}(\boldsymbol{\mathcal{Q}}_{X}).$$

PROOF. Let $M(\mathcal{Q}_X)$ be a minimal complex (see [3]) in \mathcal{Q}_X based on the constant path $I \to x_0$. Each mapping σ of an (n-1)-singular simplex σ of $M(\mathcal{Q}_X)$ induces a mapping $\overline{T}\sigma: \mathcal{Q}_{n-1} \times I \to X$ defined as

(4)
$$\overline{T}\sigma(x,t) = \sigma(x)(t)$$

for any $x \in \mathcal{A}_{n-1}$ and $t \in I$. We map $\mathcal{A}_{n-1} \times I$ onto \mathcal{A}_n by identifying the set $\mathcal{A}_{n-1} \times 1$ to the last vertex of \mathcal{A}_n . Let i_n be this identification. As $\overline{T}\sigma$ maps the set $\mathcal{A}_{n-1} \times 1$ into a point x_0 , the composite mapping $\overline{T}\sigma i_n^{-1}$ is a continuous mapping of \mathcal{A}_n into X. Therefore, it defines a singular *n*-simplex in X, which we denote by $\overline{S}\sigma$.

We note that a singular simplex which is a constant mapping to x_0 is called *collapsed* and two singular simplexes whose boundary coincide are called *compatible*. If for these simplexes there exists a homotopy which leaves the mapping on the boundary fixed, then we say that they are *homotopic*. Obviously S and its inverse preserve properties stated above. Therefore, because of the definition of the minimal complex, we can take a minimal complex M(X) of X, which contains $S(M(\mathcal{Q}_X))$ (see [3], § 4). Let κ_X be a natural simplicial transformation of M(X) into $K(\pi_{p}, p)$ defined in [4] and let κ_{Ω} be that of $M(\mathcal{Q}_X)$ into $K(\pi_p, p-1)$. Moreover, let $\overline{\kappa}_X$ be a simplicial transformation of the q-skeleton $K^{q}(\pi_{p}, p)$ of $K(\pi_{p}, p)$ into M(X) which is defined by (3.1), (3.2), (3.3) of [4] and let $\tilde{\kappa}_{g}$ be that of $K^{q-1}(\pi_{p-1}, p-1)$ into $M(\Omega_{\chi})$. Composite mappings $\kappa_{\chi} \overline{\kappa}_{\chi}$ and $\kappa_{\varrho} \overline{\kappa}_{\varrho}$ are identities. These transformations can be so constructed that commutativity relation holds in the following diagram:

i.e. we have $\overline{S}_{\overline{\kappa}_{Q}}g = \overline{\kappa}_{X}Tg$ for any $g \in K^{q-1}(\pi_{p-1}, p-1)$. Let $\varDelta_{q+1,q}$ be the q-skeleton of \varDelta_{q+1} . If we attempt to continue the definition of $\overline{\kappa}_{X}$ for (q+1)-cell g' of $K(\pi_{p}, p)$, we can only do it for $\varDelta_{q+1,q}$ so that the mapping

$$f_X(g'); \Delta_{a+1,a} \rightarrow X$$

satisfies

(6)
$$f_X(g')e_{q+1}^i = \bar{\kappa}_X(F_ig')$$
 $i = 0, \cdots, q+1.$

Since π_q is not assumed to vanish, the map $f_X(g')$ in general will not be extendible to a mapping of Δ_{q+1} into X. Let $cf_X(g')$ be an element of π_q containing $f_X(g')$. We define a cochain k_p^{q+1} in the complex $K(\pi_p, p)$ by

(7)
$$k_{p}^{q+1}(g') = cf_{X}(g') \in \pi_{q}(X).$$

 k_{p}^{q+1} is a (q+1) cocycle. Its cohomology class does not depend on the choice of the simplicial transformation $\overline{\kappa}_{X}^{(2)}$ and it is denoted by $k_{p}^{q+1}(X)$. Similarly a *q*-cocycle k_{p-1}^{q} and its cohomology class $k_{p-1}^{q}(\mathcal{Q}_{X})$ are defined. By $f_{\mathcal{Q}}(g)$ we denote a mapping corresponding to (6) for any *q*-cell *g* of $K(\pi_{p-1}, p-1)$. Cohomology classes $k_{p}^{q+1}(X)$ and $k_{p-1}^{q}(\mathcal{Q}_{X})$ do not depend on the choice of the minimal complexes (see [4]).

Because of the commutativity of (5), we have

$$egin{aligned} &f_X(Tg)\,e_i^{q+1}\!=\!ar\kappa_X(F_iTg)\ &=\kappa_X(TF_ig)\!=\!ar{S}ar\kappa_{\mathcal{Q}}(g)\,e_i^q\qquad 0\!\leq\!i\!\leq\!q\,, \end{aligned}$$

and $f_X(Sg) e_{q+1}^{q+1}$ is a constant mapping to x_0 . This yields

$$\overline{T}f_{g}(g) i_{a}^{-1} = f_{X}(Tg)$$
.

Therefore the element of the group $\pi_q(X)$ containing the mapping $f_X(g)$ is the image of the element of the group $\pi_{q-1}(\mathcal{Q}_X)$ containing

96

²⁾ As $\bar{\kappa}_X$ is determined on the (q-1)-skeleton $K^{q-1}(\pi_{p-1}, p-1)$ uniquely only $\bar{\kappa}_X^q$ comes into question.

the mapping $f_{\mathcal{Q}}(g)$ under the suspension isomorphism Σ of homotopy groups. Since groups $\pi_{q-1}(\mathcal{Q}_X)$ and $\pi_q(X)$ are identified under the isomorphism in introduction, we have

$$cf_{\mathcal{Q}}(g) = cf_X(Tg)$$
.

Using the relation $cf_X(g_0) = 0$, this yields

$$egin{aligned} k_{p-1}^q(g) = cf_{\mathcal{Q}}(g) \ &= cf_X(Tg) \ &= cf_X(Tg) - cf_X(g_0) \ &= k_p^{q+1}(Tg - g_0) \ &= k_p^{q+1}(Sg) \ &= (Sk_p^{q+1})(g) \ , \end{aligned}$$

where S in the last term is a dual cochain transformation of the chain transformation S. Therefore

$$k_{p-1}^{q}(\mathcal{Q}_{X}) = S(k_{p}^{q+1}(X))$$

holds good. Thus the theorem is proved.

Let K be a standard complex and let $\omega(K)$ be a standard loop space on the complex (see [5]). The injection mapping of the space $\omega(K)$ into the space \mathcal{Q}_K induces isomorphisms of homotopy groups of the two spaces. If we take the minimal complex $M(\mathcal{Q}_K)$ in $\omega(K)$ particularly, we shall see that Eilenberg-MacLane invariants of two spaces are identified by the isomorphism of injection. Therefore we have the following result:

COROLLARY 3. The Eilenberg-MacLane invariant $k_{p-1}^q(\omega(K))$ of the standard loop space is the image of the invariant $k_p^{q+1}(K)$ of the standard complex under the suspension homomorphism S.

We suppose q < 2p-1. The Eilenberg-MacLane invariant of the space \mathcal{Q}_X determines that of the original space X, since the homomorphisms S is one-to-one by the Theorem 1. Therefore we obtain the following result:

COROLLARY 4. Let X, Y be both arcwise connected CW-complexes, such that $\pi_p(X) \approx \pi_p(Y)$, $\pi_q(X) \approx \pi_q(Y)$ and $\pi_i(X) = \pi_i(Y) = 0$ for 0 < i < p

and p < i < q where q < 2p-1. If the spaces Ω_X , Ω_Y have the same q-homotopy type, then X, Y have the same (q+1)-type.

4. J. H. C. Whitehead invariants (see [6]).

In the following, we restrict our argument to simply connected standard complexes K and their standard loop spaces $\omega(K)^{(3)}$ which are also CW-complexes.

Let K^n and $\omega(K)^n$ be *n*-skeletons of K and $\omega(K)$ respectively. Then the *n*-th Whitehead invariant $l_n(K)$ is defined as follows: Let j be the homomorphism of $\pi_n(K^n)$ into $\pi_n(K^n, K^{n-1})$ induced by the injection mapping and let j^* be its $\pi_n(K)$ -dual. We denote by $l_n(K)$ the natural homomorphism

$$\pi_n(K^n) \rightarrow \pi_n(K^n)/\partial \pi_{n+1}(K^{n+1}, K^n) = \pi_n(K)$$
,

and we put

$$l_n(K) = \{l_n(K)\}$$

$$\in \prod^n(K, \pi_n) = A^*(\pi_n(K))/j^*C^*(\pi_n(K))$$

where $A^*(\pi_n(K))$ is the group Ophom $(\pi_n(K^n), \pi_n(K))^{(4)}$ and $C^*(\pi_n(K))$ is the group Ophom $(\pi_n(K^n, K^{n-1}), \pi_n(K))^{(4)}$.

Let α be any element of $\pi_n(\omega(K)^n)$ and let f_a be a mapping of (S^n, s) into $(\omega(K)^n, x_0)$ contained in α , where S_n is an *n*-sphere, *s* is a point of S^n , and x_0 is the base point of $\omega(K)$, i. e. the constant path $I \rightarrow x_0$. A suspended class $\Sigma' \alpha$ of α is the class which contains the mapping Σf_a of an (n+1)-sphere into $K^{n+1,5}$ defined as follows: we identify the subset $S^n \times 0 \cup S^n \times 1 \cup s \times I$ of $S^n \times I$ to a point and denote the identification mapping by h_n . We can take $h_n(S^n \times I)$ for S^{n+1} . The mapping Σf_a is defined by

$$\Sigma f_a(y) = f_a(x)(t)$$

for each point $y = h_n(x, t)$. Σ' is a homomorphism of $\pi_n(\omega(K)^n)$ into $\pi_{n+1}(K^{n+1})$. We can extend the definition of Σ' to relative homotopy

98

³⁾ As for singular polytopes of M(X) and $M(\Omega_X)$, I don't know whether the results of this section hold good or not.

⁴⁾ Since we assumed $\pi_1(K)=0$, we have Ophom=Hom for the K.

⁵⁾ This follows from the definition of the complex $\omega(K)$.

groups similarly. It is a homomorphism of the group $\pi_n(\omega(K)^n, \omega(K)^{n-1})$ into the group $\pi_{n+1}(K^{n+1}, K^n)$. Then commutativity relations $\partial \Sigma = \Sigma \partial$ and $j\Sigma = \Sigma j$ hold good for the boundary operator ∂ and the injection homomorphism j.

The homomorphism of the group $\pi_n(\omega(K))$ into the group $\pi_{n+1}(K)$ induced by Σ' coincides with the suspension isomorphism Σ of homotopy groups. We identify these groups by the isomorphism and denote it by π_{n+1} . In the following diagramm commutativity holds good:

$$\pi_n(\omega(K)) \stackrel{\Sigma}{=} \pi_{n+1}(K) \ (=\pi_{n+1})$$

$$\uparrow \boldsymbol{l}_n(\omega(K)) \qquad \uparrow \boldsymbol{l}_{n+1}(K)$$

$$\pi_n(\omega(K)^n) \stackrel{\Sigma'}{\longrightarrow} \pi_{n+1}(K^{n+1}).$$

Let Σ^{\sharp} be a π_{n+1} -dual of Σ' (here we do not consider operations on the groups $\pi_n(\omega(K)^n)$ and $\pi_{n+1}(K^{n+1})$). Then we have

 $l_n(\omega(K)) = l_{n+1}(K) \bigcirc \mathcal{L}'$ $= \mathcal{L}^{\#} l_{n+1}(K) .$

Therefore if we denote by Σ^* the homomorphism of the group $\pi^{n+1}(\pi_{n+1}, K)$ into the group $\prod^n(\omega(K), \pi_n)$ induced by Σ^* , then we obtain

(9)
$$\boldsymbol{l}_n(\boldsymbol{\omega}(K)) = \boldsymbol{\Sigma}^* \boldsymbol{l}_{n+1}(K) .$$

This relation is analogous to (3).

5. Appendix. Finally we shall show that if two arc-wise connected, simply connected spaces are homotopy equivalent, then their loop spaces have the same property.

LEMMA 5. Let X, Y be two spaces as above and let f be a continuous mapping of X into Y. f induces a continuous mapping of Ω_X into Ω_Y .

PROOF. Let τ be an arbitrary element of \mathcal{Q}_X . We define a mapping $f_{\mathcal{Q}}$ of \mathcal{Q}_X into \mathcal{Q}_Y by

$$(f_{\mathcal{Q}}\tau)(t)=f(\tau(t))$$

for each $t \in I$. Let C be a compact set of I = [0, 1] and let U be an open set of Y. If by (C, U) we denote an element of the open base of \mathcal{Q}_Y , determined by C and U, then $(C, f^{-1}(U))$ is an open set of \mathcal{Q}_X . Since we have $f_{\mathcal{Q}}^{-1}(C, U) = (C, f^{-1}(U))$, $f_{\mathcal{Q}}$ is continuous.

LEMMA 6. Let $F: X \times I \rightarrow Y$ be a homotopy. This mapping induces a homotopy of mappings of Ω_X into Ω_Y defined by the above lemma.

PROOF. Let τ be an arbitrary element of \mathcal{Q}_X . We define a mapping $F_{\mathcal{Q}}$ of $\mathcal{Q}_X \times I$ into \mathcal{Q}_Y by

$$F_{\mathcal{Q}}(\tau,s)(t) = F(\tau(t),s)$$

for any t and s in I. Let (C, U) be an arbitrary element of the open base in \mathcal{Q}_Y which contains $F(\tau, s)$. An inverse image $F^{-1}(U)$ of U is an open set in $X \times I$ and it contains $(\tau(C), s)$. $(\tau(C), s)$ is a compact set, therefore there exists a finite open covering $(U_i, (s - \epsilon_i, s + \epsilon_i))$ contained in $F^{-1}(U)$ for each *i*, where ϵ_i is a positive real number. We put Min $\epsilon_i = \epsilon > 0$ and $V = ((C, \bigcup_i U_i), (s - \epsilon, s + \epsilon))$. We have $(\tau, s) \in V$ and $F_{\mathcal{Q}}(V) \subset (C, U)$. Therefore $F_{\mathcal{Q}}$ is continuous.

THEOREM 7. If two spaces X and Y are homotopy equivalent then their loop spaces have the same property.

This is an immediate consequence of the two lemmas stated above.

Mathematical Institute, Tohoku University.

References

- 1. J.-P. Serre, Homologie singulière des espace fibrés et Applications, Ann. of Math., 54 (1951), pp. 425-505.
- S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory I-III, Proc. N. A. S., U. S. A., 35 (1950), pp. 443-447 and 657-663, 37 (1951), pp. 307-310.
- 3. S. Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math., 51 (1950), pp. 499-513.
- 4. S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950), pp. 514-533.
- 5. H. Toda, Topology of standard path spaces and homotopy theory I, Proc. of Japan Acad., 29, pp. 229-304.

- 6. J. H. C. Whitehead, The G-dual of semi-exact couple, Proc. of the London Math. Soc., 3rd Ser. vol. III (1953), 385-416.
- 7. S. Eilenberg and S. MacLane, On the groups $H(\pi, n)$ I, Ann. of Math., 58 (1953), pp. 55-166.
- H. Cartan, Sur les groupes d'Eilenberg-MacLane H(π, n) I, Methode des construction, Proc. N. A. S., U. S. A., 40 (1954), pp. 467-471.