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On universal tensorial forms on a
principal fibre bundle.

By Yoshihiro TASHIRO

(Received April 12, 1956)

The concept of the connection of generalized spaces due to E.
Cartan has been recently clarified by several authors in the light of
the notion of fibre bundles. In particular, S. S. Chern [3], [4] and
Ambrose-Singer [1] have generalized the covariant differentiation of
tensors and tensorial forms in affinely connected manifolds to the
case of principal fibre bundles with connection. S. S. Chern [3] has
shown thereby in the case of affine connection that tensorial forms
on the base space are in one-one correspondence with certain forms
on the bundle of frames with some characteristic properties. In this
paper, we shall generalize this result to the case of any principal
fibre bundle with connection. After preliminaries (\S 1), we shall
define namely (in \S 2) the universal tensorial forms on the bundle
space which are in one-one correspondence with tensorial forms on
the base space (Theorem 1). The covariant differential in Ambrose-
Singer’s sense of a universal tensorial form will be given by an
explicit formula (Theorems 2, 3). Finally we shall give a useful
characterization (Theorem 4) of the universal tensorial form by
means of the covariant differentiation, generalizing the results of
S. S. Chern [4] and Boothby [2].

\S 1. Preliminaries on connection. Let $\mathcal{B}=\{B, X, G, G\}$ be a
differentiable principal bundle. Thus we assume that the bundle
space $B$ and the base space $X$ of $B$ are differentiable spaces, the
fibre $G$ (indicated by the first $G$ ) and the structural group $G$ (indicated
by the second $G$ ) are the same Lie group, and that the projection $p$,
and the coordinate functions $\varphi_{\alpha}\in\Phi$ , are differentiable maps.1)

1) Throughout this paper we shall always assume that spaces and maps are of
differentiability of a suitable high class.
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The tangent space $T(B)^{2)}$ of the bundle space $B$ has a structure
of principal bundle, $T(\mathcal{B})=\{T(B), T(X), T(G), T(G)\}^{8)}$ whose projection
is identical with the induced tangential map $p_{\star}$ and whose coordinate
functions identical with the induced ones $\varphi_{\alpha\star},$

$\varphi_{\alpha}\in\Phi$

By means of the inclusion of the base space $X$ into the tangent
bundle $T(X)$ as the trivial $cross- section^{4)}$ , we obtain a bundle $\mathcal{V}=$

$\{V, X, T(G), G\}^{5)}$ , the portion of $T(\mathcal{B})$ over $X$, which we call the
vertically tangent bundle of $\mathcal{B}$ and whose elements are called vertically
tangent vectors, or simply vertical vectors, of $\mathcal{B}$. If $W$ is a vertical
vector, $p.(W)$ is clearly a null vector on $X,$ $p_{\star}(w)=0$ . The linear
space, spanned by vertical vectors at $b\in B$, is denoted by $V_{b}$ , which
can be identified with $T_{b}(G_{X}),$ $G_{x}$ being the fibre over $x=p(b)$ .

The Lie algebra $L(G)$ of $G$ gives rise to an isomorphic Lie
algebra $Q$ of vertical vector fields $Q^{6)}$ . This isomorphism of $L(G)$

onto $Q$ is denoted by $q$. If $W\in V_{b}$ , then it is clear that there
exists a unique $Q\in Q$ such that $Q(b)=W$ ; we then say the vector
field $Q$ and its inverse image $q^{-1}(Q)\in L(G)$ are generated by $W$.

The right translation7) on $\mathcal{B}$ by $g\in G$ , is also denoted by $r(g)$ .
The inner automorphism of $G$ corresponding to $g\in G$ is denoted by
$A(g),$ $i$ . $e$ . $A(g)h=ghg^{-1}$ for any $h\in G$ ; the induced tangential map
$A(g)_{\star}$ , or especially its contraction on $L(G)=T_{e}(G)$ , is as usual denoted
by $ad(g)$ . If, for $Q\in Q$ , we define $ad(g)Q$ by $ad(g)Q=q(ad(g)q1(Q))$ ,
then we have $r(g)_{\star}Q=ad(g^{-1})Q$.

The following well-known definitions of connection on a principal
bundle $\mathcal{B}=\{B, X, G, G\}$ are easily shown to be equivalent to each

2) We denote the tangent and cotangent (differential) spaces at a point $x$ of a
spaces $X$ by $T_{x}(X)$ and $T_{x}^{\star}(X)$ respectively. By $T(X)$ and $T^{*}(X)$ we means the
bundle space of the tangent or cotangent bundles respectively, $i$ . $e$ . $T(X)=\bigcup_{x\in X}T_{x}(X)$

and $T\star(X)=\bigcup_{x\in X}T_{x}^{\#}(X)$ . If $X,$ $Y$ are two spaces and there is a map $f:X\rightarrow Y$, then the

induced tangential map $T(X)\rightarrow T(Y)$ is denoted by $f_{*}$ and the induced differential map
$T^{\star}(Y)\rightarrow T^{\star}(X)$ by $f^{k}$ . $f^{\star}$ will sometimes be used to represent the induced linear map
between the bundles of exterior differential algebras. Cf. S. S. Chern [4].

3) Cf. Y. Tashiro $[9j$ .
4) N. Steenrod [8].
5) Y. Tashiro $L9$].

6) W. Ambrose and I. M. Singer [1].

7) N. Steenrod [8]; W. Ambrose and I. M. Singer [1].
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other:
I There is an assignment $H$, called a connection, which
i) assigns to each point $b\in B$ a linear subspace $H_{b}$ complemen-

tary to $V_{b}$ in $T_{b}(B)$ , and
ii) is invariant under the right translation by any $g\in G,$ $i$ . $e$ .

$H_{bg}=r(g)_{\star}H_{b}$ for any $b\in B$.
II.9) There is an $L(G)$-valued l-form $\pi$ on $B$, called a connection

form on $B$, such that
i) $\pi(W)=q^{-1}(Q)$ , for each vertical vector $W=Q(b)$ , and

ii) $r(g)^{*}\pi=ad(g^{-1})\pi$ .
$III^{1\ovalbox{\tt\small REJECT})}$ There is a system $\theta=\{\theta_{\alpha}\}$ of $L(G)$-valued l-forms in $X$,

called connection forms on $X$, such that
i) each component $\theta_{\alpha}$ is defined in the corresponding neighbor-

hood $U_{\alpha}$ of $X$, and
ii) if $ U_{\alpha}\cap U_{\beta}\neq\phi$ , then $\theta_{\alpha}$ and $\theta_{\beta}$ are in relation

(1.1) $\theta_{\alpha}=ad(g_{\beta\alpha}^{-1})\theta_{\beta}+g_{\beta\alpha}^{*}\omega$

where $g_{\beta\alpha}$ is the coordinate transformation $g_{\beta\alpha}$ : $U_{\alpha}\cap U_{\beta}\rightarrow G$ and $\omega$ is
the left invariant $L(G)$-valued form on $G$ giving the identity map
$L(G)\rightarrow L(G)$ .

A connection $H$ gives the unique decomposition of $T_{b}(B)$ of the
form $T_{b}(B)=H_{b}+V_{b}$ , and the unique projections of tangent vectors
at $b$ into $H_{b}$ and $V_{b}$ are written by the same letters $H$ and $V$

respectively.
The relation between a connection $H$ and its form $\pi$ is given $by^{11)}$

(1.2) $H_{b}=\{W\in T_{b}(B)|\pi_{b}(W)=0\}$ .
The relations between a connection form $\pi$ on $B$ and a component
$\theta_{\alpha}$ in $U_{\alpha}$ is given $by^{12)}$

(1.3) $\pi=ad(p_{\alpha}(b)^{-1})p^{*}\theta_{\alpha,p(b)}+p_{\alpha}*\omega_{p_{\alpha^{(b)}}}$ ,

where $p_{\alpha}$ : $p1(U.)\rightarrow G$ defined by $p_{\alpha}|G_{x}=\varphi_{\alpha,x}^{-1}$ .
8) C. Ehresmann [5], W. Ambrose and I. M. Singer [1], T. Otsuki [6].
9) See papers cited in 8) and S. S. Chern $L3$ ].

10) S. S. Chern [3], T. Otsuki [6].
11) W. Ambrose and I. M. Singer [1], T. C)tsuki [6].
12) S. S. Chern [3] and T. Otsuki [6].
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\S 2. Tensorial form and universal tensorial form. We
consider a principal fible bundle $\mathcal{B}=\{B, X, G, G\}$ in which a connection
is given by a system of connection forms $\{\theta_{\alpha}\}$ . Let $E$ be an N-dimen-
sional vector space, $L_{N}$ the group of all linear transformations of $E$.
Let $M$ be a representation of $G$ on $E:M:G\rightarrow L_{N}$. A tensorial form13)
on the base space $X$ of degree $r$ and of type $M$, simply called an
M-tensorial r-form, is a system $u=\{u_{\alpha}\}$ of E-valued r-forms, each
component $u_{\alpha}$ of which is defined in a corresponding neighborhood
$U_{\alpha}$ , such that, if $U_{\alpha}\cap U_{\beta}\neq\phi,$ $u_{\alpha}$ and $u_{\beta}$ are related by the equation

(2.1) $u_{\alpha}=M(g_{\beta\alpha}^{-1})u_{\beta}$ .
The representation $M$ induces the representation $\overline{M}$ of the Lie

algebra $L(G)$ into $L(L_{N})$ . An element of $L(L_{N})$ can be represented
by an $(N, N)$-matrix, and we may identify it with a linear endomor-
phism on $E$. With this understanding, the equation (1.1) goes under
$\overline{M}$ into the equation

(2.2) $dM(g_{\beta\alpha})=M(g_{\beta\alpha})\overline{M}(\theta_{\alpha})-\overline{M}(\theta_{\beta})M(g_{\beta\alpha})$ .
Although the exterior differential $du=\{du_{\alpha}\}$ is in general not a
tensorial form, the equation obtained by exterior differentiation of
(2.1) shows, together with the above equation (2.2), that

(2.3) $Du_{\alpha}=du_{\alpha}+\overline{M}(\theta_{\alpha})\wedge u_{\alpha}$

is a component of a tensorial $(r+1)$-form on $X$ of the same type $M$,
which is denoted by $Du$ and called the covariant differential of the
original tensorial form $u$.

Now for an M-tensorial r-form $u=\{u_{\alpha}\}$ on the base space $X$, we
define an E-valued form $\tilde{u}$ on the bundle space $B$ by

(2.4) $\tilde{u}_{b}=M(g^{-1})p^{\star}u_{\alpha,x}$ , $x=p(b)\in U_{a},$ $g=p_{\alpha}(b)$ .
By making use of (2.1), it is easily seen that this definition is inde-
pendent of the choice of coordinate neighborhood. The E-valued
form $\tilde{u}$ on $B$ thus defined from $u$ is called the universal M-tensorial
form of $u$ . Then we shall call $u$ the covered form of $\tilde{u}$ .

An (ordinary or E-valued) r-form $\tilde{\varphi}$ on $B$ is said to be vertically

13) S. S. Chern [3].
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null if $\tilde{\varphi}(W_{1}\wedge\cdots\wedge W_{r})=0$ where at least one of $Ws$ is vertical.
Then we have the following

THEOREM 1. The necessary and sufficient condition that an E-
valued r-form $\tilde{u}$ on $B$ is the universal tensorial form of a tensorial
form on the base space $X$ is that it is vertically null and is trans-
formed, under right translation $r(h),$ $h\in G$, according to the equation

(2.5) $r(h)^{\star}\tilde{u}=M(h^{-1})\tilde{u}$ .
The necessity of the first condition is clear and that of the

latter condition is proved as follows: For $W_{1},\cdots,$ $W_{r}\in T_{b}(B)$ , we
have

$(r(h)^{\star}\tilde{u}_{bh})(W_{1}\wedge\cdots\wedge W_{r})=\tilde{u}_{bh}(r(h)_{\star}(W_{1}\wedge\cdots\wedge W_{r}))$

$=M((gh)^{-1})p*u_{\alpha}(r(h)_{\star}(W_{1}\wedge\cdots\wedge W_{r}))$

$=M(h^{-1})M(g^{-1})u_{\alpha}((p\circ r(h))_{\star}(W_{1}\wedge\cdots\wedge W_{r}))$

$=M(h^{-1})M(g^{-1})u_{\alpha}(p_{\star}(W_{1}\wedge\cdots\wedge W_{r}))$

$=M(h^{-1})M(g^{-1})p\star u_{\alpha}(W_{1}\wedge\cdots\wedge W_{r})$

$=M(h^{-1})\tilde{u}_{b}(W_{1}\wedge\cdots\wedge W_{r})$ ,

that is, (2.5) holds. To prove the sufficiency, we consider a diagram

$\varphi_{\alpha.x}$

$G\rightarrow G_{X}$

$\backslash ^{p_{\alpha}}\cap$

$U_{\alpha}\times G\rightarrow p^{-1}(U_{\alpha})\subset B$

$\backslash _{\rho_{\alpha}}\varphi_{\alpha}\nearrow^{p}$

$U_{\alpha}$

where $\rho_{\alpha}$ is defined by $\rho_{\alpha}(x)=(x, e),$ $e$ being the neutral element of $G$.
For $b=\varphi_{\alpha}(x, g)\in p^{-1}(U_{\alpha})$ , we have $b=r(g)\varphi_{\alpha}\rho_{\alpha}p(b)$ and $b=\varphi_{\alpha,x}p_{\alpha}(b)$ ,
and hence any vector $W\in T_{b}(B)$ is decomposed into

(2.6) $W=(r(g)\circ\varphi_{\alpha}\circ\rho_{\alpha}\circ p)_{\star}W+(\varphi_{\alpha,x}\circ p_{\alpha})_{\star}W$ ,

where we have to note that the last term is a vertical vector. If
we put
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(2.7) $u_{\alpha}=\rho_{\alpha}^{*}\varphi_{\alpha}^{*}\tilde{u}$ ,

then, by means of the vertical nullity of $\tilde{u}$ and the condition (2.5),
we have

$\tilde{u}(W_{1}\wedge\cdots\wedge W_{r})=\tilde{u}((r(g)\circ\varphi_{\alpha}\circ\rho_{\alpha}\circ p)_{\star}(W_{1}\wedge\cdots\wedge W_{r}))$

$=p_{\rho_{\alpha}^{\star}\varphi_{\alpha}^{*}r(g)^{\star}\tilde{u}(W_{1}\wedge\cdots\wedge W_{\gamma})}^{\star}$

$=M(g^{-1})p\star u_{\alpha}(W_{1}\wedge\cdots\wedge W_{r})$ ,
$i$ . $e.$ ,

$\tilde{u}=M(g^{-1})p^{\star}u_{\alpha}$ .
If $b\in p^{-1}(U_{\alpha}\cap U_{\beta})$ and $g^{\prime}=p_{\beta}(b)$ , then $g^{\prime}g^{-1}=g_{\beta\alpha}(x)$ and we have

$p^{\star}u_{\alpha}=M(g_{\beta\alpha}(x)^{-1})p^{\star}u_{\beta}$ .
Since the projection $p:B\rightarrow X$ is onto, we have finally

$u_{\alpha}=M(g_{\beta\alpha}(x)^{-1})u_{\beta}$ ,

which shows that the set $\{u_{\alpha}\}$ constitutes an M-tensorial r-form $u$ on
X.

\S 3. Covariant differential. According to W. Ambrose and
I. W. Singer14), we define the covariant differential $D\tilde{\varphi}$ of any (ordi-
nary or E-valued) form $\tilde{\varphi}$ on $B$ with respect to a given connection
$H$ by the $(r+1)$-form

(3.1) $D\tilde{\varphi}=H^{\star}d\tilde{\varphi}$ .
Then we have
THEOREM 2. For a universal M-tensorial r-form $\tilde{u}$ , we have an

explicit formula
(3.2) $D\tilde{u}=d\tilde{u}+\overline{M}(\pi)\wedge\tilde{u}$ ,

where $\pi$ is the connection form of the connection $H$ on $B$.
First of all we notice that the equation (1.3) goes under the

representation $\overline{M}$ into

14) [1].
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(3.3) $dM(p_{a})=M(p_{\alpha})\overline{M}(\pi)-\overline{M}(p^{*}\theta_{\alpha})M(P_{\alpha})$ .
It is sufficient to prove the formula (3.2) for any set $W_{1},\cdots,$ $W_{r+1}$ of
horizontal and vertical vector fields which span the tangent space at
each point $b$ of $B$. From the definition (3.1), the left hand side of
(3.2) is clearly vertically null. On the other hand, the right hand
side becomes, by a well-known formula15),

$(d\tilde{u}+\overline{M}(\pi)\wedge\tilde{u})(W_{1}\wedge\cdots\wedge W_{r+1})$

$=\sum_{i=1}^{r+t}(-1)^{i+1}W_{i}(\tilde{u}(W_{1}\wedge\cdots\wedge\hat{W}_{i}\wedge\cdots\wedge W_{r+1})$

$+\sum_{l<j}(-1)^{j+j}\tilde{u}([W_{i}, W,]\wedge W_{1}\wedge\cdots\wedge\hat{W}_{i}\wedge\cdots\wedge\hat{W}_{j}\wedge\cdots\wedge W_{r+1})$

$+\sum_{i\Leftrightarrow 1}^{r+1}(-1)^{i+1}\overline{M}(\pi(W_{i}))\tilde{u}(W_{1}\wedge\cdots\wedge\hat{W}_{i}\wedge\cdots\wedge W_{r+1})$ ,

the symbol $\wedge denoting$ the omission of the factors. It vanishes clearly
if at least three of $W_{i}$ are vertical, and so does it also if two of
them, say $W_{1}=Q_{1}$ and $W_{2}=Q_{2}$ , are vertical, because $[Q_{1}, Q_{2}]$ is ver-
tical. If one of them, say $W_{1}=Q$ , is vertical, then, by taking account
of $p_{\star}Q=0$ , the equations (2.4), (3.3) and the vertical nullity of $\dot{l\ell}’$ , we
obtain

$d\tilde{u}(Q\wedge W_{1}\wedge\cdots\wedge W_{r})$

$=(dM(p_{\alpha}^{-1})\wedge p\star_{u_{\alpha}+M(p_{\alpha}^{-1})p^{\star}du_{\alpha})(Q\wedge W_{1}\wedge\cdots\wedge W_{r})}$

$=((-\overline{M}(\pi)M(p_{\alpha}^{-1})+M(p_{\alpha}^{-1})\overline{M}(p^{\star}\theta_{\alpha}))\wedge p^{\star}u_{\alpha})(Q\wedge W_{1}\wedge\cdots\wedge W_{r})$

$=(-\pi_{(\pi)\wedge\tilde{u})(Q\wedge W_{1}\wedge\cdots\wedge W_{r})}$ .
Hence we know that the right hand side of (3.2) vanishes also in
this case. If all $W_{i}$ are horizontal vectors, $i$ . $e.,$ $W_{i}=HW_{i}$ , then we
see, in consequence of $\pi(W_{i})=0$ , the both sides of (3.2) are identical
with each other. Thus, in any case, the formula (3.2) holds.

Making use of the equation (3.3), we can easily verify
THEOREM 3. The covariant differential $D\tilde{u}$ of a universal tensorial

15) R. S. Palais [7].
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form $\tilde{u}$ is $lhe$ universal tensorial form of the covariant differenlial $Du$

of the covered form $u$ on $X$, that is,

$ D\tilde{u}=Du\sim$ .
It is well known that, if the slructural group $G$ is connected,

then a necessary and sufficient condition that a form $\tilde{\varphi}$ on $B$ is the $ p\star$

image of a form $\varphi$ on $X$, is that both $\tilde{\varphi}$ and $d\tilde{\varphi}$ are vertically null.
This fact will be used to prove the following

THEOREM 4. Let the structural group $G$ be connected. Then, $a$

necessary and sufficient condition that an E-valued form $\tilde{u}$ on $B$ is a
universal tensorial form is that both it and

$d\tilde{u}+\overline{M}(\pi)\wedge\tilde{u}$

are vertically null.
This is a generalization of the theorems due to S. S. Chern and

W. M. Boothby16).
The necessity is clear. To prove the sufficiency, we define

$\tilde{u}_{\alpha}=M(p_{\alpha})\tilde{u}$

in $p^{-1}(U_{\alpha})$ . Then, by the equation (3.3) and our conditions, it is
easily seen that both $\tilde{u}_{\alpha}$ and

$d\tilde{u}_{\alpha}=dM(p_{\alpha})\wedge\tilde{u}+M(p_{a})d\tilde{u}$

are vertically null. Hence $\tilde{u}_{a}$ may be written as

$\tilde{u}_{\alpha}=p\star_{u_{\alpha}}$ ,

$u_{\alpha}$ being an E-valued form in $U_{a}\subset X$. In another neighborhood
$U_{\beta}$ with $ U_{\alpha}\cap U_{\beta}\neq\phi$ , we have also an E-valued form $u_{\beta}$ such that

$p^{\star}u_{\beta}=M(p_{\beta})\tilde{u}$ .
By $g_{\beta\alpha}=p_{\beta}p_{\alpha}^{-1},$ $u_{\alpha}$ and $u_{\beta}$ are in relation

$ p\star_{u_{\alpha}=M(g_{\beta\alpha}^{-1})pu_{\beta}}\star$

and, since $p:B\rightarrow X$ is onto, they are moreover in relation

16) S. S. Chern [4], W. M. Boothby [2].
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$u_{\alpha}=M(g_{\beta\alpha}^{-1})u_{\beta}$ ,

which shows that the set $u=\{u_{\alpha}\}$ is an M-tensorial form on the base
space $X$.
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