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Analytic vector functions of several
complex variables.
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In this paper, we shall consider a system of $k$ functions, which
we shall call a vector function following $Bochner- Martin^{\star)}$ , of $k$

complex variables. We shall show that various theorems of the
theory of functions of a complex variable can be generalized to the
case of vector functions. In our previous paper [2] in collaboration
with Prof. S. Ozaki, we have established the expansion theorem and
the estimation of derivatives for vector functions in polycylindrical
domains. Now we shall study such functions in more general domains.

In \S 1, we shall prove the expansion theorem and the residue
theorem, and give a representation of derivatives and coefficients.

In \S 2, we shall consider bounded vector functions, and generalize
Gutzmer’s inequality, Schur’s estimation of coefficients and Landau-
Dieudonn\’e’s theorem concerning the univalence radius of a hyper-
sphere, etc. The estimation of coefficients was given by E. Peschl
and F. Erwe [3] in the case of systems of functions of a complex
variable. About the univalence radius some results were obtained
by S. Takahashi [4].

In \S 3, we shall $\ovalbox{\tt\small REJECT} generalize$ the argument principle in the case of
a complex variable and obtain a formula giving the number of zero
points of vector functions. The set of zero points of a single function
of several complex variables forms a manifold, but the zero points
of vector functions are in general isolated, so that we can speak of
the number of them.

\S 1. General considerations

1. Distance and norm. We introduce the real coordinates $x_{1},$ $y_{1}$ ,
$x_{k},$ $y_{k}$ in the $2k$-dimensional Euclidean space and put $z_{j}=x_{j}+iy_{j}$ ,

$\star)$ See Bochner-Martin [1], Chap. VIII. \S 5.
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$j=1,\cdots,$ $k$ and designate the coordinate of any point in the space as

$z=\left(\begin{array}{l}z_{1}\\\vdots\\ z_{k}\end{array}\right)$ .

Particularly, we denote by (0) a vector or matrix whose elements
are all zero.

The distance between two points $z,$
$z^{\prime}$ is defined by

$|z-z^{\prime}|=\sqrt{}\overline{(z-z^{\prime})^{\star}(z-z^{\prime})}$ .
Here and in the following, vectors and matrices marked with the
symbol $\star$ denote the transposed conjugate vectors or matrices. The
norm of any matrix $A=(a_{ij}),$ $(i=1,\ldots, k;j=1,\cdots, n)$ is defined in the
following two ways:

$||A||=1.u_{>0}b$ . ($||l|$ At $|/|t|$ ) $=1.u.b$ .$\sqrt{}\overline{u^{\star}A^{\star}Au}|u|=1$

$[A]=\sqrt{}\overline{Tr.(A^{\star}A)}=\sqrt{}\sum\neg^{2}i,j$

where $t$ and $u$ are both k-tuple vectors. As is well-known, the former
is the square root of the maximal characteristic value of $A^{\star}A$ , and
the latter is that of the sum of the characteristic values of $A^{\star}A$

and so $||A||\leqq[A]$ . In particular, we have for the unit matrix $E$ :

$||E||=1$ , $[E]=\sqrt{}\overline{n}$,

but, for any vector $z$ , we have

$||z||=[z]=|z|$ .
2. Analyticity. We assume that a complex function $f(z,\overline{z})=f(z_{1}$ ,

$\overline{z}_{1},\cdots,$ $z_{k},\overline{z}_{k}$) is continuous and has the first partial derivatives in a
connected domain of the z-space, and we write symbolically,

$\frac{\partial}{\partial z_{j}}=\frac{1}{2}(\frac{\partial}{\partial x_{j}}-i\frac{\partial}{\partial y_{j}})$ , $\partial^{\partial_{\overline{Z}_{j}^{-=}}}2^{-}1(-\partial x_{j}^{-+i}\partial\partial y_{j^{-}}\partial),$
$j=1,\cdots,$ $k$ .

If $f(z,\overline{z})$ is regular with respect to every variable $z_{j}$, we have
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$\partial f_{-=0}$

$j=1,\cdots,$ $k$ .
$\partial\overline{z}_{j}$

If $w_{1}(z),\ldots,$ $w_{k}(z)$ is a system of $k$ regular functions, we call the vector
function

$w(z)=\left(\begin{array}{l}w_{1}(z)\\\vdots\\ w_{k}(z)\end{array}\right)$

regular with respect to $z$ .
Now we define the powers of a vector $z$ as

(1.1) $z^{h}=\left(\begin{array}{llll}z_{l}^{n} & & & \\| & & & \\\sqrt{\overline{n}\dagger n!n!}1k & z_{1}^{n_{1}} & \cdots & z_{k^{k}}^{n}\\| & & & \\z_{k}^{n} & & & \end{array}\right)$

where $(n_{1},\cdots, n_{k})$ runs over all the non-negative integers such that

$n_{1}+\cdots+n_{k}=n$ and $knH(=\left(\begin{array}{ll}k+n & -1\\n & \end{array}\right))$ monomials of degree $n$ in $ z_{1},\ldots$

..., $z_{k}$ are arranged in a certain determined way ( $e$ . $g.$ , in the lexico-
graphical order) to form a ${}_{k}H_{n}$-tuple vector.

Moreover, we define the n-th differentiation of a vector function
$w(z)$ with respect to $z$ as

$\underline{d^{n}}d\frac{w(z)}{z^{n}}=\frac{d^{n}}{dz^{n}}\times w(z)$

(1.2)

$=($ $\partial^{\partial_{Z_{1}^{-}}^{n_{n}}}$ , $\cdot$ ..,
$\sqrt{\frac{n!}{n_{1}\dagger n_{k}!}}\frac{\partial^{n}}{\partial z_{1}^{n_{1}}\cdots\partial z_{k^{k}}^{n}},$

$\frac{\partial^{n}}{\partial z_{k}^{n}}$ ) $\times w(z)$ ,

where $\partial^{\partial}z_{1}^{n_{n}}$
,...,

$--\partial^{\partial}z_{k}^{n_{n}}$ are arranged in the order corresponding to $ z_{1}^{n},\ldots$

..., $z_{/t}^{n}$ in (1.1) and the sign $\times designates$ the Kronecker product. Thus
(1.2) is a matrix of $k$ columns and ${}_{k}H_{n}$ rows. Then we have Taylor
expansion by the method used by H. Cartan [6]:
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THEOREM 1. If $w(z)$ is $a$ one-valued and regular vector function
in a connecled domain $D$ of the z-space and $a$ is any fixed point in $D$,
then $w(z)$ is expanded in the form of the following diagonal power
series:

(1.3) $ w(z)=w(a)+\frac{dw(a)}{dz}(z-a)+\cdots+\frac{1}{n!}\frac{d^{n}w(a)}{dz^{n}}(z-a)^{n}+\cdots$ .

This series is absolutely and uniformly convergent in $|z-a|<r$ in the
sense of the diagonal $\cdot$ series where $r$ is the distance of $a$ from the
boundary of $D$ .

PROOF. Let $\gamma^{\prime}(r^{\prime}<r)$ be any positive number, and we put $R=$

$(r+r^{\prime})/(2r^{\prime})(R>1)$ . Then $w(a+(z-a)l)$ is regular with respect to a
complex variable $t$ in $|t|\leqq R$ for $|z-a|<r^{\prime}$ . And so by the residue
theorem for the function of a complex variable, we have

(1.4) $w(z)=\frac{1}{2\pi i}\int_{\rceil tI=R}w(a+(z-a)t)\frac{dt}{t-1}$ ,

where the integration is done for each component of $w(z)$ .
As $1/(t-1)$ is equal to an absolutely and uniformly convergent

power series $\sum_{n\Leftarrow 0}^{\infty}t^{-n-1}$ , we can interchange the integration with the

summation in (1.4). Then we have

$w(z)=\sum_{n=0}^{\infty}\frac{1}{n!}[\frac{d^{n}}{dt^{n}}w(a+(z-a)t)]_{l=0}$

$=\sum_{n=0}^{\infty}\frac{1}{n!}(\sum_{l=1}^{k}(z_{l}-a_{l})\frac{\partial}{\partial z_{l}})^{n}w(a)$

$=\sum_{n=0}^{\infty}\frac{1}{n!}\left(\begin{array}{lll}n_{1}+ & \vdots & \\ & \sum_{+n_{k}=n}\sqrt{\frac{n!}{n_{1}!n_{k}!}}\frac{\partial^{n}w_{j}.(a}{\partial z_{1}^{n_{1}}\cdot\cdot\partial}z_{k^{k}}^{)_{n}}-\sqrt{\frac{n!}{n_{1}!n_{k}!}}(z_{1}-a_{1})^{n_{1}}\cdot\cdot & (z_{k}-a_{k})^{n_{k}}\\ & \vdots & \end{array}\right)$ .

Thus the proof is completed.
$CoROLLARY$ . The first derivalive of $w(z)$ in Theorem 1 is expanded

as follows:
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(1.5) $\frac{dw}{d}=\sum_{n=1}^{\infty}-zn^{1_{[}}(\underline{z)}\frac{d^{n}w(a)}{dz^{n}}$ $\frac{d}{dz}(z-a)^{n}$ .

PROOF. Because of the uniform continuity of the function

$f(z)=\frac{1}{2\pi i}\int_{|t|\approx R}w(a+(z-a)t)\frac{dt}{l-1}$

we easily obtain this expansion by differentiat.ing both sides of (1.4)
with respect to $z$.

We call a vector function analytic in $D$ when it is expanded in
the series as in Theorem 1 at every point in $D$.

For various purposes it is sometimes more convenient to use
other definitions of the powers of $z$ and the differentiations with
respect to $z$ as follows:

(1.1) $z^{n}=\left(\begin{array}{lllllll} & & & & & z_{1}^{n} & \\ & & & & & \vdots & \\ & & & & z_{1}^{n_{1}} & \cdots & z_{k}^{n_{k}}\\ & & & & & \vdots & \\ & & & & & z_{k}^{n} & \end{array}\right)$

and

(1.2) $\frac{d^{n}w(z)}{dz^{n}}=(\frac{\partial^{n}}{\partial z_{1}^{n}}$
$\frac{n.!}{n_{1}!\cdot\cdot n_{k}!}\frac{\partial^{n}}{\partial z_{1}^{n_{1}}}\cdot\partial z_{k^{k}}^{n}-$

$\frac{\partial^{n}}{\partial z_{k}^{n}})\times w(z)$ ,

or

(1.1)
$z^{n}=\left(\begin{array}{llllllll} & & & & & z_{1}^{n} & & \\ & & & & & \vdots & & \\ & & & & -\frac{n}{1!}n\cdots\overline{n_{k}!}! & z_{1}^{n_{1}} & \cdots & z_{k}^{n_{k}}\\ & & & & & \vdots & & \\ & & & & & z_{k}^{n} & & \end{array}\right)$

and
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(1.2) $\frac{d^{n}w(z)}{dz^{n}}=(\frac{\partial^{n}}{\partial z_{1}^{n}}\cdots,$
$\partial z_{1}^{n_{1}}\cdots\partial z_{k^{k}}^{n}\partial^{n}$

$-\frac{\partial^{n}}{\partial z_{k}^{n}})\times w(z)$ ,

where $n_{1}+\cdots+n_{k}=n$ .
Even if we use these definitions, we have the expansion theorems

of the same form as in Theorem 1 and its corollary. According to
the definitions $(1.1)^{\prime\prime}$ and $(1.2)^{\prime\prime}$ , we have

$\frac{dw(z)}{dz}(z-a)=\frac{dw(a)}{dz}(z-a)+\cdots+\frac{1}{(n-1)!}\frac{d^{n}w(a)}{dz^{n}}(z-a)^{n}+\cdots$ ,

and also, in the case of $k=2$ , we have

$\frac{dw(z)}{dz}=\frac{dw(a)}{dz}+\cdots+\frac{1}{(n-1)!}\frac{d^{n}w(a)}{dz^{n}}\left(\begin{array}{ll}(z-a)^{n-1} & 0\\0 & (z-a)^{n-1}\end{array}\right)+\cdots$

where the last matrix $\left(\begin{array}{ll}(z-a)^{n- 1} & 0\\0 & (z-a)^{n- 1}\end{array}\right)$ has $(n+1)$ rows and 2

columns, each column consisting of $(z-a)^{n-1}$ , which has $n$ rows, and
a single zero. Unless otherwise stated, we shall use the definitions
(1.1) and (1.2).

3. Green’s formula. We denote by $D$ a connected domain bounded
by smooth hypersurfaces $C_{1},\cdots,$ $C_{m}$ in the z-space. We suppose that
$C_{i}$ is representable by an equation of the form $f_{i}(z,\overline{z})=0$ with a
real-valued function $f_{i}$. For simplicity we shall denote by $C$ the
collection of $C_{1},\cdots,$ $C_{m}$ with suitable orientations and by $f=0$ those
equations $f_{1}=0,\cdots,f_{m}=0$ . Then we have from Green’s theorem

(1.6) $\int_{C}B(z,\overline{z})\frac{\partial f}{\partial\overline{z}_{j}}[\frac{df}{dz}\left(\begin{array}{l}\underline{d}\underline{f}\\dz\end{array}\right)]^{-\frac{1}{2}}dS=2\int_{D}\frac{\partial B(z,\overline{z})}{\partial\overline{z}_{j}}dV,$ $j=1,\cdots,$ $k$ ,

where $B(z,\overline{z})$ is any single or vector function which is continuous and
has the first partial derivatives in $D,$ $dS$ is the surface element on
$C$ and $dV$ is the volume element in $D$. P. R. Garabedian [8] made
use of this formula in proving the existence of the generalized
Green’s function. Taking the conjugates of both sides of (1.6), we
obtain, because of the arbitrariness of $B(z,\overline{z})$ , the following formula:

(1.7) $I_{C}^{B(z,\overline{z})}\frac{\partial f}{\partial z_{j}}[\frac{df}{dz}(\frac{df}{dz})^{\star}]^{-\frac{1}{2}}dS=2\int_{D}\frac{\partial B(z,\overline{z})}{\partial z_{j}}dV$ , $j=1,\cdots,$ $k$ .
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By these formulas we obtain the following fundamental lemma
which is an extension of the following formula for one complex
variable:

$\int_{|z|=r}z^{n}dz=\left\{\begin{array}{l}0, for\\2\pi i, for\end{array}\right.$ $n=-1n\neq-1$

.
LEMMA 1. For a spherical hypersurface $K:|z|=R$, and non-

negative integers $n_{1},$ $m_{1},\cdots,$ $n_{k},$ $m_{k}$ , we have

(1.8) $\int_{K}z_{1}^{n_{1}}\overline{z}_{1}^{m_{1}}\cdots z_{k^{k}}^{n}\overline{z}_{k}^{m_{k}}dS=\left\{\begin{array}{l}0, for(n_{1}-m_{1})^{2}+\cdots+(n_{k}-m_{k})^{2}>0,\\\frac{n_{1}!}{n}!^{\underline{n_{k}!}}*\underline{R_{k}}^{2}\omega_{-}H_{n}^{n}\\for(n_{1}-m_{1})^{2}+\cdots+(n_{k}-m_{k})^{2}=0,\end{array}\right.$

where $n_{1}+\cdots+n_{k}=n$ and $\omega$ is the area of $K$, that is, $2\pi^{k}R^{2k- 1}/(k-1)$ !.
PROOF. As the equation of the boundary of $C$ in (1.6) and (1.7)

is $|z|^{2}=R^{2},$ $-\partial\overline{z}_{j}\partial f_{-}[_{dz}^{df}\left(\begin{array}{l}df_{-}\\dz\end{array}\right)]^{-\frac{1}{2}}$ is equal to $-R^{-}z_{j}$ . If we denote by $D$

the hypersphere $|z|<R$, we have from (1.6) and (1.7), respectively,

(1.6)t $\int_{K}BR^{j}z$ $dS=2\int_{D}^{\partial B_{j}}\partial\overline{z}dV$ ,

and

(1.7) $\int_{K}BR^{j}\overline{z}$ $dS=2\int_{D}^{\partial B_{j}}\partial zdV$ , $j=1,\cdots,$ $k$ .

Now we denote by $P$ the left side of (1.8).
i) In case $n_{;}\neq m_{j}$ for some $j$, by (1.6) we have

(1.9) $P=R\int_{K}Z^{n_{1}}\overline{Z}^{m_{1}}\cdots Z_{j}^{n}j^{-1}\overline{Z}_{j}^{m}j\cdots Z_{k}^{n}k\overline{Z}_{k}^{m}k\cdot dS$

$=2m_{j}R\int_{D}Z_{1}^{n_{1}}\overline{Z}_{1}^{m_{1}}\cdots Z_{j}^{n}j^{-1}\overline{Z}_{j}^{m}j^{-1}\cdots Z_{k}^{n}k\overline{Z}_{k}^{m}kdV$ .

Also by (1.7), we have
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$P=R\int_{K}z_{1}^{n_{1}}\vec{z}_{1}^{m1}\cdots z_{j}^{n}j\overline{Z}_{j}^{m}j^{-1}\cdots Z_{k}^{n}k\overline{Z}_{k}^{m}k\cdot- R^{-}\overline{z}_{/dS}$

(1.10)

$=2n_{j}R\int_{D}Z_{1}^{n_{1}}\overline{Z}_{1}^{m_{1}}\cdots Z_{j}^{n}j^{-1}\overline{Z}_{j}^{m}j^{-1}\cdots Z_{k}^{n}k\overline{Z}_{k}^{m}kdV$ .

Accordingly, by (1.9) and (1.10),

$ 2(m_{j}-n_{j})R\int_{D}n-\iota$

For $n_{j}\neq m_{J}$ , the above integral vanishes and so does $P$.
ii) In case $n_{j}=m_{j}(j=1,\cdots, k)$ , we can first show by the same

method as used in i) the identity:

$\int_{K}|z_{1}|^{2n1}\cdots|z_{k}|^{2n_{k}}dS=\frac{n_{k}}{n_{1}+1}\int_{K}|z_{1}|^{2(n_{1}+1)}\cdots|z_{k}|^{2(n_{k}-1)}dS$

and thus we get

$\int_{K}|z_{1}|^{2(n_{1}+n_{k})}\cdots|z_{k-1}|^{2n_{k-1}}dS=\frac{n_{1}!n_{k-1}!}{(n_{1}+n_{k-1})!}\int_{K}|z_{1}|^{2(n_{1}+n_{k})}\cdots|z_{k-1}|^{2n_{k-1}}dS$ ,

where the number of variables in the right side has diminished by
one.

Repeating this process, we have

(1.11) $\zeta_{K}|z_{1}|^{2n1}\cdots|z_{k}|^{2n_{k}}dS=\frac{n_{1}!.\cdot.\cdot.\cdot n_{k}!}{(n_{1}++n_{k})!}\int_{K}|z_{1}|^{2(n_{1}+\cdots+n_{k})}dS$ .

From this follows

(1.12) $\int_{K}\sum_{n_{1}+\sim\vdash n_{k}=n}\frac{n!}{n_{1}!\cdots n_{k}!}|z_{1}|^{2n_{1}}\cdots|z_{k}|^{2n_{k}}dS={}_{k}H_{n}\int_{K}|z_{1}|^{2n}dS$ .

As the left side of (1.12) is equal to $ R^{2n}\omega$ , we obtain

$\int_{K}|z_{1}|^{2n}dS=R^{2n}\omega/{}_{k}H_{n}$ ,

and so, substituting this value into the right side of (1.11), we have
the proof of the latter part of Lemma 1.
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THEOREM 2. The expansion of $w(z)$ in Theorem 1 is unique and
$d^{n}w(\underline{a}\underline{)}$ is expressed as follows:

$dz^{n}$

(1.13) $\frac{d^{n}w}{d}\frac{a)}{n}=z^{(}n_{R^{2}\omega}!{}_{k_{n}}H_{n}\int_{|z-a|=R}w(z)\{(z-a)^{n}\}^{\star}dS$ .

PROOF. Let $w(z)$ be analytic in $D$ and be expanded in a uni-
formly convergent diagonal power series for $|z-a|<r(r<R)$ :

(1.14) $ w(z)=A_{0}+A_{1}(z-a)+\cdots+A_{n}(z-a)^{n}+\cdots$ .
From Lemma 1 we easily obtain

$\int(z-a)^{n}\{(z-a)^{m}\}^{\star}dS=(0)$ , for $n\neq m$ ,

and

$\int(z-a)^{n}\{(z-a)^{n}\}^{\star}dS=\frac{r^{2n}\omega}{{}_{k}H_{n}}E_{k^{H_{n}}}|z-a|=r$

Multiplying $\{(z-a)^{n}\}^{\star}$ on both sides of (1.14) and using these results,
we have

$A_{n}=r^{\underline{9}}\omega {}_{kn}H_{n}\int_{|z-a|=r}w(z)\{(z-a)^{n}\}^{\star}dS$ .

This shows that the coefficients are unique, and letting $r$ tend to $R$,
it is clear that the representation of the derivatives is given as in
the theorem.

\S 2. Bounded vector functions

For a vector function $w(z)$ analytic in a connected domain $D$, we
call $w(z)$ bounded in $D$ , if tbere exists a positive constant $M$, for
which $|w(z)|\leqq M$ in $D$ . For these bounded analytic functions, we
can generalize Gutzmer’s inequality and Schwarz’ lemma as follows.

THEOREM 3. (Generalized Gutzmer’s inequalily) Let

(2.1) $ w(z)=A_{0}+A_{1}z+\cdots+A_{n}z^{n}+\cdots$
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be analytic and bounded, and suppose $|w(z)|\leqq M$ in $|z|<R$, then the
two inequalilies hold:

(2.2) $[A_{0}]^{2}+\frac{R^{2}}{{}_{k}H_{1}}[A_{1}]^{2}+\cdots+\underline{R}^{2}{}_{k}H_{n}^{n_{-}}[A_{n}]^{2}+\cdots\leqq M^{2}$ ,

and

(2.3) $||A_{0}||^{2}+\frac{R^{2}}{{}_{k}H_{1}}||A_{1}||^{2}+\cdots+\frac{R^{2n}}{{}_{k}H_{n}}||A_{n}||^{2}+\cdots\leqq M^{2}$ .

PROOF. From the uniform convergence of (2.1), for $r(r<R)$ ,

$N\equiv\int_{|z|=r}w(z)^{\star}w(z)dS=\sum_{m,n=0}\int_{|z|=r}(z^{n})^{\star}A_{n}^{*}A_{m}z^{m}dS$ .

It follows from Theorem 2 that all the terms of the right side
vanish for $m\neq n$ and so we have

$N=\sum_{n=0}^{\infty}\zeta_{|z|=r}(z^{n})^{\star}A_{n}^{\star}A_{n}z^{n}dS$ .
Denoting by $a_{j}^{n}(j=1,\ldots,{}_{k}H_{n})$ the row vector of $A_{n}$ and using

Theorem 2 again, we obtain

$N=\sum_{n\Rightarrow 0}^{\infty}\int|z|=r(z^{n})^{\star}\left(\begin{array}{llll} & (a_{1}^{n})^{\star}a_{1}^{n} & & 0\\ & . & & \\ & & . & \\ & & & .\\ & 0 & & (a_{k^{H}n}^{n})^{\star}a_{k^{H}n}^{n}\end{array}\right)z^{n}dS$

$=\sum_{n=0}^{\infty}\frac{r^{2n}\omega}{{}_{k}H_{n}}(\sum_{j=1}^{k^{H}n}(a_{j}^{n})^{\star}a_{j}^{n})=\sum_{n=0}^{\infty}\frac{\gamma^{2n}\omega}{{}_{k}H_{n}}$ Tr. $(A_{n}^{\star}A_{n})=\sum_{n=0}^{\infty}\frac{r^{2n}\omega}{{}_{k}H_{n}}[A_{n}]^{2}$ .

On the other hand, it is clear that $ N\leqq M^{2}\omega$ , and so we obtain
(2.2) by $r\rightarrow R$. Remarking that $||A_{n}||\leqq[A_{n}]$ , the validity of (2.3)
follows from (2.2).

From this theorem we have the following results, taking $R=1$ .
COROLLARY 1. Let the function $w(z)$ be analylic in $|z|<1$ and

suppose $|w(z)|\leqq M$, then the inequalities hold:

(2.4) $[A_{0}]\leqq M$ , $[A_{n}]\leqq\sqrt{}\overline{{}_{k}H}_{n}^{-}M$ ,

(2.5) $||A_{0}||\leqq M$ , $||A_{n}||\leqq\sqrt{}\overline{{}_{k}H_{n}}M$ , $ n=1,2,\cdots$
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Moreover, the equality sign holds if and only if
$w(z)=A_{0}$ , $w(z)=A_{n}z^{n}$ ,

respeclively.
REMARK. If $w(z)=z+$ ($higher$ powers) and $|w(z)|<1$ in $|z|<1$ ,

then $w(z)=z$ , as $[A_{1}]=\sqrt{}\overline{k.}$ This is a special case of H. Cartan’s
uniqueness theorem [7]. But as far as the hypersphere is concerned,
we obtain a sharper result as follows.

$CoROLLARY2$. If $w(z)=A_{1}z+$ ($higher$ powers) and $|w(z)|<1$ in
$|z|<1$ and $[A_{1}]=\sqrt k$ or $||A_{1}||=\sqrt{}\overline{k,}$ then $w(z)$ is a linear transfor-
mation.

We shall now estimate the norm of the coefficient matrices of a
bounded vector function.

THEOREM 4. Let $w(z)$ be an analylic vector function in $|z|<1$ and
$w(O)=(0)$ such that $|w(z)|<1$ for $|z|<1$ . Then the following inequality
holds:

(2.6) $\underline{dw}d^{\frac{0)}{z}}(||\leqq 1\backslash \cdot$

The equality sign holds, for instance, for $w(z)=Uz$ , where $U$ is a
unitary matrix.

PROOF. From Schwarz’ lemma for vector functions of several
complex variables [9], we have

$|w(z)|^{2}\leqq|z|^{2}$ .

Substituting $w(z)=_{-}^{dw(O)}z+$ ( $higher$ powers) into the left side of this
$dz$

equality, we get

$|z^{\star}(-)_{dz}^{*}z+O(|z|^{3})$ .

If we put $|z|=r$ and $z=ru$ for $z\neq 0$ , and divide both sides by $r^{2}$ ,
and let $r$ tend to zero, we have

$|u^{\star}(\frac{dw(0)}{dz})^{\star}\frac{dw(0)}{dz}u|\leqq 1$ .
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Here, $u$ is an arbitrary k-tuple complex vector whose length is 1,
and so the validity of (2.6) is assured by the definition of the norm
of $\underline{dw}(\underline{0)}$ .

$dz$

It is to be noted that the equality sign may hold also for a
function which is not of the form $Uz$ ; for example, in the case
of $k=2$ , the equality sign holds for

$w(z)=\frac{1}{2}\left(\begin{array}{ll}1 & 1\\1 & 1\end{array}\right)z$ , or $w(z)=\left(\begin{array}{l}z_{1}+\frac{z_{2}}{4}\\\frac{z_{2}^{2}}{2}\end{array}\right)$ .

$CoROLLARY$ . A necessary and sufficient condition that a vector
function $w(z)$ satisfying the condilion of Theorem 4 (not necessary
$w(O)=0)$ is of the form $Uz$ , where $U$ is a unitary matrix, is that the
two identities hold:

$\Vert\frac{dw(0)}{dz}\Vert=1$ and $[\frac{dw(0)}{dz}]=\sqrt{}\overline{k}$.
PROOF. Clearly these conditions are necessary, and so we have

only to show that these are sufficient.

Let the characteristic values of $(\frac{dw}{d}(Z\underline{0)})_{dz}^{*}dw(0)$ be $\lambda_{1},\cdots,$ $\lambda_{k}$

$(\lambda_{1}\geqq\cdots\geqq\lambda_{k}\geqq 0)$ . Then from the condition $\Vert\frac{dw(0)}{dz}\Vert=1$ , we have

$\lambda_{1}=1$ .
Moreover, from the condition $[\frac{dw(0)}{dz}]=\sqrt{}\overline{k}$ we get

$\lambda_{1}+\cdots+\lambda_{k}=k$ .
Accordingly,

$\lambda_{1}=\cdots=\lambda_{k}=1$ .
This shows that $\frac{dw(0)}{dz}$ is a unitary matrix and from Corollary 2 of

Theorem 3, $w(z)$ is a linear transformation. This completes the proof.
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THEOREM 5. $Lel$ a veclor function $w(z)$ be analylic in $|z|<1$ and
suppose $|w(z)|<1$ , then we have the inequalily:

(2.7) $\Vert\Gamma(w(z))^{d_{-}w(z)}-dz\Vert\leqq\Vert\Gamma(w(z))dw(z)_{-\Gamma(z)^{-1}}- dz\Vert\leqq-\frac{-|w(z)|^{2}}{1-|z|^{2}}1$

where $\Gamma(w(z))=\sqrt 1-|w(z)|^{2}E+\{(1-\sqrt 1=|\overline{w(z})|^{2})/|w(z)|^{2})w(z)w(z)^{\star}$ .
The equality sign holds for $\Gamma(a)(z-a)(1-a^{\star}z)^{-1}$ where $a$ is an

arbilrary point in $|z|<1$ .
PROOF. It is easy to see that the transformation

$f(z)=\Gamma(b)(z-b)(1-b^{\star}z)^{-1}$ , $(|b|<1)$

is a one-to-one and analytic mapping which maps the hypersphere
$|z|<1$ onto the hypersphere $|f|<1$ .

Now, if we put, for any fixed point $z$ in $|z|<1$

$S(u)=\Gamma(w(z))\{w(u)-w(z)\}\{1-w(z)^{\star}w(u)\}^{-1}$ ,

we have $|S(u)|<1$ , because of the assumption: $|w(u)|<1$ for $|u|<1$ .
Accordingly, from Theorem 4, we have

(2.8) $\frac{dS(z(0))}{du}\leqq 1|$

and by simple calculation,

(2.9) $\frac{dS(}{d}=-\Gamma(w(z))z(\underline{0))}1-|z|^{2}u1-|w(z)|^{2}\frac{dw(z)}{dz}\Gamma(z)^{-1}$ ,

where we notice that $\det\{\Gamma(z)\}=(\sqrt{}\overline{1}-|\overline{z|^{2}})^{k-1}-$ and so, there exists the
inverse of $\Gamma(z)$ .

Using the property of the norm: $||AB||\leqq||A||\cdot||B||$ for any
matrices $A$ and $B$, and $||\Gamma(z)||=1$ , we have

$|\Gamma(w(z))\underline{d}_{\frac{w}{d}\frac{(z)}{z}=}|\Gamma(w(z))\underline{d}w_{\frac{(z)}{dz}\Gamma(z)^{-1}\Gamma(z)}^{1}$

(2.10)

$\leqq\Vert\Gamma(w(z))\frac{dw(z)}{dz}\Gamma(z)^{-1}||$ .

Thus we obtain the inequality (2.7) from (2.8), (2.9) and (2.10).
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COROLLARY 1. For the function $w(z)$ in $lhe$ theorem, we have

(2.11) $\Vert_{d}^{\underline{dw}}\frac{(z)}{z}\Vert\leqq_{1^{-}-|z|}\underline{\sqrt 1}_{-}^{-}\lrcorner w(z_{2})_{-}|^{2_{-}}$

and

(2.12) $\Vert\frac{dw(z)}{dz}\Vert\leqq\frac{1}{1-|z|^{2}}$ .

PROOF. Using the relation:

$||\Gamma(w(z))\frac{dw(z)}{dz}\Vert\geqq\Vert\frac{dw(z)}{dz}|_{1}/||\Gamma(w(z))^{-1}||$ ,

and

$||\Gamma(w(z))^{-1}||\geqq 1/\sqrt{}\overline{1-|w(z)|^{2}}$ ,

we have (2.11) from Theorem 5, and (2.12) follows from (2.11).
COROLLARY 2. Let $ w(z)=A_{0}+A_{1}z+\cdots$ be analylic in $|z|<1$ and

suppose $|w(z)|<1$ . Then the $lwo$ inequalities hold:
$|A_{0}|\leqq 1$ , $||\Gamma(A_{0})A_{1}||\leqq 1-|A_{0}|^{2}$ .

PROOF. This corollary follows easily, if we put $z=(O)$ in (2.7).
REMARK. In the case of functions of one complex variable, we

have the well-known condition of Schur [10] for the bounded family
of analytic functions, that is;

Let $ w(z)=c_{0}+c_{1}z+\cdots$ be bounded: $|w(z)|<1$ in $|z|<1$ , then

$|c_{0}|\leqq 1$ , $|c_{1}|\leqq 1-|c_{0}|^{2},\cdots\cdots$ .
The inequalities in Corollary 2 correspond to the first two inequalities
of Schur.

THEOREM 6. If $ w(z)=z+A_{2}z^{2}+\cdots$ is analylic and $|w(z)|<M$ in
$|z|<1$ , then $w(z)$ is univalent in $|z|<1/2(k+1)M$, and the image of the
latter hypersphere contains a univalent hypersphere

$|w|<1/4(k+1)M$ .
PROOF. To prove the first part, it suffices to show

(2.13) $\Vert\frac{dw(z)}{dz}-E\Vert<1$ for $|z|<1/2(k+1)M$ ,
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as this is a sufficient condition for the univalency of analytic func-
tions obtained by S. Takahashi [5]. According to the corollary of
Theorem 1, we have

$\frac{dw(z)}{dz}-E=\sum_{n=2}^{\infty}A_{n}\frac{d}{dz}z^{n}$ .

From the inequality (2.5),

$||A_{n}||\leqq\sqrt{}\overline{{}_{k}H_{n}}M$

and also by simple calculation,

$\frac{d}{dz}z^{n}=nr^{n-1}$

where $r=|z|$ , and so we have

$||\frac{dw}{d}\frac{(z)}{z}-E|^{1}\leqq\sum_{n=2}^{\infty}||A_{n}||\cdot\Vert\frac{d}{dz}z^{n}\Vert\leqq\sum_{n=2}^{\infty}n\sqrt{}\overline{{}_{k}H_{n}}Mr^{n-1}$ .

Using Schwarz’ inequality, we get

$|dw(z\underline{)}dz-E|^{2}\leqq M^{2}(\sum_{n=2}^{\infty}nr^{n-})$ $(\sum_{n=2}^{\infty}n{}_{k}H_{n}r^{n-1})$

$=M^{2}\{\frac{1}{(1-r)^{2}}-1\}\{\frac{k}{(1-r)^{k+1}}-k\}$ .

Hence (2.13) will be obtained in putting $r=1/2(k+1)M$, and in
noticing $M\geqq 1$ which follows from (2.2), if we can prove the follow-
ing inequality

(2.14) $2k(k+1)\{1+\frac{k(k-1)}{3!}\overline{(2k}+\overline{2)^{2}}1+\cdots\}<(2k+2)^{2}(1-\frac{1}{2k+2})^{k+3}$ .

Now the left side of this inequality (2.14) is less than

$P=2k(k+1)\{1+3!^{1}\overline{2^{2}}+-\overline{5!}^{1}2^{4}+\cdots\}$

$=4k(k+1)\sinh$
$1$

$=2.084\cdots k(k+1)$ ,
2
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and the right side is larger than

$Q=(2k+2)^{2}\dagger_{2k2)}1-\frac{k+3}{2k+2}+^{3)\underline{(}+_{-\frac{2}{2}})_{--}}\frac{(k+}{2!(}\frac{k}{+}(k\frac{+3)(k+2)}{3!(2k+}2\frac{(k+1)}{)^{3}}\}$

$=\frac{29}{12}k^{2}+\frac{25}{12}k+\frac{1}{2}$ .

Obviously we see $P<Q$, and so (2.14) holds.
We are now going to prove the latter part of this theorem.

For $|z|=r$, we have

$|w(z)|\geqq r-\sum_{n=2}^{\infty}||A_{n}||r^{n}\geqq r-M\sum_{n=2}^{\infty}\sqrt{}\overline{{}_{k\prime}H_{l}}r^{n}$ .
Applying Schwarz’ inequality again, we get

$(\sum_{n-2}^{\infty}\sqrt{{}_{k}H_{n}}r^{n})^{2}\leqq\frac{r^{2}}{1-r}\dagger\frac{1}{(1-r)^{k}}-(1+kr)\}$

$\leqq\frac{r^{2}}{(1-r)^{k+1}}\dagger\frac{(k+1)k}{2!}+\frac{3(k+1)k}{4!}r^{2}+\underline{(k-1)}\ldots\}$ .

And so, the theorem will be proved if we show that this last ex-
pression is not larger than $1/4(k+1)M$ for $r=1/2(k+1)M$ To show
this, we shall prove the following inequality in the same way as in
the proof of the first part of this theorem:

$4k(k+1)\{\frac{1}{2!}+\frac{3}{4!2^{2}}+\frac{5}{6!2^{4}}+\cdots\}$

(2.15)

$<(2k+2)^{2}\{1-\frac{k+1}{2(k+1)}+\frac{(k+1)k}{2!(2k+2)^{2}}-\frac{(k+1)k(k-1)}{3!(2k+2)^{3}}\}$ .

The left side of (2.15) is equal to

$4k(k+1)\{4+2\sinh\frac{1}{2}--4\cosh\frac{1}{2}\}=2.12\cdots k(k+1)$

and the right side is $-\frac{9k}{12}-+\frac{55k}{12}+22^{2}$ . Accordingly, the inequality

(2.15) holds.
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COROLLARY. Let $ w(z)=A_{1}z+A_{2}z^{2}+\cdots\cdots$ be analylic and suppose
$|w(z)|<M$ in $|z|<R$ and $\det A_{1}\neq 0$ . Then $w(z)$ is univalent in
$|z|<R^{2}/\{2(k+1)||A_{1^{-I}}||M\}$ and the image of lhis hypersphere contains
a univalent hypersphere $|w|<R^{2}/\{4(k+1)||A_{1}^{-1}||^{2}M\}$ .

PROOF. From the assumption: $\det A_{1}\neq 0$ , there exists the inverse
$A_{1}^{-1}$ of $A_{1}$ . Putting $z=Rz^{\prime}(|z^{\prime}|<1)$ , we get

$f(z^{\prime})=A_{1}^{-1}w(Rz^{\prime})/R=z^{\prime}+$ ($higher$ powers)

and

$|f(z^{\prime})|\leqq M||A_{1}^{-1}||/R$ .
If we apply Theorem 6 for $f(z^{\prime})$ analytic in $|z^{\prime}|<1$ , this corollary
is easily obtained ([11]).

REMARK. The condition $\det A_{1}\neq 0$ is necessary. For, it is a
necessary condition for the univalency of $w(z)$ in the neighborhood
of $z=(O)$ that the Jacobian does not vanish at $z=(0)$ , and the value

of the Jacobian at the point is equal to $|\det\frac{dw(0)}{dz}|^{2}=|\det A_{1}|^{2}$.
Nevertheless, the univalence radii in the above theorem and its
corollary are not best possible. Also we have not yet succeeded
in generalizing to our case Landau-Dieudonn\’e’s theorem on the uni-
valence radius of starlike functions of one complex variable.

\S 3. The number of zero points

We shall introduce the following formula in order to obtain the
identity which designates the number of zero points of vector func-
tions of several complex variables.

$Sectionl,whereP(z^{\partial_{\frac{j}{z}}})iscontinuousandPuttingB(z,\overline{z})=--P(z,\overline{z})(j=1,\ldots, k)in\partial zGreen’ sformula(l.6)ofhasthefirstandthe$

second partial derivatives, and summing up, we have

(3.1) $\int_{c^{d_{Z}^{d_{-P(z,\overline{z})\left(\begin{array}{llllllll} & & & & & & & df\\ & & & & & & & dz\end{array}\right)[}d2}}}\overline{d}^{\frac{f}{z}\left(\begin{array}{llllllll} & & & & & & & df_{-}\\ & & & & & & & dz\end{array}\right)]^{-}dS=}121\int_{D}\Delta P(z,\overline{z})dV$ ,

where $\Delta P$ is the Laplacian of $P(z,\overline{z})$ .
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As noticed in Section 1, we use the definition of $z^{n}$ and $\frac{d^{n}w(z)}{dz^{n}}$

in (1.1) and (1.2).
If all the elements of a vector function $w(z)$ vanish at a point

$a$ that is, $w(a)^{\star}w(a)=0$ , we call $a$ a zero point of $w(z)$ . We shall
obtain some conditions that $w(z)$ has isolated zero points. For this
purpose we first prove the following elementary lemma.

LEMMA 2. For posilive integers $k(k\geqq 2)$ and $n(n\geqq 1)$ , we have
the inequality:

$k\cdot {}_{k}H_{(k-l)(n-1)}\geqq {}_{k}H_{kn-k+1}$ ,

where the $Hs$ are the number of homogeneous products taken from $k$

letters.
PROOF. In the case of $k=2$ , we can easily assure that the equali-

ty holds in the above inequality. For $k\geqq 3$ , it suffices to show the
inequality:

$k(kn-n)(kn-n-1)\cdots(kn-n-k+2)$

$\geqq kn(kn-1)\cdots(kn-k+2)$ ,

that is,

$(k-1)\{(k-1)(n-1)+k-2\}\cdots\{(k-1)(n-1)+1\}$

$\geqq\{k(n-1)+k-1\}\{k(n-1)+k-2\}\cdots\{k(n-1)+2\}$ .
The left side of the above inequality is equal to

$(k-1)$ ! $\{1+\frac{k-1}{k-2}(n-1)\}\{1+\frac{k-1}{k-3}(n-1)\}\cdots\{1+(k-1)(n-1)\}$ ,

and the right side is equal to

$(k-1)$ ! $\{1+\frac{k}{k-1}(n-1)\}\{1+\frac{k}{k-2}(n-1)\}\cdots\{1+\frac{k}{2}(n-1)\}$ .

Using the facts:

$\frac{k-1}{j}>\frac{k}{j+1}$ , for $j=1,\ldots,$ $k-2$ ,



234 I. ONO

we see that every factor of the left side is not less than the cor-
responding factor of the right side, which concludes the proof.

THEOREM 7. Let a vector function $w(z)$ be analylic in a neigh-
borhood $K:|z-a|<r$ and

(3.2) $w(a)=(0),$ $\frac{dw(a)}{dz}=(0),\ldots,$ $\frac{d^{n-1}w(a)}{dz^{n-1}}=(0)$ ,

and the rank of the following matrix be ${}_{k}H_{kn-k+1}$ :

(3.3) $\overline{d}^{d_{\overline{z}^{(+1)}}^{(kn-k+1)}}k\overline{n-k}^{-}\{\frac{d^{n}w(a)}{dz^{n}}(z-a)^{n}\times(z-a)^{(k-1)(n-1)}\}$ ,

where the sign $\times$ means the Kronecker product. Then $w(z)$ does not
vanish in the suilable neighborhood of $a$ except at $a$.

PROOF. Without loss of generality we may put $a=(0)$ . It fol-

lows from (3.3) that $\frac{d^{n}w(a)}{dz^{n}}$ has at least a non-vanishing element in

every row. Using the Weierstrass’ preparation theorem ([1], pp.
183-190), and a suitable non-singular linear transformation: $z=Lz^{t}$ ,
we have

$w(z(z^{\prime}))=\left(\begin{array}{llllll} & & & \Omega_{1}(.z^{\prime}) & 0 & \\ & & & & \ddots & \\ & & & 0 & & \Omega_{k}(z^{\prime})\end{array}\right)$

(3.4)

1, $H_{1}^{1}(z_{2}^{1},\cdots, z_{k}^{\prime}),\cdots\cdots,$ $H_{1}^{n}(z_{2}^{\prime},\ldots, z_{k}^{\prime})$

. $\left(\begin{array}{llllllllll} & & & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ & & & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ & & & 1 & H^{1}(z^{\prime} & .\cdot & z^{\prime}) & .\cdot & H^{n}(z^{\prime} & z^{\prime})\end{array}\right)\left(\begin{array}{llll} & & & z_{\prime}z_{1^{n- 1}}^{1}\\ & & & \vdots\\ & & & i\end{array}\right)$

’

where the functions $Hs$ are analytic in a neighborhood of $ z_{2}^{\prime}=\cdots$

$=z_{\acute{k}}=0$ and

$H_{j}^{l}(0,\cdots, 0)=0,$ $j=1,\cdots,$ $k,$ $l=1,\cdots,$ $n$

and $\Omega_{j}(z^{\prime})$ is analytic and non-vanishing in that neighborhood.
Expanding $w(z(z^{\prime}))$ with respect to $z^{\prime}$ ,

$w(z(z^{\prime}))=(a_{ij}^{\prime})z^{n}’+$ ($higher$ powers) ,
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and comparing the coefficients on both sides, we have

$w(z(z^{\prime}))=\left(\begin{array}{lllll}1+(higher & powers), & 0 & & \\ & & \ddots & & \\0 & & & \dot{1}+(higher & powers)\end{array}\right)$

If we replace $z^{\prime}$ by $L^{-1}z$ , we see that $w(z)$ is equal to the right side
in which the primes are taken away, that is,

It suffices to show that $w(z)$ vanishes if and only if the vector of
the second factor vanishes.

Now, in this system of equations with respect to the unknowns
$z_{1},\cdots,$ $z_{k}$ , we multiply both sides by the homogeneous products of
order $(k-1)(n-1)$ of these $k$ unknowns. Then we obtain a system
of $k\cdot {}_{k}H_{(k-1)(n- 1)}$ equations. From Lemma 2, we see that this number
is not less than $kHkn-k+1$ which is the number of the unknowns in
the new system of equations, where every homogeneous product
$z_{1}^{kn-k+1},$ $z_{1}^{kn-k}z_{2},\ldots,$ $z_{k}^{kn-k+1}$ is considered as an unknown.

From our assumption (3.3) follows that the rank of

(3.6) $\frac{d^{(kn-k+1)}}{dz^{(kn-k+1)}}((a_{ij})z^{n}\times z^{(k-1)(n-1)})=A(a_{ij})$

is ${}_{k}H_{kn-k+1}$ . Therefore the matrix

(3.7) $A$ ( $a_{ij}+$ (higher powers))

obtained from (3.6) by substituting $a_{ij}$ by corresponding elements in
(3.5), has the same rank ${}_{k}H_{kn-k+1}$ in a sufficiently small neighborhood
of $z=(0)$ .
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On the other hand, if (3.5) had a solution other than $z=(O)$ , then
we could apply Sylvester’s elimination [12] to the above new system
of equations, and would find that the rank of (3.7) is less than
${}_{k}H_{kn-k+1}$ , which is a contradiction. This concludes the proof.

We call the point $a$ in Theorem 7 the zero point of the $n^{k}$-th
order.

REMARK. In the case of $k=2$, the condition (3.3) is expressed in
a considerably simpler form. That is,

where this matrix is of the form $(2n)\times(2n)$ and $\frac{d^{n}}{d}\frac{w(a)}{z^{n}}$ which is of

the form $2\times(n+1)$ , is situated from the first to $(n+1)$-th column in
the first two rows, from second to $(n+2)$-th column in the next two
rows, etc. For instance, in the case of $n=2$, putting

$w(z)=\left(\begin{array}{lllllll} & & & & A & 2B & C\\ & & & & D & 2E & F\end{array}\right)\left(\begin{array}{lllll} & & & & z_{1}^{2}\\ & & & & z_{1}z_{2}\\ & & & & z_{2}^{2}\end{array}\right)+$ ($higher$ powers),

we have

$\det\left(\begin{array}{llllllll} & & & & A & 2B & C & 0\\ & & & & D & 2E & F & 0\\ & & & & 0 & A & 2B & C\\ & & & & 0 & D & 2E & F\end{array}\right)\neq 0$ .

LEMMA 3. Let $w(z)$ be analytic in $N:|z-a|<r$, where $a$ is a

fixed point and $\det dw=D(z)\not\equiv 0$ in N Suppose, moreover, $w(a)=0$ .
$dz$
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i) In case $D(a)\neq 0$ , we have

$(\frac{dw}{dz})^{-1}w(z)=(z-a)+$ ($higher$ powers),

ii) In case $D(a)=0$ , assume lhat all the elements of $(\Delta_{ij}(z))^{\prime}w(z)$

are divisible by $D(z)$ in $N$, where $(\Delta_{ij}(z))^{\prime}$ is the transposed matrix of
the matrix which consists of the minor determinants of $\frac{dw}{dz}$ , and also

assume the conditions (3.2) and (3.3) of Theorem 7. Then we have

$(\frac{dw}{dz})^{-1}w(z)=\frac{1}{n}(z-a)+$ ($higher$ powers)

where the left side is to be understood in the following sense. From

the assumplion $(\frac{dw}{dz})^{-1}e$xists in $N$ except for the set $S=\{z:D(z)=0\}$ and

for $z_{0}\in S,$ $\lim_{z\rightarrow z_{0}}(\frac{dw}{dz})^{-1}w(z)$ exists when $z$ tends to $z_{0}$ from outside $S$.

$[(\frac{dw}{dz})^{-1}w(z)]_{z- zo}will$ mean this limit.

PROOF. i) In case $D(a)\neq 0,$ $D(z)$ does not vanish in a suitable
$dw$

neighborhood of $a$ and so there exists the inverse of
$\overline{d}\overline{z}$

and

$(\frac{dw}{dz})^{-1}w(z)$ is analytic there. If we put

$(\frac{dw}{dz})^{-1}w(z)=f(z)$ , that is, $w(z)=\frac{dw}{dz}f(z)$ ,

$f(z)$ vanishes if and only if $w(z)$ vanishes.
Now, noticing

$w(z)=A_{1}(z-a)+$ ($higher$ powers),

$dw(z)=A_{1}+$ ($higher$ powers),
$\overline{dz}$

and

$f(z)=B_{0}+B_{1}(z-a)+$ ($higher$ powers),
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where $\det A_{1}\neq 0$ , we have

$A_{1}(z-a)+\cdots=(A_{1}+\cdots)\{B_{0}+B_{1}(z-a)+\cdots\}$ .
From this we obtain $B_{0}=(0)$ and $B_{1}=E$. Thus the first part of this
lemma is proved.

ii) Without loss of generality we may assume for convenience
that $a=(O)$ . As $(\Delta_{ij}(z))^{t}w(z)$ is divisible by $D(z),$ $(1/D(z))(\Delta_{i_{f}}(z))^{\prime}w(z)$ is
analytic in $N$ If we denote this function by $f(z)$, we get

$(\Delta_{ij}(z))^{\prime}w(z)=D(z)f(z)$ .
$dw$

Multiplying on both sides, we have
$dz$

$D(z)w(z)=D(z)\frac{dw}{dz}f(z)$ ,

and so, because of the assumption: $D(z)\not\equiv O$ , we have

(3.8) $w(z)=\frac{dw}{d}\frac{(z)}{z}f(z)$ .

It follows from this equality that $w(z)$ vanishes if $f(z)$ vanishes.
On the other hand, $w(z)$ vanishes only at (0) in $N$ from the

conditions of Theorem 7, and the order of $w(z)$ and $dw(z)$ with respect
$dz$

to $z$ are $n$ and $n-1$ , respectively. Accordingly, the order of $f(z)$ is
one. Namely $f(z)$ vanishes only at (0) in $N$

Now, if we put

$w(z)=A_{n}z^{n}+$ ($higher$ powers) ,

$dw(z)=A_{n}dz^{n}+$ ($higher$ powers),
$dz$ $dz$

and

$f(z)=B_{1}z+$ ($higher$ powers),

and substituting these into (3.8) and comparing the terms of the
least order on both sides, we have
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$A_{n}(z^{n}--\frac{dz}{dz}-n$ $B_{1}z)=(0)$ .

From the condition (3.3) of Theorem 7, we see that this equality
holds if and only if the second factor of the left side vanishes.
That is,

$z^{n}=\frac{dz^{n}}{dz}\cdot B_{1}z$ .

Putting $B_{1}=(b_{ij})$ and remarking that

$\frac{dz^{n}}{dz}=\left(\begin{array}{llll}0 & & & \\\cdots & \cdots & \cdots & \cdots\\,, & n_{k}z_{1}^{n1} & \cdots & Z_{k}^{n}k^{-1}\\\cdots & \cdots & \cdots & \cdots\\ nz_{k}^{n} & - 1 & & \end{array}\right)$

,

we have

$z_{1}\cdots z_{k}=\sum_{j=1}^{k}n_{j}b_{jj}z_{1}\cdots z_{k}+\sum_{j,l(j\neq l)}n_{j}b_{jl}z_{1}\cdots z_{j-1}z_{j+1}\cdots z_{k}$ .

From this we obtain

$nb_{jj}=1$ , and $b_{jl}=0,$ $j,$ $l=1,\cdots,$ $k;j\neq l$ .
This shows that $B_{1}=(1/n)E$ and thus the latter part of this lemma
is proved.

All the assumptions of (ii) of Lemma 3 are satisfied, for instance,
by the function $w(z)=A_{n}z^{n}$ , where $A_{n}$ satisfies (3.2) and (3.3). Among
these assumptions it is desirable to weaken the condition that
$(\Delta_{ij}(z))^{\prime}w(z)$ is divisible by $D(z)$ , but we have not yet succeeded in
finding a suitable condition in its place.

THEOREM 8. Let $D$ be a connected domain bounded by smooth
hypersurfaces $C$ in the z-space of $k$ complex dimensions, where $C$ is
represented by real equations $f(z,\overline{z})=0$ , and let a vector function $w(z)$

be single-valued and analytic in $D$ and have the second conlinuous
partial derivatives with respect to $z,\overline{z}$, in the closure of D. And assume,

moreover, that $\det\frac{dw(z)}{dz}\equiv D(z)$ does not vanish identically in $D$, and
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lhat in a neighborhood of a point $a$ where $D(a)=0$ , the assumptions
(ii) of Lemma 3 are salisfied.

Then the number $n(0)$ of zero points of $w(z)$ in $D$ is expressed as
follows:

$n(0)=_{s_{E}^{1_{-}}}\int_{c}\{\left(\begin{array}{lllll} & & & & dw\\ & & & & dz\end{array}\right)w\}^{\star}-dz^{-\dagger}d$ $\left(\begin{array}{lllll} & & & & dw\\ & & & & --\\ & & & & dz_{l}^{\prime}\end{array}\right)w\}\alpha^{1}|\left(\begin{array}{lllll} & & & & dw\\ & & & & -d\overline{z}\end{array}\right)w^{1_{dS}^{-2k}}=$

.

(3.9)

$+\frac{1}{2(k-1)S_{E}}\int_{D}\Delta(|(\frac{dw}{dz})^{-1}w|^{-2k+2})dV$ ,

where $S_{E}$ is the whole area $2\pi^{k}/(k-1)$ ! of the unit spherical hyper-
surface in the $2k$-dimensional Euclidean space, $\alpha$ is the complex direction

cosine vector $(-\frac{df}{dz})^{*}[\frac{d}{d}\frac{f}{z}(\frac{df}{dz})^{*}]^{-\frac{1}{2}}$ on $ C^{\star)}\Delta$ means the Laplacian, and

$dS$ or $dV$ is the surface element on $C$ or the volume element in $D$ ,
respectively. Here the zero point of $w(z)$ , for which (3.2) and (3.3)
hold, is to be counted with the multiplicity $n^{2k-2}$.

PROOF. It follows from Theorem 7 and Lemma 3 that the zero
points of $w(z)$ are all isolated and coincide with those of $\left(\begin{array}{lllll} & & & & dw\\ & & & & --\\ & & & & dz\end{array}\right)w(z)$ .

We denote by $a^{1},\cdots,$ $a^{p}$ the zero points of $w(z)$ in $D$, whose orders
are $n_{1},\cdots,$ $n_{p}$ respectively. We cut off the hyperspheres $|z-a^{l}|<e$

$(l=1,\ldots,p)$ from $D$ and make a new domain $D_{\epsilon}$ . Applying Green’s

formula (3.1) for $D_{e}$ and $P_{=}^{1}\left(\begin{array}{lllll} & & & & dw\\ & & & & dz\end{array}\right)w|^{-2k+2}$ , we have

(3.10) $\int_{c^{d^{\frac{P}{z}\alpha dS-\sum_{l}\int_{1z-a^{l_{\downarrow=e^{-}}^{-d}}}\frac{P}{z}}}}^{\underline{d}d}\cdot\frac{z-a^{l}}{e}dS=2\underline{1}\int_{D_{\epsilon}}\Delta(P)dV$ ,

where

$\frac{dP}{dz}=-(k-1)\{\left(\begin{array}{lllll} & & & & dw\\ & & & & --\\ & & & & dz\end{array}\right)w\}_{\overline{d}^{d_{Z}}}^{\star}\{\left(\begin{array}{lllll} & & & & dw\\ & & & & d\overline{z}\end{array}\right)w\}|(\frac{dw}{dz})^{-1}w|^{-2k}$ .

In the second term of the left side we have

$*)\alpha$ is equal to $(z-a)/R$ when $D$ is the hypersphere $|z-a|<R$.
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$Q=-\frac{dP}{dz}$ . $\frac{z-}{e}\underline{a^{l}}dS$

$=(k-1)\{(\frac{dw}{dz})^{-1}w\}^{*}\frac{d}{dz}\{\left(\begin{array}{l}dw\\\overline{d}z\end{array}\right)w\}\frac{z-a^{l}}{e}e^{2k- 1}|\left(\begin{array}{l}dw\\d\overline{z}\end{array}\right)w|^{-2k}dS_{E}$ ,

where $dS_{E}$ is the surface element of the unit spherical hypersurface
in the $2k$-dimensional Euclidean space.

Using the fact:

$(\frac{dw}{dz})^{-1}w=\frac{1}{n_{l}}(z-a^{l})+$ ($higher$ powers)

on $|z-a^{l}|=e$ , we obtain

$Q=\{\frac{1}{n_{l}}(z-a^{l})+(higherpowers)\}\{\frac{1}{n_{l}}+$ (higher $powers$) $\}$

. $(z-a^{l})e^{2k-2}n_{l}^{2k}e^{-2k}dS_{E}$ ,

and letting $e\rightarrow 0$ , we have $Q\rightarrow n_{l^{k-2}}^{2}dS_{E}$ .
Accordingly, we see from (3.10) that $\sum_{l}n_{l^{k-2}}^{2}=n(0)$ is equal to

the right side of (3.9). This completes the proof.
REMARK. The above formula corresponds to the following fact

known in the case of $k=1$ :

$n(0)-n_{1}(0)=\frac{1}{2\pi i}\int_{C}\frac{w^{\prime}}{w}dz-\frac{1}{2\pi i}\int_{C}\frac{w^{\prime\prime}}{w^{\prime}}dz$ ,

where $n_{1}(0)$ is the sum of the indices of branch points and $n(O)-n_{1}(0)$

is the number of distinct zero points. Here $|(\frac{dw}{dz})^{-1}w|^{-2k+2}$ in (3.9) is

replaced by $\log|w/w^{\prime}|$ .
As for the multiplicity of the zero points satisfying (3.2) and

(3.3), it would seem more natural to count it as $n^{k}$, whereas we had
to count it as $n^{2k-2}$ in the above theorem. The both ways agree for
$k=2$ , but disagree for $k\geqq 3$ .

In order to obtain a formula which gives the number of a-points
of $w(z)$ for any fixed $a$ , it is sufficient to consider $w(z)-a$ in place of
$w(z)$ in (3.9). It is to be noticed that the formula (3.9) does not
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give the number of zero points of $w(z)$ , if the orders of the com-
ponents of $w(z)$ are not equal, because the condition of (ii) of Lemma
3 does not hold. For instance, this occurs with the function:

$w(z)=$

Another difficulty with the above formula is that the term of
the volume integral remains. It depends on the fact that, for an
analytic vector function $f(z),$ $|f(z)|^{-2k+2}$ is not in general harmonic
with respect to $z,\overline{z}$ , whereas $|z|^{-2k+2}$ is harmonic. In this regard we
have the following theorem.

THEOREM 9. The Laplacian $of|w^{1_{1}^{-2h+2}}$ is always real-valued

and vanishes identically if and only if $w$ is equal to $a+cUz$ ,

where $a$ is a k-tuple constant vector, $c$ is a constant complex number
and $U$ is a unitary matrix of order $k$ .

PROOF. If we put $w(z)=f(z)$ and $f(z)^{\star}f(z)=u$ , we have

from the notation (1.2),

$dudz=f^{\star}dfd\overline{z}$ $u=(\frac{df}{dz}.)^{\star}f$ ,

and

$d^{d_{Z}}(\overline{d}dz^{-})^{*}u=Tr.\{dfdz(\frac{df}{dz})^{*}\}$ ,

and so

$\frac{1}{4}\Delta(u^{-k+1})=(k-1)\{k\frac{du}{dz}(\frac{d}{dz})^{*}u-u\frac{d}{dz}(\frac{d}{dz})^{*}u\}u^{-k-1}$

$=(k-1)f^{\star}[k_{-}^{d}d^{\frac{f}{z}}-Tr.\dagger_{d\overline{z}}^{df}-\}\cdot E]f(fV)^{-k-1}$ .

The middle matrix $k\frac{df}{dz}(\frac{df}{dz})^{*}-Tr.\{-dd^{\frac{f}{z}}\}\cdot E\equiv A$ in the
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last side being Hermitian, $\triangle(u^{-k+1})$ is real-valued and the Laplacian
vanishes if and only if all the elements of $A$ are zero.

Putting

$k\frac{df}{dz}\left(\begin{array}{lll} & & \underline{d}f_{-}\\ & & dz\end{array}\right)=Tr.\dagger_{d\overline{z}}^{df}-(\frac{df}{dz})^{*}\}\cdot E$ ,

and taking the determinants on both sides, we have

$k^{k}\det\dagger\frac{df}{dz}(\frac{df}{dz})^{*}\}=[Tr.\{\frac{d}{d}\frac{f}{z}(\frac{df}{dz}\{*\}]^{k}$.

In case $\det=0\underline{d}_{\frac{f}{z}}d$ we see $tha\acute{t}\frac{df}{dz}=0$ , that is,

$(\frac{dw}{dz})^{-1}w=a$ .

In case $\det\underline{d}_{\frac{f}{z}}d\neq 0,$
$\{\det^{d_{\frac{f}{z}}}-d\}^{\frac{1}{k}}$ is analytic and we have

2

Tr. $\{\frac{df}{dz}\left(\begin{array}{lll} & & \underline{d}\underline{f}\\ & & dz\end{array}\right)\}=k|\det\frac{d}{d}\frac{f}{z}|^{\overline{k}}$ .

Accordingly, $-ddfz-\{\det-ddfz-\}^{-}k^{1}$ is a unitary matrix and so it is con-

$stant^{\star)}$, then we can put

$\frac{df}{dz}=Ug(z)$ ,

where $U$ is a unitary matrix $(u_{ij})$ and $g(z)$ is an analytic single
function of $z$. From this we get

$\frac{\partial f_{j}}{\partial z_{l}}=u_{jl}g(z)$ , $j,$ $l=1,\ldots,$ $k$ .
Differentiating partially with respect to $z_{m}$ , we have

$\frac{\partial^{2}f_{j}}{\partial z_{m}\partial z_{l}}=u_{jl}\frac{\partial g}{\partial z_{m}}$ , for $l\neq m$ ,

$*)$ For example, see Bochner-Martin [1], pp. 154-156.
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and in the same way we have

$\partial z\partial_{m}^{\frac{i}{z}}\partial_{l}^{2}f=u_{jm}\partial z\partial g_{l}$ .

Accordingly,

$u_{jl}\partial z_{m}\partial g_{-=u_{jm}\frac{\partial g}{\partial z_{l}}}$ .

If we multiply $\overline{u}_{jl}$ on both sides and sum up with respect to $j$ from
1 to $k$ , we have

$\frac{\partial g}{\partial z_{m}}=0$ , $m=1,\cdots,$ $k$ .

This shows that $g(z)$ is constant and $df_{-}=cU$. Thus the proof is
$dz$

completed.
The function $w(z)$ which satisfies the conditions of Theorem 9 is

not always linear, since the function $A_{n}z^{n}(n\geqq 2)$ also satisfies it,
but anyway from the above theorem it seems natural to consider
the functions whose Laplacians are positive or negative definite. We
obtain the following theorem corresponding to Jensen’s formula in
the theory of meromorphic functions of a complex variable. In the
case of the systems of functions of a complex variable, the study in
this direction was done by H. and J. Weyl [13] and L. V. Ahlfors
[14].

THEOREM 10. Let $w(z)$ be analylic in a hypersphere $|z|<R(0<R$
$<+\infty)$ in the z-space of $k$ complex dimensions where $w(z)$ does not
vanish at (0) and satisfy the conditions in Theorem 8 and let $n(O, r)$

denote the number of zero points of $w(z)$ in $|z|<r$. If $|(\frac{dw}{dz})^{-1}w|^{-2k+7}$

is subharmonic or superharmonic in $|z|<R$, then the following ine-
qualities hold, respectively:

(3.11) $|(\frac{dw}{d}(z0\underline{)})^{-1}w(0)|_{S_{E}^{1}}^{-2k+2}---\int_{|z|=R}|I\frac{dw}{dz})^{-1}w|^{-2k+2}dS_{E}$

$\leqq 2(k-1)\int_{0}^{R}\frac{n(0}{r^{2k}}\frac{r)}{-1}dr$ ,
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$or$,

(3.12) $|(\frac{dw(0)}{dz})^{-1}w(0)|^{-?k+2}-\frac{1}{S_{E}}\int_{|z|=R}|(-dd\frac{w}{z})^{-1}w|^{-2k+2}dS_{E}$

$\geqq 2(k-1)\int_{0}^{R}\frac{n(0,r)}{r^{2k-1}}dr$ ,

where $S_{E}$ is the whole area of the unit spherical hypersurface in the
$2k$-dimensional Euclidean space and $dS_{E}$ is its surface element.

PROOF. If we put $|(\frac{dw}{dz})^{-1}w|^{-2k+2}=P$, we have from (3.9) in

Theorem 8,

$n(0, r)=-\frac{1}{(k-1)S_{E}}\int_{1z1=r}\frac{dP}{dz}$ . $\frac{z}{r}dS+\frac{1}{2(k-1)S_{E}}\int_{1z1=r}\Delta PdV$ .

Taking the conjugate of both sides and using the fact that the
Laplacian is real-valued, we have

$n(0, r)=-\frac{1}{(k-1)S_{E}}\int_{|z|=r}\frac{z^{\star}}{r}(\frac{dP}{dz})^{*}dS+\frac{1}{2(k-1)S_{E}}\int_{|zI=r}\Delta PdV$ .

Summing up these equalities and noticing the relation:

$\frac{dP}{dz}$ . $\frac{z}{r}+\frac{z^{\star}}{r}(\frac{dP}{dz})^{*}=\frac{\partial P}{\partial r}$ ,

we get in the case of $\Delta P\geqq 0$ ,

$n(0, r)\geqq-\frac{1}{2(k-1)S_{E}}\int_{1z1=r}\frac{\partial P}{\partial r}r^{2k-1}dS_{E}$ .

If we divide this inequality by $r^{2k-1}$ and integrate with respect to $r$

from $r_{0}$ to $R$ and let $r_{0}\rightarrow 0$ , we obtain the inequality (3.11). We can
prove (3.12) in the same way as above.

Tokyo University of Education.
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