Remarks on Boolean functions II. ${ }^{1{ }^{1}}$

By David Ellis

(Received April 6, 1956)

1. Introduction.

This paper continues our remarks on Boolean functions [7] ${ }^{2)}$. In the present paper we are concerned with the groupoids [5] arising from functions of two variables and with the factorization of general functions. Some of the matters in Sections 3 and 4 have been partially discussed previously in [3] and [9], respectively. The Boolean algebra, B, considered throughout is strictly arbitrary.

2. Preliminaries.

Let B be a Boolean algebra [1] with meet, join, and complement indicated by $x \wedge y, x \bigvee y$, and x^{*}, respectively. We shall also employ the ring notation [10], $x+y$ and $x y$, where these denote sum and product, respectively. One recalls [10]:

$$
\begin{aligned}
x+y & =\left(x \wedge y^{*}\right) \bigvee\left(x^{*} \wedge y\right) \\
x y & =x \wedge y \\
x \bigvee y & =x+y+x y .
\end{aligned}
$$

The first and last elements of B (additive and multiplicative identities in the ring) will be denoted by 0 and 1, respectively.

One recalls [1] that any Boolean function, $f(x, y)$, of two variables over B may be written in its disjunctive normal form:

$$
(†) f(x, y)=(a \wedge x \wedge y) \bigvee\left(b \wedge x \wedge y^{*}\right) \bigvee\left(c \wedge x^{*} \wedge y\right) \bigvee\left(d \wedge x^{*} \wedge y^{*}\right)
$$

The standard ring form of $f(x, y)$ is

1) Presented to the Mathematical Association of America, Athens, Georgia, March 1956.
2), Numbers in square brackets refer to the list of references concluding the paper.

$$
(\dagger \dagger) f(x, y)=\alpha x y+\beta x+\gamma y+\delta .
$$

We refer to either (\dagger) or ($\dagger \dagger$) as the canonical form of $f(x, y)$ and the two are related by the following equalities among constants:

$$
\begin{aligned}
\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d} & =\boldsymbol{\alpha} & \alpha+\beta+\gamma+\delta & =\boldsymbol{a} \\
\boldsymbol{b}+\boldsymbol{d} & =\boldsymbol{\beta} & \beta+\delta & =\boldsymbol{b} \\
\boldsymbol{c}+\boldsymbol{d} & =\gamma & \gamma+\delta & =\boldsymbol{c} \\
\boldsymbol{d} & =\delta & \delta & =\boldsymbol{d}
\end{aligned}
$$

3. The semigroups and quasigroups.

Lemma 1. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ yields a semigroup [5] in B if and only if $\alpha_{\gamma}=\alpha \beta, \delta \gamma=\delta \beta$, and $\alpha \delta=0$.

Proof. These are precisely the conditions for $f(x, f(y, z))=f(f(x, y), z)$ to be an identity as may be verified by direct computation.

Lemma 2. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ yields an Abelian groupoid [5] in B if and only if $\beta=\gamma$.

Proof. Obvious.
Lemma 3. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ yields a quasigroup [5] in B if and only if $\alpha=0$ and $\beta=\gamma=1$.

Proof. $f(x, y)$ yields a quasigroup if and only if $f(a, x)$ and $f(x, a)$ are permutations of B for each $a \in B$.

$$
\begin{aligned}
& f(a, x)=(\alpha a+\gamma) x+(\beta a+\delta)=((\alpha a+\gamma+\beta a+\delta) \wedge x) \bigvee\left((\beta a+\delta) \wedge x^{*}\right) \\
& f(x, a)=(\alpha a+\beta) x+(\gamma a+\delta)=((\alpha a+\beta+\gamma a+\delta) \wedge x) \bigvee\left((\gamma a+\delta) \wedge x^{*}\right)
\end{aligned}
$$

For these to be mappings of B onto itself we must have, by Müller's Theorem [7],

$$
\begin{aligned}
& (\alpha a+\gamma+\beta a+\delta) \bigvee(\beta a+\delta)=1, \quad(\alpha a+\gamma+\beta a+\delta) \wedge(\beta a+\delta)=0 \\
& (\alpha a+\beta+\gamma a+\delta) \bigvee(\gamma a+\delta)=1, \quad(\alpha a+\beta+\gamma a+\delta) \wedge(\gamma a+\delta)=0
\end{aligned}
$$

for all $a \in B$. Combining these and changing to pure ring notation yields

$$
\alpha a+\gamma=1, \alpha a+\beta=1 \quad \text { for all } a \in B .
$$

Thus, it is necessary that $\beta=\gamma=1$ and $\alpha=0$ so that $f(x, y)=x+y+\delta$. This condition is also sufficient since $f(a, x)=(a+\delta)+x=f(x, a)$ is merely
a ring translation and, hence, a permutation of B.
Theorem 1. The quasigroups arising in B from the Boolean function $f(x, y)$ comprise the one-parameter family $f(x, y)=x+y+\delta$ and are actually Abelian groups of nilpotents.

Proof. From Lemmas 1, 2 and 3, we see that $f(x, y)=x+y+\delta$ yields an Abelian semigroup which is also a quasigroup and, hence, a group [2]. Since $f(x, \delta)=f(\delta, x)=x, \delta$ is the identity of the group and since $f(x, x)=\delta$, each element is nilpotent.

4. Semilattices and symmetries of B.

Lemma 4. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ yields a groupoid of idempotents [4] if and only if $\alpha+\beta+\gamma=1$ and $\delta=0$.

Proof. The requirement is $f(x, x)=\alpha x+\beta x+\gamma x+\delta=x$ for all $x \in B$. The conclusion follows.

Theorem 2. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ yields a semilattice [4] if and only if $\alpha=1, \delta=0, \beta=\gamma$.

Proof. The proposition is immediate from Lemmas 1, 2 and 4.
Theorem 3. The semilattices arising in B from Boolean fnnctions $f(x, y)$ comprise the one-parameter family $x y+\lambda(x+y)$. If one defines $x \bigvee_{\lambda} y=x y+\lambda(x+y)$ and $x \bigwedge_{\lambda} y=x y+(1+\lambda)(x+y)$ then with $x \bigvee_{\lambda} y$ as join and $x \underset{\lambda}{\wedge} y$ as meet and x^{*} as complement, B forms a Boolean algebra with first element λ^{*} and last element λ. Thus, for each element, λ, of B there is a Boolean algebra on B having λ as last element, called the λ-algebra. The 1-algebra is, of course, the original algebra and the 0 -algebra its dual. For any $\lambda, \mu \in B$, the λ-algebra and μ-algebra are isomorphic and the isomorphism if $f_{\lambda \mu}(x)=f_{\mu \lambda}(x)=x+\mu+\lambda$ which is precisely the motion [6] of B taking μ into λ. Thus, motions preserve not only geometry but algebra in B. The transformation equation between λ-algebra and μ-algebra are

$$
\begin{aligned}
& x \bigvee_{\lambda} y=\left[\lambda^{*} \bigwedge_{\mu}\left(x \bigwedge_{\mu} y\right)\right] \underset{\mu}{\bigvee}\left[\lambda \bigwedge_{\mu}\left(x \bigvee_{\mu} y\right)\right] \\
& x \bigwedge_{\lambda} y=\left[\lambda \bigwedge_{\mu}\left(x \bigwedge_{\mu} y\right)\right] \underset{\mu}{\bigvee}\left[\lambda^{*} \bigwedge_{\mu}\left(x \bigvee_{\mu}^{\vee} y\right)\right] \\
& x^{*}=x^{*} .
\end{aligned}
$$

One has the identities

$$
\begin{aligned}
& \left(x \wedge_{\lambda} y\right) \bigvee_{\mu}\left(x \bigvee_{\lambda}^{\bigvee} y\right)=x \bigvee_{\mu} y \\
& \left(x \bigwedge_{\lambda} y\right) \wedge_{\mu}\left(x \bigvee_{\lambda} y\right)=x \wedge_{\mu} y
\end{aligned}
$$

so that all of the semilatices mentioned in Theorem 2 are c-functions [8] in the μ-algebra for any $\mu \in B$. Finally, the ring addition associated with the λ-algebra as symmetric difference is precisely that quasigroup mentioned in Theorem 1 whose parameter value is λ^{*}. That is, $\underset{\lambda}{x+y}$ $=\boldsymbol{x}+\boldsymbol{y}+\lambda^{*}=\underset{\mu}{\boldsymbol{x}+\boldsymbol{y}+\lambda^{*} .}$

Proof. The first assertion is merely a restatement of Theorem 2. The remaining assertions are proved by straightforward computation. As an example, we show the first part of the last equality, $x+y=x+y+\lambda^{*}$.

$$
\begin{aligned}
& x+y=\left(x \wedge_{\lambda} y^{*}\right) \bigvee_{\lambda}\left(x^{*} \wedge_{\lambda} y\right)= \\
& {[x(1+y)+(1+\lambda)(x+1+y)] \bigvee_{\lambda}[(1+x) y+(1+\lambda)(1+x+y)]=} \\
& {[x(1+y)+(1+\lambda)(x+1+y)]+[(1+x) y+(1+\lambda)(1+x+y)]+} \\
& \lambda[(1+x) y+(1+\lambda)(1+x+y)+x(1+y)+(1+\lambda)(x+1+y)]= \\
& (1+\lambda)(1+x+y)+\lambda(x+y)=x+y+(1+\lambda)=x+y+\lambda^{*} .
\end{aligned}
$$

Remark. Knowing that any set having 2^{n} elements may be made into a Boolean algebra, we may apparently conclude that this may be done with any desired involutory permutation as complementation and any desired element as last element.

5. Reducibility criterion.

A Boolean function of any finite number of variables may be written in a canonical form similar to (\dagger) or ($\dagger \dagger$). We say that a Boolean function of $x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}$ is reducible in x_{n} if it is the product of a Boolean function of x_{n} and a Boolean function of x_{1}, x_{2}, \cdots, x_{n-1}. If f is a Bóolean function of x_{1}, \cdots, x_{n}, the x_{n}-matrix of f is obtained as follows: Write f in the ring canonical form regarding x_{n} as the "last" variable, and utilizing zero coefficients where necessary to make absent terms present. In column 1 write the coefficients,
in order, of terms containing x_{n} and in column 2 write the coefficients, in order, of other terms. The result is a $2 \times 2^{n-1}$ matrix. The matrix is said to be singular if its rank is less than 2. To obtain, for example, the x-matrix of $x y z+k x y+z$, we rewrite: $y z x+o y z+k y x+o z x$ $+o y+z+o x+o$ and obtain
$\left|\begin{array}{ll}1 & 0 \\ k & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right|, \quad$ which is non-singular since $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$.

Lemma 5. A Boolean function $f(x, y)=\alpha x y+\beta x+\gamma y+\delta$ is reducible in x if and only if it is reducible in y and it is reducible in y if and only if its y-matrix is singular.

Proof. The first assertion is immediate from definition. Suppose now that $f(x, y)=(a x+b)(c y+d)$. Then $\alpha=a c, \beta=a d, \gamma=b c, \delta=b d$ so $\alpha \delta=a b c b=\beta \gamma$ and $\left\|\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right\|$ is singular. If, alternatively, $\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array} \|$ is singular so that $\alpha \delta=\beta \gamma$ one may verify by direct computation that $f(x, y)=(a x+b)(c y+d)$ where

$$
a=\alpha \bigvee \beta, b=r \bigvee \delta, c=\alpha \bigvee \gamma, d=\beta \bigvee \delta
$$

Theorem 4. If $f\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)$ is a Boolean function, it is reducible in x_{n+1} if and only if its x_{n+1}-matrix is singular.

Proof. We merely outline the proof. Make the inductive hypothesis for $n<m$ and write the $x m+1$ matrix for $f\left(x_{i}, \cdots, x_{m}, x_{m+1}\right)$. "Suppress" x_{1} by considering it constant and find the x_{m+1}-matrix of the result which is a linear matrix function of x_{1}. Suppressing x_{2}, \ldots \cdots, x_{m} in turn we obtain $2 m$ matrices the simultaneous singularity of which is equivalent to the singularity of the desired matrix. The induction is anchored at $n=1$ by Lemma 5 .

References

[1] Garrett Birkhoff, Lattice Theory (Revised Edition), American Mathematical Society, New York, 1948.
[2] R. H. Bruck, Some Results in the Theory of Quasigroups, Transactions of the American Mathematical Society, 55 (1944), pp. 19-52.
[3] J. G. Elliott, Autometrization and the Symmetric Difference, Canadian Journal of Mathematics, 5 (1953), pp. 324-331.
[4] David Ellis, An Algebraic Characterization of Lattices Among Semilattices, Portugaliae Mathematica, 8 (1949).
[5] - Geometry in Abstract Distance Spaces, Publicationes Mathematicae, 2 (1951), pp. 1-25.
[6] ——, Autometrized Boolean Algebras II, Canadian Journal of Mathematics, 3 (1951), pp. 145-147.
[7] - Remarks on Boolean Functions, Journal of the Mathematical Society of Japan, 5 (1953), pp. 345-350.
[8] - Notes on the Foundations of Lattice Theory II, Archiv der Mathematik, 4 (1953), pp. 257-260.
[9] Stephen Kiss, Transformations on Lattices and Structures of Logic, Stephen Kiss, New York, 1947.
[10] M. H. Stone, S..bsumption of Boolean Algebras Under the Theory of Rings, Proceedings of the National Academy of Sciences (USA), 20 (1934), pp. 197-202.

