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1. Introduction.

This paper continues our remarks on Boolean functions $[7]^{2)}$ . In
the present paper we are concerned with the groupoios [5] arising
from functions of two variables and with the factorization of general
functions. Some of the matters in Sections 3 and 4 have been par-
tially discussed previously in [3] and [9], respectively. The Boolean
algebra, $B$, considered throughout is strictly arbitrary.

2. Preliminaries.

Let $B$ be a Boolean algebra [1] with meet, join, and complement
indicated by $x\wedge y,$ $x\ovalbox{\tt\small REJECT} y$ , and $x^{\star}$ , respectively. We shall also employ
the ring notation [10], $x+y$ and $xy$, where these denote sum and
product, respectively. One recalls [10]:

$x+y=(x\wedge y^{\star})\ovalbox{\tt\small REJECT}(x^{\star}\wedge y)$

$xy=x\wedge y$

$x\ovalbox{\tt\small REJECT} y=x+y+xy$ .
The first and last elements of $B$ (additive and multiplicative identities
in the ring) will be denoted by $0$ and 1, respectively.

One recalls [1] that any Boolean function, $f(x, y)$ , of two variables
over $B$ may be written in its disjunctive normal form:

(\dagger ) $f(x, y)=(a\wedge x\wedge y)\vee(b\wedge x\wedge y^{\star})\vee(c\wedge x^{\star}\wedge y)\vee(d\wedge x^{\star}\wedge y^{\star})$ .
The standard ring form of $f(x, y)$ is

1) Presented to the Mathematical Association of America, Athens, Georgia, March 1956.
2), Numbers in square brackets refer to the list of references concluding the paper.
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$(tt)f(x, y)=\alpha xy+\beta x+ry+\delta$ .
We refer to either (t) or $(tt)$ as the canonical form of $f(x, y)$ and

the two are related by the following equalities among constants:
$ a+b\dagger c+d=\alpha$ $\alpha+\beta+\gamma+\delta=a$

$ b+d=\beta$ $\beta+\delta=b$

$c+d=r$ $\gamma+\delta=c$

$ d=\delta$ $\delta=d$

3. The semigroups and quasigroups.

LEMMA 1. A Boolean funclion $ f(x, y)=\alpha xy+\beta x+ry+\delta$ yields a
semigroup [5] in $B$ if and only if $\alpha\gamma=\alpha\beta,$ $\delta\gamma=\delta\beta$ , and $\alpha\delta=0$ .

PROOF. These are precisely the conditions for $f(x,f(y,z))=f(f(x,y),z)$

to be an identity as may be verified by direct computation.
LEMMA 2. A Boolean function $ f(x, y)=\alpha xy+\beta x\vdash\gamma y+\delta$ yields an

Abelian groupoid [5] in $B$ if and only if $\beta=\gamma$ .
PROOF. Obvious.
LEMMA 3. A Boolean function $f(x, y)=\alpha xy+\beta x-$}$-\gamma y+\delta$ yields a

quasigroup [5] in $B$ if and only if $\alpha=0$ and $\beta=\gamma=1$ .
PROOF. $f(x, y)$ yields a quasigroup if and only if $f(a, x)$ and $f(x, a)$

are permutations of $B$ for each $a\in B$.
$f(a, x)=(\alpha a+r)x+(\beta a+\delta)=((\alpha a\vdash r+\beta a+\delta)\wedge x)\vee((\beta a+\delta)\wedge x^{\star})$

$f(x, a)=(\alpha a+\beta)x+(\gamma a+\delta)=((\alpha a+\beta+\gamma a+\delta)\wedge x)V((\gamma a+\delta)\wedge x^{\star})$

For these to be mappings of $B$ onto itself we must have, by M\"uller’s

Theorem [7],

$(\alpha a+r+\beta a+\delta)\ovalbox{\tt\small REJECT}(\beta a+\delta)=1,$ $(\alpha a+r+\beta a+\delta)\wedge(\beta a+\delta)=0$

$(\alpha a+\beta+\gamma a+\delta)\ovalbox{\tt\small REJECT}(\gamma a+\delta)=1,$ $(\alpha a+\beta+ra+\delta)\wedge(\gamma a+\delta)=0$

for all $a\in B$. Combining these and changing to pure ring notation
yields

$\alpha a+\gamma=1,$ $\alpha a+\beta=1$ for all $a\in B$ .
Thus, it is necessary that $\beta=\gamma=1$ and $\alpha=0$ so that $ f(x, y)=x+y+\delta$.
This condition is also sufficient since $f(a, x)=(a+\delta)+x=f(x, a)$ is merely
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a ring translation and, hence, a permutation of $B$.
THEOREM 1. The quasigroups arising in $B$ from $lhe$ Boolean func-

lion $f(x, y)$ comprise the one-parameter family $ f(x, y)=x+y+\delta$ and are
actually Abelian groups of nilpotents.

PROOF. From Lemmas 1, 2 and 3, we see that $ f(x, y)=x+y+\delta$

yields an Abelian semigroup which is also a quasigroup and, hence, a
group [2]. Since $f(x, \delta)=f(\delta, x)=x,$ $\delta$ is the identity of the group and
since $ f(x, x)=\delta$ , each element is nilpotent.

4. Semilattices and symmetries of $B$.
LEMMA 4. A Boolean function $ f(x, y)=\alpha xy+\beta x+ry+\delta$ yields a

groupoid of idempotenls [4] if and only if $\alpha+\beta+\gamma=1$ and $\delta=0$ .
PROOF. The requirement is $f(x, x)=\alpha x+\beta x+rx+\delta=x$ for all $x\in B$.

The conclusion follows.
THEOREM 2. A Boolean funclion $ f(x, y)=\alpha xy+\beta x+\gamma y+\delta$ yields a

semilaltice [4] if and only if $\alpha=1,$ $\delta=0,$ $\beta=\gamma$ .
PROOF. The proposition is immediate from Lemmas 1, 2 and 4.
THEOREM 3. The semilattices arising in $B$ from Boolean fnnctions

$f(x, y)$ comprise the one-parameter family $xy+\lambda(x+y)$ . If one defines
$ x\ovalbox{\tt\small REJECT} y=xy+\lambda(x+y)\lambda$ and $x\bigwedge_{\lambda}y=xy+(1+\lambda)(x+y)$ then with $ x\ovalbox{\tt\small REJECT} y\lambda$ as join

and $x\bigwedge_{\lambda}y$ as meet and $x^{\star}$ as complement, $B$ forms a Boolean algebra

with first element $\lambda^{\star}$ and last element $\lambda$ . Thus, for each element, $\lambda$ , of
$B$ there is a Boolean algebra on $B$ having $\lambda$ as last element, called the
\‘A-algebra. The l-algebra is, of course, the original algebra and the
O-algebra its dual. For any $\lambda,$ $\mu\in B,$ $ lhe\lambda$-algebra and $\mu$-algebm are
isomorphic and the isomorphism if $ f_{\lambda\mu}(x)=f_{\mu\lambda}(x)=x+\mu+\lambda$ which is pre-
cisely the motion [6] of $B$ taking $\mu$ into $\lambda$ . Thus, motions preserve not
only geometry but algebra in B. The transformation equalion between
$\lambda$-algebra and $\mu$-algebra are

$ XY^{y=[\lambda^{\star}\bigwedge_{\mu}(x\bigwedge_{\mu}y)]\ovalbox{\tt\small REJECT}[\lambda\bigwedge_{\mu}(x\ovalbox{\tt\small REJECT} y)]}\mu\mu$

$ x\bigwedge_{\lambda}y=[\lambda\bigwedge_{\mu}(x\bigwedge_{\mu}y)]\ovalbox{\tt\small REJECT}[\lambda^{\star}\bigwedge_{\mu\mu}(x\ovalbox{\tt\small REJECT} y)]\mu$

$x^{\star}=x^{\star}$

One has the identities
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$(x\bigwedge_{\lambda}y)\ovalbox{\tt\small REJECT}(x\ovalbox{\tt\small REJECT} y)=x\ovalbox{\tt\small REJECT} y\mu\lambda\mu$

$(x\bigwedge_{\lambda}y)\bigwedge_{\mu}(x\ovalbox{\tt\small REJECT} y)=x\bigwedge_{\mu\lambda}y$

so that all of the semilatlices mentioned in Theorem 2 are c-functions
[8] in the $\mu$ -algebra for any $\mu\in B$. Finally, the ring addilion associated
with the $\lambda$-algebra as symmetric difference is precisely that quasigroup
mentioned in Theorem 1 whose parameter value is $\lambda^{\star}$ . That is,

$ x+y\lambda$

$=x+y+\lambda^{\star}=x+y+\lambda^{\star}$ .
PROOF. $T^{\mu}he\mu first$ assertion is merely a restatement of Theorem

2. The remaining assertions are proved by straightforward compu-
tation. As an example, we show the first part of the last equality,
$x+_{\lambda}y=x+y+\lambda^{\star}$ .

$x+y=(x\bigwedge_{\lambda\lambda}y^{\star})\ovalbox{\tt\small REJECT}_{\lambda}$
( $x^{\star}$ A $y$) $=$

$[x(1+y)\vdash(1+\lambda)(x+1+y)]\ovalbox{\tt\small REJECT}_{\lambda}[(1+x)y+(1+\lambda)(1+x+y)]=$

$[x(1+y)+(1+\lambda)(x+1+y)]+[(1+x)y+(1+\lambda)(1+x+y)]+$

$\lambda[(1+x)y+(1+\lambda)(1+x+y)+x(1+y)+(1+\lambda)(x+1+y)]=$

$(1+\lambda)(1+x+y)+\lambda(x+y)=x+y+(1+\lambda)=x+y+\lambda^{\star}$ .
REMARK. Knowing that any set having $2^{n}$ elements may be made

into a Boolean algebra, we may apparently conclude that this may be
done with any desired involutory permutation as complementation and
any desired element as last element.

5. Reducibility criterion.

A Boolean function of any finite number of variables may be
written in a canonical form similar to $t\uparrow$ ) or $(\uparrow t)$ . We say that a
Boolean function of $x_{1},$ $x_{2},\cdots,$ $x_{n-1},$ $x_{n}$ is reducible in $x_{n}$ if it is the
product of a Boolean function of $x_{n}$ and a Boolean function of $x_{1},$ $x_{2}$ ,

$x_{n-1}$ . If $f$ is a Boolean function of $x_{1},\cdots,$ $x_{n}$ , the $x_{n}$-matrix of $f$ is
obtained as follows: Write $f$ in the ring canonical form regarding
$x_{n}$ as the “ last ‘ variable, and utilizing zero coefficients where neces.
sary to make absent terms present. In column 1 write the coefficients,
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in order, of terms containing $x_{n}$ and in column 2 write the coefficients,
in order, of other terms. The result is a $2\times 2^{n- 1}$ matrix. The matrix
is said to be singular if its rank is less than 2. To obtain, for ex-
ample, the x-matrix of $xyz+kxy+z$, we rewrite: $yzx+oyz+kyx+ozx$

$+oy+z+ox+0$ and obtain

$\Vert k001$
$0001$ , which is non-singular since $=1$ .

LEMMA 5. A Boolean funclion $ f(x, y)=\alpha xy+\beta x+ry+\delta$ is reducible
in $x$ if and only if it is reducible in $y$ and it is reducible in $y$ if and
only if its y-matrix is singular.

PROOF. The first assertion is immediate from definition. Suppose
now that $f(x, y)=(ax+b)(cy+d)$ . Then $\alpha=ac,$ $\beta=ad,$ $\gamma=bc,$ $\delta=bd$ so
$ a\delta=abcb=\beta\gamma$ and $\Vert\gamma a$ $\beta\delta\Vert$ is singular. If, alternatively, $\Vert a\gamma$ $\beta\delta\Vert$ is

singular so that $\alpha\delta=\beta\gamma$ one may verify by direct computation that
$f(x, y)=(ax+b)(cy+d)$ where

$a=a\ovalbox{\tt\small REJECT}\beta,$ $b=r\ovalbox{\tt\small REJECT}\delta,$ $c=a\ovalbox{\tt\small REJECT}\gamma,$ $ d=\beta\ovalbox{\tt\small REJECT}\delta$

THEOREM 4. If $f(x_{1},\cdots, x_{n}, x_{n+1})$ is a Boolean function, it is reducible
in $x_{n+1}$ if and only if its $x_{n+1}$-matrix is singular.

PROOF. We merely outline the proof. Make the inductive hy-
pothesis for $n<m$ and write the $xm+1$ matrix for $f(x_{1},\cdots, x_{m}, x_{m+1})$ .
“ Suppress ‘’

$x_{1}$ by considering it constant and find the $x_{m+1}$-matrix of
the result which is a linear matrix function of $x_{1}$ . Suppressing $ x_{2},\cdots$

..., $x_{m}$ in turn we obtain 2 $m$ matrices the simultaneous singularity of
which is equivalent to the singularity of the desired matrix. The
induction is anchored at $n=1$ by Lemma 5.
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