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On the radial order of subharmonic functions.

F. W. GEHRING

(Received Sept. 29, 1956)

The purpose of this note is to show how the following theorem,
due to Seidel and Walsh [2], can be deduced directly from an im-
portant maximal theorem of Hardy and Littlewood [1].

SEIDEL-WALSH THEOREM. Suppose that $f(z)$ is analytic and univalent
in $|z|<1$ . Then, for almost all $\theta$ ,

$f^{\prime}(z)=0\{(1-|z|)^{-1/2}\}$

uniformly as $z\rightarrow e^{i\theta}$ in each Stolz domain.
For $0<\alpha<\pi/2$ and $r>0$ , let $S_{a}(r, \theta)$ denote the open “ tear drop”

domain bounded by the two tangents, drawn from $re^{;\theta}$ to the circle
$|z|=r\sin\alpha$ , and the more distant part of the circle $|z|=r\sin\alpha$ , between
the points of contact. The Hardy-Littlewood theorem can be stated
as follows.

HARDY-LITTLEWOOD THEOREM. Suppose that $\iota v(z)$ is non-negative
and subharmonic in $|z|\leqq 1$ , that $0<\alpha<\pi/2$ , that $p>1$ , and that

$W(\theta)=LUBw(z)$ , $z\in S_{\alpha}(1, \theta)$ .
Then

$\int_{-\pi}^{\pi}W^{p}(\theta)d\theta\leqq C\int_{-\pi}^{\pi}w^{p}(e^{i\theta})d\theta$ ,

where $C=C(\alpha,p)$ depends only on $\alpha$ and $p$.
We obtain the Seidel-Walsh theorem as a consequence of the fol-

lowing result.
THEOREM 1. Suppose that $w(z)$ is non-negative and subharmonic in

$|z|<1$ , that $p>1$ , and that

$\int\int_{1z1<1}w^{p}(z)dxdy<\infty$ , $z=x+iy$ .
Then for almost all $\theta$ ,

$w(z)=0\{(1-|z|)^{-1lP}\}$

uniformly as $z\rightarrow e^{i\theta}$ in each Stolz domain.
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PROOF $\Gamma\prec OR$ THEOREM 1. It is sufficient to show, for each $ 0<\alpha$

$<\pi 1^{2}$ , that there exists a set $E=E(\alpha)$ of $\theta’ s$ with measure $ 2\pi$ such
that, for $\theta$ in $E$,

(1) $(1-|z|)w^{p}(z)=o(1)$

uniformly as $z->e^{i\theta}$ in $S_{\alpha}(1, \theta)$ .
1Fix $0<\alpha<\pi/2$ and, for $1--2$

$\cos\alpha=\delta<r<1$ and each $\theta$ , let

$U(r, \theta)=LUBw(z)$ ,

where the least upper bound is taken over all $z$ subject to the re-
striction

2) $z\in S_{a}(1, \theta)$ and $|z-e^{i\theta}|\geqq 1-r$ .
Next pick $0<\beta<\pi/2$ and $\rho$ so that

$\tan\beta=2$ tana, $(1-\rho)=\frac{1}{2}(1-r)$ cosa,

and let
$W(\rho, \theta)=LUBw(z)$ , $z\in S_{\beta}(\rho, \theta)$ .

Any $z$ which satisfies condition 2) must lie in $S_{\beta}(\rho, \theta)$ and hence

$U(r, \theta)\leqq W(\rho, \theta)$

for all $\theta$ . From the Hardy-Littlewood theorem we obtain

$\int_{-\pi}^{\pi}U^{p}(r, \theta)d\theta\leqq\int_{-\pi}^{\pi}W^{p}(\rho, \theta)d\theta\leqq C_{1}\int_{-\pi}^{\pi}w^{p}(\rho e^{i\theta})d\theta$ ,

where $C_{1}=C(\beta,p)$ , and integrating with respect to $r$ we conclude that

$\int_{\delta}^{1}I_{-\pi}^{\pi}U^{p}(r, \theta)rdrd\theta\leqq C_{2}\int_{0}^{1}\int_{-\pi}^{\pi}w^{p}(\rho e^{i\theta})\rho d_{\beta}d\theta<\infty$ ,

where $ C_{2}=2C_{1}\int\cos\alpha$ . From the Fubini theorem it follows that

$\lim_{\gamma\rightarrow 1}\int_{r}^{1}U^{p}(r, \theta)rdr=0$

for $\theta$ in $E=E(\alpha)$ , a set with measure $ 2\pi$. For each fixed $\theta,$ $U(r, \theta)$ is
non-decreasing in $r$,

$U^{p}(r, \theta)r(1-r)\leqq\int_{r}^{1}U^{p}(r, \theta)rdr$ ,
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and we conclude, for $\theta$ in $E$, that

(3) $\lim_{r\rightarrow I}(1-r)U^{p}(r, \theta)=0$ .

Since 3) implies 1) the proof for Theorem 1 is complete.

PROOF FOR SEIDEL-WALSH THEOREM. A familiar argument [2]
allows us to assume that the image of 1 $z|<1$ under $\zeta=f(z)$ has finite
area or that

$\int\int_{1z|<}|_{1}f^{\prime}(z)|^{2}dxdy<\infty$ , $z=x+iy$ .

Set $w(z)=|f^{\prime}(z)|$ and the desired conclusion follows from Theorem 1
with $p=2$.

The following result is a sharpened form of a theorem due to
Tsuji [3].

THEOREM 2. Suppose that $f(z)$ is analytic in $|z|<1$ , that $p>0$ ,
and that

$\int\int_{1z1<}|_{1}f(z)|^{p}dxdy<\infty$ , $z=x+iy$ .
Then, for almost all $\theta$ ,

$f(z)=0\{(1-|z|)^{-1/P}\}$

uniformly as $z\rightarrow e^{i\theta}$ in each Stolz domain.
PROOF FOR THEOREM 2. Set $w(z)=|f(z)|^{P/2}$ and apply Theorem 1.
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