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admitting a group of motions G, of order
r>nn+1)/2—3n—11).
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Synopsis

The conformal curvature temsor C,,, of a Riemann space V, ,#n
=6, admitting a group of motions of order »>n(n-+1)/2—(3n—11)
is studied with the use of tensor calculus. The form of C,,, is
obtained by virtue of the fact that the equations XC,,,=0 can con-
tain at most a certain number of linearly independent equations.
The C,,,, is in general of the form

C,Wm = C[6M,6m — 6,1”6#0,]
—((n—1)[2)C[6,,(A,A,+B,B,) +0,,(AA,
+B,B,)— o,(A,A,+B,B,)—d,,(AA,+B,B)]
+((n—1) (n—2)[2)C[A,A,B,B,+A,A,B,B,
~A,AB,B,—A,A BB,

with A,A,=B,B,=1, A,B,=0. But for n=6,8 some other form is
also possible.

§ 1. Introduction.

It is well known [1, 3,9]" that we have the

THEOREM 1. If an n-dimensional Riemanwian space admits a group
of motions of order n(n-+1)/2, then, the space is of conslani curvature.

As for the Riemannian spaces which are not of constant curva-
ture, we have the following theorems.

THEOREM 2. An n-dimensional Riemannian space for n>2,n==4,

1) Numbers in brackets refer to the references at the end of the paper.
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which is not of constant curvature cannot admit a group. of motions of
order grealer than n(n—1)/2+1.

THEOREM 3. The maximum ovder of the complete groups of mo-
lions in’ n-dimensional Riemannian spaces which are not Einstein spaces
s n(n—1)/2+1.

THEOREM 4. The order of complete groups of wmotions of those
n-dimensional Riemannian spaces which arve different from spaces of
conslant curvature is not larger than nn—1)/2+2.

THEOREM b. In an n-dimensional Riemannian space for n==4,
there exists no group of motions of order v Such that

nn+1)2>r>nn—-1)/2+1.

THEOREM 6. A mnecessary and sufficient condition that an n-dimen-
sional Riemannian space V, for n>4,n==8 admit a group G, of
motions of order v=n(n—1)]2+1 is that the space be the product space
of a straight line and an (n-—1)-dimensional Riemannian space of
constant curvature (this is equivalent 1o the fact thal the space is con-
formally flat and admits a parallel vector field) or that the space be of
negalive constant curvature.

is a part of a theorem proved by H.C. Wang
and are due to I.P. Egorov
and are proved by K. Yano There are also valuable
results obtained by G. Vranceanu and M. Kurita [4] [10], but they
might be omitted for lack of space. ‘

In proving Theorem 2, Theorem 5 and [Theorem 6, some properties
of the transformation groups of spheres discovered by D. Montgomery
and H. Samelson are used [6]

Recently H. Wakakuwa used some other results also obtained
by D. Montgomery and H. Samelson and proved the

THEOREM 7. If n3=b5, an n-dimensional Riemannian space V, can
admit no intransitive group of motions of order r such that

nn—-1)2>r>m—-1)(n—2)/2+3.

And, except for finile number of ws, V, can also admit no transitive
group of molions of order v in lhe above vange. In this case if the
values of ws are sufficiently large, that is, if n>248+1, the theorem
holds good without exceplion. ,

COROLLARY. For n=£5, if an n-dimensional Riemannian space
V, admits a group of motions of order r=(m—1)(n—2)/2+2 or (n—1)
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(n—2)|]2+ 38, then G, is always lransitive.

Thus, it seems interesting to study the #z-dimensional Riemannian
spaces admitting a group of motions of order »=n(n-+1)/2—2n+4.
This is the purpose of the present paper. But, unfortunately, and,
as it is well known, such problem is difficult when # is small. More-
over, it seems that it is better to begin the study with conformally
curved spaces, which are more complicated but more interesting than
conformally flat spaces.

Thus, our study is restricted to the case of n>6 and

C/Luva):‘:O ’
where C,,,, is the Weyl conformal curvature tensor.

§ 2. The group of motions,

A group of motions in a Riemannian space V, is characterized
by the vector of infinitesimal transformation &+ satisfying the Killing’s
equations

1) €y té, =0,

where ¢,=g,,6* and a semicolon denotes covariant differentiation.
The integrability condition of (1) is given by the system of
equations

(2.0) XR:, =0,

(2.9) X(R! )=0,

HVO; a3y
where X is the symbol of the Lie derivative,
XT =T}, to—T%El,—--
+ThEs +-oe
&,=E& ,,
and R?,,, is the Riemann-Christoffel’s curvature tensor,
Rguv’m = {;fv},w - {,ja)},v -+ {;Tv} {aéa)} - {pww} {céu} .
From we easily get
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@) XCh,, =0,

that is,

(4) Coolls— Clayof — Clinufs
~C! ,uvwfm —Clpyw wEw ’

for C?,, is given by

1
(5) C}uva) :R'A/.wa)_ n—2 (‘R/WB:})_I—RI1 g/,w Ie,aa)51//l RA uu))
R
+ oA—g ol

Let us consider the system of equations (2) or (4) at a point of

V,. If (2) admits 7 linearly independent solutions &* and ¢*, satis-

ne

fying
E‘uy"}“é'y#:o ’

where ¢,,=g,,6%=¢,,,, then the V, admits a group of motions G, of
order 7.

From this fact, we see that a necessary condition for a VvV, to
admit a group of motions of order »>n(n+1)/2—m is that the num-
ber of linearly independent equations in ¢,,+¢,,=0 and (4) together
be less than n(n-+1)/2-+m. *

In the present paper we study the case of m=3n-—-11, and
determine the form of C,,,,.

We assume that the fundamental form is positive definite.

§3. The three possible cases to be studied.

As we consider always at a fixed point of V,, we can take an
orthogonal ennuple at the point and consider the components with
respect to it. Then, adopting the summation convention, we get the
system of equations

(6) Comolart Ciapafant Crumtar+ Crmalao=0 (mod &%),

where (mod £¥) means that the equations are valid except for the
linear forms of é&~.

If we assume (6) to have only n(r—1)/2 unknowns ¢,,= —¢,,(A<<w),
we see immediately that our problem is to find the form of Ciwo
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such that the number N of linearly independent equations in (6)
satisfies N<<3n—11.

Now, it is easy to show that we can take an orthogonal ennuple
such that we have C,,,,==0.

Because, if C,,,, is always zero, we have

CopysttaVg0,1;=0

for any choice of the vectors u;,v,, Then, as we have C,,,=C,, .
we obtain C,,su,2;=0, and further C,,,,=0. On the other hand
we have C,,,,,=0 and C =0, hence we get C,,,=0, contrary to
the assumption C,,,,==0.

Assume that the first axis of the orthogonal ennuple is fixed.
As we have always C,,,;,=C,,,;, we can take other »—1 axes in such
a way that we have

(1) C'uk:CjSik 9

J

AMuvo]

If we have C,=...-=C,, we get C,=0 because of C, ,=0, hence
Ci110=0. Moreover, in this case we have C,,,=0 for any choice of
the axes 2,---, n.

Thus, we find that we can take an orthogonal ennuple such that
we have (7) where not all of C; are the same.

Let us consider the following cases, by which all possible cases
are exhausted.

(8.2) C,74=Cy=--=C,,

(8.3) CZ,C3:5,:C4=---=Cn,
(8.4) G, C3y C4 :i:C5: :Cn ’
(8°Z) ; Cz""’ Cz':JFCiH:'” :Cn ’
8 n—1) Cypery C,_ 2=C, .

As we can interchange the numbers (axes) 2,---, #, we may assume
that we can never find n—¢+1 equal numbers among the.set C,---,C;
in (8.7).

If we have (8.), we get from (6)

2) Throughout the paper, the indices run as follows, if no special remark is made.
l, oty @, B’...__-—_;]_,.*..’ n; i,j, k’...zz,u..., 7.
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9 Sain ==&y,
_‘E3I+l_ '——Egn
={;==£;,=0 (mod¢¢,)

by putting g#=v=1 and using (7).

In (9) there are (¢—1) (#—17) independent equations. Moreover, if
we have C,==C, for some p, ¢ satisfying 2<p < q =i, we have another
equation

£pe=0 (mod ¢~ &,).

As we are studying the case of N<<3n—11, n>6, we see, after some
elementary calculation, that we have to study only the cases of [8.2),

(8.3) and [8.4).

§4. The first case.

Let us study the case of [8.2) We can assume that we have
(8.2) for any choice of the first axis of the orthogonal ennuple,” for,
if we have some other, for example, [@] by a suitable choice of it,
we can study the latter.

Then, we get

Ci1p=0;,+00,,0,, ,
that is,
Cit1o= 8030~ 0,0,1) + 00505 -
Now, we use an arbitrary orthogonal ennuple again, and get
(10) Crapottatty=0a(0,, —uu,) +bv0, ,
where a, b,v; are functions of a unit vector u,, satisfying
(11) v,=1, up,=0,

for, the direction of the second axis of the orthogonal ennuple satis-
fying is a function of the direction of the first axis.

From and C,,,=0 we get

3) We cannot deny that, when the first axis has some special direction, we may have
Cy=---=C,==0. But it does not matter to us in the following discussions, for we can
avoid such directions.
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12) n—1)a+b=0.
We take an orthogonal ennuple such that we have
(13) V=0,

for u;,=0,. This is possible for an arbitrarily chosen direction of the
first axis.
Then, if we put

(14) u(f) = (L= (L))" — -+ = (£,)") 0y + 1,03
e+ 8,00,

we obtain the functions a(?), b(t), v,(f), which we can assume to be
analytic for sufficiently small |Z;], for, these functions are determined
by the algebraic relations and we can take a suitable direction
for the first axis of the ennuple.”? We easily find that v,(f) satisfy

(15) 0,(0)=0,,,
(16) 05//(0)=(0v,/0t,),-,=0.

Differentiating with respect to 7, we get for #,=...=¢,=0
17 Citio+Crjto =105 03:00;) + 8,010

—@(03,0,;+0,,0,,) +0(0350,/; -+ 03Vs)5) +

Putting l=w=j=2, we get a,+b,=0. Putting 1=w=7j=38, we
get @,=0, and so on. But we have (n—1)a,+0b,=0. Hence we get

(18) a=C, b=—mn-1)C,
where C is a non-zero constant.

If we consider the quantity

(19) M/luvm = -(%—il)_c— [Chww - C(B/lwa/.w - 6/1116/1:0)] ’

we get from [10)
(20) Mmﬂwuwuﬂ =U0, .

Now, we can use the
LEMMA 1. A necessary and sufficient condition for a tensor M,
satisfying the relalions

1) M

Avvo

wo

=AW ypune M/Lu(wu) :O’ M[uuw] =0
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to satisfy the equalions for some functions v, of a vector u, salisfying
VU, =, is that n be even and that the components M,,,, wilh respect
to a suitably chosen orthogonal ennuple salisfy

M, ,=M,=--=M,

nun=ln=ln =

1,
M., = —2/3, M, =1/3,
M,,..=—2/3, M, .,=1/3,
M, ;.= —2/3, M,;..=1/3,

(22)

............

all components except those which are derivable from the
L ones writlen above according to (21) are zero.

This lemma will be proved in §8.
As we get from (6) and

Mw,uuwgwl + leuwé‘wﬂ + Mﬂwwgwu -+ M/I,uym‘fww =0 (mOd Ex) ’
we get for i=1, p=2,v=1, 0=38
541 - 523 =0 (mOd E’C) ’

that is,

(23) Eu=—¢&,; (mod¢Er).

Similarly, we get

(24) Es=Cgp Es=Cy Eg=—Eyp, -+ (mod ¢F),

which are (n#/2) (#/2—1) linearly independent equations in all. Com-
paring this number with 3n—11, we find the

LEMMA 2. A Riemann space with conformal curvalure tensor
satisfying (8.2) can not admit a group of motions of order » >n(n-+1)/2
—(Bnrn—11) for n>8.

§5. The second case.

Now we study the case of (8.3). We have to study only the case
where we have for the general direction of the first axis. As
we can put

Cirip=0ab;,+ 00,8, + €030

7

that is,
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(25) : Cma; = a(6lm - 61150,1) + 651260,2 =+ Calsaws ’

and, as the second axis, the third axis, as well as the -coefficients
a,b,c are dependent upon the direction of the first axis, we get for
an arbitrary orthogonal ennuple

(26) Crupottttsg=a(d;, —um,) +bvw,+cww, ,

where a, b, ¢, v,, w, are functions of a unit vector #,, satisfying

(27) (n—1)a+b+c=0,
(28) vV, =W, =1,
(29) u LV, =uW,=0v,w,=0.

Moreover, we can assume a, b, c==0.
Let us take an orthogonal ennuple such that we have

V=0, , W; =0y,

for u;=0,. If we put

(30) u,=1—@,)—--—(,))70,, +1,0,+ - +1,0,,,
we obtain the functions v,(?), w,(f), a(t), b(), c(t), satisfying
(31) 0;(0) =05, w;(0) =0, ,
(32) , v,,(0)=0, w,,,(0)=0.

As we have [2b), where b,c=4=0, we get
(88) £,,=¢,,=0 (mod ¢ ¢,),”

which are 2z—6 linearly independent equations. If we put A=p,
u=q,v=r, o=y in (6), we get
CﬁqrxfxyEO (mOd €% Erps Eaps Ea) s

which are at least #—4 linearly independent equations quite inde-
pendent of unless we have

(34) Cpprs=0.

But we assumed that N<<8z—11. Hence we must have [34).
Now consider the equations obtained by substituting (30) into

(26),

4) In §5 the indices run as follows.
x, 9,z u,v=4,-,n; p,q,7,8¢t=1,2,3
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(35) Cragotta(D)ttg(t) =a(?) {0,, — u,(0)2e,,(€)}
+ by, (1) + cOyw Eyw, @) -
Differentiating with respect to #, and putting £,=...-=¢,=0,
we get
(36) C/mw + szm =030 — 0310u1) + b/zamawz

+ 0/261136(03 - 00(5116(»2 + 6(»15/12)
=+ bo(a/lsz/z -+ 5«)27)/1/2) -+ 60(6/137’0(0/2 + 6w3w/1/2) .

If we put 21=2, 0w=x, we get v,,(0)=0, for we have and
b,=£0. If we put 1=8,w=x we get w,,(0)=0. Similarly, if we
differentiate with respect to f,, we get v,,(0)=0, w,,(0)=0. As
we consider the value of such derivatives only for #,=0 in the fol-
lowing, we can omit the symbol (0) and write

(37) vx/zzvx/3:wx/2:wx/3:0 .
If we put 2=2x, o=y in [36), we get
Cx12y + CxQIy :a/ﬂaxy .
Then, we can write
(38) Cx12y+ Cx21y=20126xy .
Similarly, we get
(39) Cx13y + Cx‘31y :2C136xy .

Differentiating twice with respect to £, and putting £,=-.
=1,=0, we get

(40) 2C 50— 2C 1110 = 2125020 — 011001
+ 029012805+ € 22025805
—23(0,0 5+ 0,01022) + 20503002
+005¥a2) + 2 5(025W 72 + 0 Ws2)
— (28,8 05— 28;,651) +Dy(8150 22
+ 2050 72+ 00a¥i/22) + €Co(035Won o3
+ 200,00, 5+ 00 Wyss)

Then, putting 1=x, 0=y, we get

1
Cx22y = 5’ a/226xy + aoﬁxy
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because of (37). Hence we can put
“szzy :C225xy ¢
Similarly, we get
Cx23y+cx32y:2C236xy’ Cx33y=C335
From these results we find
(41) C

Now, consider the components

xy *

xpay T Cmby = 2C‘pr]6xy .
Ciquy - Cxi)qy + szmy .
The equations obtained by putting 1=p, n=g,v=x, o=y in (6) give
quzyfzx—*_ quxzfzyE 0 (mod &%, &, &,y €54)

and there are at least »—5 linearly independent equations in these
equations unless C,,,=0. For, if we have C,,,==0, we can assume
that we have, for some p, q, Cp ,; =0, Cp =+ =Cp,,, =0, and get

5565...:‘—;‘ 55;750 (mOd f”, 51,;’ Ez,c, {:3;:7 545)

by putting x=4, y=6,.--,n. As we assumed that N<8»—11, we must
have

(42) Cprpzy=0,
and, consequently,
(48) Crpay=Cpliy »
(44) Coa=Cop -
Differentiating with respect to f, and putting {,=...=f,=0,
we get
(45) Ciizo+ Cirto =283~ 0;,041)

+8,,0350 05+ €1,0350 s — @i (0310,
+ 6w161x) + b0(5lzvm/x + 6(021)/1/1')
+€o(0250W,5 0,5, 2) -

If we put 1=w=x, we get a,,=0. If we put 1=w=2, we get 5,=0
by virtue of [(34), @,,=0 and [32). Similarly, if we put 1=0=3, we
get ¢, =0. Hence becomes
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(46) Ciizot Ciato= —@y(03,00,+ 04,0,
+84(01V 0+ Bus¥as)
+ €020y /x + 00sWy/2) -
If we put 1=2, o=y in [46), we get
CZ]xy + Cley = bOvy/x ’

hence

(47) vy/x = (cl2/bo)5x;v .
Similarly, we get

(48) wy/x = - (Cl3/60)6xy .

If we put 1=y, =2z in we get C,,,,+C,,,=0, hence C

1yzx

+C,,,,=0. Then, because of C,,,=0 and C,,,,=0 we get
(49) C.,.=0.

Differentiating with respect to £, and then with respect to
t, and putting £,=..-=¢,=0, we get

Croro Cirso=122(8;0 — 8118,1)
48732012003+ € 12202150 03— @3(0,0
-+ 6w16/1x) - a/x(ahaw + awxam)
+0,5(015V 0z O0s¥isz) +8/:(02150 02
+005Unse) + € 15(035We 5+ B0ysWs)
+€/(025W 12+ 00ysWis) — @020
+ 8301x) + Bo(B15V w25+ Vays¥ s
+ Vo Varet 0ualiaz) + €0 (03 W0
Wi o1+ W Wi+ ‘5w3w/1/2x) .

Then putting 1=w=x, we find @,,=0 by virtue of (37). Putting
A=y, o=z, we get C,,, +C,,,,=0, hence C,,,  =0.
- Similarly, we get C,,,,=0, hence

(50) Cprye=0.

Differentiating with respect to £, and then with respect to
¢, and putting #,=-.-=f,=0, we get

xyz =
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(51) Crrvo+Cryro—2C 1100 = @283, 01,0,
+ 0,2y 022002 €1y 025805 — @ (83,000 - 001 03)
—@7,(83,005+0510,.) + /(030 0ry + Ousisy)
+ 8,503V wrs + Bus¥asz) + €1x(035%W 1+ By tWyy)
+ €, (025 Was e+ Botlys,) — (02905 + 0,202y
—283,0,,0:) + 80012V /2y + V310013
+VusVary + 00a¥irey) + €01 We sy
F Wi W py + WesWisy -+ 0405Winy) +

If we put 2=0=x, we get

- 2“06::3} = a/xy - 2a06xy + 2bovx/xv;\c/y + 2cO””x/ﬂc’l’vx/y ’

hence
(52) @iy =—2{(C1)*[by+ (C5)*[C,}0,,
because of [(47) and [(48). If we put 1=z, o=u, we get
czxyu -+ Czyxu = 2a062u6xy +a,,0,,
+{=a,+(C.0)* b, + (Cy5)[€0} (8,48, +8,0,) »
hence
Coryiet Coyru=C(208,,8,,0,,0,,—8,,0,,) 5
where
(53) C=a,—(C,)[b,— (C,)c,.
Moreover, as we have C,,,,,=0, C,,,.,=0, we get
(54) Cryer=C000,.—8,.0.,) -

We are now ready to determine C,,,,.
Substituting (48) and into C,,,,=0, we get

(55) C,,+Cyu+Cy+(n—4)C=0.

On the other hand we have from C,,,, =0
Cip+Cei +(n—3)C,, =0,

(56) Coiis+Cogp+(n—38)C;, =0,
Cyi15+Coggs+(m—3)Cy, =0,
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Cist(n—-3)C,=0,
(57) Cist+(n—3)C,;=0,
' Cois+(n—-3)C,;=0,
while the results obtained can be summarized as
Coir:=0, Cppry=0, C,,,.,=0, C, C,0

q-xy ?
C

xyzu

qxy g

(68)
=C(8,,0y;— 0,,0,,) «

Now, if we put 1=x, u=y,v=2, o=p in (6), we get

Cmyszwx -+ Cxwzpfwy =+ nywpfwz -+ nyzwpr = O (mOd f'c) ’
hence
(Cpq - Capq) (Byzgqx - 6.ngqy) = O (mOd EK)

by virtue of [68). Putting y=2z and summing up, we obtain
(59) (Cpy—C8,)€ ;=0 (mod ¢*).

If we put 1=x, p=p, v=q, o=7 in (6), we get

Cqurgsx -+ Cxpyré'yq + Cquyéyr = 0 (mOd EK) ’

hence
(60) (Cqur + Cprﬁsq - quasr) Esx =0 (mOd f’c) *

We obtained by using a special orthogonal ennuple. But
these equations are preserved when we take a new orthogonal ennuple
obtained from the original one by a transformation for which

ay,=0, a,=0.
Hence we can effect a suitable transformation and get
(61) Cpq = Cpapq

without destroying [55), [(56), (57), [(58).
Then, becomes

(C,—C),,=0 (mod¢r),

(62) (Cz _C)szEO (mOd ‘EK) ’
(C;—0)é;,=0 (mod¢r).

We must study three possible cases,
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(63) C,—C,~C,=C,
(64) C,=C, C,=C,=C,
(65) C,2=C, C,-=C, C,~C,

for, if C,=&=C, C,&C, C,==C, we have 3n—9 linearly independent
equations in [62), contrary to the assumption N<<3n—11.
If we have [63), we get from C=0, hence C,,=0. From

we get C,,,=C,,,,=C,,,,=0, while from we get C,,,=C,,.,
=C\3,=0, hence C, . =0. From we can conclude C,,,,=0 con-
trary to the assumption C;,,,==0.

Suppose that we have Putting p=¢g=2, »=3 in[(60), we get
(Cyg95—C)E5, =0 (mod £¥)

because of [(67) and C,,=C,;=0. Putting p=¢g=38, =2 in [60), we get
(Cyz5,—C)E,, =0 (mod £%).

It C,;,==C, we get &,,=¢,,=¢,,=0 (mod ¢*), contrary to the relation
N<3n—11. Hence we get

- C2332 =C.
Then we get from
C2112 :C:ms =—-n-2)C,
—2n—2)C+ (n—38)C,=0.
But we have
n—-2)C+C,=0
by virtue of [55) Hence we get C,=C=0 which contradicts the
relation C,==C.
Thus, we can conclude that is the only one possible case.
As we have
£,=8,,=0 (mod {),
we get
(C3pqr+ Cprasq_' Cj)q63r)53150 (mOd E’:)
from [60). If the equations
(66) Cipar+ Cprsg—Cgdsr=0

pqsr

are not satisfied, we have 3x#—9 linearly independent equations ¢,
=¢,,=£,=0 (mod &), contrary to N<<3nz-—11. Hence we have [(66).
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Putting p=g=1, =38 in [66), we get C, ,=C,, while putting
p=q=2, =38 in [66), we get C,,,,=C,, hence

1
(67) C3113 :C3223 :CI :Cz E—— C1221
: n—2
from (56). Moreover, we get

(68) C,= 2 Cipn=C
(n—2) (n—3)

As we have
C2113 :szs = C1332 =0

because of and [(61), all components of the conformal eurvature
tensor are determined.

C2112 :*;_— (%—2) (n—3)C ’

Caus :Cszzs = _‘%* (n_3)c ’

C2113 = C1223 = 01332 =0,
C

pg—p?

=

(69) Coa=
CI:C2=—-;—(n—3)C, c,=C,

=C

paxy

C 0,

pryz—

If we put
(70) C/l,uvw = C[alwa,uu - 6/1116/10)]

_ ngl Clo,,(A,A,+B,B,)+5,(A,A,+B,B,)

- 5Av(Aqu + B,qu) - 6uw(A/IAu + BABv)]

4 (n——l)z(n—z) C[4,A,B,B,—A,A,B.B,

~AAB,B,+A,ABB,,

v w
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where

A;=5, B,=d3,
we find that is satisfied. Hence where
(71) AA,=BB,=1, AB,=0

is the curvature we are looking for.

We thus obtain the

LEMMA 3. A mnecessary condition that a Riemann space V",n=6,
with conformal curvature tlensor salisfying (8.3) admit a group of mo-
tions of order r>wn(n-+1)/2—(Bn—11) is that the conformal curvalure
have the form (70) with A, and B, satisfying (71).

§ 6. The third case.

Now, we consider the case of [8.4)
As we have 3n—12 linearly independent equations

(72) 624: = E:-Bx = 641 EO (mOd EE’ Elm) 75)
we get
C,=C,=C,

by virtue of the relation N<<8n—11, for we can not have any equa-
tion independent of [72). Because of this fact we have to study only
the case n=T1.

If we put 2=x, u=y,v=2, w=u in (6), we get

Cosanort Covaub vy + Caypubort Cuynf =0 (mod £¥, £,) .7

As we have no equation other than [72), we get
(73) Coyen=C00,,— 0,0y, -

If we put 2=p, u=q,v=r, w=x in (6), we get

Coarsfyr=0 (mod ¢¥,¢,,),

hence we have
(74) Cpprs=0.

If we put 2=p, u=¢q,v=x, o=y in (6), we get

qry

5) In §6 the indices run as follows:
x,9,2 U, ”:5:"': n, p’ a,.7,8, t:1: 2; 3: 4.
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Coazy€ax T+ Cpgual .y =0 (mod &%, £, ,
hence we have
(75) c,
and

0

qxy

C

(O G axyp *
If we put 1=p, p=2,v=y, =g in (6), we get

Cﬁzngzx + Ct:xzqf 2= 0 (mOd EK’ 5;5;:) ’

xyq — “pyxg

hence

Cbzyq6xu + Cpxzqayu“ Cp 6“ - Cb 0 0.

uyq xuq-yz =

Then we immediately find

(76) Cpxyq = Cﬂa6xy ’
where
(77) Cpq = qu .

If we put i=x, p=y,v=2, 0=p in (6), we get

Cuysz ux Cxusz uy T nyuﬁf =0 (mod ¢, ¢,),
hence
CuyetPs0t+ Couzp®yo+ CoyupBav
-C, yepOeu— vazpayu - nyvpazu =0.
Putting x=v and summing up, we get

(n—6) Cuyzp + Czyup = Cyizazu ’

55

where we have put C,,=C,,,,. Interchanging # and y and subtract-

ing, we get
200—6)+1)C,pp= — Cyy0,+ C,d.,
because of C,,,,=0. Putting #=z and summing up, we get
—(@2n—-11)C,,=—(n—-5)C,,.
As we have n=7, we find C,,=0 and
(78) C..p=0.

Now, consider the equations obtained by putting i=x, u=y,v=2,

w=p in (6) once more. From (73), [75), [(76), (77), (78), we get
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(Cpy—Copg) (04, 42— 0,6 4,) =0 (mod &*),
hence
(Cpy— €3, 1,==0 (mod &¥).

If we take an orthogonal ennuple such that we have C,,=C,d,, then,
as we have and moreover N<<3n—11, we get

(79) C, =Co,, .
If we put 2=p, p=q,v=r, 0=s in (6), we get
(80) thrsétp + C{)trsflq -+ Cpqlsgtr"l' Cﬁqrtfts:—: 0 (mOd E;c) °

But because of the relation N<<8x#—11 there can be no equation in
(80), hence we must have

(81) Cpqrs = C/(6psaqr - 61)r6qs) .

Substituting [8I) and [76) into C,,,,=0, we get 8C3,,+n—4)C,,
=0, hence

3
(82) Cpy=— p—"1 C's,, .
From [79) we get C=—(8/(n—4))C’, hence
(83) Cpy=C0p, -

Substituting (78), [(76) and [83) into C,,,,=0, we get 4C-+(n—5)C
=0, hence

C=0, C'=0, C,,=0.

Then, all components of the conformal curvature vanish because of
81Y, (74), [75), [(76), [(78) and (78), contrary to the assumption (8.4).
Thus we get the
LEMMA 4. A Riemann space V»*,n>=T, with conformal curvature
tensor satisfying (8.4) does not admit a group of motions of order
r>nn+1)/2—3Bn—11).

§7. Conclusion.

From the results obtained above we can get the

THEOREM. A necessary condilion that a Riemann space V",n=6,
admit a group of motions G, of order r>n(n+1)/2—(8n—11) is that
the Weyl conformal curvature tensor satisfy (22) where M,,,, is given
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by for n=6 and n=8, or that it salisfy (710) where A, and B,
satisfy [(71).

§ 8. Proof of Lemma 1.

Let us take an orthogonal ennuple such that we have
U;=0, V;=0p
for some vectors u, v, satisfying [(20). Then we get
(84) | M/lllw:a/mawz ’ M211.2:M1221:1 .

The vector v, satisfying [(20) for the vector u;=¢,, is obtained
from

M,..,=vv,.
We find (v,)’=1 and get v,=+9,, by virtue of v,v,=1. Hence we get
(85) M., =00,
If we put
u, =1 —1%)'70,,+15,,,
V=0 + 0+,
we get
M120+ M1 =030, + 0,030
from Putting 21=2, we get
M,,,=v,,
for we have v;=0. Hence we find

1);) = 60)1
and moreover
(86) ]u;lln) + Al/lzlw = (51150:2 + 6w16/12) .
Besides, we get
v, = —8in 05,, +cos 09,,
for .
U, =C0860,,+sin 00,, .
If we take #,=0,, and consider the vector v, determined by

V0,= me ’
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we find v, =0 by putting 1=w=1, for we have [84) We find v,=0,
too, because of (85). Besides, we have v,=0. Hence we can take an
orthogonal ennuple such that we have

V= 0y
for
Uy=0,.
Then_ weJYget
M, = 024004 5
(87) M10= 015003 »

M34w + Mww = (6/1360)4 + 6(036/14) .
The last formula is obtained by considering for
wy=1—17)'"0;,+10,,.

We can proceed in this way and get pairs of axes (1.2), (3.4),
(5.6),--+, so that we have

]W/Inw =0220,3 5
Mm(n:a/u%x ’
Moo+ My10=— (03005 + 04:022) 5
(88) | e e

Mln—lnw+Mnn—1w: _(6An—16wn+6wn—16/1n) ’

if » is even. As an axis is left unpaired if » is odd, we find that =
must be even. This is also evident from the topological point of
view, for shows that a vector field v,(»,) exists on an (#—1)-
dimensional sphere S»-..

If we put

U= (0 + 613)/V§’

we get
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_'%— (Mhlw + M/l33w) + % (MIB(U + M1131a)) = vivw

and find
V,=0,=0,=0,=--=0,=0

by virtue of [88). Moreover, we find v,=+1/,/2 v,=+1/,/2" But
we can take the direction of the fourth axis, that is, the sign of v,
for u,=9,, in such a way that we have

V= (03, + 5/14)/1/24'
Then we get
(89) Mlmo + ]‘4;13110 = B/Izam + 6(.)25/14

and
]Wzm -+ M2314 =1.

Similarly, we get
(90) M&15w + M/I51a; = 5/1260)6 + 60)26/16 .

But there is some ambiguity with respect to the sign of
(91) M135w+M153w: i(ﬁmﬁws—i—ﬁmﬁm) .
This is determined when we consider the vector v, for

w0, = (03 + 035+ 63,) /'8
We get

1
3 [M}y,+ Mg+ Mg+ My, + My,

-+ M1115a) + Mdslw + ]W/l%w + M/153w] =00,

and find (»,)’=(@,)’=(,)’=1/3. Moreover, we find

v,=1/3,
v0,=1/3,
V0= +1/3
by virtue of [89), [(90), [(91). Hence we must have
vv,=+1/3

and get
(92) M1135a) + M1153w = (5/1460)6 + 5(0'15/16) .
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In this way we can determine all M, ,,+M,,,, for odd s,v.
But we can exchange in the suffices odd and even numbers in
each pair if we neglect the signs, getting for example

M0+ ]W/Mzw = (031005 + 001025 -

The sign is found to be positive if we put 1=1, »=38, for we have
M, ,+M =M, + M, =+1

from [(89). Similarly, we get
My o4 M= (0330054 0,502 5

where the sign is found to be negative if we put 1=2, w=3, for we
have

Mz143+1‘42413: _M2134“M2431
= _M2134+1‘42341: ”‘M2134_M2314: -1
because of and [89).

In this way all M,,,+M,,, are determined:

yuw

MAuw:aAza szzw:6h6w1’ *tty

w2 ?
2MA(12)¢»: - (54150,2—!—50)15&2), EAE)
2M/I(13)w:6/126w4+6w26/w *tty

(93)
2Mz(24)w:5/115w3+6w16131 *tty

2M1(14)m = (5/1260)3 + 50,25&3), *tty

2Ml(23)w = (6116(04 =+ 60)16/14), St

Then, as we have M,,,,, =0, M, =0, all components M,,,, are also

determined uniquely.
As the M, ,, given in (22) satisfies (93), is thus proved.

Institute of Mathematics
Yokohama National University
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