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Introduction.

The purpose of this paper is to generalize the Gauss-Bonnet
theorem (established by Allendoerfer and Weil [1]) to the case of
V-manifolds. The notion of a V-manifold has been introduced by
the author in a previous short paper [7].

The outline of this paper is as follows. In \S 1 we shall give
fundamental concepts concerning V-manifolds and V-bundles. Our
principal idea is the following: while an ordinary manifold can be
considered as an inverse injective limit of Euclidean spaces, a V-
manifold is considered as that of Euclidean spaces allowing a finite
group of automorphisms. More precisely speaking, let $\{\tilde{U}_{\alpha}\}_{\alpha\in A}$ be a
system of Euclidean spaces (of the same dimension), $A$ being a
directed system such that for any $\alpha,$ $\beta\in A$ there exists a $\gamma\in A$

with $\gamma\leqq\alpha,$ $\gamma\leqq\beta$ and assume that for any $\alpha,$ $\beta\in A,$ $\alpha\leqq\beta$ we have
‘ an injection ’

$\lambda_{\beta\alpha}$ from $U_{\alpha}$ into $\tilde{U}_{\beta}$ such that we have $\lambda_{\gamma\alpha}=\lambda_{\gamma\beta}\circ\lambda_{\beta\alpha}$

for $\alpha\leqq\beta\leqq r$ Then the injective limit $M=\bigcup_{a}\varphi_{a}(\tilde{U}_{\alpha})$ of the inverse

system $\{U_{a}, \lambda_{\beta\alpha}\},$
$\varphi_{a}$ denoting the canonical injection $U_{a}\rightarrow M$, is a

manifold. ( $\varphi_{\alpha}(\tilde{U}_{a})$ being homeomorphic to $U_{a},$ $M$ is locally homeomor-
phic to a Euclidean space.) Now a slight modification of the above
definition will lead to a V-manifold. Namely replacing the word
’an injection’ by ‘a finite number of injections’ we obtain a V-
manifold $M=\cup\varphi_{a}(\tilde{U}_{\alpha})$ , which is locally homeomorphic to $\varphi_{\alpha}(\tilde{U}_{a})\approx$

$G_{\alpha}\backslash \tilde{U}_{\alpha},$ $G_{\alpha}$ being a finite group of automorphisms of $\tilde{U}_{a}$ , composed of
$\lambda_{a\alpha}$ . Similar considerations can be applied also to the definition of
V-bundles. Namely a $V$-bundle $B$ can be considered as an injective
limit (allowing a finite group of automorphisms) of an (inverse)
system of direct products of a Euclidean space $U_{\alpha}$ and a fixed
manifold $F$ (called fibre) with respect to injections of a special form.
As examples of V-bundles the notions of tangent vectors and differ-
ential forms will be introduced at the end of this section.
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In \S 2 a short resum\’e of Riemannian geometry on a V-manifold
is given. After these preparations it is quite easy to see that
Chern’s proof [3] of the Gauss-Bonnet theorem can be transferred
almost literally to our case. But in order to make clear the point
in which our proof differs from Chern’s and also the meanings of
the notations used, we shall restate the main arguments of his proof
in \S 3. In the Gauss-Bonnet formula for a V-manifold $M$, thus
obtained, appears the Euler characteristic $\chi_{V}(M)$ of $M$ as a V-manifold
in place of the ordinary Euler characteristic. This number will be
of some interest, because, on the one hand, it is also related with
Hopf’s formula [4] on vector fields over $M$ and, on the other hand,
it appears in the theory of automorphic functions of one variable
( $e$ . $g$ . in the Riemann-Roch formula concerning the dimension of the
space of automorphic forms).

Finally in \S 4 we shall show that the Gauss-Bonnet formula can
be also applied to Siegel’s modular variety $\mathfrak{V}_{n}=M_{n}\backslash \mathfrak{H}_{n},$ $\mathfrak{H}_{n}$ being the
space of all symmetric complex matrices $Z=X+iY$ of degree $n$ with
the imaginary parts $Y>0$ and $M_{n}$ Siegel’s modular group of degree
$n$ operating on $\mathfrak{H}_{n}$ . This case was treated already by Siegel in his
’Symplectic Geometry’ [9], which gave a motive to this investiga-
tion. Siegel considered the Gauss-Bonnet formula only for the case
of $\mathfrak{G}\backslash \mathfrak{H}_{n}$ , where $\mathfrak{G}\backslash \mathfrak{H}_{n}$ is compact and $\mathfrak{G}$ is a discontinuous group of
symplectic transformations without fixed point. Our results will
complete his work in the sense that we extend his formula to the
case of compact $\mathfrak{G}\backslash \mathfrak{H}_{n}$ , where $\mathfrak{G}$ allows fixed points, as well as to the
non-compact case $\mathfrak{V}_{n}=M_{n}\backslash \mathfrak{H}_{n}$ . We conclude this paper by an appli-
cation of the Gauss-Bonnet formula for $\mathfrak{V}_{n}$ to the determination of
the least common multiple $N_{n}$ of the orders of isotropy subgroups
of $M./\{+E_{2}.\}$ . The Gauss-Bonnet formula for $\mathfrak{V}_{n}$ gives a lower
estimation of $N_{n}$ , while an upper estimation of it will be obtained
by a method of Minkowski [6].

\S 1. $V$-manifolds and $V$-bundles.

1. Definition of V-manifold. Let $M$ be a Hausdorff space. A
$(C^{\infty_{-}})$ local uniformizing system (abbreviated in the following as 1. $u$ . $s.$ )
$\{\tilde{U}, G, \varphi\}$ for an open set $U$ in $M$ is by definition a collection of the
following objects:
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$\tilde{U}$ : a connected open set in $R^{m}$ (m-dimensional Euclidean space),
$G$ : a finite group of $C^{\infty}$-automorphisms of $\tilde{U}$, with the set of

fixed points of dimension $\leqq m-2$,
$\varphi$ : a continuous map from $\tilde{U}$ onto $U$ such that $\varphi\circ\sigma=\varphi$ for all

$\sigma\in G$, inducing a homeomorphism from the quotient space
$G\backslash \tilde{U}$ onto $U$.

Let $\{\tilde{U}, G, \varphi\},$ $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ be 1. $u$ . $s$ . for $U,$ $U^{\prime}$ , respectively, and let
$U\subset U^{\prime}$ . By a $(C^{\infty_{-}})$ injection $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ we mean a
$C^{r}$-isomorphism $\lambda$ from $\tilde{U}$ onto an open subset of $\tilde{U}^{\prime}$ such that
$\varphi=\varphi^{\prime}\circ\lambda$ . Every $\sigma\in G$ can be then considered as an injection of
$\{\tilde{U}, G, \varphi\}$ into itself. Also if $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\},$ $\lambda^{\prime}$ : $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}\rightarrow$

$\{\tilde{U}^{\prime\prime}, G‘‘, \varphi^{\prime\prime}\}$ are injections, $\lambda^{\prime}\circ\lambda$ becomes an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime\prime}$ ,
$G^{\prime\prime},$ $\varphi^{\prime\prime}$ }. Hence if $\lambda$ is an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ and $0^{\prime}\in G^{\prime}$ ,
then $\sigma^{\prime}\circ\lambda$ becomes also an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ . Conversely
we have the following

LEMMA 1. Let $\lambda,$
$g\ell$ be two injections $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime},$ $G^{\prime},$ $\varphi^{\prime}$ ). Then

there exists a uniquely determined $0^{\prime}\in G^{\prime}$ such that $\mu=0^{\prime}\circ;.$

PROOF. Let $\tilde{p}\in\tilde{U}$. As we have $\varphi^{\prime}(\mu(\tilde{p}))=\varphi(\tilde{p})=\varphi^{\prime}(\lambda(\tilde{p}))$ , there
exists a $0^{\prime}\in G^{\prime}$ such that $/\ell(\tilde{p})=0^{\prime}(\lambda(\tilde{p}))$ . Choosing $\lambda(\tilde{p})$ not to be a
fixed point of $G^{\prime}$ , the automorphism $0^{\prime}\in G^{\prime}$ is uniquely determined.
As the set of non-fixed points of $G^{\prime}$ in $\lambda(\tilde{U})$ is, by the above as-
sumption, connected and everywhere dense in $\lambda(\tilde{U})$ , the relation
$\mu(\tilde{p})=o^{\prime}(\lambda(\tilde{p}))$ holds for all $\tilde{p}\in\tilde{U}$. Hence we have $\mu=0^{\prime}\circ\lambda$ with a
uniquely determined $0^{\prime}\in G^{\prime},$ $q$ . $e$ . $d$ .

It follows, in particular, that if $\lambda$ is an injection $\{\tilde{U}, G, \varphi\}\rightarrow$

$\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ and $\sigma\in G$, there corresponds uniquely a $0^{\prime}\in G^{\prime}$ such that
$\lambda\circ\sigma=0^{\prime}\circ\lambda$ . The correspondence $\sigma\rightarrow 0^{\prime}$ becomes clearly an isomorphism
from $G$ into $G^{\prime}$ .

LEMMA 2. Let $\lambda$ be an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ . If $o^{\prime}(\lambda(\tilde{U}))$

$\cap\lambda(\tilde{U})\neq\emptyset$ with $0^{\prime}\in G^{\prime}$ , then $o^{\prime}(\lambda(\tilde{U}))=\lambda(\tilde{U})$ and $0^{\prime}$ belmgs to the image
of the isomorphism $G\rightarrow G^{\prime}$ defined above.

PROOF. Assume that $ o^{\prime}(\lambda(\tilde{U}))\cap\lambda(\tilde{U})\neq\emptyset$ . Then there exist $\tilde{p},\tilde{q}\in$

$\tilde{U}$ such that $0^{\prime}\circ\lambda(\tilde{p})=\lambda(\tilde{q})$ . Then, since $\varphi(\tilde{p})=\varphi(\tilde{q})$ , we have $\tau(\tilde{p})=\tilde{q}$

with some $\tau\in G$. Let $\tau^{\prime}$ be the element of $G^{\prime}$ corresponding to $\tau$

( $i$ . $e$ . one such that $\lambda\circ\tau=\tau^{\prime}\circ\lambda$ ). Then we have $o^{\prime}(\lambda(\tilde{p}))=\tau^{\prime}(\lambda(\tilde{p}))$ . Choos-
ing $\lambda(\tilde{p})$ not to be a fixed point of $G^{\prime}$ , we have $0^{\prime}=\tau^{\prime}$ and hence
$o^{\prime}(\lambda(\tilde{U}))=\tau^{\prime}(\lambda(\tilde{U}))=\lambda(\tau\cdot(\tilde{U}))=\lambda(\tilde{U})$ , q. e. d.

It follows, in particular, that if $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ is an
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injection and if $\varphi(\tilde{U})=\varphi^{\prime}(\tilde{U}^{\prime})$ , we have $o^{\prime}(\lambda(\tilde{U}))=\lambda(\tilde{U})$ for all $0^{\prime}\in G^{\prime}$ .
(For otherwise $\tilde{U}^{\prime}=\bigcup_{\sigma\in G}o^{\prime}(\lambda(\tilde{U}))$ would be disconnected.) Hence the
$C^{\infty}$-isomorphism $\lambda$ : $\tilde{U}\rightarrow\tilde{U}^{\prime}$ and the associated isomorphism $G\rightarrow G^{\prime}$

become onto, and $\lambda^{-1}$ becomes also an injection $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}\rightarrow\{\tilde{U}, G, \varphi\}$ .
In this case, we call two 1. $u$ . $s$ . $\{\tilde{U}, G, \varphi\},$ $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ equivalent.

After these preparations we shall give the definition of V-
manifold.

DEFINITION 1. A $(C^{\infty_{-}})$ V-manifold is a composite concept form-
ed of a (Hausdorff) topological space $M$ and a family $\mathfrak{F}$ (called a
defining family for a V-manifold) of $(C^{\infty}-)1$ . $u$ . $s$ . for open subsets
in $M$ satisfying the following conditions.

(I) Every point $p$ of $M$ is contained in at least one $\mathfrak{F}$-uniformized
open set ( $i$ . $e$ . an open set $U$ for which there exists l. u. $s$ . $\{\tilde{U}, G, \varphi\}$

in $\mathfrak{F}$ such that $\varphi(\tilde{U})=U)$ . If $p$ is contained in two $\mathfrak{F}$ -uniformized
open sets $U_{1},$ $U_{2}$ , then there exists an $\mathfrak{F}$ -uniformized open set $U_{3}$

such that $p\in U_{3}\subset U_{1}\cap U_{2}$ .
(II) If $\{\tilde{U}, G, \varphi\},$ $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ are 1. $u$ . $s$ . in $\mathfrak{F}$ such that $\varphi(\tilde{U})\subset\varphi^{\prime}(\tilde{U}^{\prime})$ ,

then there exists always a $(C^{\infty}-)$ injection $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ .
( $\lambda$ is uniquely determined up to $0^{\prime}\in G^{\prime}$ , by Lemma 1.)

By what we have mentioned above, it follows from (II) that
two 1. u. s. in $\mathfrak{F}$ for one and the same open set in $M$ are always
equivalent. Also if $\{\tilde{U}, G, \varphi\},$ $\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\},$ $\{\tilde{U}^{\prime\prime}, G^{\prime\prime}, \varphi^{\prime\prime}\}$ are 1. $u$ . $s$ . in $\mathfrak{F}$

such that $\varphi(\tilde{U})\subset\varphi^{\prime}(\tilde{U}^{\prime})\subset\varphi^{\prime\prime}(\tilde{U}^{\prime\prime})$ , then an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}_{r}^{\prime\prime}G^{\prime\prime}$ ,
$\varphi^{\prime\prime}\}$ is given by a composite of injections $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}\rightarrow\{\tilde{U}^{\prime\prime}$ ,
$G^{\prime\prime},$ $\varphi^{\prime\prime}$ }.

Two defining families {, $\mathfrak{F}^{\prime}$ are said to be directly equivalent, if
$\mathfrak{F},$ $\mathfrak{F}^{\prime}$ are both contained in a defining family (satisfying (I), (II)),
and equivalent, if there exists a chain of defining families $\mathfrak{F}_{i}(1\leqq i\leqq$

r) such that $\mathfrak{F}_{1}=\mathfrak{F}\mathfrak{F}_{r}=\mathfrak{F}^{\prime}$ and that $\mathfrak{F}_{i}\mathfrak{F}_{t+1}(1\leqq i\leqq r-1)$ are directly
equivalent. Equivalent families are regarded as defining one and
the same V-manifold structure on $M^{1)2)}$

1) Thus a V-manifold is, strictly speaking, a composite concept of a topological
space $M$ and an equivalent class of defining families. But in the following we
consider a V-manifold $M$ with a fixed defining family $\mathfrak{F}(i$ . $e$ . a ‘ coordinate V-mani-
fold ’

$(M, \mathfrak{F}))$ .
2) lt can be proved that for any defining family $\mathfrak{F}$ there exists a defining

family $\overline{\mathfrak{F}}$ such that $\overline{\mathfrak{F}}\supset \mathfrak{F}$ and that any open set $\dot{\iota}nM$ which is simply connected

and is contained in an $\mathfrak{F}$-uniformized open set is $\overline{\mathfrak{F}}$ -uniformized.
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Let $M$ be a V-manifold and $p\in M$ Take a 1. $u$ . $s$ . $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$

such that $p\in\varphi(\tilde{U})$ and choose $\tilde{p}\in\tilde{U}$ such that $\varphi(\tilde{p})=p$. Then it can
easily be seen by Lemma 2 that the structure of the isotropy sub-
group $G_{\tilde{p}}$ of $G$ at $\tilde{p}$ does not depend on the choice of $\tilde{U}$ and $\tilde{p}$ (and

hence of $\mathfrak{F}$ ), and is uniquely determined by $p$. Hence we call some-
times $G_{I}\sim_{)}$ simply the ‘ isotropy group of $p$.

An ordinary $C^{\infty}$-manifold is nothing other than a $ c\rightarrow$-V-manifold
for which the isotropy group of each point reduces to the unit
group. In general, let $M$ be a V-manifold and consider the set $S$

composed of all ‘ singular points ‘ of $M,$ $i$ . $e$ . the points of $M$ with
non-trivial isotropy groups. Let $p\in S$ and $\{\tilde{U}, G, \varphi\},\tilde{p},$

$c_{\tilde{p}}$ be as
above. Then taking a suitable coordinate system around $\tilde{p}$, $G_{\tilde{p}}$

becomes a finite group of linear transformations. (Let $\{u^{1},\cdots, u^{m}\}$

be a coordinate system around $\tilde{p}$ and consider the system $v^{i}=$

$\frac{1}{N_{G_{\tilde{p}}}}\sum a_{ij}(\sigma^{-1})u^{j}\circ\sigma$
, where $a_{ij}(\sigma)=[\frac{\partial u^{i}\circ\sigma}{\partial u^{j}}]_{\tilde{p}},$ $N_{G_{\tilde{p}}}=[G_{\tilde{p}}$ : 1 $]$ .) Hence $\varphi^{-1}(S)$

is expressed locally by a finite union of linear submanifolds of $\tilde{U}$.
This means that $S$ is a $V$-subvariety of dimension $\leqq m-2$ of $M^{3)}$

The isotropy group of an ’ ordinary point’ of $S$ , $i$ . $e$ . a point
where $S$ has locally a structure of V-manifold, depends only on the
irreducible component $S_{i}$ of $S$ containing that point and is called
sometimes the isotropy group of $S_{i}$ . Clearly $M-S$ is an ordinary
$ c\propto$-manifold (connected if $M$ is connected).

It can be also proved that if $\tilde{M}$ is a $C^{\infty}$-manifold and $\mathfrak{G}$ is a
properly discontinuous group of $ c\rightarrow$-automorphisms of $\tilde{M}$, then the
quotient space $\mathfrak{G}\backslash \tilde{M}$ possesses a canionical $V$-manifold structure.

REMARK. If we replace the word “ a connected open set in $R^{m}$ ”

in the above definitlon of 1. $u$ . $s$ . by “ a connected $C^{\infty}$-manifold ”, we
obtain an equivalent definition of V-manifold. This modification of
the definition of l. u. $s$ . will be used in 3.

2. $C^{\infty}- V$-manifold map.

DEPINITION 2. Let $(M_{1}, \mathfrak{F}_{1}),$ $(M_{\Delta}\cap’ \mathfrak{F}_{2})$ be two V-manifolds. We

$\overline{3)}$A $C^{\infty}- V$-subvariety $X$ of $M$ is a (closed) subset of $M\ulcorner uch$ that for any 1. $u$ . $s$ .
$\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$ for $U,$ $\varphi^{-1}(X\cap U)$ is a (G-invariant) $ C\infty$-subvariety of $\tilde{U}$ in the usual
sense. A V-subvaricty $X$ is decomposed into a locally finite union of irreducible
subvarieties Xi, called the ‘ irreducible components ‘ of $X$.
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mean by a $(C^{\infty_{-}})$ $V$-manifold map $h$ from $(M_{1}, \mathfrak{F}_{1})$ into $(M_{2}, \mathfrak{F}_{2})$ a system
of mapping.$0\cap\{h_{U_{1}}^{\sim}\}(\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\in \mathfrak{F}_{1})$ as follows:

(i) There is a correspondence $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\rightarrow\{\tilde{U}_{2}, G_{2}, \varphi_{2}\}$ from $\mathfrak{F}_{1}$

into $\mathfrak{F}_{2}$ such that for any $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\in \mathfrak{F}_{1}$ we have a $C^{\infty}$-map $h_{U}^{\sim_{1}}$ from
$\tilde{U}_{1}$ into $\tilde{U}_{\Delta}$ .

(ii) Let $\{\tilde{U}_{1}, G_{1}, \varphi\},$ $\{\tilde{U}_{1}^{\prime}, G_{\iota^{\prime}}, \varphi_{1^{\prime}}\}\in \mathfrak{F}_{1}$ $\{\tilde{U}_{2}, G_{2}, \varphi_{2}\},$ $\{\tilde{U}_{2^{\prime}}, G_{2}^{\prime}, \varphi_{2}^{\prime}\}\in \mathfrak{F}_{2}$

be the corresponding 1. $u$ . $s$ . (in the sense of $(i)$ ) and let $\varphi_{1}(\tilde{U}_{1})\subset$

$\varphi_{1^{\prime}}(\tilde{U}_{1^{\prime}})$ . Then for any injection $\lambda_{1}$ : $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\rightarrow\{\tilde{U}_{1^{\prime}}, G_{1}^{\prime}, \varphi_{1}^{\prime}\}$ there
exists an injection $\lambda_{2}$ : $\{\tilde{U}_{2}, G_{2}, \varphi_{2}\}\rightarrow\{\tilde{U}_{2^{\prime}}, G_{2^{\prime}}, \varphi_{2^{\prime}}\}$ such that

$\lambda_{2}\circ h_{U}^{\sim_{1}}=h_{U^{J}}^{\sim_{1}}\circ\lambda_{1}$ .
It follows from (i), (ii) that there exists uniquely a continuous

map $h$ from $M_{1}$ into $M_{2}$ such that for any $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\in \mathfrak{F}_{1}$ , and for
the corresponding $\{\tilde{U}_{2}, G_{2}, \varphi_{2}\}\in \mathfrak{F}_{2}$ , we have

$\varphi_{2}\circ h_{U}^{\sim_{1}}=h\circ\varphi_{1}$

$h$ is called a $C^{\infty}$-map $M_{1}\rightarrow M_{2}$ defined by a $C^{\infty}- V$-manifold map $h=\{h_{U}^{\sim_{1}}\}$ :
$(M, \mathfrak{F}_{1})\rightarrow(M_{c,0}, \mathfrak{F}_{2})^{4)}$ (We use thus the same notation for a $C^{\infty}$ -V-
manifold map and the corresponding $C^{\infty}$-map. But no confusion will
arise.)

It is possible to define an equivalence relation between $V$-mani-
fold maps quite similarly as in 1. Then the $C^{\infty}$ -map $M\rightarrow M_{2}$ defined
by a $V$-manifold map $(M_{1}, \mathfrak{F}_{1})\rightarrow(M_{d}, \mathfrak{F}_{2})$ depends only on the equi-
valence class of the latter.

Considering $R$ (the set of all real numbers) as a $V$-manifold
defined by a single 1. $u$ . $s$ . $\{R, \{1\}, 1\}$ , we define a $C^{\infty}$-function on a
V-manifold $M$ as a $C^{\infty}$-map $M\rightarrow R$.

3. V-bundle. Let $M,$ $B$ be two $V$-manifolds with a $C^{\infty}$-map
$\pi;B\rightarrow M$. Let further $F$ be a $C^{\infty}$-manifold and $G$ be a Lie group
operating on $F$ as a $(C^{\infty}-)$ group of transformations. (We don’t
assume $G$ to be effective.)

DEFINITION 3. A pair of defining families $(\mathfrak{F}, \mathfrak{F}^{\star}),$ $\mathfrak{F}$ being a
defining family of $M$ and $\mathfrak{F}^{\star}$ that of $B^{6)}$ , is called a pair of defining

4) The notion of $C^{\infty}$ -map thus defined is inconvenient in the point that a com-
posite of two $C^{\infty}$ -maps defined in a different choice of defining families is not always
a $C^{\infty}$ -map.

5) Here the 1. $u$ . $s$ . in $\mathfrak{F}\mathfrak{F}^{*}$ (or at least those in $\mathfrak{F}^{*}$ ) are understood in the modi-
fied sense as was stated in Remark at the end of 1.
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families for a (coordinate) V-bundle $(B, M, \pi, F, G)$ , if it satisfies
the following conditions:

(i) There exists a one-to-one correspondence $\{\tilde{U}, G, \varphi\}\leftrightarrow\{\tilde{U}^{\star},$ $G^{k}$ ,
$\varphi^{\star}\}$ between $\mathfrak{F}$ and $\mathfrak{F}^{\star}$ such that $\tilde{U}^{\star}=\tilde{U}\times F$ and denoting by $\pi_{U^{*}}^{\sim}$ the
projection $\tilde{U}^{\star}\rightarrow\tilde{U}$, we have

$\pi\circ\varphi^{\star}=\varphi\circ\pi_{U^{*}}^{\sim}$ .
(ii) Let $\{\tilde{U}, G, \varphi\},$ $\{\tilde{U}^{\star}, G^{\star}, \varphi^{\star}\};\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\},$ $\{\tilde{U}^{\star\prime}, G^{\star;}, \varphi^{\star r}\}$ be two

pairs of $corre^{\circ_{\partial}}\rangle ponding1$ . $u$ . $s$ . in $(\mathfrak{F}, \mathfrak{F}^{\star})$ and let $\varphi(\tilde{U})\subset\varphi^{\prime}(\tilde{U}^{\prime})$ . Then
$\varphi^{\star}(\tilde{U}^{\star})\subset\varphi^{\star\prime}(\tilde{U}^{\star\prime})$ and there exists a one-to-one correspondence $\lambda\leftrightarrow\lambda^{\star}$

between injections $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ and $\lambda^{\star}$ : $\{\tilde{U}^{\star}, G^{\star}, \varphi^{\star}\}\rightarrow\{\tilde{U}^{\star\prime}$ ,
$G^{\star;},$ $\varphi^{*;}$ } such that for $(\tilde{p}, q)\in\tilde{U}^{\star}=\tilde{U}\times F$ we have

$\lambda^{\star}(\tilde{p}, q)=(\lambda(\tilde{p}), g_{\lambda}(\tilde{p})q)$

with $g_{\lambda}(\tilde{p})\in G$ . The mapping $g_{\lambda}$ : $\tilde{U}\rightarrow G$ is a $C^{\infty}$-map satisfying the
relation
(1) $g_{\mu\lambda}(\tilde{p})=g_{\mu}(\lambda(\tilde{p}))\cdot g_{\lambda}(\tilde{p})$

for any injections $\{\tilde{U}, G, \varphi\}\rightarrow\lambda\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}\rightarrow^{l}l\{\tilde{U}^{\prime\prime}, G^{\prime\prime}, \varphi^{\prime\prime}\}$ . ((1) is satisfied
automatically, if $G$ acts on $F$ effectively.)

A composite concept of $B,$ $M,$ $\pi,$ $F,$ $G$ and a pair of defining fami-
lies $(\mathfrak{F}\mathfrak{F}^{\star})$ satisfying the above conditions is called a (coordinate)

V-bundle. (For simplicity we call sometimes $B$ a (coordinate) V-
bundle.)

It follows, in particular, from (ii) that there exists a one-to-one
correspondence $\sigma\leftrightarrow\sigma^{\star}$ between $G$ and $G^{\star}$ such that $\sigma^{\star}(\tilde{p}, q)=(o(\tilde{p})$ ,
$g_{\sigma}(\tilde{p})q)$ . This correspondence is clearly an isomorphism. Denoting
by $G_{\tilde{p}}$ the isotropy subgroup of $G$ at $\tilde{p}$ and by $G_{\tilde{p}^{\star}}$ the corresponding
subgroup of $G^{\star}$ , we can prove easily that for $p=\varphi(\tilde{p})$

$\pi^{-1}(p)\approx G_{p}^{\star}\backslash \tilde{p}\times F\approx\{g_{\sigma}(\tilde{p});\sigma\in G_{p}\}\backslash F$ .
Thus a V-bundle $B$ is not always a bundle in the usual sense over $M$.

Equivalence relation between pairs of defining families $(\mathfrak{F}, \mathfrak{F}^{\star})$

is defined quite similarly as in 1. (A V-bundle is a composite con-
cept formed of $(B, M, \pi, F, G)$ and an equivalent class of pairs of
defining families.) Especially it can be easily verified that two
pairs of defining families $(\mathfrak{F}\mathfrak{F}_{1}^{\star}),$ $(\mathfrak{F}\mathfrak{F}_{2}^{\star})$ are directly equivalent
( $i$ . $e$ . $(\{\mathfrak{F}\mathfrak{F}\},$ $\{\mathfrak{F}_{1}^{\star},$ $\mathfrak{F}_{2}^{\star}\})$ becomes also a pair of defining families), if
and only if there exists a $C^{\infty}$-map $\delta_{U}^{\sim}:$

$\tilde{U}\rightarrow G$ such that
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$\varphi_{1}^{\star}(\tilde{p}, q)=\varphi_{2}^{\star}(\tilde{p}, \delta_{U}^{-}(\tilde{p})q)$

for any $\{\tilde{U}\times F, G_{1}^{\star}, \varphi_{1}^{\star}\}\in \mathfrak{F}_{1}^{\star}$ $\{\tilde{U}\times F, G_{2}^{\star}, \varphi_{2}^{\star}\}\in \mathfrak{F}^{\star}2$ corresponding to
the same $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$ and that

(2) $g_{\lambda^{(2)}}(\tilde{p})=\delta_{\overline{U}},(\lambda(\tilde{p}))g_{\lambda}^{(1)}(\tilde{p})\delta_{\overline{U}}(\tilde{p})^{-1}$

for any injection $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\},$
$g_{\lambda}^{(1)},$ $g_{\lambda^{(2)}}$ denoting the map

$g_{\lambda}$ in (ii) corresponding to $\mathfrak{F}_{1}^{\star},$ $\mathfrak{F}_{2}^{\star}$ , respectively. (The necessity of
these conditions is evident. If, conversely, they are satisfied, define
the injection $\{\tilde{U}\times F, G_{1}^{\star}, \varphi_{1}^{\star}\}(\in \mathfrak{F}_{1}^{\star})\rightarrow\{\tilde{U}\times F, G_{2}^{\star}, \varphi_{2}^{\star}\}(\in \mathfrak{F}_{2}^{\star})$ corre-
sponding to the identical injection of $\{\tilde{U}, G, \varphi\}$ onto itself by the
map $(\tilde{p}, q)\rightarrow(\tilde{p}, \delta_{U}^{\sim}(\tilde{p})q).)$

Let $(B, M, \pi F, G)$ be a V-bundle with a pair of defining families
$(\mathfrak{F}\mathfrak{F}^{\star})$ . A V-manifold map $f=\{f_{U}^{\sim}\}:(M, \mathfrak{F})\rightarrow(B, \mathfrak{F}^{\star})$ is called a $(C^{\infty}-)$

cross section of this V-bundle, if the correspondence $\mathfrak{F}\rightarrow \mathfrak{F}^{\star}$ in Defini-
tion 2 (i) is given by the correspondence in Definition 3 (i) and if
$\pi_{U}^{\sim}\circ f_{U}^{\sim}=1$ (then clearly $\pi\circ f=1$ ). To give a cross section $ f:(M, \mathfrak{F})\rightarrow$

$(B, \mathfrak{F}^{\star})$ is therefore to give a cross section (in the usual sense) $f_{U}^{\sim}$

of each $\tilde{U}^{\star}=\tilde{U}\times F$ such that for any injection $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime},$ $G^{\prime}$ ,
$\varphi^{\prime}\}$ we have $f_{U}^{\sim},$ $\circ\lambda=\lambda^{\star}\circ f_{U}^{\sim}$ . (In particular, $f_{U}^{\sim}$ is G-invariant in the
sense that $f_{U}^{\sim}\circ\sigma=\sigma^{\star}\circ f_{U}^{\sim}$ for all $0\in G.$ )

A direct product V-bundle ( $i$ . $e$ . a V-bundle for which $g_{\lambda}=1$ in
Definition 3 (ii)) has clearly many cross sections. Conversely let
$(B, M, \pi, G, G)$ be aprincipal V-bundle, $i$ . $e$ . a V-bundle such that $F=G$

and $g\in G$ acts on $G$ as a left transformation, and assume that it
has a cross section $f=\{f_{U}^{\sim}\}$ . Then, denoting $f_{U}^{\sim}(\tilde{p})=(\tilde{p}, \delta_{U}^{\sim}(\tilde{p}))$ , we have

$g_{\lambda}(\tilde{p})=\delta_{\overline{U}}(\lambda(\tilde{p}))\delta_{\overline{U}}(\tilde{p})^{-1}$

for any injection $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ . This means that this
(coordinate) V-bundle is directly equivalent to a direct product V-
bundle over the same (coordinate) V-manifold.

4. V-bundle map. The notion of V-bundle map can by defined
quite similarly as that of V-manifold map. Namely we have

DEFINITION 4. Let $(B_{\rfloor}, M_{1}, \pi_{1}, F, G),$ $(B_{2}, M_{\dot{\Delta}}, \pi_{2}, F, G)$ be two V-
bundles with defining families $(\mathfrak{F}_{1}, \mathfrak{F}_{1}^{\star}),$ $(\mathfrak{F}2\mathfrak{F}_{2}^{\star})$ , respectively. A
system of mappings $h^{\star}=\{h_{U}^{\sim_{1}}\}(\{U_{1}, G_{J}, \varphi_{1}\}\in \mathfrak{F}_{1})$ is called a $(C^{\rightarrow}-)V-$

bundle map if the following conditions are satisfied:
(i) There exists a correspondence $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\rightarrow\{\tilde{U}_{c}-, G-, \varphi_{2}\}$ from

$\mathfrak{F}_{1}$ into $\mathfrak{F}_{2}$ , such that for any $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}$ we have a $C^{\infty}$-map $h_{U_{1}^{*}}^{\sim}$
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from $\tilde{U}_{1}\times F$ into $\tilde{U}_{2}\times F$ and a $C^{\infty}$-map $h_{U_{2}}^{\sim}$ from $\tilde{U}_{1}$ into $\tilde{U}_{2}$ such that
$h_{U_{1}}^{\star}\sim(\tilde{p}, q)=(h_{U_{1}}^{\sim}(\tilde{p}), r_{U_{1}}^{\sim}(\tilde{p})q)$

with $r_{U_{1}}^{\sim}(\tilde{p})\in G.$
$r_{U_{1}}^{\sim}$ is a $C^{\infty}$-map from $\tilde{U}_{1}$ into $G$.

(ii) Let $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\},$ $\{\tilde{U}_{1}^{\prime}, G_{1}^{\prime}, \varphi_{1}^{\prime}\}$ be 1. $u$ . $s$ . in $\mathfrak{F}_{1}$ such that $\varphi_{1}(\tilde{U}_{1})$

$\subset\varphi_{1^{\prime}}(\tilde{U}_{1}^{\prime})$ and $\{\tilde{U}_{-}’ G_{\Delta}’’\varphi_{2}\},$ $\{\tilde{U}_{2^{\prime}}, G_{2^{\prime}}, \varphi_{2^{\prime}}\}$ be the corresponding l. u. $s$ . in
$\mathfrak{F}_{-}$ . Then for any injection $\lambda_{1}$ : $\{\tilde{U}_{1}, G_{1}, \varphi_{1}\}\rightarrow\{\tilde{U}_{1}^{\prime}, G_{1}^{\prime}, \varphi_{1}^{\prime}\}$ there exists
an injection $\lambda_{2}$ : $\{\tilde{U}_{\Delta}, G_{\Delta}, \varphi_{2}\}\rightarrow\{\tilde{U}_{2^{\prime}}, G_{2^{\prime}}, \varphi_{2^{\prime}}\}$ such that

$\lambda_{2}^{\star}\circ h_{U}^{9}\sim_{1}^{\xi}=h_{U_{1}^{\prime}}^{\star}\circ\text{{\it \‘{A}}}_{1}^{\star}$ .
(Hence also $\lambda_{2}\circ h_{U}^{\sim_{1}}=h_{U}^{\sim_{1^{\prime}}}\circ\lambda_{1}$ ). We assume further that

$g_{\lambda_{2}}(h_{U}^{\sim_{1}}(\tilde{p}))=r_{U^{\prime}}^{\sim_{1}}(\lambda_{1}(\tilde{p}))g_{\lambda_{1}}(\tilde{p})r_{U}^{\sim_{1}}(\tilde{p})^{-1}$ .
(This condition is satisfied automatically if $G$ acts on $F$ effectively.)

Thus $h^{\star}=\{h_{U}^{\star}\sim_{1}\},$ $h=\{h_{U}^{\sim_{1}}\}$ are V-manifold maps from $(B_{1}, \mathfrak{F}_{1}^{\star})$ into
$(B_{\sim}, \mathfrak{F}_{2}^{\star})$ , from $(M, \mathfrak{F}_{1})$ into $(M_{2}, \mathfrak{F}_{2})$ , respectively, and the correspond-
ing $C^{\infty}$-maps $h^{\star}$ : $B_{1}\rightarrow B_{\angle}\mathfrak{k}$ $h:M_{1}\rightarrow M_{2}$ satisfy the relation $\pi_{2}\circ h^{\star}=h\circ\pi_{1}$ .

If, in particular, $M_{1}=M_{\Delta},$ $\mathfrak{F}_{1}=\mathfrak{F}2$ and all $h_{U}^{\sim_{1}}$ are the identity,
then it follows that all $h_{U^{*}}^{\sim_{1}}$ are onto, one-to-one and $h^{\star-1}=\{h_{U}^{\sim_{1}}\star-1\}$

becomes also a $(C^{\infty_{-}})$ V-bundle map. In this case, we call these two
(coordinate) V-bundles equivalent.6)

The following theorem is an analogue of the existence theorem
for ordinary fibre bundles. The proof is also quite similar as in
the ordinary case.

THEOREM 1. Let $M$ be a V-manifold with a defining family $\mathfrak{F},$ $F$

$a(C^{\rightarrow}-)$ manifold and $G$ a Lie group operating $mF$ (as a $C^{\infty}$-group of
transformations). If we have a system of $C$ “-maps $g_{\lambda}$ : $\tilde{U}\rightarrow G(\{\tilde{U}, G, \varphi\}$

$\in \mathfrak{F}\lambda$ being any injections: $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ ) satisfying the condi-
tion (1), then we can construct a (coordinate) V-bundle $B$ over $M$ as
described in Definition 3. If two systems of mappings $\{g_{\lambda^{(1)}}\},$ $\{g_{\lambda^{(2)}}\}$ satisfy
the relation (2), then there exists uniquely a V-bundle map $h^{\star}=\{h_{U}^{\sim_{1}}\star\}$

from the V-bundle corresponding to $\{g_{\lambda^{(1)}}\}$ onto the one corresponding to
$\{g_{\lambda^{(2)}}\}$ such that the correspondence $\mathfrak{F}\rightarrow \mathfrak{F}$ in Definitim 4 is the identity
and that we have $h_{U}^{\star}\sim(\tilde{p}, q)=(\tilde{p}, \delta_{U}^{\sim}(\tilde{p})q)$ for $(\tilde{p}, q)\in\tilde{U}\times F$. (Thus $\{h_{U}^{\sim_{1}}\star\}$

defines an equivalence between these two (coordinate) V-bundles.)
REMARK. We can define the notion of V-bundle, replacing in

Definition 3 (i) the words “ $\tilde{U}^{\star}=\tilde{U}\times F$ ’ by “ $\tilde{U}^{\star}$ is a fibre bundle

6) In case $B_{1}=B_{2}$ , this notion of equivalence is somewhat different from that
given in 3.
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over $\tilde{U}$ with the fibre $F$ and the group $G$ and in (ii) “ that for
$(\tilde{p}, q)\in\tilde{U}^{\star}=\tilde{U}\times F\cdots$ ‘’ by “ that $\lambda^{\star}$ is a bundle map $\tilde{U}^{\star}\rightarrow\tilde{U}^{\star r}$ inducing
the map $\lambda:\tilde{U}\rightarrow\tilde{U}^{\prime}$ . (Of course, these words require more explicit
indications in case $G$ acts ineffectively on $F.$ ) We need this modi-
fication in \S 2.1.

5. Examples. Let $(M, \mathfrak{F})$ be a $V$-manifold. Assuming that
every $\tilde{U}(\{\tilde{U}, G, \varphi\}\in \mathfrak{F})$ is contained in $R^{m}$ , we fix a coordinate system
$\{u^{1},\cdots, u^{m}\}$ in each $\tilde{U}$ once for all. Let $F=R^{m}$ (vector space of
dimension $m$ over $R$) and $G=GL(m, R)$ (group of all non-singular
matrice.3 of degree $m.$ ) For any injection $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ put

$g_{\lambda}(\tilde{p})=(\frac{\partial u^{;i}\circ\lambda}{\partial u^{j}})$ (Jacobian matrix of $\lambda$ at $\tilde{p}$) ,

$\{u^{i}\},$ $\{u^{\prime i}\}$ being the (fixed) coordinate systems in $\tilde{U},\tilde{U}^{\prime}$ , respectively.
Then the system $g_{\lambda}$ , satisfying the condition of Theorem 1, defines
a V-bundle $(T, M, \pi, F, G)$ with a pair of defining families $(\mathfrak{F}, \mathfrak{F}^{\star})$ .
This V-bundle is called the tangent vector bundle over $M$.

Let us note that the ‘fibre ’ $\pi^{-1}(p)(p\in M)$ is not always $a$ vector
space. Let $p\in\varphi(\tilde{U}),$ $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$ and choose $\tilde{p}\in\tilde{U}$ such that $\varphi(\tilde{p})=p$.
Then, $\pi^{-1}(p)\approx\{g_{\sigma}(\tilde{p});\sigma\in G_{p}\sim\}\backslash R^{m},$ $G_{\tilde{p}}$ denoting the isotropy subgroup
of $G$ at $\tilde{p}$. Now $\pi_{U}^{\sim^{-1}}(\tilde{p})=\tilde{p}\times R^{m}$ can be identified with $ T_{p}\sim$ (the tan-
gent space to $\tilde{U}$ at $\tilde{p}$) by the correspondence

$\tilde{p}\times\left(\begin{array}{l}x^{1}\\|\\x^{m}\end{array}\right)\leftrightarrow X=\sum_{i}x^{i}\frac{\partial}{\partial u^{i}}$ .

Then, denoting by $T_{\tilde{p}^{p}}^{G\sim}$ the linear subspace of $ T_{p}\sim$ formed of all $G_{\tilde{p}^{-}}$

invariant vectors ( $i$ . $e$ . vectors invariant under $g_{\sigma}(\tilde{p})(\sigma\in G_{\tilde{p}})$ ), we see
that $\pi^{-1}(p)$ contains a vector space $T_{p}=\varphi^{\star}(T_{\tilde{p}^{P}}^{G\sim})$ , which is independent
of the choice of $\tilde{U}$ and $\tilde{p}$. An element of $T_{p}$ is called a tangent
vector to $M$ at $p$.

A cross section $\mathfrak{X}$ of the V-bundle $T$ is called a (contravariant)
vector field over $M$. In the above notations, $\mathfrak{X}_{U}^{\sim}$ being a G-invariant
cross-section of $\tilde{U}^{\star}=\tilde{U}\times F(i$ . $e$ . a G-invariant vector field over $\tilde{U}$ in
the usual sense), we have $\mathfrak{X}_{U}\sim(\tilde{p})\in T_{\tilde{p}^{G_{p}^{\sim}}}$ and so $\mathfrak{X}(p)\in T_{p}$ . Thus $\mathfrak{X}(p)$

being a tangent vector at $p$ for any $p\in M$, the set of all vector
fields over $M$ forms a vector space.

More generally we can construct an $(r, s)$ tensor bundle over $M$

by means of the system $\{g_{\lambda}\}$ :
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$ g_{\lambda}(\tilde{p})=(\frac{\partial u^{\prime i}}{\partial u^{j}})\times\cdots\times(\frac{\partial u^{j}}{\partial u^{i}})\times\cdots$

$s$ $\gamma$

$\times$ denoting the Kronecker product of matrices. (In this case, $F=$

$R^{m(r+s)}$ , and $G=GL(m, R)$ operating on $F$ as an $(r, s)$-tensor represen-
tation.) We can also consider skew-symmetric or symmetric tensor
bundles over $M$.

In particular, consider the skew-symmetric $(h, 0)$-tensor bundle
over $M$ As in the case of the tangent vector bundle, $\pi^{-1}(p)(p\in M)$

contains a vector space $D_{p}^{h}$ , which is isomorphic to the space of $G_{\tilde{p}^{-}}$

invariant skew-symmetric $(h, 0)$ tensors at $\tilde{p}(\varphi(\tilde{p})=p)$ . $D_{p}^{1}$ can be

regarded as a dual space of $T_{p}$ . It should be noted that $\sum_{h=0}^{m}D_{p}^{h}$ is

not always an exterior algebra over $D_{p}^{1}$ . A cross section $\omega$ of $D^{h}$

is called a differential form of degree $h$ (or briefiy h-form) on $M$.
Since $\omega(p)\in D_{p}^{h}$ for any $p\in M$, the set of all h-forms over $M$ forms
a vector space. By definition, to give an h-form $\omega$ on $M$ is to give
a (G-invariant) h-form $\omega_{U}^{\sim}$ on each $\tilde{U}(\{\tilde{U}, G, \varphi\}\in \mathfrak{F})$ such that it holds
$\omega_{U}^{\sim=}\omega_{U}^{\sim},$

$\circ\lambda$ for any injection $\lambda:\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ . Using these
‘ local expressions ‘, we can define the operations $\wedge$ and $d$ just as in
the case of ordinary manifold. Also if $h:M\rightarrow M^{\prime}$ is a V-manifold
map we can define a form to’ $\circ h$ on $M$ for any form $\omega^{\prime}$ on $M^{\prime}$ .

In case $M$ is orientable, $i$ . $e$ . in case we can choose the coordinate

systems $\{u^{1},\cdots, u^{m}\}$ such that we have $\det(\frac{\partial u^{\prime i}\circ\lambda}{\partial u^{j}})>0$ for any injec-

tion $\lambda$ , we can define the integral $\int_{M}\omega$ of an n-form $\omega$ as follows. If

the carrier of $\omega$ ( $i$ . $e$ . the closure of $\{p;p\in M,$ $\omega(p)\neq 0\}$ ) is contained
in an $\mathfrak{F}$-uniformized open set $U=\varphi(\tilde{U})$ , we put

(3) $\int_{M}\omega=\frac{1}{N_{G}}|_{U}\sim\omega_{U}^{\sim}$ ,

$N_{G}$ denoting the order of $G$. In general, assume that there is a
locally finite family of $C^{\infty}$-functions $\{f_{i}\}$ such that the carrier of $f_{i}$

is contained in an $\mathfrak{F}$-uniformized open set $V_{i}$ and that $\sum_{i}f_{i}=1$ on

the carrier of to. Then we define the integral of $\omega$ by

$\int_{M}\omega=\sum_{i}\int_{M}f_{i}\omega$ ,
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if the summation on the right side converges absolutely for any
such ‘ partition of unity ’

$\{f_{i}\}$ . We can prove easily that this defini-
tion does not depend on the choice of $\{f_{i}\}$ .

Finally let $P$ be the principal V-bundle associated with T. $(i$ . $e$ .
a V-bundle with $F=G=GL(m, R),$ $g_{\lambda}(p)=(\frac{\partial u^{;\iota}\circ\lambda}{\partial u^{j}})$ . ) In the same

notations as above, $(\tilde{p}, (x_{j}^{i}))\in\tilde{U}\times GL(m, R)$ is in one-to-one corre-
spondence with a ‘frame ’ ( $i$ . $e$ . a base of the tangent space) $(X_{1},\cdots$ ,

$X_{m})$ at $\tilde{p}$ by the relation $X_{j}=\sum_{i}x_{j}^{i}\frac{\partial}{\partial u^{t}}$ . Hence $P$ is called a frame

bundle over $M$. Since $G^{\star}$ has no fixed point in $\tilde{U}^{\star}=\tilde{U}\times GL(m, R)$ ,
$P$ becomes a $C^{\infty}$-manifold in the ordinary sense.

\S 2. Riemannian geometry on a $V$-manifold.

1. Riemannian metric on a V-manifold. Let $(M, \mathfrak{F})$ be a V-
manifold with a Riemannian metric $g$. By definition, to give a
Riemannian metric $g$ on $M$ is to give a Riemannian metric $g_{U}^{\sim}$ on
each $\tilde{U}(\{\tilde{U}, G, \varphi\}\in \mathfrak{F})$ such that for any injection $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}$ ,
$G^{\prime},$ $\varphi^{\prime}$ } we have

$g_{U}\sim(\tilde{\mathfrak{X}},\tilde{\mathfrak{Y}})=g_{U}\sim,$ $(\lambda(\tilde{\mathfrak{X}}), \lambda(\tilde{\mathfrak{Y}}))$ ,

$\tilde{\mathfrak{X}},\tilde{\mathfrak{Y}}$ being arbitrary vector fields on $\tilde{U}$ and $\lambda(\tilde{\mathfrak{X}}),$ $\lambda(\tilde{\mathfrak{Y}})$ the correspond-
ing vector fields on $\lambda(\tilde{U})\subset\tilde{U}^{\prime}$ . (In particular, each $g_{U}^{\sim}$ is G-invariant.)

By means of the Riemannian metric $g$ we can define the unit
tangent vector bundle $T_{0}$ and the orthonormal frame bundle $P_{0}$ over $M$

(by the ‘ reduction ‘ of the structure group from $GL(m, R)$ to $0(m)$

(group of all orthogonal matrices of degree $m$)). For instance, $T_{0}$

is defined as follows. For each $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$ let $\tilde{U}^{\star}=T_{0}(\tilde{U})$ be the
unit tangent vector bundle (in the usual sense) over $\tilde{U}$ (with $F=$

$S^{m-1},$ $G=O(m));T_{0}(\tilde{U})$ can be considered as a subset of $T(\tilde{U})$ (the
tangent vector bundle over $\tilde{U}$ ). For eacll injection $\lambda;\{\tilde{U}, G, \varphi\}\rightarrow$

$\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ , let $\lambda^{\star}$ be the corresponding bundle map $\tilde{U}^{\star}\rightarrow\tilde{U}^{\star\prime}$ . Then
defining $\varphi^{\star}$ as a restriction to $T_{0}(\tilde{U})$ of the corresponding map
$T(\tilde{U})\rightarrow T$ and putting $T_{0}=U\varphi^{\star}(\tilde{U}^{\star})$ , we obtain a V-manifold $T_{0}$ with
a defining family $\mathfrak{F}^{\star}=\{\{\tilde{U}^{\star}, G^{\star}, \varphi^{\star}\}\},$ $(T_{0}, \mathfrak{F}^{\star})$ has clearly a structure
of V-bundle with $F=S^{m-}$ , $G=O(m)$ over $(M, \mathfrak{F})$ in the modified sense
as stated in Remark at the end of \S 1,4.
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2. Basic forms, connection forms and curvature forms. Let
$\{\tilde{U}, G, \varphi\}\in \mathfrak{F},\tilde{p}\in\tilde{U}$ and $(X_{1},\cdots, X_{m})$ be an orthonormal frame at $\tilde{p}$

( $i$ . $e$ . a base of $T_{\tilde{p}}$ such that $g_{U}\sim(X_{i},$ $X_{j})=\delta_{ij}$). Let $\{u^{1},\cdots, u^{m}\}$ be a

coordinate system in $\tilde{U}$ and put $X_{j}=\sum_{i}x_{j}^{i}\frac{\partial}{\partial u^{i}}$ , $(X_{j}^{i})=(x_{j}^{l})^{-1}$ . Then the

basic forms over $\tilde{U}$ are defined by

$\theta_{U}^{\sim^{i}}=\sum_{j}X_{j}^{i}du^{j}$
$(1\leqq i\leqq m)$ .

They are l-forms on $P_{0}(\tilde{U})$ and the above formula is considered as
giving their expression at $p^{\star}=t\tilde{p};X_{1},\cdots,$ $X_{m}$). (If we consider them
as covariant vectors at $\tilde{p},$ $(\theta^{1},\cdots, \theta^{m})$ is nothing other than a dual
base of $(X_{1},\cdots, X_{m}).)$

If $\theta_{U}^{\sim^{i}},$ $\theta_{U}^{\sim_{/}^{i}}$ are basic forms over $\tilde{U},\tilde{U}^{\prime}$ , respectively and if $\lambda$ is
an injection $\{\tilde{U}, G, \varphi\}\rightarrow\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\}$ , then we have $\theta_{U}^{\sim^{i}}=\theta_{U}^{\sim},$

$\circ\lambda^{\star}$ . For let
$\tilde{p}^{\star}=(\tilde{p};X_{1},\cdots, X_{m})\in P_{0}(\tilde{U}),$ $\lambda^{\star}(\tilde{p}^{\star})=(\lambda(\tilde{p});\lambda(X_{1})\cdots, \lambda(X_{m})),$ $\{u^{\prime i}\}$ be a co-
ordinate system in $\tilde{U}^{\prime}$ and $X_{j}^{\prime}=\sum_{i}x_{j}^{;i}\frac{\partial}{\partial u^{i}}$ , $(X_{j}^{;\iota})=(x_{j}^{Ji})^{-1}$ . Then

$\theta_{U}^{\sim^{i},}$ at $\lambda^{\star}(\tilde{p}^{\star})=\sum_{j}X_{j}^{Ji}du^{;j}=\sum_{j,k}X_{j}^{\prime i}\frac{\partial u^{\prime j}}{\partial u^{k}}du^{k}$

$=\sum_{j}X_{J}^{i}du^{j}=\theta_{U}^{\sim^{i}}$ at $\tilde{p}*$

This proves our assertion. (It follows, in particular, that $\theta_{U}^{\sim^{i}}(1\leqq$

$i\leqq m)$ are $G^{\star}$ -invariant.) Hence the systems $\{\theta_{U}^{\sim^{i}}\}(\{\tilde{U}, G, \varphi\}\in \mathfrak{F})$ define
l-forms $\theta^{\iota}$ on $P_{0}$ , which we call the basic forms over $M$.

Quite similarly connectim forms $\omega_{ij}$
$(1\leqq t, j\leqq m)$ over $M$ are

defined by those $\omega_{ijU}\sim$ over $\tilde{U}$. They are l-forms on $P_{0}$ with the
following characterizing properties:

$d\theta^{i}=\sum_{j}\omega_{ij}\wedge\theta^{j}$
, $\omega_{ij}=-\omega_{ji}$

and have the local expressions as follows:

(4) $\omega_{ijU}\sim=-\sum_{k}X_{k}^{i}dx_{j}^{k}-\sum_{k,l,h}X_{k}^{i}\Gamma_{lh}^{k}du^{\iota}x_{j}^{h}$ .
Also curvature forms $\Omega_{ij}$ are defined by the ‘ structure equation ’ :

$d\omega_{ij}=\sum_{k}\omega_{ik}\wedge\omega_{kj}+\Omega_{ij}$
$(1\leqq i, j\leqq m)$

and have local expressions as follows:
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{5) $\Omega\iota JU\sim=-\frac{1}{2}\sum_{p,q.k,l}x_{i}^{p}x_{j}^{q}R_{pqkl}du^{k}\wedge du^{\iota}$ .

As is well-known, we have the following relations

$\sum_{f}\Omega_{ij}\wedge\theta^{j}=0$
,

$d\Omega_{ij}=\sum_{k}\omega_{\iota k}\wedge\Omega_{kj}-\sum_{k}I2_{ik}\wedge\omega_{kj}$ .
Denoting by $R_{A}$ the ‘ right translation ’ of $P_{0}$ by $A=(a_{ij})\in O(m)$

and putting $A^{-1}=(A_{ij})$ , we have easily

$\theta^{i}\circ R_{4}=\sum_{j}A_{ij}\theta^{j},$ $\omega_{ij}\circ R_{A}=\sum_{k,l}A_{ik}A_{jl}\omega_{kl}$ ,

$\Omega_{ij}\circ R_{A}=\sum_{k,l}A_{ik}A_{jl}\Omega_{kl}$ .

3. Gaussian curvature. Now let $m$ be even $=2p$. We put

(6) $\Omega=\frac{(-1)}{2^{2p}p!\pi^{p}}\sum_{(j_{1,\prime}t_{m})}\epsilon^{i_{1}\cdots i_{m}}\Omega_{i_{1}i_{2}}\wedge\cdots\wedge\Omega_{i_{m-1}i_{m}}$ ,

$(i_{1},\cdots, i_{m})$ running over all permutations of $($ 1, $\cdots$ , $m)$ and $\epsilon^{i_{1}\cdots i_{m}}$ denoting
the sign of $(i_{1},\cdots, i_{m})$ . (In case $m$ is odd, we put simply $I2=0.$ )
Clearly $\Omega$ is an m-form on $P_{0}$ invariant under the ‘right trans-
lations ‘ of $SO(m)$ (group of all orthogonal matrices of the deter-
minant 1). Hence $\Omega$ can be considered as an m-form on $M$, if $M$ is
orientable (and one of its orientations is fixed), and as an m-form
on the orientable covering of $M(i$ . $e$ . an m-form on $M$ of the 2nd
kind in the sense of de Rham), if $M$ is not orientable.

Now, assuming for simplicity $M$ to be orientable, we have

(7) $\Omega=\frac{2}{O_{m}}Kdw$ .
where

$O_{m}=\frac{2\pi^{\frac{m+1}{2}}}{\Gamma(\frac{m+1}{2})}=\frac{2^{2p+1}p!\pi^{p}}{(2p)!}$
(volume of $m$-dimensional sphere $S^{m}$),

$K=\frac{1}{2^{p}(2p)!g}\sum,\epsilon^{i\cdots i_{m}}\epsilon^{k_{1}\cdots k_{m}}R_{?_{1}i_{2}k_{1}k_{2}}\cdots R_{i_{m-1^{i}m^{k}m-1^{k}m}}(i\cdot.\cdot.\cdot.i_{k})_{)}(k_{1\prime\prime}^{1,m_{m}}$

(Gaussian curvature of $M$),
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$dw=\sqrt{g}du^{1}\cdots du^{m}$ (volume element of $M$) ,
$(u^{1},\cdots, u^{m}),$ $(X_{1}X_{m})$ being taken to be concordant with the (fixed)

orientation of $\tilde{U}$ and $g$ ( $\frac{\partial}{\partial u^{i}}$ , $\frac{\partial}{\partial u^{j}})=g_{ij},$ $g=\det(g_{ij})$ . For

$\sum\epsilon^{i_{1}\cdots i_{m}}\Omega_{i_{1}i_{2}}\wedge\cdots\wedge\Omega_{i_{m-1^{i}m}}$

$=(-\frac{1}{2})^{p}\sum\epsilon^{i_{1}\cdots t_{m}}x_{i_{1}^{p_{1}}}\cdots x_{i_{m}}^{p_{m}}R_{p_{1}t_{2}^{k_{1}k_{2}}},\cdots R_{p_{m-1}p_{m}k_{m-1}k_{m}}du^{k_{1}}\cdots du^{k_{m}}$

$=(-\frac{1}{2})^{p}\det(x_{j}^{i})\sum\epsilon^{p_{1}\cdots p_{m}}\epsilon^{k_{1}\cdots k_{m}}R_{p_{1}p_{2}k_{1}k_{2}}\cdots R_{p_{m}-1\mathcal{D}m^{k}m-1^{k}m}du^{1}\cdots du^{m}$

$=\frac{(-1)^{p}}{2^{p}g}\sum\epsilon^{p_{1}\cdots p_{m}}\epsilon^{k_{1}\cdots k_{m}}R_{p_{1}p_{?}k_{1}k_{2}}\cdots R_{p_{m}-1\mathcal{D}m^{k}m-1^{k}m}dw$ ,

since $\det(x_{j}^{i})=\sqrt{g}^{-1}$ . $\sum\epsilon^{i_{1}\cdots i_{m}}\Omega_{i_{1}i_{\lambda}}\wedge\cdots\wedge\Omega_{i_{m-1}i_{m}}$ is thus considered as
an m-form on $M$ (7) follows now immediately.

\S 3. Chern’s proof of Gauss-Bonnet formula.

1. Auxiliary forms on $P_{0^{\prime}}$ . In the following we assume, for
the sake of simplicity, that $M$ is orientable. Then the orthonormal
frame bundle $P_{0}$ splits into two parts $P_{0^{\prime}},$ $P_{0^{\prime\prime}}$ , which are principal
V-bundles with $G=SO(m)$ . If we fix an orientation of $M$ once for
all, we shall be concerned exclusively with one of them, say $P_{0^{\prime}}$ .

Together with the projection $(\tilde{p};X_{1},\cdots, X_{m})\in P_{0^{\prime}}(\tilde{U})\rightarrow(\tilde{p};X_{m})\in$

$T_{0}(\tilde{U}),$
$P_{0^{\prime}}$ can be also considered as a principal fibre bundle with

$G=SO(m-1)$ (subgroup of $SO(m)$ leaving fixed $X_{m}$ ) over $T_{0}$ . Any
form on $P_{0^{\prime}}$ invariant under the ‘ right translations ’ of $SO(m-1)$

can be considered as a form on $T_{0}$ .
Following an idea of Chern [3], consider the following forms

on $P_{0^{\prime}}$ :

$\Phi_{k}=.\sum\epsilon^{i_{1}\cdots i_{m-1}}\Omega_{i_{1}i_{2}}\cdots\Omega_{i_{2k-1}i_{2k}}\omega_{i_{2k+1}m}\cdots\omega_{t_{m-1}m}(i_{1’\prime}i_{m-1})(0\leqq k\leqq[\frac{m-1}{2}])$ ,

(8)
$\Psi_{k}=2(k1\sum e^{i_{1}\cdots i_{m-1}}\Omega_{ii_{2}}\cdots\Omega_{i_{2k-1}i_{2k}}\Omega_{i_{2k+1}m}\omega_{i_{2k+2}m}\cdots\omega_{i_{m-1}m}$

$(0\leqq k\leqq[\frac{m}{2}]-1)$ .
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Being all $SO(m-1)$-invariant forms on $P_{0^{\prime}}$ , they are considered as
($(m-1)-,$ m-) forms on $T_{c}$. We have

$d\Phi_{k}=k\sum\epsilon^{i_{1}\cdots i_{m-1}}d\Omega_{i_{1}i_{2}}\Omega_{i_{8}i}\cdots\Omega_{i_{2k-1}i_{2k}}\omega_{\iota_{2k+1^{m}}}\cdots\omega_{i_{m-1}m}$

$+(m-2k-1)\sum\epsilon^{i_{1}\cdots i_{m-1}}\Omega_{i_{1}i_{2}}\cdots\Omega_{i_{2k-1}i_{2k}}d\omega_{\iota_{2k+1^{m}}}\cdots\omega_{i_{m-1}m}$

$=\Psi_{k-1}+\frac{m-2k-1}{2k+2}\Psi_{k}$ $(\Psi_{-1}=0)$ .

It follows that

$\Psi_{k}=d\Theta_{k}$ , $(0\leqq k\leqq[\frac{m}{2}]-1)$

$\Theta_{k}=\sum_{\lambda=0}^{k}(-1)^{k-\lambda}\frac{(2k+1).\cdot.\cdot.\cdot(2\lambda+2)}{(m-2\lambda-1)(m-2k-1)}\Phi_{\lambda}$ .

If $m$ is even $(=2p)$ , we have $d\Theta_{p-1}=\Psi_{p-1}$ and

$\Psi_{p-1}=m\sum\epsilon^{i_{1}\cdots t_{m-1}}\Omega_{i_{1}i_{2}}\cdots\Omega_{i_{m-1}m}$

$=\sum\epsilon^{i_{1}\cdots i_{m}}\Phi_{i_{1}i_{2}}\cdots I2_{i_{m-1}t_{m}}=(-1)^{p}2^{2p}p!\pi^{p}\Omega$ .
If $m$ is odd $(=2q+1)$ , we have $d\Theta_{q-1}=\Psi_{q-1}$ and also $d\Phi_{q}=\Psi_{q- 1}$ . Hence

$ d(\Theta_{q-1}-\Phi_{q})=0=\Omega$ .
These results can be unified as follows:

$-d\Pi=\Omega$ ,

(9)
$\Pi=\frac{(-1)^{m}}{2^{m}\pi^{\frac{m-1}{2}}}\sum_{\lambda\Rightarrow 0}^{\underline{m}}\frac{(-1)^{\lambda}}{\lambda!\Gamma(\frac{m+1}{2}-\lambda)}\Phi_{\lambda}[\frac{-1}{2}]$

.

2. Index of singularity of a vector field. Let $\mathfrak{X}$ be a unit
vector field over $M$ with singularities at $p_{1},\cdots,p_{s},$ $i$ . $e$ . a cross section
of $T_{0}$ on $M-\{p_{1},\cdots,p_{s}\}$ , Let $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}\tilde{p}\in\tilde{U}$ be such that $\varphi(\tilde{U})\ni$

$p_{i},$ $\varphi(\tilde{p})=p_{i}$ and let $\mathfrak{X}_{U}^{\sim}$ be the corresponding unit vector field over
$\tilde{U}$. Then $\mathfrak{X}_{U}^{\sim}$ has a singularity at $\tilde{p}$. Let $I_{\tilde{p}}(\mathfrak{X}_{U}^{\sim})$ be the index of
singularity of $\mathfrak{X}_{U}^{\sim}$ at $\tilde{p}$ in the usual sense and put
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(10)
$I_{p_{\dot{t}}}(\mathfrak{X})=\frac{1}{N_{G_{p}^{\sim}}}I_{\tilde{p}}(\mathfrak{X}_{U}^{\sim})$

,

$N_{G_{\tilde{p}}}$ denoting the order of the isotropy subgroup $ G_{p}\sim$ of $G$ at $\tilde{p}$. It
is clear that this definition of $I_{p_{i}}(\mathfrak{X})$ does not depend on the choice
of $\tilde{U}$ and $\tilde{p}$ and is uniquely determined by ee and $p_{i}$ . We call $I_{p_{i}}(\mathfrak{X})$

the index of singularity of $\mathfrak{X}$ at $p_{i}$ . (It should be noted that $I_{p_{i}}(\mathfrak{X})$ is
not necessarily an integer.)

Now let $S_{i}$ be a sufficiently small geodesic sphere around $p_{i}$ and
consider it to be oriented by the induced orientation with respect
to the outer normal vector field on it. Then we have the following
“ integral formula of Kronecker ‘’ :

(11) $\frac{1}{O_{m-1}}\int_{s_{i}}(\omega_{1m}\cdots\omega_{m-1m})\circ \mathfrak{X}=I_{p_{i}}(\mathfrak{X})$ .

For, $\{\tilde{U}, G, \varphi\},\tilde{p}$ being as above, we have by (3), (10) and by the
integral formula (11) in the ordinary case

the left side of (11) $=\frac{1}{N_{G_{\tilde{p}}}}\frac{1}{O_{m-1}}\int_{s}\sim_{i}(\sim\cdot\cdot\sim)\circ \mathfrak{X}_{U}^{\sim}$

$=\frac{1}{N_{G\sim p}}I_{\tilde{p}}(\mathfrak{X}_{U}^{\sim})=I_{p_{i}}(\mathfrak{X})$
,

$\tilde{S}_{i}$ being the corresponding geodesic sphere around $\tilde{p}$.

3. Gauss-Bonnet formula for a compact V-manifold. Let $M$

be a compact, orientable, Riemannian $V$-manifold of dimension $m$.
We shall consider the integral $\int_{M}\Omega$ . For that purpose, let ac be an

arbitrary unit vector field on $M$ with singularities at $p_{1},\cdots,p_{s}^{7)}$ and
K. be geodesic balls around $p_{i}$ with sufficiently small radius $\rho$ . (We
take $\rho$ so small that $ K_{i}\cap K_{j}=\phi$ for $i\neq j.$ ) Then we have

$\int_{M}\Omega=\lim_{\rho\rightarrow 0}\int_{M-\bigcup_{i}K_{i}}\Omega$
,

and by (9) and ‘ Stokes formula ’

7) The existence of such a vector field can be proved easily.
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$\int_{M-\cup K_{i}}\Omega=-\int_{M-\cup 1\tau_{i}}d(\Pi\circ \mathfrak{X})$

$=\sum_{i}\int_{s_{i}}\Pi\circ ae$

$S_{i}$ being the boundary of $K_{i}$ oriented as above. Now since $\Phi_{k}$ is of
$2k$-th degree with respect to $du^{i}$ as is seen from (4), (5), (8), we have

$\int_{s_{i}}\Phi_{k}\circ \mathfrak{X}=O(\rho^{2k})$

and so

$\lim_{\rho\rightarrow 0}\int_{s_{i}}\Phi_{k}\circ \mathfrak{X}=0$ $(1\leqq k\leqq[\frac{m-1}{2}])$ .
On the other hand, we have by (11)

$\int_{s_{i}}\Phi_{0}\circ \mathfrak{X}=(m-1)!\int_{s_{i}}(\omega_{1m}\cdots\omega_{m-1m})\circ \mathfrak{X}$

$=(m-1)$ ! $O_{m-1}I_{p_{i}}(\mathfrak{X})$ .
From these we get the following fundamental formula of Chern

(12) $\int_{M}\Omega=(-1)^{m}\sum_{i=1}^{s}I_{p_{i}}(\mathfrak{X})$ .
The left side of this formula being independent of the choice of $\mathfrak{X}$

and the right side being independent of the Riemannian metric $g$ ,
we see that this number is determined only by the V-manifold
structure of $M$ We shall denote this number by $\chi_{V}(M)$ .

Let us now assume that $M$ has a triangulation $M=U|s_{k}|(|s_{k}|$

denoting the carrier of the singular simplex $s_{k}$ ) such that all the
irreducible components of $S$ (subvariety of all singular points) be-
come subcomplexes of $\{s_{k}\}^{8)}$ Then considering a canonical vector
field $\mathfrak{X}_{0}$ attached to this triangulation (the vector field of Stiefel-
Whitney) with singularities at each barycenters $p_{k}$ of $s_{k}$ , we have

$\chi_{\nabla}(M)=\sum_{k}I_{p_{k}}(\mathfrak{X}_{0})=\sum_{k}(-1)^{\dim s_{k}}\frac{1}{N_{s_{k}}}$ ,

the summation being taken over all simplexes of this triangulation

8) It is very plausible that every $C^{\infty}- V$-manifolds allow such a triangulation,
though no proof is yet obtained.
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and $N_{s_{k}}$ denoting the order of the isotropy group of $s_{k}(i$ . $e$ . that
of the isotropy group of an inner point $p$ of $|s_{k}|$ , which is, by our
assumption, independent of the choice of $p$). Thus, $\chi_{V}(M)$ being an
analogue of the Euler characteristic, we call it the Euler characteristic
of $M$ as a V-manifold. It should be noted that generally $\chi_{V}(M)$ does
not coincide with the ordinary Euler characteristic $\chi(M)$ and that
$\chi_{V}(M)$ is not necessarily an integer.

We have thus obtained the following results:
THEOREM 2. Let $M$ be an orientable, compact, Riemannian V-manifold

of even dimensim $m$. Then we have

(13) $\frac{2}{O_{m}}\int_{M}Kdw=\chi_{V}(M)$

Let us remark that in the preceding considerations the assumption
of the orientability of $M$ is inessential. Namely considering $dw$ as
an n-form on $M$ of the 2nd kind (in the sense of de Rham). Theorem
2 holds also for non-orientable $M$ We remark also that a $(C^{\infty_{-}})$ V-
manifold has always a $(C^{\infty_{-}})$ Riemannian metric just as an ordinary
$C^{\infty}$-manifold has one. We have therefore

THEOREM 3. Let $M$ be a compact V-manifold. Then for any (unit)
vector field $\mathfrak{X}$ with singularities at $p_{1},\ldots,p_{s}$ , we have

$\sum I_{p_{i}}(\mathfrak{X})=\chi_{V}(M)$

THEOREM 4. If $M$ is a compact V-manifold of odd dimensim, $we$

have
$\chi_{V}(M)=0$ .

Theorem 2, 3 generalize the theorems of Allendoerfer-Weil [1]
and of Hopf [4], respectively, to the case of V-manifold. Theorem
4 is trivial (by the duality of Poincar\’e) in the case of ordinary
manifold.

4. The case of V-manifold with boundaries. We define the
notion of V-manifold with boundaries as follows. Let $(M, \mathfrak{F})$ be a
V-manifold. We assume that for each $\{\tilde{U}, G, \varphi\}\in \mathfrak{F}$ there is given
a closed subset $\tilde{U}_{0}$ of $\tilde{U}$ such that $\tilde{U}_{0}$ is the closure of its interior
and that the boundary $b\tilde{U}_{0}$ of $\tilde{U}_{0}$ is a part of a finite union of
$C^{\infty}$-subvarieties of dimension $m-1$ of $\tilde{U}$. We assume furthermore
that $U\varphi(b\tilde{U}_{0})$ becomes a part of a V-subvariety $B$ of dimension
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$m-1$ of $M$. Then we call $M_{0}=U\varphi(\tilde{U}_{0})$ a V-manifold with boundaries.
The boundary $bM_{0}$ of $M_{0}$ is clearly a part of $B$.

Now let $M_{0}$ be an orientable compact Riemannian V-manifold
with boundaries. Then, considering (unit) vector fields ee on $M_{0}$

with finite number of singularities in the interior of $M_{0}$ coinciding
with the inner (unit) normal vector field $\mathfrak{R}$ on $bM_{0}$, we can prove
just as in 3 the following

THEOREM 5. Let $M_{0}$ be an orientabk, compact Riemannian V-mani-
fold with boundaries and let $\mathfrak{R}$ be the inner unit normal vector field $m$

$bM_{0}$. Then we have

(14) $\int_{M_{0}}\Omega=\chi_{V}^{\prime}(M_{0})-\int_{bM_{9}}\Pi\circ \mathfrak{R}$

$bM_{0}$ being oriented by the induced orientation with respect to the outer
normal vector field $mbM_{0}$ .

$\chi_{V}^{\prime}(M_{0})$ is $a$ rational number depending only on the $V$-manifold
structure of $M_{0}$ and may be called the inner Euler characteristic of
$M_{0}$ as a V-manifold with boundaries. In case $M_{0}$ has a triangulation
$M=U|s_{k}|$ such that all irreducible components of $S$ and of $bM_{0}$

become subcomplexes of $\{s_{k}\},$ $\chi_{V}^{\prime}(M_{0})$ is given as follows

$\chi_{V}^{\prime}(M_{0})=\sum_{k}(-1)^{\dim s_{k\frac{1}{N_{s_{k}}}}}$ ,

the summation being taken over all simplexes of this triangulation
which are in the interior of $M_{0}$.

\S 4. Application to the Siegel space $\mathfrak{B}_{n}$ .
1. Some results of Siegel. Let $\mathfrak{H}_{n}$ be the generalized upper

half-plane of degree $n$, $i$ . $e$ . the space of all complex symmetric
matrices $Z=X+iY$ of degree $n$ with imaginary parts $Y>0$, and let
$M_{n}$ be Siegel’s modular group, i. e. the group of all symplectic

transformations $\sigma=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ of degree $2n$ with integral coefficients,

operating on $\mathfrak{H}_{n}$ in the following form

$\sigma(Z)=(AZ+B)(CZ+D)^{-1}$ .
Then, $M_{n}$ being a properly discontinuous group of analytic automor-
phisms of $\mathfrak{H}_{n}$ , the quotient space $\mathfrak{B}_{n}=M_{n}\backslash \mathfrak{H}_{n}$ becomes a complex
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analytic (hence orientable) $V$-manifold with respect to the family
$\mathfrak{F}=\{\{\tilde{U}, G, \varphi\}\}$ , where $\tilde{U}$ is any connected open neighbourhood of any

$\tilde{p}\in \mathfrak{H}_{n}$ such that $\sigma(\tilde{U})=\tilde{U}$ for $\sigma$ with $\sigma(\tilde{p})=\tilde{p}$ and $\sigma(\tilde{U})\cap\tilde{U}=\phi$ other-
wise and $\varphi$ the restriction of the canonical map $\mathfrak{H}_{n}\rightarrow M_{n}\backslash \mathfrak{H}_{n}$ to $\tilde{U}$.
$\mathfrak{V}_{n}$ is of real dimension $m=n(n+l)=2p$.

An invariant Riemannian metric of $\mathfrak{H}_{n}$ (the symplectic metric)
is given by

$ds^{2}=Tr(Y^{-}dZY^{-1}dZ)$ .
Concerning this metric Siegel [8] obtained the following results:

A) The volume element is given by

$ dw=2^{p-n}dv=2^{p-n}\prod_{=J}dx_{ij}dY_{ij}\iota\leq$

where $X=(x_{ij}),$ $Y^{-1}=(Y_{ij})$ . Calculating the Gaussian curvature $K$,
we have

$\Omega=\frac{2}{O_{m}}Kdw=(-1)^{p}2^{\frac{a}{n^{2}p}dv}n_{!\overline{\pi^{p}}}$

$a_{n}$ denoting a certain combinatorial number depending only on $n$.
( $\frac{a_{n}}{p!}$ is an $integer.$ ) (See Siegel [9], III, Theorem 5)

B) The volume of $\mathfrak{V}_{n}=M_{n}\backslash \mathfrak{H}_{n}$ is finite and is given as follows.

$\int_{\mathfrak{V}_{\eta\eta}}dv=2\prod_{k=1}^{n}\{(k-1) ! \pi^{-k}\zeta(2k)\}$

$=2^{n^{2}+1}\pi^{p}\prod_{k=1}^{n}\{\frac{(k-1)!}{(2k)!}B_{2k}\}$ .
$B_{2^{k}}$ denoting the absolute value of the k-th Bernoulli number. (See
Siegel [9], VIII, Theorem 11)

Combining A), B), we obtain

(15) $\int_{\mathfrak{V}_{n}}\Omega=(-1)^{p}2\frac{a_{n}}{p!}\prod_{k=1}^{n}\dagger\frac{(k-1)!}{(2k)!}B_{2k}\}$ .

We shall prove in the next paragraph that $\int_{\mathfrak{V}_{n}}\Omega$ expresses the Euler

characteristic $\chi_{n}$ of $\mathfrak{V}_{n}$ as an open V-manifold (in the sense specified
below). For some small values of $n$ we have the following numeri-
cal table.
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$\underline{\frac{a_{n}}{p!}}\chi^{n_{n}}|_{\overline{-\frac{1}{6}}}^{1}1|_{\overline{-\frac{1}{720}}}^{2}6|$

$8$

$90$

$4$

?

$1$ $\underline{a_{4}}\underline{1}$

–

$\overline{725760}$ $\overline{10}$! $\overline{13}\overline{168189440000}$

2. Gauss-Bonnet formula for $\mathfrak{V}_{n}$. Since $\mathfrak{V}_{n}=M_{n}\backslash \mathfrak{H}_{n}$ is not
compact, we can not apply directly the formula (13) to $\mathfrak{V}_{n}$. But we
can procede as follows.

Let $\mathfrak{H}(\eta)$ be the set of all $z\in \mathfrak{H}_{n}$ such that $|Y|\geqq\eta^{n}$ and put
$K_{\infty}(\eta)=M_{n}\backslash M_{n}\mathfrak{H}(\eta)$ . We shall first prove the following

LEMMA 3. $V_{n}-K_{\infty}(\eta)$ is a compact V-manifold with boundaries.
PROOF. Let $F_{n}$ be Siegel’s fundamental region of $M_{n}$ in $\mathfrak{H}_{n}$.

Then by Siegel $s$ reduction theory [8] we have for any $Z\in F_{n},$ $\sigma\in M_{n}$ ,
$|^{\alpha}s^{\sigma}(Z)|\leqq|^{\alpha}sZ|,$ $\mathfrak{J}Z$ denoting the imaginary part of $Z$. Thus $|^{\alpha_{O}}d(Z)|$

$\geqq\eta^{n}$ implies $|_{\theta}^{\alpha}Z|\geqq\eta^{n}$ . Hence $\mathfrak{H}(\eta)\subset M_{n}(F_{n}\cap \mathfrak{H}(\eta))$ . From this follows
easily that $\mathfrak{V}_{n}-K_{\infty}(\eta)$ becomes $a$ V-manifold with boundaries. It
follows also from Siegel’s reduction theory that if $Z=X+iY\in F_{n}$

then $-\frac{1}{2}\leqq x_{ij}\leqq\frac{1}{2}$ and $Y$ is reduced in the sense of Minkowski

so that, in particular, we have $y_{11}\leqq y_{22}\leqq\cdots\leqq y_{nn},$ $-\frac{y_{ti}}{2}\leqq y_{ij}\leqq\frac{y_{ii}}{2}$

and $\prod_{:}y_{ii}\leqq\frac{1}{c_{n}}|Y|$ with some $c_{n}>0$ depending only on $n$ . It holds

also $y_{11}\geqq\sqrt{3}$

$\overline{2}$

compact. It follows that $\mathfrak{V}_{n}-K_{\infty}(\eta)$ is compact, $q$ . $e$ . $d$ .
Now, applying theorem 5 to $\mathfrak{V}_{n}-K_{\infty}(\eta)$ , we have

(16) $\int_{\mathfrak{V}_{n}}\int_{-K_{\infty}(\eta)}2=\chi_{V}^{\prime}(\mathfrak{V}_{n}-K_{\infty}(\eta))-\int_{bK_{\infty}(\eta)}\Pi\circ \mathfrak{R}_{\eta}$ ,

$\mathfrak{R}_{\eta}$ denoting the outer unit normal vector field on $b\mathfrak{H}(\eta)$ . We shall
next prove that

$\lim_{\eta\rightarrow\infty}\int_{bK_{\infty}()}\prod_{\eta}\circ \mathfrak{R}_{\eta}=0$ .

For that purpose, we shall give some lemmas.
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LEMMA 4. We have

$\Pi_{0}\mathfrak{R}_{\eta}=c_{\eta}dw_{\eta}^{*}$ ,

$dw_{\eta}^{\star}$ denoting the volume element (with respect to the symplectic metric)
$mb\mathfrak{H}(\eta)=\{Z;|Y|=\eta^{n}\}$ and $c_{\eta}$ a constant depending only $ m\eta$.

PROOF. The group $\mathfrak{G}$ of all symplectic transformations of the
form

$\sigma(Z)=AZ^{t}A+B$, $|A|=1$

leaves $b\mathfrak{H}(\eta)$ invariant and operates on it transitively. Since $\Pi$ is
clearly a symplectic invariant, $\Pi\circ \mathfrak{R}_{\eta}$ is a G-invariant $(m-1)$-form
on $b\mathfrak{H}(\eta)$ and so is also $dw_{\eta}^{\star}$ . From these follows the lemma im-
mediately.

LEMMA 5. The constant $c_{\eta}$ in the preceding lemma is of the form
$c_{\eta}=c_{1}\eta^{-(m-1)}$

PROOF. Let us compare $\Pi\circ \mathfrak{R}_{\eta}$ and $dw_{\eta}^{\star}$ with $\Pi_{0}\mathfrak{R}_{1}$ and $dw_{1}^{\star}$ ,
respectively. We denote by $\tau_{\eta}$ the symplectic transformation $Z\rightarrow\eta Z$

of $\mathfrak{H}_{n}$ which transforms $b\mathfrak{H}(1)$ onto $b\mathfrak{H}(\eta)$ . Then, since $\Pi$ is a
symplectic invariant, we have $(\Pi\circ \mathfrak{R}_{\eta})\circ\tau_{\eta}=\Pi\circ \mathfrak{R}_{1}$ . On the other hand,
we have clearly $(dw_{\eta}^{\star})\circ\tau_{\eta}=\eta^{m-1}dw_{1}^{\star}$ . These prove the lemma.

LEMMA 6.

$\int_{bK_{\infty}()}\eta dw^{\star}=O(\eta^{\frac{m}{2}-1})$

PROOF. Since we have

$dw=2^{\frac{p-n}{2}}$

$\prod_{i\leqq j}dx_{ij}\cdot dw^{\prime}$
,

$dw^{\prime}$ denoting the volume element in the space of positive definite
symmetric matrices $Y$ with respect to the invariant metric $ds^{2}=$

$Tr(Y^{-1}dY)^{2}$ , it follows easily that

$dw_{\eta}^{\star}=2^{\frac{p-n}{2}}\prod_{i\leqq j}dx_{ij}\cdot dw_{\eta}^{\prime\star}$

$dw_{\eta}^{\prime\star}$ denoting the volume element in the hyperplane $\{Y;|Y|=\eta^{n}\}$

with respect to the above metric. Now from the proof of Lemma
3 we can see that $bK_{\infty}(\eta)$ is obtained from $F_{n}\cap b\mathfrak{H}(\eta)=\{Z;Z\in F_{n}$ ,
$|Y|=\eta^{n}\}$ by identifying the equivalent points on the boundary.
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Hence we have by Siegel’s reduction theory

$\int_{bK_{\infty}(\eta)}dw^{\star}=\int_{P_{n}\cap b\mathfrak{H}(\eta)}dw^{\star}$

$\leqq 2^{\frac{p-n}{2}}\prod_{i\leqq j}\int_{-\frac{1}{2}}^{\frac{1}{2}}dx_{if}\cdot\int_{|Y|_{r}=\eta^{n}}dw^{\prime\star}Y\cdot.educed$

$=(2^{\frac{p-n}{2}\int_{|Y|=1}dw_{1}^{;*})\eta^{\frac{m}{2}-1}}Y.reduced$
$q$ . $e$ . $d$ .

From Lemmas 4, 5, 6, we get

$\int_{bK_{\infty}()}\prod_{\eta}\circ \mathfrak{R}_{\eta}=O(\eta^{\frac{m}{2}})$ ,

which proves

$\lim_{\eta\rightarrow\infty}\int_{bK_{\infty}()}\prod_{\eta}\circ \mathfrak{R}_{\eta}=0$ .

On the other hand, since the subvariety $S$ of all singular points of
$\mathfrak{V}_{n}$ is a union of a finite number of irreducible subvarieties (as is
seen from the fact that $F_{n}$ is bounded by a finite number of alge-
braic $surfaces^{9)}$ ), the denominator of $\chi_{V}^{\prime}(\mathfrak{V}_{n}-K_{\infty}(\eta))$ is bounded when
$\eta\rightarrow\infty$ These facts together with (16) prove the following

THEOREM 6. $\chi_{V}^{\prime}(\mathfrak{V}_{n}-K_{\infty}(\eta))$ becomes constant for sufficiently large
$\eta$ . Denoting this number by $\chi_{n}$ , we have

(17) $\frac{2}{O_{m}}\int_{\mathfrak{V}_{n}}Kdw=\chi_{n}$ .

3. An application.

We shall now apply the above result to the study of the least
common multiple $N_{n}$ of the orders of all isotropy subgroups of
$M_{n}/\{\pm E_{2n}\}$ .

First, it is clear that $N_{n}\chi_{n}$ is an integer. This gives a lower
estimation of $N_{n}$ . An upper estimation of $N_{n}$ is given by a method
of Minkowski [6] as follows.

We denote by $M_{n}$ the ‘ homogeneous ’ Siegel’s modular group,
$i$ . $e$ . $M_{n}=Sp(2n, Z)$ , and put

9) This follows from Siegel [9], VI, Theorem 8.
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$M_{n}(l)=\{\sigma;\sigma\in M_{n}, \sigma\equiv E_{2n}(mod l)\}$ ,
$l$ being any prime number. Then
$M_{n}/M_{n}(l)\cong sp(2n, l)$ (the symplectic group of degree $2n$ over $GF(l)$).

We shall first prove the following
LEMMA 7. If $l\neq 2,$ $M.(l)$ contains no finite subgroup. If $l=2$,

any finite subgroup of $M_{n}(2)$ is conjugate in $M_{n}$ with a subgroup consist-
ing of elements of the form

$o=\left(\begin{array}{ll}A & 0\\0 & A\end{array}\right)$ , $A=\left(\begin{array}{lll}\pm 1 & & 0\\ & \ddots & \\0 & & \pm 1\end{array}\right)$ .

PROOF. The first half of this lemma is well-known (and is easy
to prove $)^{1)}$ Also it is easy to see that $M_{n}(4)$ contains no finite
subgroup. It follows that if $G$ is a finite subgroup of $M_{n}(2)$ , we
have $0^{2}=1$ for all $\sigma\in G$ (hence, in particular, $G$ is abelian). There-
fore to prove the lemma it will be enough to show that any $\sigma\in$

$M_{n}(2)$ with $\sigma^{2}=1$ is conjugate in $M_{n}$ with an element of the form
described above. Let $\sigma\in M_{n}(2),$ $\sigma^{2}=1$ and $\mathfrak{w}$ be an eigen vector of
$\sigma$ (with the eigen value $\pm 1$ ). We can take $\mathfrak{w}$ so as to be a primi-
tive integral vector. Then there exists a $\tau\in M_{n}$ with $l\mathfrak{v}$ as the first

column vector.11) Then $\tau^{-1}0\tau$ having
$\left(\begin{array}{l}\pm 1\\0\\|\\0\end{array}\right)$

as the first column vec-

tor, we have by the conditions of symplectic matrices

$\tau^{-1}0\tau=\left(\begin{array}{llll}\pm 1 & t\mathfrak{a} & b & {}^{t}b_{1}\\0 & A^{l} & b_{2} & B^{l}\\0 & 0 & \pm 1 & 0\\0 & c* & \mathfrak{d} & D^{\star}\end{array}\right)$ ,

where $0^{\star}=\left(\begin{array}{ll}A^{\star} & B^{\star}\\C^{\star} & D^{\star}\end{array}\right)\in M_{n-1}(2),$ $\sigma^{\star 2}=1$ . Hence, using the induction

on $n$ , we can find $\tau_{1}\in M_{n}$ such that

10) Cf. Minkowski [5], [6], Siegel [9], VII, Theorem 10.
11) See Siegel [9], VIII, Lemma 15.
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$\tau_{1}^{-1}\sigma\tau_{1}=\left(\begin{array}{ll}A & B\\0 & {}^{t}A^{-1}\end{array}\right)$ , $A=\left(\begin{array}{lll}\pm 1 & & \star\\ & \ddots & \\0 & & \pm 1\end{array}\right)$ .

Then from $\sigma^{2}=1$ and $\sigma\in M_{n}(2)$ , we have (in a suitable choice of $\tau_{1}$ )

$A=\left(\begin{array}{ll}E_{r} & 2P\\0 & -E_{n- r}\end{array}\right)$ , $B=\left(\begin{array}{lll}-2(Q_{1} & {}^{t}P+PQ_{2}) & 2Q_{1}\\ & 2Q_{2} & 0\end{array}\right)$

so that putting

$\tau_{2}=\left(\begin{array}{ll}S & T\\0 & {}^{t}S^{-1}\end{array}\right)$ , $S=\left(\begin{array}{ll}E_{r} & P\\0 & E_{n- r}\end{array}\right)$ , $T=\left(\begin{array}{ll}0 & Q_{2}\\-Q_{2} & 0\end{array}\right)$ ,

we obtain

$\tau_{2}\tau_{1}^{-1}\sigma\tau_{1}\tau_{2}^{-1}=\left(\begin{array}{ll}A_{1} & 0\\0 & A_{1}\end{array}\right)$ , $A=\left(\begin{array}{ll}E_{r} & 0\\0 & -E_{n- r}\end{array}\right)$ , q. e. d.

It follows that, denoting by $G$ any finite subgroup of $M_{n}$ , the
restriction of the canonical homomorphism $M_{n}\rightarrow Sp(2n, l)$ to $G$ is an
isomorphism, if $l\neq 2$, and has a kernel of the order dividing $2^{n}$ , if
$l=2$ . Hence, denoting by $\overline{N}_{n}$ the half of the greatest common
divisor of the orders of $Sp(2n, l)(l\neq 2)$ and of the $2^{n}$ times order
of $sp(2n, 2)$ , we have $N_{n}|\overline{N}_{n}$ .

Now since

the order of $Sp(2n, l)=l^{n^{2}}(l^{2n}-1)(l^{-n-2}-1)\cdots(l^{2}-1)$ ,
we have

$\overline{N}_{n}=\frac{1}{2}$ G. C. M. $\{l^{n^{2}}(l^{2n}-1)\cdots(l^{2}-1)(l\neq 2), 2^{n^{2}+n}(2^{2n}-1)\cdots(2^{2}-1)\}$ .

This number can be calculated easily by means of the following
lemma of Minkowski.

LEMMA 8 The greatest commm divisor of $(l^{2n}-1)(l^{2n-2}-1)\cdots$

$(l^{2}-1),$ $l$ being all prime numbers, is equal to

(18)
$\overline{2n|}=\prod_{l:prime}l^{i=0}\Sigma^{\infty}[\frac{2n}{J^{i}(l-1)}]$

,

$l$ running over all prime numbers and $[]$ denoting the symbol of Gauss.
It is also known that

12) See Minkowski [6].
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$\overline{2n}|=2^{2n}b_{1}b_{2}\cdots b_{n}$ ,

$b_{k}=\prod_{\iota-1|2k}l^{1+ord_{l}k}=the$ denominator of $\frac{B_{2k}}{k}$ ,

$l$ running over all prime numbers such that $l-1|2k$ and $ord_{\iota}k$ de-
noting the exponent of the highest power of $l$ dividing $k$.

Now we have

$\sum_{i=0}^{\infty}[\frac{2n}{I^{i}(l-1)}]\leqq n^{2}$

for $l\neq 2$ and also

$\sum_{i=0}^{\infty}[\frac{2n}{2^{i}}]\leqq n^{2}+n$

except for the cases $n=1,2$, for which we have

$\sum_{i=0}^{\infty}[\frac{2n}{2^{i}}]=n^{2}+n+1$ .

Hence we have

(19) $\overline{N}_{n}=\{k=1\left\{\begin{array}{lll}deno\min ator & of & \frac{B_{2k}}{k}\\deno\min ator & of & \frac{B_{2k}}{k}\end{array}\right\}$ $(n_{(n\geqq 3)}=1,2)$

We have thus proved the following
THEOREM 7. Let $N_{n}$ be the least common multiple of the orders of

the isotropy subgroups of $M_{n}/\{\pm E_{2n}\}$ . Then $N_{n}\chi_{n}$ is an integer and $N_{n}$

is a divisor of $\overline{N}_{n},$ $\chi_{n},\overline{N}_{n}$ being numbers given by (15), (19), respectively.
It follows, in particular, that $\overline{N}_{n}\chi_{n}$ is an integer. From (15),

(19), we have

$\overline{N}_{n}\chi_{n}=\pm 2^{n}\frac{a_{n}}{p!}\prod_{k=1}^{n}\dagger\frac{(k-1)!}{(2k-1)!}$ (numerator of $\frac{B_{2k}}{h}$ ) $\}$ $(n\geqq 3)$ .

(We must replace $2^{n}$ by $2^{n-1}$ for $n=1,2.$ ) This formula seems to
involve a new relationship between the numerators of the Bernoulli
numbers. For some small values of $n$ we have the following
table.
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$\frac{n}{\overline{N}_{n}}\overline{N}_{n}\chi_{n}|_{-1}\underline{\frac{1}{6}}|_{-2}\underline{\frac{2}{1440}}|_{2}\underline{\frac{3}{1451520}}|\frac{}{\frac{a_{4}}{10!}\frac{1}{18900}}\frac{4}{696729600}$

From this and the other tables we obtain finally

$N_{1}=6,$ $N_{2}=720$ or 1440, $N_{3}=725760$ or $725760\times 2$ .
REMARK. The same method can be applied, for instance, to the

case of $\mathfrak{V}_{n^{\prime}}=\Gamma_{n}\backslash P_{n}^{1},$ $P_{n}^{1}$ being the space of all positive definite sym-
metric matrices of degree $n$ with the determinant 1 and $\Gamma_{n}$ the
unimodular group (with the determinant $\pm 1$ ) operating on $P_{n}^{1}$ . But,
it is proved that the Gaussian curvature of $P_{n}‘=SL(n, R)\int SO(n)$ is
$=0$ for $n>2^{13)}$ In fact, in virtue of the invariance of the alge-
braic relations, it is sufficient to prove this in replacing $SL(n, R)$

by any other real form of $SL(n, C)$ , say by $SU(n)$ , and for this
latter case the Gauss-Bonnet theorem (for compact Riemannian
manifold) can be applied. On the other hand the Euler charac-
teristic of $SU(n)/SO(n)$ can be calculated and proved to be $=0$ for
$n>2$ . Hence application of the Gauss-Bonnet theorem to $\mathfrak{V}_{n^{\prime}}$ gives
us nothing new. On the other hand, the least common multiple of
the orders of the isotropy subgroups of $\Gamma_{n}/\{\pm E_{n}\}$ has been already
calculated by Minkowski [6] with the result that it is equal to
$\frac{1}{2}\overline{n|}$ .

Added In Proof. The author was informed recently that Hir-
zebruch has calculated $a_{n}$ in (15) explicity, obtaining the result that

$\frac{a_{n}}{p!}=\prod_{k=1}^{n}\frac{(2k-1)!}{(k-1)!}$ .
It follows that

$x_{n}=\frac{(-1)^{p}}{2^{n-1}}\prod_{k=1}^{n}\frac{B_{2k}}{k}$

13) The author owes this remark to Professor A. Weil, to whom he wishes to
express here his hearty thanks. The fact that $\chi(SU(n)/SO(n))=0(n>2)$ follows
also from a result of H. Hopf and H. Samelson, Ein Satz uber die Wirkungsraume
geschlossener Liescher Gruppen, Comm. Math. Helv., 13 (1940/41) pp. 240-251.
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and that the fact $\overline{N}_{n}\chi_{n}$ is an integer is trivial (hence containing no
relationship between the Bernoulli numbers). He remarks also that
the values for $n=3$ in our tables are false. The true values are as
follows:

$\frac{a_{3}}{6!}=360,$ $\chi_{3}=\frac{1}{181440}$ , $\overline{N}_{3}x_{3}=8,$ $N_{3}=181440\times 2^{\nu}$ $(0\leqq\nu\leqq 3)$ .
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