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Domains spread on a complex space.
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Let $X$ and $Y$ be two connected complex analytic manifolds, and
let $\varphi$ be a holomorphic mapping of $X$ into $Y$. If $\varphi$ is a local homeo-
morphism, we usually call the triple (X, $\varphi,$

$Y$), or simply the pair
(X, $\varphi$ ), a domain spread on $Y$ by $\varphi$ . The general theory of spread
domains has been established by H. Cartan1) and others. In the
classical theory of functions in several complex variables, only these
spread domains have been considered. A general tendency at the
present time is, however, to investigate the so-called ”complex
spaces ” and the behavior of functions on them. It is natural to
include the algebroidal functional elements in the domain of holo-
morphic prolongation of holomorphic functions. Thus we are led to
introduce the notion of ”ramified spread domains”.

We shall generalize the notion of spread domains as follows:
Let $X$ and $Y$ be two connected normal complex spaces of the same
dimension in the sense of H. Cartan2), and let $\varphi$ be a holomorphic
mapping of $X$ into $Y$ ; if $\varphi$ is non-degenerate at every point of $X$,
that is, if the fiber $\varphi^{-1}(\varphi(x))$ of $\varphi$ through $x$ is a discrete set in $X$

for every point $x$ of $X$, then we call (X, $\varphi,$
$Y$ ) or (X, $\varphi$ ) a domain

spread on $Y$ by $\varphi$ . In \S 1 we recall briefly the notion of complex
spaces and make some remarks for later use. In \S 2 the space of
(holomorphic-) algebroidal jets of a complex space into another is
introduced as a generalization of the space of holomorphic jets.
\S 3 is devoted to the general theory of spread domains; as in the
classical case of “ unramified spread domains ‘’, the maximal holo-
morphic prolongation and the intersection of spread domains are
defined. Using a space of algebroidal jets we prove the existence
theorem of the maximal holomorphic prolongation of a given spread
domain with respect to a family of holomorphic mappings. The
exposition in \S 3 is made after the manner of H. Cartan’s seminar.

1) cf. [1].

2) cf. [2], VIII bis.
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As for the treatment of domains spread on the complex affine space
$C^{n}$, it will be reserved for opportunity. We note here only that
for domains spread on $C^{n}$ in our sense the uniqueness theorem, that
is, the invariance property of envelope of holomorphy and of domain
of holomorphy under analytic isomorphisms, does not hold in general.

\S 1. Complex spaces.

By a ringed space we mean a topological space $X$, together with
a subsheaf $C$? of the sheaf of jets3) of complex-valued continuous
functions on $X$ Every open subset $U$ of a ringed space $X$ is also
a ringed space with the induced sheaf $C?_{X}(U)$ . The complex affine
space $C^{n}$ of dimension $n$, with the usual topology and the sheaf
$\mathcal{O}_{c^{n}}$ of jets of holomorphic functions, is a ringed space. Let $E$ be
a subset of an open set $G$ of $C^{n}$. If $E$ is closed in $G$ and, around
each point $x\in E,$ $E$ is defined as the common zeros of holomorphic
functions around $x$, then we say that $E$ is an analytic subset of $G$.
On the locally compact space $E$ we can define canonically a subsheaf
of the sheaf of jets of continuous functions as follows: For a point
$x\in E$ we denote by $J_{x}(E)$ the ideal of those elements of the ring
$G_{x.G},$ $C)_{G}=C)_{c^{n}}(G)$ , whose restrictions on $E$ vanish around $x$ ; the
collection of $\mathcal{O}_{x,E}=\mathcal{O}_{x,G}/J_{x}(E)$ for $x\in E$ form.s the desired sheaf $\mathcal{O}_{E}$

on $E$. The germ of $E$ at $x$ is irreducible if and only if $\mathcal{O}_{x.E}$ is an
integral domain. If $\mathcal{O}_{x,E}$ is an integrally closed integral domain, we
say that the germ of $E$ at $x$ is normal, or that $E$ is normal at $x$.
If, for each point $x\in E$, the germ of $E$ at $x$ is normal, $E$ is said
to be a normal analytic subset of $G\subset C^{n}$. We know that, if $E$ is
normal at a point $x,$ $E$ is normal at all points sufficiently near $x^{4)}$

Given two ringed space $(X, \mathcal{O}_{X})$ and (X’, $\mathcal{O}_{X},$ ), a mapping $\varphi$ of $X$ into
$X^{\prime}$ is said a homomorphism if $\varphi$ is continuou.$\delta\eta$ and if $ f\rightarrow f\circ\varphi$ maps
$\mathcal{O}_{\varphi^{(x),X}’}$ into $G_{x,X}$ for every point $x\in X$ The composition of two
homomorphisms is also a homomorphism. The notion of isomrphism
is defined accordingly.

3) More precisely local jets. Cf. Ch. Ehresmann, Introduction \‘a la th\’eorie des
structures infinit\’esimales et des pseudo-groupes de Lie, Colloque International de
G\’eom\’etrie diff\’erentielle de Strasbourg, 1953. We prefer the terminology of “ jets “

to that of “ germs “, which is to bc reserved for the germ of subset.
4) cf. [2], $Exp$ . $X$ , corollary to theorem 3 bis.
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A ringed space (X, $\mathcal{O}_{X}$) is called a complex space if the following
conditions are satisfied:

(CS 1) The space $X$ is a Hausdorff space,
(CS 2) Each point $x\in X$ has an open neighborhood $U$, which is

isomorphic as a ringed space with a normal analytic subset $E$ of an
open set in a space $C^{n}$ (such an isomorphism $\varphi$ : $U\rightarrow E$ is called a
chart).

The sheaf $\mathcal{O}_{X}$ is then called the sheaf of jets of holomorphic
functions; its sections are called holomorphic functions. For com-
plex spaces, homomorphisms and isomorphisms are also said holo-
morphic mappings and analytic isomorphisms respectively.

Let (X, $C?_{X}$) be a complex space. For a point $x\in X$ the ring
$C)_{x,X}$ has a structure of analytic ring over $C$ in the sense of H.
Cartan5). We note that the ring $\mathcal{O}_{x,X}$ is a Noetherian, integrally
closed integral domain. The knowledge of $\mathcal{O}_{x,X}$ determines the struc-
ture of $X$ around $x$. If a point $x$ of $X$ has an open neighborhood
isomorphic with an open set in some $C^{n}$, we say that the point $x$ is
uniformizable. A point $x\in X$ is uniformizable if and only if $\mathcal{O}_{r,X}$ is
isomorphic with the ring $C\{z_{1},\cdots, z_{n}\}$ of convergent power series in
$z_{1},\ldots,$ $z_{n}$ for some $n$. If all the points of $X$ are uniformizable, $X$ is
nothing other than a complex manifold. A connected complex space
$X$ is said to be of dimension $n$ if the complex manifold formed by
the uniformizable points of $X$ is of dimension $n$.

An analytic subset $Y$ of an open set $U$ in a complex space $X$

is defined in the same way as in the space $C^{n}$ . The ringed space $Y$

is not in general a complex space. We can, however, canonically

associate with $Y$ a complex space $\tilde{Y}$ as follows (the space $\tilde{Y}$ is
called the parameter space of Y). Let $\tilde{Y}$ be the set of non-empty
irreducible components of $Y$, with respect to $U$, at the points of
Y. As $U$ is locally isomorphic with a normal analytic subset $E$

of an open set $G$ in some $C^{n},$ $Y$ is locally isomorphic with an ana-
lytic subset $F$ in $G$ . Generally, let $A$ and $A^{\prime}$ be two commutative
rings with unit elements, $\varphi$ a homomorphism of $A$ onto $A^{\prime}$ , and $N$

the kernel of $\varphi$ Then there is a correspondence between the ideals
$I$ of $A$ , which contain $N$, and the ideals $I$ of $A^{\prime}$ , such that, if the
ideals $I$ and $p$ correspond to each other, then $\varphi(I)=P$ and $I=\varphi^{-1}(I^{\prime})$ .
Let $I$ and $I^{\prime}$ be two correspondlng proper ideals. Then if one is

5) cf. [2], $Exp$ . VI.
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primary, so is the other, and if one is prime, so is the other. Let
$q$ and $q^{\prime}$ be corresponding primary ideals, and let $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ be cor-
responding prime ideals. Then $q$ is p-primary if and only if $q^{\prime}$ is
p’-primary. Further if the rings $A$ and $A^{\prime}$ are Noetherian, then
the normal decompositions of corresponding ideals $I$ and $I^{\prime}$ are
obtained from each other. From these remarks we see that the
irreducible components of $F$, with respect to $E$, at the points of $F$

coincide with the irreducible components of $F$, with respect to $G$,
at the corresponding points. Thus we see from a theorem of K.
Oka6) that $\tilde{Y}$ is a complex space. Let $\mathcal{G}_{X}$ be the set of non-empty
irreducible germs at the points of $X$ We can introduce the topology

of $\mathcal{G}_{X}$ so that the subsets $\tilde{Y}$ constructed above become elementary
open sets. As the space $\mathcal{G}_{X}$ is shown to be a Hausdorff space, we
have

PROPOSITION 1. The space $\mathcal{G}_{X}$ is a complex space.
According to H. Grauert7) we give an equivalent definition of

complex space. A pair $9t=(R, \Phi)$ is said an analytic spread over a
domain $G$ in $C^{n}$ if the following four conditions are satisfied:

(AS 1) $R$ is a locally compact topological space; $\Phi$ is a $proper^{7^{\prime})}$

continuous mapping of $R$ onto $G$. We say that a point $x\in R$ lies
over the point $z=\Phi(x)$ of $G$.

(AS 2) There is an (eventually empty) analytic subset $A$ of $G$

such that $\Phi^{-1}(A)$ is nowhere dense in $R$, that $\Phi^{-1}$ induces a local
homeomorphism on $\dot{R}=R-\Phi^{-1}(A)$ , and that only a finite number of
points of $R$ lie over any point of $G$.

(AS 3) Each point $x\in R$ has arbitrarily small neighborhoods
$U$ such that $U-\Phi^{-1}(A)$ are connected.

Transferring the structure of $G$ to $\dot{R}$, we can speak of holo-
morphic functions on $R$, analytic subsets in $R$, etc. Let $x$ be a
point of $R$, and let $z=\Phi(x)$ . Around the point $x,$

$\Phi$ is a homeomor-
phism and so the inverse mapping $\Phi^{-1}$ is locally defined. Thus $\Phi^{-1}$

defines a jet of isomorphism8) of $G$ into $R$, which we denote by $\Phi_{x,z}^{-1}$ .
If $f$ is a holomorphic function around the point $x$, we denote by $f_{x}$

6) cf. [ $2\urcorner,$ $Exp$ . $X$ , theorem 2.
7) cf. [3].
$7^{\prime})$ We call a mapping $\Phi$ proper, if the inverse image of a compact set by $\Phi$ is

compact.
8) We consider the space $R$ as a ringed space. Also cf. [2].
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the jet of $f$ at $x$. We impose further on $g${ the following condition
(the condition (C) of H. Grauert) :

(AS 4) For any pair of points $x,$ $y$ of $\check{R}(x\neq y, \Phi(x)=\Phi(y)=z)$

there exists a holomorphic function $f$ on $R$ such that the jets of
holomorphic functions $f_{x}\circ\Phi_{y,z}^{-1}$ and $f_{y}\circ\Phi_{y,z}^{-1}$ are different.

In the definition of a complex space we can replace (CS 2) by
the following condition:

(CS 2’) Each point $x\in X$ has an open neighborhood $U$, as a
ringed space, isomorphic with the space of an analytic spread $\Re=$

$(R, \Phi)$ over a domain $G$ in some $C^{n}$.
Namely, (CS 2) implies (CS 2’), for the normal analytic subset

$E$ can be identified locally with the parameter space $\tilde{E}$ of a principal
analytic subset $E$ of an open set in some $C^{n}$. To prove the inverse
implication, we may suppose the space $X$ itself to be an analytic
spread $9=(R, \Phi)$ over a domain $G$ in $C^{n}$ . From the definition of
analytic spread the number of sheets of Yl over $G-A$ is a constant,
say $r$. By the condition (AS 4) we can construct a holomorphic

function $f$ on $R$ such that, for any pair of points $x,$
$y\in\dot{R}(x\neq y)$

lying over the same point $z\in G$, the jets of holomorphic functions
$f_{x}\circ\Phi_{x,z}^{-1}$ and $f_{y}\circ\Phi_{y,z}^{-1}$ are different ( $f$ does not depend on the choice of
pairs of points $x,$ $y$). Considering the elementary symmetric func-
tions of $f\circ\Phi^{-1}$ , we see that $f$ is a zero of the irreducible pseudo-
polynomial $P(\zeta;z)=\zeta^{\gamma}+a_{1}(z)\zeta^{\gamma-}$ $+\cdots+a_{\gamma}(z)$ , where $a_{l}$ are holomorphic
functions on $G$. Let $W$ be the principal analytic subset of $C\times G$,
defined by $P=0$ , and let $\tilde{W}$ be the parameter space of $W$. By the
condition (AS 3) we can establish an isomorphism between the space
$R$ and $\tilde{W}$. As the space $\tilde{W}$ is a complex space, $R$, and hence $X$, is
a complex space.

PROPOSITION 2. Let $X$ and $X^{\prime}$ be two complex spaces. Then there
exists on $X\times X^{\prime}$ one and only one structure of complex space such that,
if $\varphi$ : $U\rightarrow E$ and $\varphi^{\prime}$ : $U^{\prime}\rightarrow E^{\prime}$ are charts, $\varphi\times\varphi^{\prime}$ : $U\times U^{\prime}\rightarrow E\times E^{\prime}$ should
be a chart in XX $X^{\prime}$ .

The space $X\times X^{\prime}$ , with this structure, is called the product of
the space $X$ and $X^{\prime}$ .

PROOF. We are to show that the product of two normal analytic
subsets $E$ and $E^{\prime}$ of $C^{n}$ and $C^{n^{\prime}}$ , respectively, is a normal analytic
subset of some $C^{p}$ , or that the product of two analytic spreads is
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also an analytic spread. The simple verification of (AS 1-4) shows
the truth of the latter statement. The other points of the proof
are similar to those of Proposition 8 and Cor. in J.-P. Serre [5].

Let $X,$ $X^{\prime},$ $Y$ and $Y^{\prime}$ be complex spaces. In order that the
mapping $x\rightarrow(\varphi(x), \varphi^{\prime}(x))$ defined by $\varphi$ : $X\rightarrow Y$ and $\varphi^{\prime}$ : $X\rightarrow Y^{\prime}$ is a
holomorphic mapping of $X$ into $Y\times Y^{\prime}$ , it is necessary and sufficient
that $\varphi$ and $\varphi^{\prime}$ are holomorphic. As any constant mapping is holo-
morphic, any section $x\rightarrow(x, x_{0}^{\gamma}),$ $x_{0}^{\prime}\in X^{\prime}$ , is a holomorphic mapping of
$X$ into $X\times X^{\prime}$ . The projections $X\times X^{\prime}\rightarrow X$ and $X\times X^{\prime}\rightarrow X^{\prime}$ are
obviously holomorphic mappings. In order that $\psi\times\psi:X\times Y\rightarrow X^{\prime}x$

$Y^{\prime}$ are holomorphic (isomorphic), it is necessary and sufficient that
$\psi$ and $\psi^{\prime}$ are holomorphic (isomorphic). Let $\varphi:X\rightarrow Y$ be a holo-
morphic mapping. Then the graph $\Gamma$ of $\varphi$ is an analytic subset of
$XxY$, for this is the inverse image of the diagonal of $Y\times Y$ by
the mapping $\varphi\times 1$ : $XxY\rightarrow Y\times Y$. Furthermore the mapping $\psi:X$

$\rightarrow\Gamma$ defined by $\varphi(x)=(x, \varphi(x))$ is an analytic isomorphism.

\S 2. Space of holomorphic jets. Space of algebroidal jets.

Let $E$ and $F$ be two complex spaces. We assign to every non-
empty open subset $U$ of $E$ the set $]_{U}$ of all holomorphic mappings
of $U$ into $F$. If $V$ is an open subset contained in $U$, we denote the
restriction of elements $f$ of $d_{U}$ to $V$ by $\rho_{V}^{U}(f)$ . For three open
subsets $U,$ $V$ and $W$ such that $W\subset V\subset U$ we have $\rho_{U}^{U}=identity$ and
$\rho_{W}^{U}=\rho_{W}^{V}\circ\rho_{V}^{U}$ . Let $7_{x}$ be the inductive limit of the system $(d_{U}, \rho_{V}^{U})$ ,
where $U$ runs over a fundamental system of open nieghborhoods of
$x$. We have then the canonical mapping $\rho_{x}^{U}$ ; $d_{u^{\rightarrow\infty}}t_{x}$ . On the union
$d(E, F)=\bigcup_{x\in Ec}fl_{x}$ we define a topology by means of elementary open
subsets : Let $U$ be a non-empty open subset of $E$, and let $f\in cIl_{U}$ .
Denoting by $[U, f]$ the set $\{\rho_{x}^{U}(f)|x\in U\}$ we define $[U, f]$ to be an
elementary open subset in $d(E, F)$ . An arbitrary open subset is
thus a union, or a finite intersection, of the subsets of this type.
In fact, we can show that the finite intersection of elementary open
subsets is also an elementary open subset. As the theorem of
identity holds for holomorphic mappings of complex spaces, the
topology of $d(E, F)$ defined above satisfies the separation axiom of
Hausdorff. If we denote by $\sigma$ the canonical projection of $\llcorner fl(E, F)$

onto $E,$ $\sigma$ is a continuous mapping and is a local homeomorphism.
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Transferring the structure of complex space of $E$ to $d(E, F)$ , we
see that $d(E, F)$ is a complex space. We call elements of $|1_{x}$ holo-
morphic jets at $x$. Define a mapping $t$ of $d(E, F)$ into $F$ by putting
$t(f)=f(\sigma(\chi))$ for $f\in\leftrightarrow q(E, F)$ . The mapping $t$ is then holomorphic.
We call the space $d(E, F)$ , together with the mappings $\sigma$ and $t$,
space of holmorphic jets of $E$ into $F$. We can define, as in the case
of sheaf, its sections over an open subset $U$, which may be identified
with elements of $d_{U}$ : $\Gamma(U, d(E, F))=d_{U}$ .

For later use we generalize the notion of space of holomorphic
jets. Let $E$ and $F$ be two complex spaces. Let $U$ be a non-empty
open subset of $E$. An analytic subset $A$ of the analytic space $U\subset E$

is called an (holomorphic) algebroidal mapping of $U$ into $F$ if the fol-
lowing conditions are satisfied: if we denote the projections $U\times F$

$\rightarrow U$ and $U\times F\rightarrow F$ by $p_{U}$ and $q$ respectively, $p_{U}^{-1}(A^{\prime})=U$ in $U\times F$ for
every irreducible component $A^{\prime}$ of $A$ and, for any point $x\in U,$ $p_{U}^{-1}(x)$

$\cap A$ is discrete in $p_{U}^{-1}(x)$ , that is, $q(p_{U}^{-1}(x)\cap A)$ is discrete in $F$. Let
$\tilde{d}_{U}$ be the set of all algebroidal mappings of $U$ into $F$. For any
pair of open subsets $V\subset U$ we have the canonical restriction map-
ping $\rho_{V}^{U}$ ; $\tilde{d}_{U}\rightarrow_{\llcorner}f\tilde{l}_{V}$ .

Let $\tilde{d}_{x^{\prime}}=\lim_{x\in U}\tilde{d}_{U}$ , and $\tilde{d}_{x}$ be the set of non empty irreducible
components of the elements of $\tilde{d_{x^{\prime}}}$ . As in the case of holomorphic

jets we define $\tilde{d(}E,$ $F$ ) $=U_{x\in E}\tilde{d}_{x}$ and the projection $\sigma;cq(E, F)\sim\rightarrow E$.
Let $A$ be an algebroidal mapping of $U$ into $F$, and let $\tilde{A}$ be the
complex space associated with the analytic subset $A$. Define the
subsets of the type $\tilde{A}$ to be the elementary open subsets of $\tilde{d}(E, F)$ .
We see that $\tilde{d}(E, F)$ is $a$ complex space (\S 1). Let $\pi;\tilde{A}\rightarrow U\times F$ be
the canonical mapping. We define a mapping $\sim t:\tilde{d}(E, F)\rightarrow F$ by

putting $t(\tilde{\alpha})\sim=q(\pi(\tilde{\alpha}))$ for $\tilde{\alpha}\in\tilde{A}$. The mapping $ t\sim$ is then holomorphic.

Elements of $\tilde{d}_{x}$ are called algebroidal iets of $E$ into $F$ at the point
$x$, and $\tilde{d}(E, F)$ , with the mappings $\sim\sigma$ and $\sim t$, is called the space of
algebroidal jets of $E$ into $F$.

\S 3. Spread domains. Holomorphic prolongation.

In the following, complex spaces $X,$ $X^{\prime},$ $Y,$ $E,$ $ F,\ldots$ are supposed
to be connected, unless otherwise mentioned. Let $\varphi\in\Gamma(X, d(X, X^{\prime}))$ .
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The mapping $\varphi$ defines a mapping ${}^{t}\varphi$ : $\Gamma(X^{\prime}, d(X^{\prime}, F))\rightarrow\Gamma(X, d(X, F))$

by ${}^{t}\varphi(f^{\prime})=f^{f}\circ\varphi$ for $f^{\prime}\in\Gamma(X^{\prime}, d(X^{\prime}, F))$ . If $\varphi$ is an open mapping,
${}^{t}\varphi$ is injective. An element $f\in\Gamma(X, \leftrightarrow q(X, F))$ is called holomorphically
prolongable with respect to $\varphi$ if $f$ is in the image of ${}^{t}\varphi$ , that is, if there
exists an element $f^{\prime}\in\Gamma(X^{\prime}, d(X^{\prime}, F))$ such that $f={}^{t}\varphi(f^{\prime})$ . If the
mapping $\varphi$ is open, then $f^{\prime}$ is determined uniquely. The mapping

$f^{\prime}$ is called the holomorphic prolongation of $f$ with respect to $\varphi$ .
Let $X$ and $Y$ be two complex spaces and let $\varphi$ be a holomor-

phic mapping of $X$ into $Y$. The mapping $\varphi$ is called non-degenerate
at a point $x\in X$, if there exists a neighborhood $U$ of $x$ such that
$\varphi^{-1}(\varphi(x))\cap U$ is discrete in $U$. A triple (X, $\varphi,$

$Y$), or a pair (X, $\varphi$ ),

is called a domain spread on $Y$ by $\varphi$ , if the mapping $\varphi:X\rightarrow Y$ is
open, holomorphic and non-degenerate at every point of $X$ Then
the dimensions of $X$ and $Y$ are equal and the fiber $\varphi^{-1}(\varphi(x))$ of $\varphi$ is
discrete in $X$ for any point $x\in X$ The mapping $\varphi$ and the structure
of $Y$ determine the structure of complex space of $X$ In particular,
if $Y$ is a countable union of compact subsets, so is also $X$

Given a complex space $X$, we shall define an order relation in
the set of mappings spreading $X$ (on an $X^{\prime}$ not given in advance) :
Let $\psi^{\prime}$ : $X\rightarrow X^{\prime}$ and $\psi^{\prime\prime}$ : $X\rightarrow X^{\prime\prime}$ be two spreading mappings ; we say
that $\psi^{\prime\prime}$ majorizes $\psi^{\prime}$ if there exists a mapping $\theta$ spreading $X^{\prime}$ on
$X^{\prime\prime}$ such that $\psi^{\prime\prime}=\theta\circ\psi^{\prime}$ . If $\psi^{\prime}$ and $\psi^{\prime\prime}$ majorize each other, we say
that $\psi^{\prime}$ and $\psi^{\prime\prime}$ are equivalent. The equivalent mappings are to be
identified. Thus an order relation is defined in the set of mappings
spreading $X$

Let $E$ be a complex space given once for all. Let there be
given a domain (X, $\varphi$ ) spread on $E$ and $f\in\Gamma(X, d(X, F))$ , where $F$

denotes a complex space. We consider only the holomorphic prolon-
gations of $f$ with respect to those $\psi^{\prime}$ : $X\rightarrow X^{\prime}$ which spread Xon $X^{\prime}$

and are majorized by $\varphi$ . That is, a holomorphic prolongation of $f$ over
$E$ consists of (i) a mapping $\psi^{\prime}$ spreading $X$ on $X^{\prime}$ and a mapping
$\varphi^{\prime}$ spreading $X^{\prime}$ on $E$, in such a way that $\varphi=\varphi^{\prime}\circ\psi^{\prime}$ and (ii) $ f^{\prime}\in$

$\Gamma(X^{\prime}, d(X^{\prime}, F))$ such that $f=f^{\prime}\circ\psi^{\prime}$ . The mapping $\psi^{\prime}$ determines $\varphi^{\prime}$

and $f^{\prime}$ if they exist.
Now we prove the following theorem which is a generalization

of the classical theorem for “ unramified ” spread domains.
THEOREM 1. Let there be given $E$, together with the domain (X, $\varphi$ )

spread on $E$, and the mapping $f\in\Gamma(X, d(X, F))$ , where $F$ is a complex
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space. Then there exists, in the set of those $\psi^{\prime}$ which spread $X$ and are
majorized by $\varphi$ , and with respect to which $f$ is prolongable holomorphically,
an element majorizing all the others.

We shall define a complex space $X^{\star}$ , a mapping $\psi^{\star}$ spreading
$X$ on $X^{\star}$ , a mapping $\varphi^{\star}$ spreading $X^{\star}$ on $E$ and a mapping $ f^{\star}\in$

$\Gamma(X^{\star}, d(X^{\star}, F))$ , in such a way (i) that we have $\varphi=\varphi^{\star}\circ\psi^{\star}$ and
$f=f^{\star}\circ\psi^{\star}$ and (ii) that as long as we have a $\psi^{\prime}$ spreading $X$ on $X^{\prime}$ ,
a $\varphi^{\prime}$ spreading $X^{\prime}$ on $E$ and $f^{\prime}\in\Gamma(X^{\prime}, d(X^{\prime}, F))$ such that $\varphi=\varphi^{\prime}\circ\psi^{\prime}$

and $f=f^{\prime}\circ\psi^{\prime}$ , there exists a $\theta$ spreading $X^{\prime}$ on $X^{\star}$ in such a way
that $\psi^{\star}=\theta\circ\psi^{\prime},$ $\varphi^{\prime}=\varphi^{\star}\circ\theta$ and $ f^{\prime}=f^{\star}\circ\theta$ .

$X^{*}$

As the first step we shall define a mapping spreading $X$ on the
space of algebroidal jets $\tilde{d}(E, F)$ of $E$ into $F$. As a preliminary
we note the following:

LEMMA. Let $X$ and $Y$ be two complex spaces, and let $\varphi$ be a holo-
morphic mapping of $X$ into Y. Suppose that $\varphi$ is non-degenerate at a
point $x\in X$ Then there exists an open neighborhood $U$ of $\chi$ such that
the image $\varphi(U)$ is an analytic subset of $Y$, irreducible at the point $y=\varphi(x)$ .

PROOF. Since $\varphi$ is non-degenerate at $x$, there exists an open
neighborhood $U_{0}$ such that $\varphi(x)\in E\varphi(\overline{U}_{0}-U_{0})$ , where $\overline{U}_{0}$ denotes the

closure of $U_{0}$ in $X$ We may suppose that $U_{0}$ has a chart and $\overline{U}_{0}$

is compact. As $\varphi(\overline{U}_{0}-U_{0})$ is a closed subset of $Y$, there exists an
open neighborhood $V$ of $y=\varphi(x)$ such that $\varphi(\overline{U}_{0}-U_{0})\cap\overline{V}=\emptyset$ , where

$\overline{V}$ is the closure of $V$ in $Y$. Let $U$ be the open subset $\varphi^{-1}(V)\cap U_{0}$ .
Noting that the spaces $X$ and $Y$ are locally compact, we shall prove
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that the mapping $\varphi$ : $U\rightarrow V$ is proper, that is, the inverse image $\varphi^{-1}$

of every compact set in $V$ is a compact set in $U$. Let $K$ be a
compact set in $V$ and let $\Phi$ be an ultrafilter on $\varphi^{-1}(K)\cap U$. The
filter $\Phi$ is a base for an ultrafilter $\Phi_{0}$ on $U_{c}$ , which converges to a
point $x_{0}\in\overline{U_{0}}$ . The point $\chi_{0}$ belongs to $U_{0}$ , for otherwise $x_{0}\in\overline{U}_{0}-U_{0}$

would imply $\varphi(x_{0})\in\varphi(\overline{U}_{0}-U_{0})$ and this is contradictory to $\varphi(\overline{U}_{0}-U_{0})$

$\cap\overline{V}=\emptyset$ , because the ultrafilter $\varphi(\Phi)$ converges and so $\varphi(x_{0})\in V$. Thus
the relation $x_{0}\in U_{c}$ , together with $\varphi(x_{0})\in K$, infers $x_{0}\in\varphi^{-1}(K)\cap U$.
Hence $\varphi^{-1}(K)\cap U$ is compact and hence the mapping $\varphi:U\rightarrow V$ is
proper. Now we know from a theorem of Remmert9) that $\varphi(U)$ is
an analytic subset of $V$. Further we can take $U$ small enough so
that $\varphi(U)$ is irreducible at the point $y=\varphi(x)$ .

Proof of the theorem. The graph $\Delta$ of the holomorphic mapping
$x\rightarrow(\varphi(x), x, f(x))$ is a complex space isomorphic with the space $X$

(\S 1). The restriction $\tau$ to $\Delta$ of the projection of $ExX\times F$ onto
$E\times F$ is a holomorphic mapping non-degenerate at every point of $\Delta$

because the mapping $\varphi$ is of such a character. Now let $x$ be a point
of $X$ According to the Lemma the image under the mapping $\tau$ of
the germ of $\Delta$ at the point $(\varphi(x), x, f(x))$ defines an algebroidal jet
$\tilde{\alpha}$ of $E$ into $F$ at the point $\varphi(x)$ . Define a mapping $\rho;X\rightarrow\infty^{\sim}t(E, F)$

by putting $\rho(x)=\alpha$ . We see that the mapping $\rho$ spreads $X$ on
$\tilde{d}(E, F)$ and that $ f=^{\sim}t\circ\rho$ and $\varphi=0\circ\rho\sim$ , where $\sim\sigma$ is the canonical map-
ping defined in \S 2. Now let $X^{\star}$ be the connected component of
$\tilde{d}(E, F)$ containing the (connected) image of $X$ by $\beta$ . Let $\psi^{\star}$ be the
mapping of $X$ into $X^{\star}$ defined by $\rho,$

$\varphi^{\star}$ the restriction of $\sim\sigma$ to $X^{\star}$ ,
and $f^{\star}$ be the restriction of $\sim t$ to $X^{\star}$ . The space $X^{\star}$ and the map-
pings $\psi^{\star},$ $\varphi^{\star}$ and $f^{\star}$ satisfy the required conditions. Thus the
theorem is proved.

As in the classical case, the domain $(X^{\star}, \varphi^{\star})$ spread on $E$,
together with the mapping $\psi^{\star}$ spreading $X$ on $X^{\star}$ and the holomor-
phic mapping $f^{\star}$ of $X^{\star}$ into $F$, is called the maximal holomrphic
prolongation, over $E$, of the holomorphic mapping $f$ of $X$ into $F$.

Next we consider the simultaneous holomorphic prolongation.
The notations $E$ and (X, $\varphi$ ) being the same as above, let $f_{i},$ $i\in I$, be
holomorphic mappings of $X$ into complex spaces F.. A holomorphic
prolongation of the family $(f_{i})$ consists of (i) a mapping $\psi$ spreading

9) cf. [4].
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$X$ on $X^{\prime}$ and a mapping $\varphi^{\prime}$ spreading $X^{\prime}$ on $E$, in such a way that
$\varphi=\varphi^{\prime}\circ\psi^{\prime}$ and (ii) a family of holomorphic mappings $f^{\prime}\in\Gamma(X^{\prime},$ $A(X^{\prime}$ ,
$F_{i}))$ such that $f_{i}=f_{i}^{\prime}\circ\psi^{\prime}$ . The mapping $\psi^{\prime}$ determines $\varphi^{\prime}$ and $(f_{i^{\prime}})$ if
they exist.

Let $\tilde{d}(E, F_{i})$ be the spaces of algebroidal jets of $E$ into $F_{i},$ $\sim_{i}0$

the projections onto $E$, and $\sim_{i}t$ the canonical mappings into $F_{i}$ . By

the direct sum $\sum_{i\in I}\tilde{d}(E, F_{i})$ of the spaces of algebroidal jets $d(E, F_{i})-$ ,
$i\in I$, we mean the set of those elements $(\tilde{\alpha}_{i})$ of the space $\prod_{i\in I}\tilde{d}(E$,
$F_{\iota})$ which satisfy the following conditions : (i) for every $i,$ $j\in I$,
$\sim_{i}\sigma(\tilde{\alpha}_{i})=\sigma\sim_{j}(\tilde{\alpha}_{j})=\chi$ (ii) there exists an open neighborhood $U$ of the point
$\chi$ such that the subspaces around $\tilde{\alpha}_{i}$ of $\tilde{d}(E, F_{i})$ , lying over $U$ with
respect to $\sim_{i}0$ , are isomorphic with one another. A structure of
complex space is $i$ nduced on the topological space $\sum_{\in I}\tilde{d}(E, F_{i})$ by

those of $\tilde{d}(E, F_{i})$ . Define a mapping $0\sim$ and $ t\sim$ by putting $\sim o((\tilde{\alpha}_{i}))=$

$\sim_{i}o(\tilde{\alpha}_{i})$ and $\sim t((\tilde{\alpha}_{t}))=(t(\tilde{\alpha}_{i}))\sim_{i}$ for $(\tilde{\alpha}_{i})\in\sum_{i\in I}\tilde{d}(E, F_{i})$ . We see that the
mapping $\sim o$ spreads $\sum_{i\in I}\tilde{d(}E,$ $F_{i}$ ) on $E$, and the mapping $ t\sim$ is holo-
morphic, considered as a mapping of $\sum_{\in I}\tilde{d}(E, F_{\iota})$ into each $F_{i}$ . Re-
placing by $\sum_{\in I}\tilde{d}(E, F_{i})$ the space $\tilde{d}(E, F)$ in the proof of Theorem
1, we have the following

THEOREM 2. Let there be given $E$, together with the domain (X, $\varphi$ )

spread on $E$, and the family of holomorphic mappings $f_{i}\in\Gamma(X, d(X, F_{i}))$ ,
$i\in I$. Then there exists, in the set of those $\psi^{\prime}$ which spread $X$ and
maiorized by $\varphi$ , and with respect to which the family of mappings $(f_{i})$

are prolongable holomorphically, an element majorizing, au the others.
We can define thus the maximal simultaneous holomorphic prolon-

gation, over $E$, of the family of holomorphic mappings $(f_{i})$ , with respect
to the mapping $\varphi$ spreading $X$ on $E$.

Consider a particular case where the mappings $f_{i}$ spread $X$ on
F. and are majorized by $\varphi$ with respect to mappings $g_{i}$ . Thus the
mappings $g_{i}$ spread F. on $E$ in such a way that $\varphi=g_{\iota}\circ f_{i}$ Theorem
2 affirms then that the mappings $f_{i}$ have an infimum. This is a
mapping $f$ spreading $X$ on a complex space $F$, which is itself spread
on $E$ by a mapping $g$, in such a way that $ g\circ f=\varphi$ The space $F$

spreads on each $F_{i}$ by a mapping $h_{i}$ , and the following diagram is
commutative:
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$E$

The domain $(F, g)$ , spread on $E$, together with the mappings $h_{i}$

spreading $F$ on $F_{i}$ and the mapping $f$ spreading $X$ on $F$, is called
the intersectim of the spread domains $(F_{i}, g_{i})$ with respect to the
domain $X$ spread on each $F_{i}$ by $f_{i}$
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