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Ordinal diagrams.

By Gaisi TAKEUTI

(Received April 5, 1957)

In his paper [2] on the consistency-proof of the theory of natural
numbers, G. Gentzen assigned to every proof-figure an ordinal num-
ber. In modifying his method, we may do this as follows :

(A) $(a)\frac{S_{1}S_{2}}{(b)\frac{S_{3}S_{4}}{(c)\frac{S}{S}6\underline{6}}}$ (B)
$\backslash \swarrow$

$1\backslash _{a}/^{1}$
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$c|$

Fig. 1

Suppose, to fix our idea, a proof-figure (A) (in Fig. 1) is given.
This is composed of beginning sequences $S_{1},$ $S_{2},$ $S_{4}$ and inferences
$(a),$ $(b),$ $(c)$ . To the inferences: weakening, contraction and exchange,
we assign the value $0$ ; to a cut of degree $n$, the value $n$ ; to an
induction of degree $n$, the value $n+1$ ; and the value 1 to all other
inferences. We denote the values of inferences $(a),$ $(b),$ $(c)$ by $a,$ $b,$ $c$

respectively. We replace the beginning sequences by 1, and draw
the figure (B) according to the form of the proof-figure (A).

$\alpha\beta$ a
If we consider $\vee$ and $|(\alpha,$ $\beta$ being ordinal numbers and $a$ a

$a$ a
non-negative integer) as operations defining ordinal numbers (to be
defined properly, see below), then the figure like (B) represents itself
an ordinal number. This may be called ‘ Gentzen’s number ‘ for the
proof-figure (A). Although this is not the same ordinal number as
assigned to (A) by Gentzen himself, we can accomplish the consist-
ency-proof of the theory of natural numbers just as in [2], in
proving that this ‘ Gentzen’s number ’ is diminished by the reduc-
tion of the proof-figure.

a $\beta$ a
The operations $\vee$ and $|$ can be described by Ackermann’s

$a$ a
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construction in [1]. We shall write for simplicity $(\alpha, \beta)$ instead of
Ackermann’s $(1, \alpha, \beta)$ , and use $\alpha+\beta$ in the meaning of natural sum

$\alpha\beta$

in general, while Ackermann uses it only in case $\alpha\geqq\beta$ . Then $\vee$

$a$

a
and $|$ mean $(a, \alpha+\beta)$ and ($a,$

$\alpha 1$ respectively. $((a, \alpha)$ is defined in [1]
$a$

only for $a\geqq 1$ . We put $(0, \alpha)=\alpha.)$

The purpose of the present paper is to construct a system of
ordinal numbers of the second ‘ Zahlenkasse ” represented by what
we shall call “ ordinal diagrams ”. Presumably our system contains
the system constructed by Ackermann [1], but it is not proved. We
have in view to apply our result to consistency-proof.

Ordinal diagrams are constructed in the following way. Consider
‘trees‘ of the following form: $e$ . $g$.

$O^{\backslash _{\bullet}/^{\circ}}\backslash ^{o_{\bullet}}/$

$\circ\backslash _{\bullet}/^{O}$

$\backslash _{\bullet}/$

Fig. 2

Such trees have two sorts of vertices, ‘beginning vertices’
marked with $0$ and ‘ non-beginning vertices’ marked with $\bullet$ . We
assign to each vertex a positive integer called ‘ value ‘ of the vertex,
and to each non-beginning vertex a positive integer called ‘ index ‘ of
the vertex, not exceeding an integer $n(>0)$ fixed once for all, which
we shall call the order of the system. If we consider

as ‘operation’ on diagrams and denote it by $(i;a, \alpha_{1}+\cdots+\alpha_{k})(i$ is
the index and $a$ the value of the vertex $(a, i))$ , then a diagram like
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(C) can be descrived by

$(i_{1} ; b_{1}, (i_{0} ; b_{c}, a_{0}+a_{1}+a_{2})+a_{3})+(i_{2} ; b_{2}, a_{4})$ .

(C) $a_{4}$

$1$

$(b_{1}, i_{1})$ $(b_{2}, i_{2})$

In the following lines, we shall give the formal definition of
ordinal diagrams and the ordering between them, and prove that
they are well-ordered.

In view of applications to consistency-proof, we should like to
add here the following remark. If we denote the system of ordinal
diagrams of order $n$ with $O(n)$ , it is clear that we have $O(1)\subset O(2)$

$\subset\cdots$ and it will be proved as was said above, that $O(n)$ is well-
ordered. It will be also proved that V $0(n)$ is not well-ordered.

$n$

Let $\tilde{N}$ be some theory including the theory $N$ of natural num-
bers. A consistency-proof of such theory $\tilde{N}$ may be carried out as
follows. To each proof-figure $P$ in $\tilde{N}$, we assign an ordinal diagram
of a certain order $n$, and prove that the ordinal diagram is ‘ dimini-
shed’ by a reduction of the proof-figure. This will not be in con-
tradiction with Godel’s result [3], that the consistency-proof of $\tilde{N}$

is not formulable in $\tilde{N},$–just as Gentzen’s consistency-proof of $N$

is not in contradiction with $[3]$–and this, even when $\tilde{N}$ is a fairly
‘ rich ‘ theory, in the following sense.

Denote the ordinal number

$\omega$

$n$.
$\omega$

with $\omega_{n}$ and let $Q(n)$ mean the system of ordinal numbers less than
$\omega_{n}$. Then Gentzen has assigned to each proof-figure $P$ in $N$ an
ordinal number of $Q(n)$ for a certain $n$, and proved that this ordinal
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number is diminished by reduction. Although the transfinite induc-
tion in $Q(n)$ for a given $n$, and the system $\bigcup_{n}Q(n)$ itself are both

formulable in $N$, the transfinite induction in $\bigcup_{n}Q(n)$ is not formu-

lable in $N$, and thus Gentzen’s consistency-proof is not in contradic-
tion with G\"odel’s result. The same circumstances will arise when
we replace $Q(n)$ by our $0(n)$ .

The author wishes to express his hearty thanks to Prof. Iyanaga
for his valuable advice during the preparation of this paper.

\S 1. Ordinal diagram of order $n$ .
Hereafter let $n$ be a fixed positive integer.

1. Ordinal diagram of order $n$ is constructed by two operation $(i; )$

$(i=1,2, \cdots, n)$ and $\#$, and is defined recursively as follows. (If no
confusion is to be feared, we use ’ordinal diagram’ or ‘

$0$ . $d$ . in
place of ‘ ordinal diagram of order $n$ . $0$ . $d$ . ’s are denoted by $\alpha,$

$\beta$ ,
$\gamma,$ $\ldots$ (possibly with suffixes).

1.1. If $a$ is a positive integer, then $a$ is an $0$ . $d$ .
1.2. If $a$ is a positive integer and $\alpha$ is an $0$ . $d.$ , and $i$ is an integer
satisfying $0<i\leqq n$, then $(i;a, \alpha)$ is an $0$ . $d$ .
1.3. If $\alpha$ and $\beta$ are $0$ . $d$ . ’s, then $\alpha\#\beta$ is an $0$ . $d$ .
2. Let $\alpha,$

$\beta$ be $0$ . $d$ . ’s, and $i$ an integer satisfying $0<i\leqq n$. We
define recursively the relation $\beta\subset i\alpha$ (to read : $\beta$ is an i-section of $\alpha$)
as follows:
2.1. If $\alpha$ is an integer, then $\beta\subset t\alpha$ never holds. ( $\alpha$ has no i-section.)
2.2. Let $\alpha$ be of the form $(j;a, \alpha_{0})$ .
2.2.1. If $j<i$, then $\beta\subset i\alpha$ if and only if $\beta\subset_{i}\alpha_{0}$ .
2.2.2. If $j=i$, then $\beta\subset i\alpha$ if and only if $\beta$ is $\alpha_{0}$ .
2.2.3. If $j>i$, then $\beta\subset i\alpha$ never holds.
2.3. Let $\alpha$ be of the form $\alpha_{1}\#\alpha_{\Gamma,\lrcorner}$. Then $\beta\subset t\alpha$ if and only if either
$\beta\subset i\alpha_{1}$ or $\beta\subset t\alpha_{2}$ holds.
3. An $0$ . $d$ . a is called a $c$ . $0$ . $d$ . (connected ordinal diagram), if and only
if the operation used in the final step of construction of $\alpha$ is not $\#$ .

Let $\alpha$ be an $0$ . $d$ . We define cornponents of $\alpha$ recursively as fol-
lows:
3.1. If $\alpha$ is a $c$ . $0$ . $d.$ , then $\alpha$ has only one component which is $\alpha$

itself.
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3.2. If $\alpha$ is an $0$ . $d$ . of the form $\alpha_{1}\#\alpha_{2}$ and components of $\alpha_{1}$ and
$\alpha_{2}$ are $\beta_{1},$

$\cdots,$
$\beta_{k}$ and $\gamma_{1},$ $\cdots,$ $\gamma_{l}$ respectively, then components of $\alpha_{1}\#\alpha_{2}$

are $\beta_{1},$
$\cdots,$

$\beta_{k},$
$\gamma_{1},\cdots,$ $\gamma_{l}$ .

4. Let $\alpha$ and $\beta$ be $0$ . $d$ . ’s. We define $\alpha=\beta$ recursively as follows:
4.1. Let $\alpha$ be an integer. Then $\alpha=\beta$, if and only if $\beta$ is the same
integer as $\alpha$ .
4.2. Let $\alpha$ be an $0$ . $d$ . of the form $(i;a, \alpha_{0})$ . Then $\alpha=\beta$ , if and only
if $\beta$ is of the form $(i;a, \beta_{0})$ and $\alpha_{0}=\beta_{c}$ .
4.3. Let $\alpha$ be a non-connected $0$ . $d$ . with $k$ components $\alpha_{1},\cdots,$ $\alpha_{k}$.
Then $\alpha=\beta$ , if and only if $\beta$ has the same number of components,
and $\beta_{1},$

$\cdots,$
$\beta_{k}$ being these components, there exists a permutation

$(l_{\tau}, \ldots, J_{k})$ of $(1, \ldots, k)$ such that $\alpha_{m}=\beta_{lm},$ $m=1,$ $\ldots,$
$k$.

4.4. $\beta=\alpha$ holds, if and only if $\alpha=\beta$.
5. Let $\alpha$ and $\beta$ be two $0$ . $d$ . ’s. We define the relations $\alpha<0\beta$ ,
$\alpha<_{1}\beta,$

$\cdots,$
$\alpha<n\beta$ recursively as follows. Sometimes $\alpha<0\beta$ is denoted

by $\alpha\ll\beta$ and $\alpha<n\beta$ by $\alpha<\beta$.
5.1. Let $\alpha$ and $\beta$ be two integers. Then $\alpha<_{0}\beta,$

$\cdots,$
$\alpha<n\beta$ all mean

$\alpha<\beta$ in the sense of integer.
5.2. Let the components of $\alpha$ and $\beta$ be $\alpha_{1},$ $\cdots,$ $\alpha_{k}$ and $\beta_{1},$

$\ldots,$
$\beta_{h}$ respec-

tively. $\alpha<i\beta(i=0,1, \cdots, n)$ holds, if and only if one of the follow-
ing conditions is fulfilled.
5.2.1. There exists $\beta_{m}(1\leqq m\leqq h)$ such that for every $l(1\leqq l\leqq h)$

$\alpha_{l}<_{i}\beta_{m}$ holds.
5.2.2. $k=1,$ $h>1$ and $\alpha_{1}=\beta_{m}$ for suitable $m(1\leqq m\leqq h)$ .
5.2.3. $k>1,$ $h>1$ and there exist $\alpha_{\iota}(1\leqq l\leqq k)$ and $\beta_{m}(1\leqq m\leqq l)$

such that $\alpha_{l}=\beta_{m}$ and

$\alpha_{1}\#\cdots\#\alpha_{\iota-1}\#\alpha_{\mathfrak{l}+1}\#\cdots\#\alpha_{k}<i\beta_{1}\#\cdots\#\beta_{m-1}\#\beta_{m+1}\#\cdots\#\beta_{h}$ .
5.3. Let $\alpha$ and $\beta$ be $c$ . $0$ . $d$ . $s$ . Then $\alpha<_{i}\beta(i=1,2, \ldots, n)$ , if and only
if one of the following conditions is fulfilled.
5.3.1. There exists an i-section $\beta_{0}$ of $\beta$ such that $\alpha\leqq_{i}\beta_{0}$.
5.3.2. $\alpha_{0t}<\beta$ for every i-section $\alpha_{0}$ of $\alpha$ , and $\alpha<_{i-1}\beta$.
5.4. Let $\alpha$ and $\beta$ be $c$ . $0$ . $d$ . of the form $(i;a, \alpha_{0})$ and $(j;b, \beta_{0})$ re-
spectively. $\alpha\ll\beta$ , if and only if one of the following conditions is
fulfilled.
5.4.1. $a<b$.
5.4.2. $a=b$ and $j<i$.
5.4.3. $a=b,$ $i=j$ and $\alpha_{0}<_{i}\beta_{0}$ .
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5.5. Let $a$ be a positive integer and $\beta$ be a $c$ . $0$ . $d$ . of the form
$(j;b, \beta_{0})$ . Then $ a\ll\beta$ , if and only if $a\leqq b$. And $\beta\langle\langle a$, if and only
if $b<a$.

Under these definitions the following propositions are easily
proved.

PROPOSITION 1. $=is$ an equivalence relation between $0.d$. $s,$ $i.e$. $\alpha=\alpha$

and $\alpha=\beta,$ $\beta=\gamma$ imply $\alpha=\gamma$ .
$PROPOSI^{\prime}rION2$. $\alpha_{1}=\alpha_{2},$ $\beta_{1}=\beta_{2}$ imply $\alpha_{1}\#\beta_{1}=\alpha_{2}\#\beta_{2},$ $(i;a, \alpha_{1})=$

$(i;a, \alpha_{2})$ .
PROPOSITION 3. $\alpha_{1}=\alpha_{2},$ $\beta_{1}=\beta_{2},$ $\alpha_{1}<_{i}\beta_{1}$ , imply $\alpha_{2}<_{i}\beta_{2}$ .
PROPOSITION 4. Everyone of the relations $<_{\iota}(i=0,1, \ldots, n)$ defines

a hnear order between $0$. $d$. ’s, $i$. $e$. $\alpha<i\beta,$ $\beta<tr$ imply $\alpha<t\gamma$ ; and one
and only one relation $\alpha<i\beta,$ $\alpha=\beta,$ $\beta<i\alpha$ holds for every pair of $0$. $d$. ’s
$\alpha,$

$\beta$.

\S 2. Transfinite induction.

1. Let $\mathfrak{S}$ be a system with a linear order. An element $s$ of $\mathfrak{S}$ is
called ’ accessible in this system (or accessible for this order) ’, if
the subsystem of $\mathfrak{S}$ consisting of elements, which are not ‘greater’
than $s$, is well-ordered. The following propositions are easily proved.

PROPOSITION 1. Let $\alpha$ be an $0$. $d$. If every $0$. $d$. Jess than $\alpha$ in the
sense $of<_{i}$ is accessible $for<_{\iota}$ , then $\alpha$ is accessible $for<_{i}$ .

PROPOSITION 2. Let $\alpha$ be an $0$ . $d$ . If $\alpha$ is accessible $for<_{i}$ , then
every $0$. $d$. less than $\alpha$ in the sense $of<_{i}$ is accessible $for<_{i}$ .

PROPOSITION 3. Let $\alpha_{1},$ $\cdots,$ $\alpha_{k}$ be $0$. $d$. ’s. If $\alpha_{1},$ $\ldots,$ $\alpha_{k}$ are accessible
$for<_{i}$ , then $\alpha_{1}\#\cdots\#\alpha_{k}$ is accessible $for<_{i}$ .
2. Let $\alpha$ be an $0$ . $d$ . and $i$ an integer satisfying $0\leqq i\leqq n$. We
define recursively ‘

$\alpha$ is an i-fan’ and ‘
$\alpha$ is $i$-accessibJe’ as follows :

2.1. Every $0$ . $d$ . is an n-fan.
2.2. $\alpha$ is i-accessible, if and only if $\alpha$ is an i-fan and $\alpha$ is accessible
for $<_{i}$ in the system of i-fans.
2.3. $\alpha$ is an i-fan $(0\leqq i\leqq n)$ , if and only if $\alpha$ is an $(i+1)$ -fan and
every $(i+1)$-section of $\alpha$ is $(i+1)$ -accessible.

Every O-fan is also called a fan. A fan $\alpha$ is said to be
’ accessible in the sense of fan ’, if $\alpha$ is O-accessible. We see
clearly that propositions 1, 2, and 3 remain correct, if we replace
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‘
$0$ . $d$ . with ‘ i-fan ’ and ‘ accessible for $<_{i}$ with ‘ i-accessible ’.

We obtain easily the following propositions.
PROPOSITION 4. The following two conditions on an $0$. $d$. $a$ are

equivalent :
2.4. $\alpha$ is accessible for $<$ .
2.5. $\alpha$ is n-accessible.

PROPOSITION 5. If $\alpha$ is an i-fan, then $\alpha$ is an $(i+1)$-fan.
PROPOSITION 6. If every positive integer is i-accessible, then every

i-fan is i-accessible.
PROOF. Let $\alpha$ be an i-fan and $a$ be the maximal number of

integers, of which $\alpha$ is composed. Then clearly $\alpha<_{i}(a+1)$ , whence
the proposition 6 follows directly.

PROPOSITION 7. Every fan is accessible in the sense of fan.
3. Now we shall prove the following proposition.

PROPOSITION 8. If every $(i-1)$ -fan is (i-l)-accessible, then every
i-fan is i-accessible $(i=1,2, \cdots, n)$ .

PROOF. Let $\alpha$ be an arbitrary $(i-1)$-fan. By the proposition 6
we have only to prove that $\alpha$ is i-accessible. Without loss of gener-
ality, we may assume the following condition 3.1 on $\alpha$ :
3.1. $\beta$ is i-accessible, if $\beta$ is an $(i-1)$ -fan and $\beta<_{i-1}a$ .

Now, let $\gamma$ be an arbitrary connected i-fan and suppose $\gamma<i\alpha$ .
We have only to prove that $\gamma$ is i-accessible. We prove this by
induction on the number of operations in the construction of $\gamma$ . If
$\gamma$ has no i-section, then $\gamma$ is an $(i-1)$ -fan and one of the following
conditions follows from $\gamma<_{i}\alpha$ :
3.2. $\gamma<i-1\alpha$ .
3.3. There exists an i-section $\delta$ of $\alpha$ such that $\gamma\leqq i\delta$.

In case 3.2, the proposition 8 follows from 3.1. In case 3.3,
the proposition 8 follows from the condition that $\alpha$ is an $(i-1)$-fan.

Now, suppose $\gamma$ has an i-section. Since every i-section of $\gamma$ is
less than $\alpha$ for $<_{i}$ and is an $i$-fan, it follows from the hypothesis
of the induction, that every i-section of $\gamma$ is i-accessible. Hence $\gamma$

is an $(i-1)$ -fan. Therefore, from $\gamma<_{i}\alpha$ one of the following condi-
tions follows:
3.4. $r<i-1a$ .
3.5. There exists i-section $\delta_{0}$ of $\alpha$ such that $\gamma\leqq_{i}\delta_{0}$ .

In case 3.4, the proposition 8 follows from 3.1. In case 3.5,
the proposition 8 follows from the condition that $a$ is an $(i-1)$-fan.
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From propositions 7 and 8 follows:

THEOREM. The system of all the $0$. $d$. $s$ is well-ordered $for<$ .

\S 3. Some properties of o. d. ’s.

The following propositions on $0$ . $d$ . ’s follow easily from the
above.

PROPOSITION 1. Let $\alpha$ and $\beta$ be c. o. d. ’s and $i$ be an integer satis-
fying $0<i\leqq n$. If $ a_{0}<j\beta$ holds for every $j$ satisfying $j\leqq i$ and for every
j-section $\alpha_{0}$ of $\alpha$ and $\alpha\ll\beta$ , then $\alpha<i\beta$.

PROPOSITION 2. Let $\alpha$ be a $c$. $0$. $d$. and $\beta$ be an i-section of $\alpha$ .
Then $\beta<i\alpha$ .

PROPOSITION 3. Let $\alpha$ and $\beta$ be $c$. $0$. $d$. ’s and $i,$ $k$ integers satis-
fying $0<i\leqq n$, and $0<k\leqq i$ respectively. If $\alpha_{0}$ is a k-section of $\alpha$ and
the following cmditims 1.1–1.3 are fulfilled, then $\alpha<i\beta$ .
1.1. Let $j$ be any integer satisfying $0<j\leqq i$ and $\alpha_{1}$ a j-section of
$\alpha$ other than $\alpha_{0}$ . Then there exists a j-section $\beta_{1}$ of $\beta$ such that
$\alpha_{1}\leqq J\beta_{1}$ .
1.2. $\alpha_{0}<k\beta$.
1.3. $\alpha\ll\beta$.

PROPOSITION 4. In the notation of the introduction V $O(n)$ is not
$n$

well-ordered.
PROOF. This is easily seen by the following example.

2 2 2
$(1,2)|$ $(1,3)|$ $(1,4)|$

$(2\rfloor_{1})$

$>$
$(1,2)|$

$>$
$(1,3)|>\cdots$

$(2,1)|$ $(1,2)|$

$(2,1)|$
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