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Introduction. In this paper, we mean by a space always a connected
Riemannian space (with a positive definite metric) of class $C^{\infty}$ and of
dimension $n>3$ . We denote such a space generally with $M$, and the con-
formal transformation group of $M$ with $C(M)$ , the isometry group of $M$

with $I(M)$ . If ]$\psi^{\prime}$ is another space and $C(M)\subset I(l\psi^{\prime})$ , the study of $C(M)$ will
be reduced to that of $I(M^{\prime})$ . We shall say for brevity that $ j\psi$ is conformally
reducible if we can find an $M^{\prime}$ with $C(M)\subset I(M^{\prime})$ . Several authors have
shown that spaces satisfying some conditions on the Ricci tensor have the
property $C(M)\subset I(M)$ or $C^{0}(M)\subset I(j\psi)$ , where $C^{0}(M)$ means the identity
component of $C(M)$ (see [8]). In \S 1 of this paper, we shall show that
$C(M)\subset I(M^{\prime})$ holds for a submanifold $M^{\prime}$ of $M$ whenever $M$ is not conform-
ally flat. Thus, spaces which are not conformally flat, are conformally
reducible in the sense explained above. This is based on a theorem
(theorem H) essentially due to Hlavat\’y. From this remark follow very
easily the following known results for example:

I. If an n-dimensional Riemannian space $M(n>4)$ admits the group
$C(M)$ of conformal transformations with dimensions greater than $n(n-1)/2$

$+7$ , then $M$ is conformally flat (H. Hiramatu [1]).

II. Let $\rho$ be the natural representation on the tangent space $T_{p}$ of $M$

at a point $p\in M$ of the group $C_{p}(M)$ of isotropy of $C(M)$ at $p$ . If $\rho(C_{p}(M))$

is not contained in the rotation group of $T_{p}$ with the induced metric, the
conformal tensor vanishes at $p$ (S. Ishihara and M. Obata, see [8] p. 277).

As another application of theorem $H$ we shall prove that a Riemannian
homogeneous space which is not conformally flat does not admit a conformal
transformation but for an isometry.

In \S \S 2-4, we shall consider conformally flat spaces, to which the
“ method of reduction ” is not applicable. If we denote the n-Mobius group
(for definition see below) by $M(n)$ , the contents of \S 2 may be summarized
by the following three statements:

(1) We have always $C(M)\subset M(n)$ locally,
(2) $C(lV)=l\psi(n)$ locally if and only if $ j\psi$ is conformally equivalent with

$S^{n}$ ($S^{n}$ means the n-sphere, cf. [4]).

(3) If $C(M)$ is transitive, then there exists an open submanifold $1\psi^{\prime}$
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of $S$“, such that the universal covering space $\tilde{M}$ of $M$ is conformally equi-
valent with $\tilde{M}^{\prime}$ .

In \S \S 3-4, we determine the structure of $M$ such that $\dim M>n(n-1)/2$
$+2$ . \S 3 treats the case where $C(M)$ is transitive on $M$, and \S 4 the in-
transitive case. Our main results in this respect are theorems 9 and 10.

In this paper, we use the notations and the results of Yano [8] without
special references. The author wishes to express his sincere thanks to
Prof. K. Yano and Mr. M. Obata, for their constant encouragements and
valuable suggestions during the preparation of this paper.

\S 1. Reduction to the isometry group.

A diffeomorphism $\tau$ of a Riemannian space $M$ into another Riemannian
space $M^{*}$ is, by definition, conformal, if $\tau$ preserves the orthogonality, or
equivalently, if there exists a positive scalar $f$ on $M$ such that the length
$||u||$ of a tangent vector $u$ at $x\in M$ and the length $||d\tau(u)||$ of $d\tau(u)$ enjoy
the relation

$||d\tau(u)||^{*}=f(x)||u||$ .
Moreover if $\tau$ maps $M$ onto $M^{*},$ $M$ is said conformally equivalent to $M^{*}$ .
Further if $M$ coincides with $M^{*},$ $\tau$ is called a conformal transformation of $M$.
All the conformal transformations of $M$ form a Lie transformation group
of $M$. There exists on $M$ a $(1, 3)$ -type tensor field $C$ known as Welyl’s
conformal curvature tensor (in short, the conformal tensor), which is in-
variant under any conformal transformation of $M$. An infinitesimal con-
formal transformation $u$ is a vector field on $M$ such that $i\epsilon_{u}g=2\phi g,$ $i$ . $e$ . the
Lie derivative of the fundamental tensor $g$ with respect to $u$ is a scalar $ 2\phi$

times $g$. The vector $u$ is a Killing vector if in particular $\emptyset=0$ . When $u$

generates a one-parameter group $G$ of transformation of $M$, in order that
$G$ consists of conformal transformations it is necessary and sufficient that
$u$ is an infinitesimal conformal transformation. The conformal tensor $C$ is
invariant by any infinitesimal conformal transformation $u$ , i. e. $S{}_{u}C=0$ .
Now we have a theorem essentially due to V. Hlavat\’y [2], though he did
not allude to conformal transformations.

THEOREM H. If the conformal tensor $C$ does not vanish at any point of a
space $M,$ $M$ is conformally equivalent to a space $M^{*}$ such that the group of
conformal transformations on $M$ is naturally isomorphic onto the group of iso-
metries on $M^{*}$ . Further $M^{*}$ does not admit an infinitesimal conformal trans-
formation but for a Killing vector field.

PROOF. We define a new metric in $M$ by $||u||^{*}=||C||||u||$ , where $||C||$ is
the length of $C,$ $i$ . $e$ .
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$||C||^{2}=C^{a_{bc}}{}_{a}C_{qrs}^{p}g_{ap}g^{bq}g^{cr}g^{ls}$ .
Thus we have another space $M^{*}$ which is identical with $M$ as a manifold
and is conformally equivalent to $M$. We can readily verify that an arbitrary
conformal transformation on $M$ is an isometry of $M^{*}$ , the converse being
also true. And the analogous holds for an infinitesimal transformation.

We shall show two applications of this theorem H.
Notations. $C(M)$ : the (effective) group of all the conformal transformations

of $M$.
$C^{L}(M)$ : the Lie algebra of $C(M)$ .
$C^{I}(M)$ : the Lie algebra consisting of the infinitesimal conformal

transformations of $M$ and with the usual bracket product.
$I^{I}(M)$ : the Lie algebra of the Killing vectors of $M$.
$C_{p}(M)$ : the subgroup of isotropy of $C(M)$ at a point $p\in M$.
$C_{p}^{I}(M)$ : the subalgebra of $C^{I}(M)$ whose vector fields vanish at $p$ .
$C_{p}^{L}(M)$ : the Lie algebra of $C_{p}(M)$ .

Then both $C_{p}^{I}(M)$ and $C^{L}(M)$ are subalgebras of $C^{I}(M)$ and we have
$C_{p}^{L}(M)=C_{p}^{I}(M)\cap C^{L}(M)$ . $M$ is said conformally flat, if the conformal tensor $C$

vanishes everywhere in $M$.
THEOREM 1. If $M$ is not conformally flat, the conformal group $C(M)$ is

isomorphic into the isometry group $I(M^{*})$ of some space $M^{*}$ .
PROOF. Denote by $M_{1}$ the open submanifold of $M$ consisting of the

points of $M$ at which we have $C\neq 0$ . We shall prove that the conformal
group $C(M)$ of $M$ is isomorphic into $C(M_{1})$ of $M_{1}$ . $M_{1}$ is invariant by $C(M)$

and $C^{I}(M)$ . A homomorphism of $C(M)$ into $C(M_{1})$ is given by the restric-
tion to $M_{1}$ of each conformal transformation on $M$. The isomorphism (of
abstract groups) is proved with the use of conformal circles which are
invariant by $C(M)$ , if we note that, if three near points of a conformal
circle are fixed by a conformal transformation, this leaves the conformal
circle invariant point-wise. A homomorphism of $C^{I}(M)$ into $C^{I}(M_{1})$ is also
given by restriction. It turns out to be an isomorphism because of the
uniqueness of the solutions of differential equations satisfied by an arbitrary
infinitesimal transformation $u$ (see (2.2) and (2.4) in \S 2). This isomorphism
induces that of $C^{L}(M)$ into $C^{L}(M_{1})$ , hence the local isomorphism of $C(M)$

into $C(M_{1})$ , which coincides with the above. Now the theorem follows from
theorem H. Q. E. D.

Theorem 1 means that the conformal transformation group of any space
which is not conformally flat can be regarded as a subgroup of the iso-
metry group of a space of the same dimension. Thus it is evident, say,
that $M$ is conformally flat if $\dim C(M)>n(n-1)/2$ by the main theorem in
Yano [9] (In his theorem only conformally flat spaces appear. For the case
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where $n=8$ , see M. Obata [7]). A Lie algebra $G^{L}$ consisting of vector fields
on $M$ and with the bracket product is said transitive, if the natural map
$(u, x)\in G\times M\rightarrow u(x)\in T(M)$ (the tangent bundle of $M$) has the image $T(M)$ .
$M$ is homogeneous ( $i$ . $e$ . with a transitive isometry group), if and only if
$M$ is complete and $I^{I}(M)$ is transitive.

THEOREM 2. If a space $M$ is not conformally flat and the Killing algebra
$I^{I}(M)$ is transitive, then $M$ does not admit a conformal transformation (other

than an isometry) nor an infinitesimal one.
$P_{ROOF}$ . $||C||$ is constant, because we have $S_{u}||C||=0$ for each $u\in I^{I}(M)$

of connected $M$ and $I^{I}(M)$ is transitive. $M$ being conformally non-flat, the
constant $||C||$ is not zero. Thus we can apply theorem H. Since $||C||$ is
constant, $M$ and $M^{*}$ in theorem $H$ have the same isometry group and the
same Killing algebra, which must coincide with conformal ones of $M^{*}$ by
virtue of theorem H.

$CoROLLARY$ . On a homogeneous Riemannian space $M$ which is not con-
formally flat, a conformal transformation is an isometry.

This holds more generally for any connected open submanifold of $M$

mentioned above.
$CoROLLARY$ . A locally symmetric space which admits an infinitesimal con-

formal transformation which is not Killing is a space of constant curvalure or
the local product of two spaces of constant curvature. And an analogous holds
for a symmetric space $M$ and a non-isometric conformal transformation of $M$.

These corollaries were announced in [10].

THEOREM 3. Let $M$ be a compact simply connected Riemannian space. If
a connected Lie group $G\subset C(M)$ of conformal transformations is transitive, then
$M$ is conformally equivalent to a homogeneous space $M^{*}$ .

This theorem is an immediate consequence of theorem $H$ in the case
where $M$ is not conformally flat.

The proof of theorem 3. $G$ has a compact subgroup $K$ which is transi-
tive on $M$ (see Montgomery [5]). Since the isotropy subgroup $K_{x}$ at a
point $x\in M$ is a compact subgroup of $G$ , the linear isotropy group induced
from $K_{x}$ on the tangent space $T_{x}$ of $M$ at $x$ is an isometry group. Then
there exists a unique metric on $M$ which on $T_{x}$ coincides with the given
and with respect to which $K$ is an isometry group. Give this metric to
the manifold $M$, then we get the space $M^{*}$ required.

REMARK. If, moreover, $M$ is conformally flat, $M$ is conformally equi-
valent to the sphere ( $i$ . $e$ . the complete simply connected space of positive
constant curvature), according to a more general theorem of Kuiper [4] or
to the corollary of theorem 6 in \S 2.
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\S 2. The structure of the Lie algebra $C^{I}(M)$ .
Let $li$ be an infinitesimal conformal transformation on $M$. Putting

$S_{u}g=2\phi g$ , (2.1)
we have

$\nabla_{k}\nabla_{j}u^{i}=S_{u}\{kiJ\}-R_{jka}^{i}u^{a}$

$=\delta_{k}^{i}\phi_{j}+\delta_{j}^{i}\phi_{k}-\phi^{i}g_{kj}-R_{jka}^{i}u^{\alpha}$ (2.2)
where

$\phi_{j}=\partial_{j}\phi$ (2.3)
and

$\nabla_{j}\emptyset=\epsilon_{u}L_{ji}/(n-2)$ (2.4)
where

$L_{ji}=-K_{ji}+kg_{ji}/2(n-1)$ .
Hence, by virtue of the theorem of the unique existence in the theory of
differential equations, $u$ is uniquely determined by the values of $u^{i},$ $\nabla_{j}u^{i},$ $\phi$

and $\phi_{i}$ at a point of $M$. If $u$ and $v$ are infinitesimal conformal transforma-
tions satisfying $iS_{u}g=2\phi g$ and $S_{v}g=2\psi g$, then $[u, v]$ belongs to $C^{I}(M)$ .
Putting $g_{\mathfrak{c}u,v\rceil}g=2\chi g$, we have

$[u, v]^{i}=u^{a}\nabla_{a}v^{\dot{l}}\cdot-v^{a}\nabla_{a}^{u^{i}}$ ,

$\nabla_{J}[u, v]^{i}=(\nabla_{ja}u^{a})\nabla v^{i}-(\nabla_{j}v^{a})\nabla_{a}^{u^{i}-u^{a}(S}\{_{a^{i}j}\}-R_{ajb}^{i}v^{b})$

$-v^{a}(S_{u}\{a^{i}J\}-R_{ajb}^{i}u^{b})$ ,

$\chi=u^{a}\psi_{a}-v^{a}\phi_{a}$

$\chi_{i}=(\nabla_{i}u^{a})\psi_{a}+u^{a}S_{v}L_{ia}/(n-2)-(\nabla_{i}v^{a})\phi_{a}$

$-v^{a}S_{u}L_{ia}/(n-2)$ .
These relations give the structure of Lie algebra $C^{I}(M)$ , which tells us

various facts. But we are especially interested in conformally flat spaces,
in view of the reduction to the isometry discussed in \S 1. From now on
we assume that $M$ is conformally flat. For a fixed point $p\in M,$ $M$ is then
conformally equivalent to a space $M^{*}$ , and some neighborhood $U$ of $p$ cor-
responds to a neighborhood in $M^{*}$ which is isometric onto the Euclidean
space. Thus we can suppose $\{_{a^{i}j}\}=0$ in $U$, so long as we are concerned
with the structure of $C^{I}(M)$ . Hence

$u\in C^{I}(M)\rightarrow\left(\begin{array}{llll}-\phi & u^{i} & & 0\\-\phi_{j} & \partial_{j}u^{i}- & \delta_{j}^{i} & u^{j}\\0 & -\phi_{i} & & \phi\end{array}\right)$ evaluated at $p(2.5)$
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is an isomorphism of $C^{I}(M)$ into the Lie algebra of the general linear
group $GL(n+2)$ of degree $n+2$ . The n-MObius group $M(n)$ is by definition
the subgroup of $GL(n+2)$ consistin $g$ of all the linear transformations which

leave invariant the quadratic form $\sum_{i=2}^{n+1}(x^{i})^{2}-2x^{1}x^{n+2}$ (with respect to a base).

The Lie algebra of $M(n)$ is called the n-MObius algebra $M^{L}(n)$ . Now it is
easy to prove

THEOREM 4. For any conformally flat space $M,$ $C^{J}(M)$ (a fortiori $C^{L}(M)$) is
isomorphic to a subalgebra of n-Mobius algebra. The correspondence is given by
(2.5).

This theorem enables us to use the matrix calculus in detailed researches
of the structure of $C^{I}(M)$ and so useful in the proofs of the following
theorems.

REMARK. A conformally flat space $M$ is covered by open subsets $\{U_{\lambda}\}$

such that $C^{I}(U_{\lambda})$ is isomorphic onto $M^{L}(n)$ , as Sasaki and later Taub found
(see Yano [8]).

The next theorem might be known (see Kuiper [4]), and only the proof
is new.

THEOREM 5. The sphere $S^{n}$ is the unique Riemannian space which admits
the Lie algebra of the conformal transformation group isomorphic to the n-Mbbuis
algebra:

$C^{I}(S^{n})=C^{L}(S^{n})\cong M^{L}(n)$ .
PROOF. Since $S^{n}$ is of constant curvature, $S^{n}$ is conformally flat. Hence

the system (2.1), (2.2), (2.3) and (2.4) to characterize a $u\in C^{I}(M)$ is completely
integrable (cf. the remark above). $S^{n}$ being simply connected, these equa-
tions are globally solvable, $i$ . $e$ . $C^{I}(S^{n})$ is isomorphic to $M^{L}(n)$ . The com-
pactness of $S$“ implies $C^{I}(S^{n})=C^{L}(S^{n})$ . The uniqueness will be proved later.

THEOREM 6. A conformally flat space $M$ which admits a transitive connected
conformal transformation group $G$ has the same (but for the conformal equiva-
lence) universal covering space as an open submanifold of the sphere.

PROOF. We can assume $M$ simply connected. For a fixed point $p\in M$,

there is a neighborhood $U$ of $p$ and a conformal diffeomorphism $\omega_{U}$ of $U$

onto an open subset of $S^{n}$ , for $M$ is conformally flat. $\omega_{U}$ induces an iso-
morphism $ d\Omega$ of the Lie algebra $G^{L}$ of $G$ into $C^{L}(S^{n})$ . Note that the isotropy
subalgebra of $G^{L}$ corresponds to that of $C^{L}(S^{n})$ under $ d\Omega$ . The universal
covering group $\tilde{G}$ of $G$ operates naturally on $M$. The kernel $\pi_{1}(G)$ of the
projection $\tilde{G}\rightarrow G$ consists of the identity transformation. $ d\Omega$ defines a homo-
morphism $\tilde{\Omega}$ of $\tilde{G}$ into $C(S^{n})$ . The isotropy subgroup $G_{p}$ of $\tilde{G}$ at $p$ is con-
nected, for $\tilde{G}$ and $M$ are simply connected. Thus $G_{p}$ is mapped to the
isotropy subgroup $C_{q}(S^{n})$ at $q=\omega_{U}(p)$ . Since $\pi_{1}(G)\subset\tilde{G}_{p}$ is a normal subgroup
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of $G$ and $C(S^{n})$ is effective, $\tilde{\Omega}(\pi_{1}(G))$ is the neutral element of $C(S^{?l})$ . There-
fore $\tilde{\Omega}$ induces a homomorphism $\Omega$ of $G$ into $C(S^{n})$ , which is a local iso-
morphism just as well as $\tilde{\Omega}$ . The isotropy group $G_{p}$ of $G$ at $p$ is mapped
by $\Omega\dot{i}^{nto}C_{q}(S^{n})$ . Thus $\Omega$ induces a local diffeomorphism $\omega$ of $M=G/G_{p}$

onto $\Omega(G)/\Omega(G_{p})\subset S^{n}$ . $\Omega(G)/\Omega(G_{p})$ is an open subspace of $S^{n}$ , for among the
elements near the neutral element of $G$ only those of $G_{p}$ are mapped into
$C_{p}(S^{n})$ by $\Omega$ . The restriction $\omega|U$ of $\omega$ to $U$ coincides with $\omega_{U}$ . Hence $\omega$

is locally conformal, in particular locally diffeomorphic.
REMARK. In this theorem “ an open submanifold of $S^{n}$ cannot be

replaced by $S^{n}$ itself, because a space with a transitive conformal group is
not always complete with respect to the so-called normal conformal con-
nection (nor the Levi-Civita connection) ( $e$ . $g$ . the Euclidean space).

REMARK. N. H. Kuiper proved that a conformally flat space can “ con-
formally be developped ” into $S^{n}$ in a unique way ([4]). Our theorem 6
sharpens his result in the case of transitive conformal group.

$CoROLLARY$ . A compact simply connected space $M$ which admits a connected
transitive conformal transformation group is conformally equivalent to the sphere,
$\iota fM$ is conformally flat. This was announced at the end of \S 1.

PROOF. By virtue of theorem 6, the compact space is a covering of an
open submanifold $V$ of $S^{n}$ . Hence $V$ is compact and closed in $S^{n}$ . Thus
$V=S^{n}$ . $S^{n}$ bein $g$ simply connected, $M$ must coincide with $S^{n}$ .

The proof of the uniqueness in theorem 5.
Let $M$ be a Riemannian space with $C^{L}(M)$ isomorphic onto $M^{L}(n)$ .

Denote by $G$ the neutral component of $C(M)$ . Since the Lie algebra $ G^{L}\subset$

$C^{L}(M)$ is transitive, $G$ is transitive. On account of theorem 6, the universal
covering $\tilde{M}$ of $M$ is conformally equivalent to that of an open submanifold
$V$ of $S^{n}$ . Observing the proof of that theorem, we see that $G$ is locally
isomorphic onto $C(V)$ , hence $C(V)$ has the same dimension as $M(n)$ locally
isomorphic to $C(S^{n})$ . From this follows easily $V=S^{n}$ , and so $M$ is con-
formally equivalent to $S^{n}$ . We identify these two spaces. The l-dim.
homotopy group $\pi_{1}(M)$ of $M$ is a group of isometries of $\tilde{M}=S^{n}$ , which is
contained in the centralizer of the neutral component of $C(S^{n})$ . (Note that,
because of $\dim C^{L}(\tilde{M})=\dim C^{L}(M),$ $C^{L}(\tilde{M})$ is induced from $C^{L}(M)$ by the
projection: $\tilde{M}\rightarrow M$ and $C^{L}(\tilde{M})$ is thus invariant by $\pi_{1}(M))$ . Now in order
to complete the proof of theorem 5, it is sufficient to show that the center
of $C(S^{n})$ reduces to the identity. But this is a direct consequence of the
classical fact in Mobius geometry that for any point $p\in S^{n}$ there is a
transformation $\tau$ in the neutral component of $C(S^{n})$ which fixes just one
point $p$ . (Take as $\tau$ the so-called elation with center $p$). ($\pi_{1}(M)$ must com-
mute with each such $\tau$).
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The isometry group does not contain such a transformation, and the
following theorem holds (see also Obata [7]).

THEOREM 7. An n-dimensional Riemannian space $M$ which admits the iso-
metry group of dimension $n(n+1)/2$ is a complete simply connected .space of
constant curvature or the projective space, and vice versa, where the projective
$P^{n}$ means the Riemannian space obtained from the sphere $S^{n}$ naturally imbedded
in $(n+1)$ -dimensional Euclidean space by identifying every two points at the ends
of diameters, the metric being induced in such $a$ zvay that the proiection: $S^{n}\rightarrow$

$P^{n}$ is a local isometry.
PROOF. It is known that the universal covering space $\tilde{M}$ is a complete

simply connected space of constant curvature. $\pi_{1}(M)$ is a transformation
group $\subset I(\tilde{M})$ of $\tilde{M}$ contained in the centralizer of the neutral component
of $I(M)$ , which holds in an analogous way as in the proof given above of
the uniqueness.
Case I: $M$ with positive curvature. Then we consider $M$ as the sphere in
the $(n+1)$-dimensional Euclidean space $E^{n\dashv- 1}$ with center at the origin. The
neutral component of $I(\tilde{M})$ is the special orthogonal group $SO(n+1)$ , which
consists of rotations around the origin of $E^{n+1}$ . A transformation in $\pi_{1}(M)$

is an isometry of the sphere, and hence this is extended to $E^{n+1},$ $i$ . $e$ . it
belongs to the orthogonal group $O(n)$ . Now the centralizer of $SO(n)$ in
$O(n)$ consists of the identity and the symmetry with respect to the origin.
When $\tilde{M}\neq M,$ $M$ must therefore be the real projective space.
Case II: $M$ with non-positive curvature. Any two points of $M$ are joined
with just one geodesic. The proof is easier when $M$ has even dimensions.
Then for any fixed point $p\in M$ there exists a rotation $\rho$ around $p$ and which
belongs to the neutral component $I_{c}(M)$ of $I(M)$ . Hence $\rho$ does not fix any
point of $M$ except $p$ . Therefore $\pi_{1}(M)$ reduces to the identity. When $M$

has odd dimensions, take two rotations $\rho$ and $\sigma$ in $I_{c}(M)$ such that there is
not any geodesic starting from $p$ which is invariant under $\rho$ and $\sigma$ . There
is not any point except $p$ in $M$ which is fixed by $\rho$ and $\sigma$ . Hence $\pi_{1}(M)$

$=\{e\}$ , that is $M=\tilde{M}$. Conversely such $M’ s$ and $P^{n}$ admit the isometry
group of dimension $n(n+1)/2$ , as is easily verified.

REMARK. In the same way a conformal transformation which commutes
with the neutral component of $I(M)$ is an identity or, if $M$ is of positive
curvature, a “ symmetry ” in the above sense. This fact will be used later.

\S 3. Transitive conformal groups of higher dimensions.

The isotropy algebra $C_{p}^{L}(M)$ at $p\in M$ of the conformal transformation
group $C(M)$ is naturally represented on the tangent space $T_{p}$ of $M$ at $p$ ,
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the representation denoted by $d$ is not faithful in general. But we have
PROPOSITION 8. Let $C(M)$ be a transitive conformal transformation group

of a conformally flat space M. If the Lie algebra $C^{L}(M)$ is not isomorphic to
the n-Mobius algebra, the isotropy subalgebra $C_{p}^{L}(M)$ of $C(M)$ is faithfully repre-
sented on the tangent space naturally.

PROOF. Let $K^{L}$ be the kernel of the representation $d$ on the tangent
space. Each element $u$ of $K^{L}$ satisfies

$u^{i}(p)=0$ , $\nabla_{j}u^{i}(p)=0$ , $\emptyset(p)=0$

where $\phi$ is given by $i\epsilon_{u}g=2\phi g$ on $M$. Suppose that $K^{L}$ is not trivial and
$u\neq 0$ . We can assume $\partial_{j}\phi(p)=\delta_{j1}$ . $C(M)$ being transitive, there exist $v_{(1)}$ ,
..., $v_{(n)}\in C^{L}(M)$ such that we have $v_{(k)^{i}}(p)=\delta_{k^{i}}$ . From the study of the struc-
ture of $C^{L}(M)$ in \S 1, we deduce that

1) $[u, v_{(k)}]$ belongs to the isotropy subalgebra $C_{p}^{L}(1\psi)$ and the elements
$[u, v_{(k)}](k=2,\cdots, n)$ generate (or, more in detail, $[u, v_{(k)}]$ and $[[u, v_{(k)}],$ $[u, v_{(l)}]]$

$(k, l=2,\cdots, n)$ span) a subalgebra whose d-image is the Lie algebra $O^{L}(n)$ of
the orthogonal group.

2) $u$ and $[[u, v_{(k)}],$ $u$] $(k=2,\cdots, n)$ belong to $K^{L}$ and are linearly inde-
pendent and finally $v_{(k)}(k=1,\cdots, n),$ $[u, v_{(1)}]$ and those elements in 1) and 2)

span an $(n+1)(n+2)/2$ dimensional linear subspace of $C^{L}(M)$ . But this
dimension is equal to that of $M^{L}(n)$ . Thus $C^{L}(M)$ is isomorphic to $M^{L}(n)$ ,
by virtue of theorem 4.

THEOREM 9. If a space $M$ with dimension $n>4$ admits a subgroup $G$ of
$C(M)$ which is transitive and dimension greater than $n(n-1)/2+2$ , then one of
the following 5 cases occurs (conformal equivalence being neglected):

1) $M$ is the sphere $S^{n}$ and $G\cong M(n)$ , hence $\dim G=(n+1)(n+2)/2$ ,
2) $M$ is the Euclidean space $E^{n}$ and $ G\cong C(M)\cong$ the homothetic transfor-

mation group, hence $\dim G=n(n+1)/2+1$ ,
3) $M$ is $S^{n}$ or the real projective space and $G\cong I(S^{n})$ , hence $\dim G=n(n+1)/2$ ,
4) $M$ is $E^{n}$ and $G\cong I(E^{n})$ , hence $\dim G=n(n+1)/2$ ,
5) $M$ is the hyperbolic space $H^{n}$ and $G\cong I(H^{n})$ , hence $\dim G=n(n+1)/2$ .

In the above, $\cong$ means local isomorphism.
REMARK. $H^{n}$ is obtained, if in the inner part of the hyper-sphere with

center at the origin and radius $r$ in $E^{n}$ we define the metric by $r^{2}\Sigma(dx^{i})^{2}/$

$[r^{2}-\Sigma(x^{j})^{2}]$ . Apparently $H^{n}$ is conformally equivalent to the interior of
the hypersphere, but not onto $E^{n}$ , because we have $C(H^{n})\not\cong C(E^{n})$ by virtue
of theorem 9 above.

The proof of theorem 9 will be completed after several lemmas. First
$M$ is conformally flat, as was remarked before.

LEMMA 3.1. Under the hypothesis in theorem 9, the isotropy subgroup is
locally isomorphic onto the orthogonal group $O(n)$ or the direcl product of $O(n)$
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and a l-parameter group.
PROOF. The isotropy subalgebra $C_{p}^{L}(M)$ contains $C_{*}^{L}=\{u\in C^{L}(M):u(p)$

$=0,$ $\phi(p)=0$} and has dimension $\leqq\dim C_{*}^{L}+1$ . Thus, by proposition 8, we
have $\dim C^{L_{*}}\geqq n(n-1)/2-(n-1)$ . $C_{*}^{L}$ can be regarded as a subalgebra of the
Lie algebra $O^{L}(n)$ of $O(n)$ . $cL$ generates a connected subgroup $C_{*}\subset O(n)$ .
According to Montgomery and Samelson [7], $C_{*}$ is dense in $O(n)$ . Further
the inner automorphism of $O(n)$ corresponding to the elements of $C_{*}$ leave
$C_{\aleph}^{L,}$. invariant, if they are induced on $O^{L}(n)$ . Thus the special orthogonal
group $SO(n)$ leaves $C_{*}^{L}$ invariant. Since $SO(n)$ is simple, $C_{*}^{L}=O^{L}(n)$ . When
$C_{p}^{L}(M)\neq C_{*}^{L},$ $C_{p}^{L}(M)$ is the direct sum of $C_{*}^{L}$ and a l-dimensional subalgebra.

We fix a point $p\in M$ and a coordinate system valid in a neighborhood
$U$ of $p$ such that $C^{I}(U)(\supset C^{L}(M))$ is isomorphic onto $M^{L}(n)$ . We can suppose
$U\subset M$ is flat and the fixed coordinate system is Cartesian. We choose a
base of $M^{L}(n)\{e^{i}, f^{i}, h, E_{i}^{j}(i, j=1,\cdots, n)i<j\}$ such that

$\ell;u\in C^{I}(U)\rightarrow u^{k}(p)e_{k}-\partial_{k}\phi(p)f^{k}+\phi(p)h-(\partial_{j}u^{i}(p)-\phi(p)\delta_{j}^{i})E_{i^{j}}$

is the isomorphism (2.5) of $C^{I}(U)$ onto $M^{L}(n)$ , where $\phi$ satisfies $S_{u}g=2\phi g$.
We shall neglect $\ell$ ( $i$ . $e$ . we shall consider $C^{L}(M)\subset C^{I}(U)=M^{L}(n)$) in the
sequel. We assume that $G$ is not locally isomorphic to $M(n)$ .

LEMMA 3.2. There exists a real number $a$ such that all $a(f^{i}-f^{j})+E_{i^{j}}(i,j$

$=1,\cdots,$ $n$) belong to $C^{L}(M)$ .
PROOF. We shall give the proof in two ways. By the second method

we shall quickly prove lemmas 2 and 3 at the same time, with the use of
a theorem on the maximal compact subgroup. It will be found after the
proof of lemma 3. Now we begin with the first proof, in which we shall
not adopt Einstein’s summation convention. The commutator subalgebra of
$C_{p}^{L}(M)$ coincides with $C_{*}^{L}$ in the proof of lemma 3.1, hence with $O^{L}(n)$ . Thus

$C|$, has the base of the form $\sum_{k-1}^{n}\phi_{k}(ij)f^{k}+E_{t^{j}}$ . For any fixed $i_{1}$ and $j_{1}(i_{1}<j_{1})$ ,

take any $i_{2}$ and $j_{2}$ such that $(i_{1}-i_{2})(i_{1}-j_{2})(j_{1}-i_{2})(j_{1}-j_{2})\neq 0$ and $i_{2}<j_{2}$ .
Then we have

$[\sum_{k=1}^{n}\phi_{k}(i_{1}j_{1})f^{k}+E_{i_{1}}^{j_{1}}, \sum_{lt}\phi_{k}(i_{2}j_{2})f^{k}+E_{l_{2}}^{j_{2}}]$

$=\phi_{j_{1}}(i_{2}j_{2})f^{i_{1}}-\phi_{i_{1}}(i_{2}j_{2})f^{j_{1}}-\phi_{j_{\lambda}}(i_{1}j_{1})f^{i_{2}}+\phi_{j_{1}}(i_{1}j_{1})f^{j_{2}}$

from the relation
$[E_{i^{j}}, f^{k}]=\delta_{h}^{j}f^{i}-\delta_{i}^{k}f^{j}$ and $[f^{t}, f^{k}]=0$ . (3.1)

The right hand side must vanish by virtue of proposition 8. Thus we have

$\phi_{k}(ij)=0$ for $k\neq i,$ $j$ (3.2)

or
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$\sum_{k}\phi_{k}(ij)f^{k}+E_{i^{j}}=\phi_{i}(ij)f^{i}+\phi_{j}(ij)f^{j}+E_{i^{j}}$ . (3.3)

From (3.1) and (3.2) we obtain, for $i<j_{1}<j_{2}$ ,

$[\sum_{k}\phi_{k}(ij_{1})f^{k}+E_{\iota^{j_{1}}}, \sum_{k}\phi_{k}(ij_{2})f^{k}+E_{i^{j_{2}}}]$

$=-E_{j_{1}}^{j_{2}}+\phi_{i}(ij_{1})f^{j_{2}}-\phi_{i}(ij_{2})f^{j_{1}}$ .
By virtue of proposition 8 and (3.3), this right hand side is equal to

$-E_{J}^{j_{2}}1-\phi_{j_{1}}(j_{1}j_{2})f^{j_{1}}-\phi_{j_{z}}(j_{1}j_{2})f^{j_{1}}$

and we have
$\phi_{i}(ij_{2})=\phi_{j_{1}}(j_{1}j_{2})$ and $\phi_{i}(ij_{1})=-\phi_{j_{2}}(j_{1}j_{2})$ (3.4)

Further from the relation

$[-E_{j1}^{j_{2}}-\sum_{k}\phi_{k}(j_{1}j_{2})f^{k}, E_{i}^{j_{1}}+\sum_{k}\phi_{k}(ij_{1})f^{k}]$

$=E_{i^{j_{2}}}+\phi_{j_{1}}(ij_{1})f^{j_{2}}+\phi_{j_{1}}(ij_{2})f^{i}$ ,
follows

$\phi_{J*}(ij_{2})=\phi_{j}(ij_{1})$ . (3.5)

(3.4) and (3.5) enable us to conclude that $\phi_{i}(ij_{1})=-\phi_{j_{1}}(ij_{1})$ is independent of
$(i, j_{1})$ such that $i<j_{1}$ .

LEMMA 3.3. We can assume that the number $a$ in the preceding lemma is
zero.

PROOF. The inner automorphism of $M(n)$ given by $\exp(-a\sum_{i=1}^{n}f^{i})$ induces

an automorphism of $M^{L}(n)$ by which $a(f^{i}-f^{j})+E_{i^{j}}$ is mapped to $E_{i^{j}}$. (We

can consider that this automorphism of $M(n)$ corresponds to a change of
coordinates and a conformal change of the metric. But these changes do
not matter for our purpose.)

Now we give the second proof of Lemmas 2 and 3. Let $M^{L}$ be the sub-
algebra $\{\phi_{k}f^{k}+U_{j}^{i}E_{i}^{j}\}$ is $M^{L}(n)$ . $M_{*}^{L}$ is isomorphic onto the Lie algebra $I^{L}(E^{n})$

of the isometry group of the Euclidean space. $C’\subset M_{*}^{L}$ is isomorphic to
the subalgebra $R^{L}=\{U_{j}^{i}E_{i}^{j}\}$ , which is isomorphic to the rotation algebra of
$I^{L}(E^{n})$ .

Hence $C_{*}^{L}$ and $R^{L}$ generate the maximal compact subgroups of the con-
nected group $M_{*}$ generated by $M_{*}^{L}$ . Therefore $C^{L}$ is transformed onto $R^{L}$

by an inner automorphism of $M_{*}$ , according to Malcev-Iwasawa (see [3]).

This automorphism can be extended to $M(n)$ and leaves the isotropy sub-
algebra invariant.

REMARK. In the above arguments we have found that in the isometry
group of the n-dimensional Euclidean space there are n(n-1)/2-dimensiona1
subgroups different from the rotation group and that all such groups which
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do not contain any parallel displacement are compact.
LEMMA 3.4. We can assume that $C^{L}(M)$ is spanned by the basis of the

isotropy subalgebra $C^{L}(M)$ and the elements of the form $pf^{i}+\psi(i)h+e_{i}$ where
$p=\pm 1$ or $0$ (independent of $i$).

PROOF. $C^{L}(M)$ contains the elements of the form $c_{k}(i)f^{k}+\psi(i)h+e_{i}$ and
$E_{i}^{j}$ .

$[E_{i}^{j}, c_{\hslash}(k)f^{h}+\psi(k)h+e_{k}]$

$=c_{j}(k)f^{i}-c_{i}(k)f^{j}+\delta_{kj}e_{\iota}-\delta_{ki}e_{j}$ .
From this and proposition 8, we conclude that there is a number $c$ such
that $c_{\iota}(k)=\delta_{ik}c$ . When $c\neq 0$ , consider an inner automorphism of $M^{L}(n)$

defined by $\exp(-\log\sim|c|h)$ . The images of $cf^{i}+\psi(i)h+e_{i}$ and $E_{i}^{j}$ are
$\sqrt{|c|}(\pm f^{i}+e_{i})+\psi(i)h$ and $E_{\iota^{j}}$ respectively. Replace $\sim|c|(\pm f^{i}+e_{\mathfrak{i}})+\psi(i)h$ by
$\pm f^{i}+e_{i}+\psi(i)/\sqrt c\ulcorner|h$ .

The proof of theorem 9.
Case 1: $C_{p}^{L}(M)\neq O^{L}(n)$ . $C_{P}^{L}(M)$ is spanned by the elements of the form

$\phi_{i}f^{i}+h$ and $E_{i^{j}}$ . By the inner automorphism considered in the proof of
lemma 3.4, the coefficients $\psi(k)$ were not changed. Hence in the present
case we can suppose $\psi(k)=\delta_{k}^{1}\psi(1),$ $\psi(1)\neq 0$ . From $[E_{1^{2}}, pf^{2}+e_{2}]=pf^{1}+e_{1}$ , we
have $h$ in $C_{p}^{L}(M)$ . Thus $C^{L}(M)$ is spanned by $E_{t^{j}},$ $h$ and $pf^{k}+e_{k}$ . From
$[h, pf^{k}+e_{k}]=pf^{k}-e_{k}$ , we deduce that $p=0$ , because otherwise $f^{k}\in C^{L}(M)$ , con-
trary to proposition 8 and the assumption. Thus $C^{L}(M)$ is isomorphic to
$C^{L}(E^{n})$ and the universal covering $\tilde{M}$ of $M$ is conformally equivalent to the
Euclidean space $E^{n}$ . Identifying $\tilde{M}$ with $E^{n}$ , we can consider $\pi_{1}(M)$ as a
conformal transformation group which is contained in the centralizer of
the neutral component of $C(E^{n})$ . Refering to the remark at the end of \S 2,

we conclude that $M$ is conformally equivalent to $E^{n}$ .
Case 2: $cp(M)=O^{L}(n)$ . From $[E_{i}^{j}, pf^{j}+\psi(j)h+e_{j}]=pf^{i}+e_{i}$ and $[E_{i}^{j},$ $pf^{i}$

$+\psi(i)h+e_{i}]=-(pf^{j}+e_{j})$ , we have $E_{t^{j}}$ and $pf^{k}+e_{k}$ as the basis of $C^{L}(M)$ .
Then $C^{L}(M)$ is isomorphic to the Lie algebra of the isometry group of the
elliptic, Euclidean and hyperbolic geometry according as $p$ is $-1,0$ and $+1$

respectively. Hence we can prove in the same way as above that $M$ is
conformally equivalent to the Euclidean, hyperbolic, spherical or projective
spaces. Finally we prove that these spaces are not conformally equivalent
to each other. Only the spaces which are homeomorphic are the Euclidean
space $E^{n}$ and the hyperbolic space $H^{n}$ . We can prove that $C(E^{n})$ is not
isomorphic to $C(H^{n})$ by using the known structure of the isometry groups
of these symmetric spaces.

But here we give another proof. According to Yano and Nagano [11],

for an Einstein space $M$ which is neither the sphere nor the Euclidean
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space, we have $C^{L}(M)=I^{L}(M)$ . Thus $C^{L}(H^{n})=I^{L}(H^{n})$ . On the other hand,
evidently $C^{L}(E^{n})\neq I^{L}(E^{n})(E^{n}$ admits a l-parameter group of homothetic
transformations). From $\dim I^{L}(H^{n})=\dim I^{L}(E^{n})=n(n+1)/2$ , we have $C(E^{n})$

$\neq C(H^{n})$ . Therefore $E^{n}$ is not conformally equivalent to $H^{n}$ .

\S 4. Intransitive conformal groups of higher dimensions.

In this section we shall prove the following theorem 10, which, combined
with theorem 9, gives the complete list of the spaces which admit conformal
groups with dimension $>n(n-1)/2+2$ and the structure of these groups for
$n>5$ .

THEOREM 10. If a connected Riemannian space $M$ with dimension $n>5$

admits an intransitive conformal transformation group $GcC(M)$ with $\dim G>$

$n(n-1)/2+2$ , then 1) $M$ is conformally equivalent to the sphere and 2) two cases
are possible: (1) $G$ leaves invariant just one point and the complementary open
subspace which is conformally equivalent to the Euclidean space $E^{n}$ and $G$ is
locally isomorphic to $C(E^{n})$ or $I(E^{n})$ and (2) $G$ leaves invariant just one hyper-
sphere operates effectively on the hypersphere and the two open submanifolds
conformally equivalent to the hyperbolic space $H^{n}$ with $C(H^{n})$ locally isomorphic
to $G$ .

The rest of this section will be devoted to the proof of this theorem.
LEMMA 4.1. If we have $G\subset C(M)$ and $\dim G>n(n-1)/2+1$ , each orbit has

dimensions $\geqq n-1$ $or=0$ .
PROOF. $M$ is then conformally flat. If an orbit is of dimension $k$ , for

a point $p$ of this orbit ( $=G(p)=$ the image of $p$ by $G$), the subspace {$u(p)$ ;
$u\in C^{L}(M)\}$ of the tangent space at $p$ is of dimension $k$ and invariant by the
isotropy subalgebra. Hence the observation of the structure of $C^{L}(M)$

surveyed in \S 3 shows us $n(n-1)/2+1\leqq\dim C^{L}(M)\leqq k+k(k-1)/2+\langle n-k)$

$\times(n-k-1)/2+n+1$ , from which we have $k\geqq n-1$ or $=0$ .
LEMMA 4.2. If an r-dimensional conformal group $G\subset C(\lrcorner NT)$ of a conformally

flat space $1\psi$ leaves invariant an $(n-1)$-dimensional subspace $N^{n-1}\subset M$, then the
effective group induced on $N^{n-1}$ is of dimension $\geqq r-1$ .

PROOF. Putting $G_{N}^{L}=$ {$u\in C(M);u=0$ on $N^{n-1}$ }. We have to show $\dim$

$G^{L}\leqq 1$ . Take an arbitrary point $p$ on $N^{n-1}$ and a normal coordinate system
$(x^{i})$ valid in a neighborhood which is assumed to be flat without loss of
generality and such that $N^{n-1}$ satisfies $dx^{1}=0$ at $p$ . If $u\in G_{N}^{L}$ , we have not
only $u^{i}(p)=0$ but $\partial_{a}u^{i}=0(1\leqq i\leqq n, 2\leqq\alpha\leqq n)$ , in particular $\partial_{2}u^{2}(p)=0$ . From
$S_{u}g=2\phi g$ which means $\partial_{j}u^{i}+\partial_{i}u^{j}=2\phi\delta_{j}^{i}$, we conclude $\emptyset(p)=0$ , hence $\partial_{1}u^{1}(p)$

$=0$ and $\partial_{i}u^{\alpha}=-\partial_{\alpha}u^{i}=0$ at $p$ . Thus all the components $\partial_{j}u^{i}$ vanish at $p$ .
Since $\emptyset=0$ holds on $N^{n-1}$ , we have $\partial_{\alpha}\phi(p)=0(2\leqq\alpha\leqq n)$ . Therefore we have
$\dim G_{N}^{L}\leqq 1$ (see theorem 4).
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$p_{ROPOSITION}11$ . Assume that a family $\Phi$ of hypersurfaces is defined in a
neighborhood $U$ of a point $p$ in a space $M$ by a gradient vector field which does
not vanish in $U$.

1) If a conformal transformation $\tau$ of $M$ leaves invariant the point $p$ and
each hypersurface $\in\Phi$ , then the differential $ d\tau$ is an isometry of the tangent
space at $p$ .

2) Analogously, if an infinitesimal conformal transformation $u(S_{u}g=2\phi g)$

leaves invariant $p$ and each hypersurface in $\Phi$ , then we have $u(p)=0$ .
PROOF. 1) The trajectory $\gamma$ of the normal vectors of $\Phi$ which passes

through $p$ is invariant by $\tau$ , for $\tau$ preserves the orthogonality and fixes $p$ .
$\gamma$ has just one point common with each hypersurface $\in\Phi$ near $p$ . Hence $\gamma$

is left invariant point-wise by $\tau$ , which implies that the normal vector of
the hypersurface at $p$ is invariant by $\tau$ . Therefore $\tau$ induced on the tangent
space is an isometry.

2) Denote by $\psi$ the function defined near $p$ in terms of which $\Phi$ is
given by $\psi=$ const. From $S_{u}\nabla_{i}\psi=\nabla_{i}S_{u}\psi=0$ , we obtain $(\nabla a\psi)\nabla iu^{a}=0$ at $p$ .
Hence we get at $p$

$\phi(\nabla^{a}\psi)(\nabla_{a}\psi)=(\nabla^{a}\psi)(\nabla_{b}u_{a})_{\nabla^{b}}\psi=0$ .
$\nabla_{a}\psi(p)$ being non-zero, we conclude that $\emptyset(p)=0$ . Now we prove theorem
10. By the assumption of intransitivity and lemma 4.1 we have only to
investigate following two cases:

(A) All the orbits are of dimension $\geqq n-1$ , and there exists an $(n-1)-$

dimensional orbit.
(B) There exists a zero-dimensional orbit.

Case (A). There exists an n-dimensional orbit $O^{n}$ , because otherwise, due to
lemma 4.2 and proposition 11, the orbits are conformally equivalent to $(n-1)-$

dimensional spaces with an isometry group of dimensions $>n(n-1)/2$ , which
is never possible. The n-dimensional orbit $O^{n}$ is an open subspace of $M$,
and hence $O^{n}$ is not compact. By virtue of theorem 9, each connected
component $O_{0}^{n}$ of $O^{n}$ is conformally equivalent to the Euclidean or hyper-
bolic space, and $\dim G=n(n+1)/2$ or $n(n+1)/2+1$ . Its boundary is an $(n-1)-$

dimensional orbit $O^{n-1}$ on which $G$ induces an $n(n+1)/2$-dimensional con-
formal group, by virtue of theorem 9 and lemma 4.2. Thus $O^{n-1}$ is com-
formally equivalent to the sphere, and $G$ induced on $O^{n-1}$ is locally iso-
morphic to $M(n-1)$ . If og is comformally equivalent to the Euclidean space,
then $I^{L}(E^{n})$ must be isomorphic to $M^{L}(n-1)$ . But this is impossible, for the
former has an n-dimensional ideal (corresponding to the parallel displace-
ments) and the latter not (in fact the latter is simple as the Lie algebra
of a Lorentz group). Consider a coordinate system as in the proof of lemma
4.2 near a point $p\in O^{n-1}$ ($N^{n-1}$ replaced by $O^{n-1}$). Since $G^{L}$ induced on $O^{n-1}$
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is isomorphic to $M^{L}(n-1)$ , there exists a $u\in G^{L}$ such that $\partial_{j}u^{1}(p)=0$ and
$\partial_{j}\phi(p)=\delta_{j2}(j=1,\cdots, n)$ . Then we have $\partial_{2}\partial_{1}u^{1}(p)=\partial_{2}\phi(p)\neq 0$ and $\partial_{1}\partial_{1}u^{1}(p)$

$=\partial_{2}\partial_{2}u^{1}(p)=0$ from (2.2). Hence $u^{1}\neq 0$ at every point (near p) on some curve
with a tangent vector $(1, 1, 0,\cdots, 0)$ at $p$ . Considering the freedom in the
choice of our coordinates, we conclude that $G^{L}$ is transitive on a neigh-
borhood of $U$ of $p$ minus $U\cap O^{n-1}$ . Hence there is an n-dimensional orbit
$\prime 0^{n}$ such that $O^{n}\cup O^{n-1}\cup^{\prime}O^{n}$ forms a neighborhood of $O^{n-1}$ . Repeating the
above arguments, we find that also each connected component $\prime 0^{n}$ is con-
formally equivalent to the hyperbolic space $H^{n}$ and, in particular, homeo-
morphic to the Euclidean space $E^{n}$ . Hence $O^{n}\cup O^{n-1}\cup^{\prime}O^{n}$ is homeomorphic
to the sphere and is an open submanifold which is invariant by $G$ . There-
fore we have $M=O^{n}\cup O^{n-1}\cup^{\prime}O^{n}$ . (When $O^{n}$ is not connected, we have $O^{n}=\prime O^{n}$).

Case (B). Let $p$ be a point in $M$ invariant by $G$ . Theorem 4 and the
assumption on the dimension of $G$ enable us to conclude that $G\cong I(E^{n})$ or
$C(E^{n})$ (locally). (Note that an isotropy subalgebra $C_{0}^{L}(S^{n})$ is isomorphic to
$C^{L}(E^{n}))$ . A neighborhood of $p$ minus $p$ is contained in an n-dimensional
orbit $O^{n}$ which is conformally equivalent to the Euclidean space, and so
$O^{n}\cup\{p\}$ is homeomorphic to the sphere which implies $O^{n}\cup\{p\}=M$.

University of Tokyo.
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