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Exact sequences in the Steenrod algebra.

By Aiko NEGISHI

(Received Nov. 2, 1957)

J. P. Serre [1] has proved that the cohomology algebra $H^{\star}(Z_{2} ; q, Z_{2})$ of
the Eilenberg-MacLane complex $K(Z_{2}, q)$ with $Z_{2}$ coefficients is a polynomial
algebra generated by $Sq^{I}(u_{q})$ , where $u_{q}$ is the generator of $H^{q}(Z_{2} ; q, Z_{2})$ and
$I$ runs over the admissible sequences with excess $<q$ , Sq’ being the iterated
Steenrod squaring operations. He has proved thereby that $H^{n+q}(Z_{2} ; q, Z_{2})$

remains ‘ stable’ for $q>n$ , and put $A^{n}(Z_{2}, Z_{2})=H^{n+q}(Z_{2} ; q, Z_{2})$ . The graded

algebra $\sum_{n=0}^{\infty}A^{n}(Z_{2}, Z_{2})$ is denoted by $A^{\star}(Z_{2}, Z_{2})$ and is called the Steenrod

algebra (Cf. Adem [2], [3]). Following Adem [2], we shall denote the gener-
ators of $A^{\star}(Z_{2}, Z_{2})$ with Sq’ instead of $Sq^{I}(u_{q})$ . The multiplication between
these generators is determined by Adem’s relations (Adem [2], [3]).

(1) $Sq^{\alpha}Sq^{\beta}=\sum_{t=0}^{[\alpha/2]}\left(\begin{array}{l}-\beta t-1\\-\alpha 2t\end{array}\right)Sq^{\alpha+\beta-t}Sq^{t}$ $mod 2$ , $ 0\leqq\alpha<2\beta$ .

Let $I_{0}$ be any fixed sequence of integers. We can define a homomorphism
$\alpha_{I_{0}}^{\prime}$ of $A^{\star}(Z_{2}, Z_{2})$ into itself by $\alpha_{I_{0}}^{\prime}Sq^{I}=Sq^{I_{0}}$ Sq’, and another homomorphism
$\alpha_{I_{0}}^{\prime\prime}$ by $\alpha_{I_{0}}^{\prime\prime}Sq^{I}=Sq^{I}Sq^{I_{0}}$ . If $M$ is a certain fixed submodule of $A^{\star}(Z_{2}, Z_{2})$ , then
$Sq^{I}\rightarrow\alpha_{I_{0}}^{\prime}Sq^{I}mod M$ or $\alpha_{I_{0}}^{\prime\prime}$ Sq’ $mod M$ define respectively cohomology opera-
tions. These operations are of interest in view of topological applications.
(Cf. Cartan [4], Serre [1]).

In this paper, we consider the operator $\alpha_{n}^{\prime}$ defined by $\alpha_{n}^{\prime}Sq^{I}=Sq^{2^{n}}Sq^{I}$

$(n=0,1, \cdots)$ . We denote the module generated by the sums of the images
of $\alpha_{i}^{\prime}(i=0,1, \cdots, n)$ with $M_{n}$ for $n\geqq 0$ , and put $M_{-2}=M_{-1}=0$ . Obviously we
have $M_{n}\supset M_{n-1}$ . We shall give explicitly the generators of $M_{n}mod M_{n-1}$

(Theorem 1) and those of $A^{\star}(Z_{2}, Z_{2})mod M_{n}$ (Corollary of Theorem 1), and
apply this to prove the following result. We can define $\alpha_{n+3}$ and $\beta_{n+3}$ for
$n\geqq-2$ so that the following diagram is commutative, where $p_{n}$ is the
natural homomorphism $A^{\star}(Z_{2}, Z_{2})\rightarrow A^{\star}(Z_{2}, Z_{2})/M_{n}$ for $n\geqq 0$ , and $p_{-2}=p_{-1}=id$.

$\alpha_{n+3}^{\prime}$ $\alpha_{n+3}^{\prime}$

$A^{\star}(Z_{2}, Z_{2})$ $\rightarrow$ $A^{\star}(Z_{2}, Z_{2})$ $\rightarrow$ $A^{\star}(Z_{2}, Z_{2})$

$ p_{n}\downarrow$ $ p_{n+1}\downarrow$ $ p_{n+2}\downarrow$

$A^{\star}(Z_{2}, Z_{2})/M_{n}$ $\rightarrow$ A$(Z_{2}, Z_{2})/M_{n+1}\beta_{n+3}\rightarrow^{\beta_{n+3}}A^{\star}(Z_{2}, Z_{2})/M_{n+2}$ .
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Then we shall prove that the sequence

$A^{\lambda}(Z_{2}, Z_{2})/M_{n}\succ\underline{\beta_{n+3}}A^{\star}(Z\underline{)}’ Z_{2})/M_{n+1}\rightarrow A^{\alpha-}(Z_{2}, Z_{2})/M_{n+2}\alpha_{n+3}$

is exact for $n=-2$ ,
$-1,0,1,$ $\cdots$ (Theorem 2). The exactness of this sequence for $n=-2,$ $-1$ was
proved by Professor T. Yamanoshita [5], who suggested to the author to
occupy herself with this question. The author wishes to express her sincere
thanks to Professor T. Yamanoshita for his kind suggestions and advices
and also to Professor S. Iyanaga for his constant encouragement during the
preparation of this paper.

In the following, we have often to deal with binomial coefficients $mod 2$ .
The following formula of Cartan [3] is fundamental for us. If the dyadic

expansions of $n$ and $r$ are respectively $\sum_{i=0}^{n}2^{i}a_{i}$ and $\sum_{j=0}^{m}2^{j}b_{j}$ , and $n\geqq m$ , then

(2) $\left(\begin{array}{l}n\\r\end{array}\right)=\left(\begin{array}{lll}2^{n}a_{n}+ & \cdots & +2a_{1}+a_{0}\\2^{m}b_{m}+ & \cdots & +2b_{1}+b_{0}\end{array}\right)\equiv\left(\begin{array}{l}a_{n}\\0\end{array}\right)\left(\begin{array}{l}a_{n-1}\\0\end{array}\right)\cdots\left(\begin{array}{l}a_{m+1}\\0\end{array}\right)\left(\begin{array}{l}a_{m}\\b_{m}\end{array}\right)\cdots\left(\begin{array}{l}a_{0}\\b_{0}\end{array}\right)$ $mod 2$ .
In particular, we have

(3) $\left(\begin{array}{l}\beta-t-1\\2^{n}-2t\end{array}\right)\equiv\left(\begin{array}{l}\beta+2^{n+1}-t-1\\2^{n}-2t\end{array}\right)$ $mod 2$ .

These binomial coefficients appear in Adem’s relation for $Sq^{2^{n}}Sq^{\beta}$ . Hereafter
we shall denote $Sq^{i_{1}}Sq^{i_{2}}\cdots Sq^{i_{r}}$ with $(i_{1}, i_{2}, \cdots, i_{\gamma})$ . Often we denote such
$(i_{1}, i_{2}, \cdots, i_{r})$ with 1. We denote the collection of all admissible sequences
of the form $(2^{n+1}k_{1},2^{n}k_{2},$ $\cdots,$ $2^{n-j+3}k_{j-1},2^{n-j+1}(2k_{j}+1),$ $2^{n-j}k_{j+1},$

$\cdots,$
$2k_{n},$ $k_{n+1},$ $i_{n+2}$ ,

$i_{r})(j=1, \cdots, n+1)$ with $N_{j}^{n}$ and an arbitrary sequence belonging to $N_{j}^{n}$

generally with $I_{j}^{n}$ . For the above $I_{j}^{n}\in N_{j}^{n}$ we denote the sequence $(2^{n+\downarrow}k_{1}$ ,
$2^{n}k_{2},$

$\cdots,$
$2k_{n+1},$ $i_{n+2},$

$\cdots,$
$i_{r}$) with $I^{n}$ . As easily verified, for every admissible

sequence $J$ there is uniquely determined a pair of integers $(n,j)$ such that
$J=I_{j}^{n}\in N_{j}^{n}$ . Setting $N^{n}=\bigcup_{j}N_{j}^{n}$ we have $I^{n}\in N^{n+m}$ for $m>0$ . (Here and in

what follows $k_{1},$ $k_{2},$ $\cdots$ denote always non negative integers.)
Now, if we identify $N^{n}$ with the free module over $Z$ generated by the

collection $N^{n}$ , then we have
THEOREM 1. $M_{n}=N^{n}\oplus M_{n-1}$ , that is, $I_{j}^{n}’ s(j=1, \cdots, n+1)$ are not contained

in $M_{n-1}$ and generate $M_{n}/M_{n-1}$ .
PROOF. The case $n=0$ means $I_{1}^{0}=(2k_{1}+1, i_{2},\cdots, i_{r})=(1,2k_{1}, i_{2},\cdots, i_{r})\equiv 0$ mod

$M_{0}$ , and $I^{0}=(2k_{1}, i_{2}, \cdots, i_{\gamma})\not\equiv 0mod M_{0}$ . This is easily seen from $(1,1)=0$ and
$(1, 2k)=(2k+1)$ . Assume, inductively, that the theorem is true for $n-1,$ $i$ . $e$ .

$I_{j}^{n-1}\equiv 0$ $mod M_{n-1}$ $i$ . $e$ . $I_{j}^{n-1}\equiv(2^{n-1}, I)$ $mod M_{n-2}$ for some $I$ .
(4) $I^{n-1}\not\equiv 0$ $mod M_{n-1}$ .
According to (1), (2) and the inductive assumption $\sum_{i<n}N^{i}=M_{n-1}$
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$(2^{n}, 2^{n+1}k_{1})=\sum_{t=0}^{2^{n-1}}\left(\begin{array}{ll}2^{n+1} & k_{1}-t-1\\2^{n}-2t & \end{array}\right)(2^{n}+2^{n+1}k_{1}-t, t)\equiv\left(\begin{array}{l}2^{n+1}k_{1}-1\\2^{n}\end{array}\right)(2^{n}(2k_{1}+1))$

$=\left(\begin{array}{l}2^{n+l}(k_{1}-1)+2^{n+1}-1\\2^{n}\end{array}\right)(2^{n}(2k_{1}+1))$

$=\left(\begin{array}{lll}2^{n+1}(k_{1}-1)+2^{n}+2^{n- 1}+ & \cdots & +1\\2^{n} & & \end{array}\right)(2^{n}(2k_{1}+1))$

$=\left(\begin{array}{l}k_{1}-1\\0\end{array}\right)\left(\begin{array}{l}1\\1\end{array}\right)\left(\begin{array}{l}1\\0\end{array}\right)\cdots\left(\begin{array}{l}1\\0\end{array}\right)(2^{n}(2k_{1}+1))=(2^{n}(2k_{1}+1))$ $mod M_{n-1}$ .

Therefore

(5) $I_{1}^{n}=(2^{n}(2k_{1}+1), 2^{n-1}k_{2}, \cdots, 2k_{n}, i_{n+1}, \cdots, i_{r})$

$\equiv(2^{n}, 2^{n+I}k_{1},2^{n-1}k_{2}, \cdots, 2k_{n}, i_{n+1}, \cdots, i_{r})$ $mod M_{n-1}$ ,

(5) $\equiv 0$ $mod M_{n}$ .
$(2^{n}, 2^{n+1}k_{0}-2^{n-1})=\sum_{t=0}^{2^{n-1}}\left(\begin{array}{l}2^{n+1}k_{0}-2^{n-1}-t-1\\2^{n}-2t\end{array}\right)(2^{n+1}k_{0}+2^{n-1}-t, t)$

$\equiv\left(\begin{array}{l}2^{n+1}k_{0}-2^{n}-1\\2^{n}-2^{n}\end{array}\right)(2^{n+1}k_{0},2^{n-1})=(2^{n+1}k_{0},2^{n-1})$ $mod M_{n-1}$ .
This implies

(6) $I_{j+1}^{n}=(2^{n+1}k_{0}, I_{j}^{n-1})=(2^{n+1}k_{0},2^{n-1}, I)\equiv(2^{n}, 2^{n+1}k_{0}-2^{n-1}, I)$ $mod M_{n-1}$ ,

(6) $\equiv 0$ $mod M_{n}$

$(j=1,\cdots, n)$ . By (4), (5) and (6), $I_{j}^{n}’ s(j=1, \cdots, n+1)$ are not contained in $M_{n-1}$

but contained in $M_{n}$ . If now $I^{n}=(2^{n+1}k_{1},2^{n}k_{2}, \cdots, 2k_{n+1}, i_{n+2}, \cdots, i_{r})\in M_{n}$ , then
there would exist, by the inductive hypothesis the relation $(2^{n-1},2^{n-1}+2^{m})$

$\equiv(2^{n}, 2^{m})mod M_{n-1}$ for $n>m$ , an $I$ with $I^{n}\equiv(2^{n}, I)mod M_{n-1}$ , where $I$ has a
form $I^{n-1}=(2^{n}k_{1}^{\prime},2^{n-} k_{2}^{\prime}, \cdots, 2k_{n}^{\prime} , i_{n+I}, \cdots, i_{r})$ . And we have

$(2^{n}, I^{n-1})=(2^{n}, 2^{n}k_{1}^{\prime},2^{n-1}k_{2}^{\prime}, \cdots, 2k_{n}^{\prime}, i_{n-\vdash 1}, \cdots, i_{r})$

$=\sum_{t=0}^{2^{n-1}}\left(\begin{array}{l}2^{n}h_{1}^{/}-t-1\\2^{n}-2t\end{array}\right)(2^{n}+2^{n}k_{1}^{\prime}-t, t, 2^{n-1}k_{2}^{\prime}, \cdots, 2k_{n}^{\prime}, i_{n+1}, \cdots, i_{r})$ .

Therefore $(2^{n}, I^{n-1})$ becomes an $I^{n}mod M_{n-1}$ , only when $t=0$ and $k_{1}^{\prime}$ is odd.

But in this case the coefficient $\left(\begin{array}{ll}2^{n} & k_{1}^{\prime}-1\\ & 2^{n}\end{array}\right)=\left(\begin{array}{ll}2^{n}(k_{1}^{\prime}-1)+2^{n} & -1\\2^{n} & \end{array}\right)\equiv 0$ $mod 2$ .
Therefore $I^{n}\not\in M_{n}$ , and $I_{j}^{n}’ s(j=1, \cdots, n+1)$ generate $M_{n}/M_{n-1}$ .

$C_{oROLLARY}$ . $I^{n}’ s$ generate $A^{\star}(Z_{2}, Z_{2})/M_{n}$ .
To prepare for the proof of the next theorem, we list here some formulas

which are easily proved by (3). The formulas (7) to (14) (which are con-
gruences $mod$ $M.-2$) are used to calculate $\beta_{i}$ -images $(2^{i}, I)(i=0,1,\cdots)$ . Let
$I=(a, I^{\prime})$ be a given sequence. Then $(2^{i}, I)=(2^{i}, a, I^{\prime})$ is contained in $M_{i-2}$ , if
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$a$ is not a multiple of $2^{i-2}$ , by Theorem 1, and the formula $(2^{i-2},2^{t-1}+2^{i-2}$

$+2^{m})\equiv(2^{i}, 2^{m})mod M_{i-2}$ for $m<i-2$ , so that we have only to consider the
case $a=2^{i-2}b$ . By (3), we have $(2^{i}, 2^{i-2}b)\equiv(2^{i}, 2^{i-2}b^{\prime})$ if $b\equiv b^{\prime}mod 2^{3}$ . For
$(2^{i}, 2^{i-2}(2^{s}k+j))j=0,1,$

$\cdots,$
$7$ , we have

(7) $(2^{i}, 2^{i-2}\cdot 2^{3}k)\equiv(2^{i+1}k+2^{i})+(2^{i+1}k+2^{i-1},2^{i-1})$ $mod M_{i-2}$

(8) $(2^{i}, 2^{i-2}(2^{3}k+1))\equiv(2^{i+1}k+2^{i}, 2^{i-2})$ $mod M_{i-2}$

(9) $(2^{i}, 2^{i-2}(2^{s}k+2))\equiv(2^{i+1}k+2^{i}, 2^{i-1})$ $mod M_{i-2}$

(10) $(2^{i}, 2^{i-2}(2^{3}k+3))\equiv 0$ $mod M_{i-2}$

(11) $(2^{i}, 2^{i-2}(2^{3}k+4))\equiv(2^{i+1}k+2^{i-1}\cdot 3,2^{i-1})$ $mod M_{i-2}$

(12) $(2^{i}, 2^{i-2}(2^{s}k+5))\equiv(2^{i+1}(k+1), 2^{i-2})$ $mod M_{i-2}$

(13) $(2^{i}, 2^{i-2}(2^{3}k+6))\equiv(2^{i+1}(k+1)+2^{i-1})+(2^{i+1}(k+1), 2^{i-1})$ $mod M_{-2}$

(14) $(2^{i}, 2^{i-2}(2^{s}k+7))\equiv 0$ $mod M_{i-2}$ .

The following formulas (15) to (18) are used to calculate $a_{i}$-images
$(2^{\iota}, I)mod M_{i-1}(i=0,1, \cdots)$ . Similarly as in the above case, we have only
to consider $(2^{i}, 2^{i-1}c)$ with $cmod 2^{2},$ $i$ . $e$ . $(2^{i}, 2^{i-1}(2^{2}k+j)),$ $j=0,1,2,3$ .
(15) $(2^{i}, 2^{i-I}\cdot 2^{2}k)\equiv(2^{i+1}k+2^{i})$ $mod M_{i-1}$

(16) $(2^{i}, 2^{i-1}(2^{2}k+1))\equiv(2^{i+1}k+2^{i}, 2^{i-1})$ $mod M_{i-1}$

(17) $(2^{i}, 2^{i-1}(2^{2}h+2))\equiv 0$ $mod M_{i-1}$

(18) $(2^{i}, 2^{i-1}(2^{2}k+3))\equiv(2^{i+1}(k+1), 2^{i-1})$ $mod M_{i-1}$ .
In calculating $\alpha_{n}^{\prime}$ images, we may proceed as follows in utilizing (15)

to (18). Let $I=(2^{i-1}c_{1},2^{i-2_{C_{2},\dot{h}}}\cdots,,\cdots, i_{\gamma})=(2^{i-1}c_{1}, I^{\prime})=(2^{i-1}c_{1},2^{i-2}c_{2}, I^{\prime/})$ be an ad-
missible sequence. By (15) to (18), the following three cases occur:

1) $(2^{i}, 2^{i-1}(2^{2}k_{1}+1),$ $2^{i-2}c_{2},$ $I^{\prime/}$ )

$\equiv(2^{i-1}(2^{2}k_{1}+2), 2^{i-1},2^{i-2}c_{2}, I^{\prime\prime})$ $mod M_{i-1}$ $(2^{\Delta}k_{1}+1\geqq c_{2})$

2) $(2^{i}, 2^{i-1}(2^{2}k_{1}+3),$ $2^{i-2}c_{2},$ $I^{\prime\prime}$ )

$\equiv(2^{i-1}\cdot 2^{2}(k_{1}+1), 2^{i-1},2^{i-2}c_{2}, I^{\prime\prime})$ $mod M_{i-1}$ $(2^{2}k_{1}+3\geqq c\lrcorner))$

3) $(2^{i}, 2^{i-1}\cdot 2^{2}k_{1},2^{i-2}c_{2}, I^{\prime\prime})$

$\equiv(2^{i-1}(2^{2}k_{1}+2), 2^{i-2}c_{2}, I^{\prime\prime})$ $mod M_{l-1}$ $(2^{2}k_{1}\geqq c_{2})$ .
The right hand side of 3) is obviously admissible. Those of 1) and 2) may
not be admissible. Then we transform $(2^{i-1},2^{i-2}c_{2})$ again by (15) to (18).

Let $c_{2}=2^{2}k_{1}+1$ in 1), then $(2^{i-1}(2^{2}k_{1}+2), 2^{i-1},2^{i-2}c_{2}, I^{\prime\prime})$

$=(2^{\dot{t}-1}(2^{2}k_{1}+2), 2^{i-1},2^{i-2}(2^{2}k_{1}+1),I^{\prime\prime})=(2^{i-1}(2^{2}k_{1}+1), 2^{i}k_{1}+2^{i-1},2^{i-2}, I^{\prime 1})$ by (16), and
then $2^{i-1}(2^{2}k_{1}+2)-2(2^{i}k_{1}+2^{i-1})=0$ . Therefore the result satisfies the admis-
sibility condition for the first two terms. The same is also true in case
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$2^{2}k_{1}+1>c_{2}$ as is easily seen. Let $c_{2}=2^{2}k_{1}+3$ in 2), then $(2^{i-1}\cdot\angle^{\Delta}(k_{1}+1),$ $2^{i-1}$ ,
$2^{i-2}c_{2},I^{\prime\prime})=(2^{i-1}\cdot 2^{2}(k_{1}+1), 2^{i-1},2^{i-2}(2^{2}k_{1}+3), I^{\prime\prime})=(2^{i-1}\cdot 2^{2}(k_{1}+1), 2^{i}(k_{1}+1),$ $2^{i-2},$ $I^{\prime\prime}$ )

by (18), and then $2^{i-1}\cdot 2^{2}(k_{1}+1)-2\{2^{i}(k_{1}+1)\}=0$ . Again the result satisfies
the admissibility condition for the first two terms, and this is also true
in case $2^{2}k_{1}+3>c_{2}$ . Thus we may calculate $\alpha_{n}^{\prime}$ images straightforwardly
beginning by the ’head’.

THEOREM 2. The sequence

$A^{\star}(Z_{2}, Z_{2})/M_{n}\beta_{n+3}A^{\star}(Z_{2}, Z_{2})/M_{n+1}\alpha_{n+3}A^{\star}(Z_{2}, Z_{2})/M_{n+2}$

is exact for $n=-2,$ $-1,0,1,2,$ $\cdots$ .
PROOF. ${\rm Im}\beta_{n+3}\subset Ker\alpha_{n+3}$ is easily seen by putting $i=n+3$ and $k=0$ in

(17). Now we shall show that $Ker\alpha_{n+3}\subset{\rm Im}\beta_{n+3}$ by induction. If $n=-2$ ,
we obtain by putting $i=1$ in (15) to (18),

$(2, 2^{2}k)\equiv(2^{2}k+2)$ $mod M_{0}$

$(2, 2^{2}k+1)\equiv(2^{2}k+2,1)$ $mod M_{0}$

$(2, 2^{2}k+2)\equiv 0$ $mod M_{0}$

$(2, 2^{2}k+3)\equiv(2^{2}(k+1), 1)$ $mod M_{0}$ .
Therefore the kernel of $\alpha_{1}$ is generated by

$(2^{2}k+2, i_{2}, \cdots, i_{\gamma})$ ,
$(2^{2}k_{1}+1,2k_{2}+1, i_{3}, \cdots, i_{r})$ ,
$(2^{2}k_{1}+3,2k_{2}+1, i_{3}, \cdots, i_{r})$ and
$(2^{2}k_{1}+1,2k_{2}, i_{3}, \cdots, i_{r})+(2^{2}k_{1},2k_{2}+1, i_{3}, \cdots, i_{r})$ .

Put $i=1$ in (7), (9), (11) and (13), then we obtain
$(2, 2^{2}k)=(2^{2}k+2)+(2^{2}k+1,1)$

$(2, 2^{2}k+1)=(2^{2}k+2,1)$

$(2, 2^{2}k+2)=(2^{2}k+3,1)$

$(2, 2^{2}k+3)=(2^{2}(k+1)+1)+(2^{2}(k+1), 1)$ .
Thus

$(2, 2^{2}k_{1},2k_{2}+1, i_{3}, \cdot.., i_{r})=(2^{2}k_{1}+2,2k_{2}+1, i_{3}, \cdots, i_{r})$

$(2, 2^{2}k_{1},2k_{2}, i_{3}, \cdots, i_{\gamma})+(2,2^{2}(k_{1}-1)+3,2k_{2}+1,$ $i_{3},$
$\cdots,$

$i_{\gamma}$) $=(2^{2}k_{1}+2,2k_{2}, i_{3},\cdots, i_{r})$

$(2, 2^{2}(k_{1}-1)+3,2k_{2}+1,$ $i_{3},$
$\cdots,$

$i_{\gamma}$) $=(2^{2}k_{1}+1,2k_{2}+1, i_{3}, \cdots, i_{r})$

$(2, 2^{2}k_{1}+2,2k_{2}, i_{3}, \cdots, i_{r})=(2^{2}k_{1}+3,2k_{2}+1, i_{3}, \cdots,\dot{r}_{r})$

$(2, 2^{2}(k_{1}-1)+3,2k_{2},$ $i_{3},$
$\cdots,$

$i_{r}$) $=(2^{2}k_{1}+1,2k_{2}, i_{3}, \cdots, i_{\gamma})+(2^{2}k_{1},2k_{2}+1, i_{3}, \cdots, i_{r})$ .
This shows that $Ker\alpha_{1}\subset{\rm Im}\beta_{1}$ , and therefore $Ker\alpha_{1}={\rm Im}\beta_{1}$ .

Assume, inductively, that the theorem is true for integers $<n+3$ . Let
$K_{t}$ denote the kernel of $\alpha_{t}$ for $t<n+3$ . Then by our assumption, the $\alpha_{t}^{\prime}$

image of $p_{t-2}^{-1}K_{t}$ is generated by $I_{j}^{t-1}(j=1, \cdots, t)mod M_{t-2}$ and $p_{t-2}^{-1}K_{t}$ is
generated by $(2^{t}, I^{t-3})mod M_{t-2}$ . Under this assumption, we shall prove the
following two lemmas. Hereafter we identify $K_{t}$ with $p_{t-2}^{-1}K_{t}$ .

LEMMA 1. For simplicity, we denote the numbers of the type $2^{i-1}(2^{2}k+j)$
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generally with $m_{i}^{j}(j=0,1,2,3, i=1,2,3, \cdots)$ . ($m_{0}^{0},$ $m_{0}^{2}$ will mean even and odd
numbers respectively.) Then $Ker\alpha_{n+3}$ is generated by elements of the following
type

(19) $(m_{n+3}^{2}, i_{2}, \cdots, i_{\gamma})$

(20) $(m_{n+3}^{1}, K_{n+2})$

(21) $(m_{n+3}^{3}, K_{n+2})$

(22) $(m_{n+3}^{0}, I^{n+1},)$

(23) $(m_{n+3}^{1}, m_{n+2)}^{0}i_{3}, \cdots, i_{\gamma})+(m_{n+3}^{0}, m_{n+2}^{2}, i_{3}, \cdots, i_{r})$

(24) $(m_{n+3}^{\lambda_{0}}, m_{n+2}^{\lambda_{1}}, m_{n+1}^{\lambda_{2}}, \cdots, m_{n-k+2}^{\lambda_{k+1}}, i_{k+3}, \cdots, i_{r})$

$+(m_{n^{J_{0}}+3}^{\prime}, m_{n}^{\prime\prime}1_{2J}m_{n+1}^{\gamma J_{1}}, \cdot . m_{n-k+2}^{1^{y}k+1}, i_{k+3}, \cdot . j_{r})$ $k=1$ , $\cdot$ $n+2$ ,

where always $\lambda_{0}=1,$ $\lambda_{k+1}=0,$ $\mu_{0}=0,$ $\mu_{k+1}=2$ and $\{\lambda_{1}, \cdots, \lambda_{k}\}$ is any sequence of $k$

terms composed of numbers 1, 3 (such as {1, 1}, {1,3}, {3, 1}, {3, 3} if $k=2$ , there
are $2^{k}$ such sequences) and $\mu_{t}$ is $0$ or 2 according as $\lambda_{t}$ is 3 or 1.

PROOF. By (17), we immediately see that elements of the type (19) are
in $Ker\alpha_{n+3}$ . As easily seen, we have only to consider as generators of
$Ker\alpha_{n+3}$ the elements of the form $(m_{n+3}^{j}, I)$ and their sums.

Consider first the elements of the form $(m_{n+3}^{J}, K_{n+2})$ . By (16), our assump-
tion of induction and (5), (6), we have

$(2^{n+3}, m_{n+3}^{1}, K_{n+2})\equiv(2^{n+3}(2k+1), 2^{n+2}, K_{n+2})$

$\equiv\Sigma(2^{n+3}(2k+1), I^{n_{j}+1})\equiv\Sigma I^{n_{J}+2}\equiv 0$ $mod M_{n+2}$ .
Thus elements of the type (20) are in $Ker\alpha_{n+3}$ . We see in the same way,
that also elements of the type (21) are in $Ker\alpha_{n+3}$ . By (15) to (18), these
are obviously only elements of the form $(m_{n+3}^{j}, K_{n+2})$ which are in $Ker\alpha_{n+3}$ .

Now consider the elements of the form $(m_{n^{j}+3}, I)$ where $I$ is not $i_{11}K_{n+2}$ .
We see immediately by (17) and (15) that elements of the forms (19), (22)

are in $Ker\alpha_{n+3}$ , and also that these are only such elements contained in
$Ker\alpha_{n+3}$ .

Consider finally elements of the form $(m_{n^{j}+3}, I)+(m_{n+3)}^{j^{\prime}}I^{\prime})$ . Generators of
$Ker\alpha_{n+3}$ of this type will be called compound generators. By Theorem 1, we
must have $j=0,$ $j^{\prime}=1$ or $j=1,$ $j^{\prime}=0$ in the compound generators which are
not contained in (20) and (21). To fix the notation, we shall put $j=0,$ $j^{\prime}=1$ .
Now we have by (15) to (18)

(25) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{0}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, i_{3}, \cdots, i_{\gamma})$ $mod M_{n+2}$

(26) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{1}, i_{3}, \cdots, i_{\gamma})\equiv(m_{n+3}^{2}, m_{n+2}^{2},2^{n+1}, i_{3}, \cdots, i_{r})$ $mod M_{n+2}$

$(2^{n+3}, m_{n\dashv 3}^{1}, m_{n+2}^{2}, i_{3}, \cdots, i_{r})\equiv 0$ $mod M_{n+2}$

(27) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{3}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{0},2^{n+1}, i_{3}, \cdots, i_{\gamma})$ $mod M_{n+2}$ .
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And similarly

(28) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{0}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{0}, i_{3}, \cdots, i_{r})$ $mod M_{n+2}$

(29) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{I}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{I}, i_{3}, \cdots, i_{r})$ $mod M_{n+2}$

(30) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{2}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, i_{3}, \cdots, i_{r})$ $mod M_{n+2}$

(31) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{3}, i_{3}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{3}, i_{3}, \cdots, i_{r})$ $mod M_{n+2}$ .
Thus we see that the sum of (25) and (30), i. e. (23) is in $Ker\alpha_{n+3}$ . These
are obviously only compound generators of $Ker\alpha_{n+3}$ determined by first two
terms. For (26) and (30) we compare further by (15) to (18)

(32) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{1}, m_{n+1}^{0}, i_{4}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2},2^{n+1}, m_{n+1}^{0}, i_{4}, \cdots, i_{r})$

$\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{ll+1}^{2}, i_{4}, \cdots, i_{r})$ $mod M_{n+2}$

(33) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{1}, m_{n+1}^{1}, i_{4}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2},2^{n+1}, m_{n+1}^{1}, i_{4}, \cdots, i_{r})$

$=(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{2},2^{n}, i_{4}, , i_{r})$ $mod M_{n+2}$

(34) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{1}, m_{n+1}^{2}, i_{4}, \cdots, i_{r})$

$\equiv(m_{n+3}^{2}, m_{n+2}^{2},2^{n+1}, m_{n+1}^{2}, i_{4}, \cdot .., i_{\gamma})\equiv 0$ $mod M_{n+2}$

(35) $(2^{n+3}, m_{n+3}^{1}, m_{n+2}^{1}, m_{n+1}^{3}, i_{4’}i_{\gamma})\equiv(m_{n+3}^{2}, m_{n+2}^{2},2^{n+1}, m_{n+1}^{3}, i_{4}, \cdots, i_{r})$

$\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{0},2^{n}, i_{4}, i_{\gamma})$ $mod M_{n+2}$ .
(36) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{2}, m_{n+1}^{0}, i_{4}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{0}, i_{4}, \cdots, i_{\gamma})$ $mod M_{n+2}$

(37) $(2^{n+3}, m_{n+}^{0}o_{J}m_{n+1}^{2}, m_{n+1}^{1}, i_{4}, \cdots, i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{1}, i_{4}, \cdots, i_{7})$ $mod M_{n+2}$

(38) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{2}, m_{n+1}^{2}, i_{4}, \cdots i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{2}, i_{4}, \cdots, i_{r})$ $mod M_{n+2}$

(39) $(2^{n+3}, m_{n+3}^{0}, m_{n+2}^{2}, m_{n+1}^{3}, i_{4}, \cdot.., i_{r})\equiv(m_{n+3}^{2}, m_{n+2}^{2}, m_{n+1}^{3}, i_{4}, \cdot .., i_{r})$ $mod M_{n+2}$ .

By comparing (32) and (38), we see that
$(m_{n+3}^{1}, m_{n+2}^{1}, m_{n+1}^{0}, i_{4}, \cdots, i_{\gamma})+(m_{n+3}^{0}, m_{n+2}^{2}, m_{n+1}^{2}, i_{4}, \cdots, i_{r})$

is in $Ker\alpha_{n+3}$ . In the same way we see that
$(m_{n+3}^{1}, m_{n+2}^{3}, m_{n+1}^{0}, i_{4}, \cdots, i_{\gamma})+(m_{n+3}^{0}, m_{n+2}^{0}, m_{n+1}^{2}, i_{4}, \cdots, i_{r})$

is also in $Ker\alpha_{n+3}$ . Thus we obtain as compound generators of $Ker\alpha_{n+3}$

elements of the form (24) with $k=1$ , and these are obviously only compound
generators determined by first three terms. Other compound generators are
obtained in the same way.

LEMMA 2. $Ker\alpha_{n+3}\subset{\rm Im}\beta_{n+3}$ .
PROOF. We can see as follows that the generators of the $Ker\alpha_{n+3}$ are

the elements of ${\rm Im}\beta_{n+3}$ by referring to the formulas (7) to (14). For (19),

we have
$(m_{n+3}^{2}, I)\equiv(2^{n+3}, m_{n+3}^{0}, I)+(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 6,2^{n+2},$ $I$ )

$+(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 5,2^{n+2},2^{n+1},$ $I$ ) $mod M_{n+1}$ .
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For (20), since $(m_{n+3}^{1}, K_{n+2})\equiv\sum(m_{n+3}^{1},2^{n+2}, I^{n-1})$ $mod$ $M_{n}$ by the inductive
hypothesis,

$(m_{n+3}^{1},2^{n+2}, I^{n-1})\equiv(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 6,2^{n+2},$ $I^{n-1}$ )

$+(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 5,2^{n+2},2^{n+1},$ $I^{n-1}$ ) $mod M_{n+1}$ .
For (21), we have

$(m_{n+3}^{3}, K_{n+2})=\Sigma(m_{n+3}^{3},2^{n+1}, I^{n-1})\equiv\Sigma(2^{n+3}, m_{n+3}^{2}, I^{n-1})$ $mod M_{n+1}$ .
For (22),

$(m_{n+3}^{0}, I^{n_{j}+1})=(m_{n+3}^{0},2^{n+2}, K_{n+2})\equiv\sum(m_{n+3}^{0},2^{n+2},2^{n+2}, I^{n-1})$

$\equiv\Sigma(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 5,2^{n+2},2^{n+1},$ $I^{n-1}$) $mod M_{n+1}$ .
For (23), we have

$(m_{n+3}^{1}, m_{n+2}^{\rho}, I)+(m_{n+3}^{0}, m_{n+2}^{2}, I)$

$\equiv(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 6,$ $m_{n+2}^{0},$ $I$ ) $+(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 5,$ $m_{n+2}^{0},2^{n+1},$ $I$ )

$mod M_{n+1}$ .
For (24), we have in case $k=1$ ,

$(m_{n+8}^{1}, m_{n+2}^{1}, m_{n+1}^{0}, I)+(m_{n+3}^{0}, m_{n+2}^{2}, m_{n+1}^{2}, I)\equiv(2^{n+3}, m_{n+3}^{3}, m_{n+2}^{1}, m_{n+1}^{0}, I)$ $mod M_{n+1}$ .
$(m_{n+3}^{1}, m_{n+2}^{8}, m_{n+1}^{0}, I)+(m_{n+3}^{0}, m_{n+2}^{0}, m_{n+1}^{2}, I)$

$\equiv(2^{n+3}, m_{n+3}^{3}, m_{n+2}^{3}, m_{n+1}^{0}, I)+(2^{n+3},2^{n+4}(k-1)+2^{n+1}\cdot 5,$ $m_{n+2}^{0},$ $m_{n+1}^{0},$ $I$ ) $mod M_{n+1}$ .
Also in case $k>1$ we can proceed in the same way.

By this Lemma 2, we have $Ker\alpha_{n+3}={\rm Im}\beta_{n+3}$ . This asserts the exactness
of the sequence. Q. E. D.

Tokyo Woman’s Christian College.
(Tokyo Joshi Daigaku)
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