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Exact sequences in the Steenrod algebra.

By Aiko NEGISHI

(Received Nov. 2, 1957)

J.P. Serre [1] has proved that the cohomology algebra H*(Z,;q,Z,) of
the Eilenberg-MacLane complex K(Z,, q) with Z, coefficients is a polynomial
algebra generated by Sqf(u,), where u, is the generator of HY(Z;;q, Z;) and
I runs over the admissible sequences with excess <(¢, Sq? being the iterated
Steenrod squaring operations. He has proved thereby that H"*%Z,;q,Z,)
remains ‘stable’ for ¢g>n, and put A™Z, Z,)=H"*YZ,;q,Z,). The graded

algebra i}o AYZ,, Z,) is denoted by A*(Z,, Z,) and is called the Steenrod

algebra (Cf. Adem [2], [3]). Following Adem [2], we shall denote the gener-
ators of A*(Z,, Z,) with Sq? instead of Sq’(#,). The multiplication between
these generators is determined by Adem’s relations (Adem [2], [3].

‘[w/‘.’-] B—t—1 bt
@ SqvSaf= 3 (F loy )Sa**#Set  mod 2, 0=a<2g.

Let I, be any fixed sequence of integers. We can define a homomorphism
ay, of A*(Z,, Z,) into itself by a7, Sqf=Sq? Sqf, and another homomorphism
ay by ai, Sq¥=Sq?Sq’. If M is a certain fixed submodule of A*(Z,, Z,), then
Sql— af, Sqf mod M or af, Sqf mod M define respectively cohomology opera-
tions. These operations are of interest in view of topological applications.
(Cf. Cartan [4], Serre [I].

In this paper, we consider the operator «;, defined by a, Sq?=Sq?" Sq
(n=0,1,---). We denote the module generated by the sums of the images
of a; (1=0,1,---,n) with M, for »=0, and put M_,=M_,=0. Obviously we
have M,DM,_,. We shall give explicitly the generators of A, mod M,_,
(Theorem 1) and those of A*(Z,, Z,) mod M, (Corollary of [Theorem 1)), and
apply this to prove the following result. We can define «,,; and g,,; for
n=—2 so that the following diagram is commutative, where p, is the
natural homomorphism A*(Z,, Z,)— A*(Z,, Z,)/ M, for n=0, and p_,=p_,=id.

Qs Oy
A*¥Zy, Z,) — ANZyH Z,) ——  AXNZ, Z,)

P bass | Dusa |
Br+s Bris
AXZy, Z))/ M, — A%(Zz, Z3)| My — A*(Zz, ZZ)/Mn+2 .
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Then we shall prove that the sequence

ﬂn+3 @

AX(Zy Z) | My ——> AX(Zoy Z)] Miysr — AX(Zoy Z2)/ Mipss is exact for n=—2,
—1,0,1, --- (Theorem 2). The exactness of this sequence for n=-—2, —1 was
proved by Professor T. Yamanoshita [5], who suggested to the author to
occupy herself with this question. The author wishes to express her sincere
thanks to Professor T. Yamanoshita for his kind suggestions and advices
and also to Professor S. Iyanaga for his constant encouragement during the
preparation of this paper.

In the following, we have often to deal with binomial coefficients mod 2.
The following formula of Cartan [3] is fundamental for us. If the dyadic

n . mn .
expansions of » and » are respectively }; 2°«; and )] 27b;, and n=m, then
i=0 i=0

ny__ 2nan+"'—“2aln{‘ao __[(@n\ (Cn—y Ay [ Am a,
@ (3)=(s i o e )= )~ G- () mod 2.
In particular, we have

B—t—=1\__/p+2"'—¢~1
@ (ply)=("a g ) moedz.
These binomial coefficients appear in Adem’s relation for Sq®" Sqf. Hereafter
we shall denote Sg® Sq®---Sq» with (i), 4y -+, 4,). Often we denote such
(i1, by =+, i) With I. We denote the collection of all admissible sequences
of the form (2"*'k,, 2"k, ---, 2"77%3 ki1, 271 2k1), 27 Bjryy oy 2Ry Bnts Tnvas
v 4) (7=1, -, n+1) with N? and an arbitrary sequence belonging to N7
generally with /7. For the above /3eN% we denote the sequence. (2""'k,,
2%y oy 2Rty Tngay =y ir) With I™  As easily verified, for every admissible

sequence J there is uniquely determined a pair of integers (u,s) such that
J=I7'eN?7. Setting N*=UN"% we have ["eN™" for m>0. (Here and in
j

what follows k,, k,, --- denote always non negative integers.)

Now, if we identify N* with the free module over Z generated by the
collection N™, then we have

Turorem 1. M,=N"®M,_,, that is, I'’s (j=1,--,n+1) arve not contained
in M,_, and generate M,/M,_,.

Proor. The case =0 means [{=Q2k,+1, 1y -, i,)=(, 2k, iy, 7,)=0 mod
M,, and I°=(2k,, i5, ---,4,)%0 mod M, This is easily seen from (1,1)=0 and
(1, 2k)=(2k+1). Assume, inductively, that the theorem is true for n—1, i.e.

[7'=0 mod M,_, i.e. I3}'=(@",I) mod M,., for some I.
4) I"*=0 mod M,_,.
According to (1), (2) and the inductive assumption Y} N'=M,_,

i<n
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Pl o+l b p_ ontl f 1
@ znky=3 (Pt erer b 0=(*" 2 @k 1)
21y — )27+ — 1
=(FT G @k 1)
= (B DAZEET ) g, 1)

=B D (D)(5)(§) @@t =@ @k +1) mod M,
Therefore
®) 1=(2"Q2k+1), 2" kyy vy 2Ry Gnayy 0 Br)
=(2", 2" By, 2" Ry oo, 2Ry paty <0ty ) mod M,_;,
6)) =0 mod M, .

(@, 271 foy— 201) = z: (2”“k oo )@ kbt )

_ <2n+12]io_—22nn_. >(2n+1 ko, 2770 =(27 ko, 2°-1)  mod M,_,.

This implies
(6) In =@" 'k, I )=@2" "k, 2", =2 2" ky—2""1 1)  mod M,,,
(6) 0 mod M,

(j=1,--,m). By (4), (6) and (6), IPs (=1, -+, n+1) are not contained in M,_,
but contained in M,. If now I"=(2""'k;, 2" kyy -+, 2kpns1, tnsay -+ br) E My, then
there would exist, by the inductive hypothe51s the relation (2%, 2%"14-2™)

i

forrn I"t=2" k',2" L RY, oey 2k Tty =y Br)e And we have
(2n’ [11—-1):(211 2n f 2n—-1 k‘/h Ty Zk;u in-l—l, Tty ir)

nl n
Z 222 o 1)(2n znki_t,tfzn—ikéa""Zk;win-kl:"':ir)'
=0

Therefore (2%, ") becomes an I™ mod M,_;, only when /=0 and k; is odd.
2n k/#1> (2"(k;—1)+2"—1
A 2"
Therefore I"&M,, and I¥'s (j=1,---,n+1) generate M,/M,_,.

CororLrary. [™s generate A*(Z,, Z3)/M.,.

To prepare for the proof of the next theorem, we list here some formulas
which are easily proved by (3). The formulas (7) to (14) (which are con-
gruences mod M;_,) are used to calculate f;-images (24,1) (¢=0,1,---). Let
I=(a,I') be a given sequence. Then (2%, 1)=(2%a,I’) is contained in M;_,, if

But in this case the coefficient ( )EO mod 2.



74 A. NeGisHI

@ is not a multiple of 22, by [Theorem 1, and the formula (2¢-2 27-14-2¢2
+2™=(2%, 2™) mod M;_, for m<i—2, so that we have only to consider the
case g¢=2"2h. By (3), we have (2},2'2p)=(2},2"2p") if b=b" mod 2°. For
(2%, 217223k +7)) =0, 1, ---,7, we have

(7) (2%, 20720 2k) =20+ k4 20) (21 k4201, 20-1) mod M,_,
(8) (2%, 212k 1))=(2* 1+ 2¢, 26-7) mod M;_,
9) (2%, 202 20k+2))=(21 k+2¢, 26°1) mod M,_,
(10) (2%, 272(2%+3))=0 mod M;_,
(11) (2%, 21220k 4))=(2 k+20-1:3, 201) mod M,_,
A2) (2, 272(2%k+-5))=(2"!(k+1), 2% mod M;_,
13) (2% 27%(2%k+6))=(2"(k-+1)+2" D42 (k+1), 277Y) mod M, _,
(14) (2, 2-2(2%k+T7))=0 mod M,_, .

The following formulas (15) to (18) are used to calculate «;-images
24 1) mod M;_, (:=0,1,---). Similarly as in the above case, we have only
to consider (2¢ 2" 1¢) with ¢ mod 2% i.e. (2% 271(2%k+7)), 7=0,1, 2, 3.

(15) (2%, 26-1.2%k) = (2 o+29) mod M-,
(16) (21, 21-4(22%k+1))=(21" k+2¢, 26°1) mod M,_,
A7) (24, 22k +2))=0 mod M;_,
(18) (2%, 20-1(2%+3))=(2+1(k+1), 2i-1) mod M;_, .

In calculating «), images, we may proceed as follows in utilizing (15)
to (18). Let I=(2¥1c,, 25 2¢y, -+, isy -+, br)=(2 "¢y, I')=(2" ¢y, 20 %¢,, I'') be an ad-
missible sequence. By (15) to (18), the following three cases occur:

D (2271 2%, 1), 20 %y, ')
=(20-1(22%k,+2), 2171, 202, ') mod M;_, (2*%,+1=c,)
2) (2% 27122k, +3), 20%¢,, I'")
=211 2%k, +1), 2071, 2672¢,, I')  mod M;_, (2%,+3=c,)
3) (2%, 207122k, 212, ')
=(2-1(2%,42), 2%, ') mod M., (2%,=c,).
The right hand side of 3) is obviously admissible. Those of 1) and 2) may
not be admissible. Then we transform (2'%,2"%c,) again by (15) to (18).
Let ¢,=2%k,+1 in 1), then (271(2%,+2), 21, 2:~2¢,, ['")
= (2122, -2), 201, 267222k, 1), ') = (20-1(22k, 1), 2, -+ 271, 202 ') by (16), and
then 2:-1(2%k,+2)—2(2°k,+2""1)=0. Therefore the result satisfies the admis-
sibility condition for the first two terms. The same is also true in case
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2°k+1>¢, as is easily seen. Let ¢,=2%,;+3 in 2), then (2"!+2%(k,+1),2¢,
220, ') = (2071 2%k 1), 201, 28-2(22k,4-3), ') =(21-1+2%(k,+1), 2%(k,+1), 2072, I'")
by (18), and then 2i-1.2%(k,+1)—2{2%(k,+1)}=0. Again the result satisfies
the admissibility condition for the first two terms, and this is also true
in case 2%,+3>c¢,. Thus we may calculate «; images straightforwardly
beginning by the ‘head’.

TueoreMm 2. The sequence

Burs Apyg
AXZy, Z,)| My —— AXZy Z5) My

is exact for n=-2,—-1,0,1,2, ---.

Proor. Im f,.,CKer «,,; is easily seen by putting i=#n-+3 and k=0 in
(17). Now we shall show that Ker «,,;CImfB,,; by induction. If n=-2,
we obtain by putting i=1 in (15) to (18),

A*(Zza Zz)/Mn+2

(2, 2°k)=(2k+2) mod M,
2, 2k+1)=(22k+2,1) mod M,
@, 2°k+2)=0 mod M,
(2, 22k+3)=(2%k+1), 1) mod M,.

Therefore the kernel of «, is generated by

(22k+2’ iz: Ty ir) ’

2%, +1, 2ky+1, 45 -+, ),

(2%k,+3, 2ky+1, iy, -+, i) and

2k, +1, 2ky, is,y -y i)+ (22ky, 2Ry 1, 4 ey 0
Put i=1 in (7), (9), (11) and (13), then we obtain

(2, 22%k)=(22%k+2)+(2%k+1, 1)

@, 22k+1)=(22k+2,1)

2, 22k+-2)=(22k+3,1)

(2, 2k +3)=(22(k+ D+ 1D+ (22(k+1), 1).
Thus

(2, 2%k, 2ky-+-1, 4y, -+, 1,)=(2%;+2, 2Ry +1, 45y -+, 7,)

(2, 22k, 2kyy igy -+, 1)+ (2, 28Ry —1)4-3, 2ky+1, 15, +++, 1,) =(2%k+2, 2Ry, ©5y-++, i)

(2, 2k, —1)+3, 2ky+1, i3, +--, i,)=(22k,+1, 2ky+1, 45, -+, 1,)

2, 2k, +2, 2Ry, iy -+, 1,) =(2%k;+3, 2ky+1, 15y ++-, 7))

(2, 2%k —1)+3, 2Ry, is, -+, 1) =(2%,+1, 2Ry, @5, -+-, 1)+ (2%, 2Ry+1, 25, ++-, 2,) .
This shows that Ker a«,cIm 3,, and therefore Ker a;=Im j,.

Assume, inductively, that the theorem is true for integers <<»+3. Let
K, denote the kernel of «, for t<<n+3. Then by our assumption, the «;
image of p;%, K, is generated by I‘;' (j=1,-,¢) mod M,, and p;4K, is
generated by (2% 7'®) mod M, ,. Under this assumption, we shall prove the
following two lemmas. Hereafter we identify K, with p;3, K.

Lemma 1. For simplicity, we denote the numbers of the type 2'-1(2°%k+7)
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generally with mi (7=0,1,2,3, i=1,2,3,---). (md, m} will mean even and odd
numbers vespectively.) Then Ker a, ., is generated by elements of the following
type
(19) (m31+3s le: HEY lr)
(20) (m;w;n Koo)
21 (s Knrs)
22) (my.s [n}H)
(23)  (Mhasy Mgy Bgy =+, 1) (45, Mgy B ++05 B)
(24) (mfzo-)-& m/n]]+2, 1"5131’ Tty mjzk—"l;;lwt‘b ik+3> ) zr)
+(m;zl?+3) mgzlfrzy mﬁarly ) mﬁ’i?;lzy ik+37 ) Zr) k—;ly HRRE] n+2 ’

where always 2o=1, A1 =0, po=0, gy, =2 and {2, -+, s} is any sequence of k
terms composed of numbers 1, 3 (such as {1,1}, {1,3}, {3,13}, {3,3} if k=2, there
are 2% such sequences) and ., is 0 or 2 according as 2; is 3 or 1.

Proor. By (17), we immediately see that elements of the type (19) are
in Ker «,,;. As easily seen, we have only to consider as generators of
Ker «,,; the elements of the form (mj.,,I) and their sums.

Consider first the elements of the form (mi,;, K...). By (16), our assump-
tion of induction and (5), (6), we have

@3, Mgy Kna) =2 (2R 1), 272, Kyo)
=2 (2""¥(2k-+1), ["jH)Z P [";?ZEO mod M, .

Thus elements of the type (20) are in Ker «,,,, We see in the same way,
that also elements of the type (21) are in Ker a,,,. By (15) to (18), these
are obviously only elements of the form (#f.;, Kn.+y) Which are in Ker «,,..

Now consider the elements of the form (m,;, I) where I is not in K,,,.
We see immediately by (17) and (15) that elements of the forms (19), (22)
are in Ker a,,;, and also that these are only such elements contained in
Kera,,,.

Consider finally elements of the form (m,%,, I)+Gndy;, I'). Generators of
Ker a,,, of this type will be called compound generators. By Theorem 1, we
must have j=0, j'=1 or j=1, j7==0 in the compound generators which are
not contained in (20) and (21). To fix the notation, we shall put j=0, j'=1.
Now we have by (15) to (18)

(25) (2n+3’ m;z+31 mgz-l-zy i3, ) 2.7-)5(771%.,.3, m%+z: lgy ==y Zr) mod Mn+2
1 : SN (42 R .

(26) (2™, Mihrsy Misg, Ggy = 1) =M sg, MG 49y 274, 05, w00y 4,) mod M.,

@3, MY 5y M2 gy U3y *ory 1) =0 mod M,

7)™, Mgy Myrgy Bgy =0y ) =My Mgy 2"V, g, ++05 0y) mod M., .
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And similarly

(28) (2", My 150 Mgy B3y *os ir)E(mgwa: M sgy 3y oy Br) mod M.,
(29) (2™, a5y Mihrgy By oy 1) = (M 3y Mgy B, **, ) mod M.,
(B0) (2™, mfyrs, Mgy Bs, +o*y b ) = (i 139 My 0y By ***5 1) mod M.
BL) @™, Mgy Mgy T3y ** B ) = (MG 135 Miyr9y 3y *7 i) mod My, .

Thus we see that the sum of (25) and (30), i.e. (23) is in Ker«,.,. These
are obviously only compound generators of Ker «,,; determined by first two
terms. For (26) and (30) we compare further by (15) to (18)

(32) (@3, mb g, by MG s1s B4y oy B) = (102 15, M2 1gy 2 Mty By oy )
E(m%-lﬁ’ m%+2’ M231+17 i4) ] ZT) mod Mn+2
(33) (2™, M3y Mgy Mty Ly s by) =(Mipsg, Mooy 2% Mgy, By =y i)
=(Msg) Miasgy Mipit, 2% 54y *+5 By) mod M.,
(34) (2n+3, m’}z+3’ 7’”}1+2, 771?14.1, i49 ) Zr)
E(WI?HS’ mgz+2! 2n+1, m121+11 ii) ) ZT)EO mod Mn+2
(35) (2n+3’ m;l+3’ m;z+2) m?1+1’ i4’ ) ir)z(m%-l-ib m%+2) 2n+1’ m%+1: i/j; Tt i'r)
E(mgwss m?z+2’ m(r)zﬂy 2n: i4, Tty lr) mod Mn+2 .
(B36)  (2™*3, Mz, Moy Mty Ly =0 U ) = (M s3y Mgy Myaty bgy *++58,)  MOAd Mo
(37) (2n+3’ m(7)1+37 7’}’1721+1) 7”117-(-17 i4, T z})E(m%H, m'%z+2; m'}z+1) i/l’ Tty Zr) mod Mn+2
(38) (2™, M0 ygy M3y 40y Mty Bgy o ir)E(mgz+3’ M0y Mgty Ly o0y 0y) mod M,
(39) (2n+3, m[1)1+3’ m?wz, Mty Ly 21)?:(77’1721“; Mygy Mipsis Tgy ) i) mod M,y,.
By comparing (32) and (38), we see that
(m}l+3’ m}z+2: m91+1: i4’ ) ir)+(m?1+3’ m%+2; m722+1: i4’ "t 77‘)
is in Ker a,.;. In the same way we see that
(m;z+3) m':r,’z+2; m%ﬂ) i4, Yy ir)+(m701+3’ m%+2’ m?ﬁl) i47 R Zr)
is also in Ker«,,;. Thus we obtain as compound generators of Ker «,.,
elements of the form (24) with k=1, and these are obviously only compound
generators determined by first three terms. Other compound generators are
obtained in the same way.
Lemma 2. Ker a,.,CIm £,
Proor. We can see as follows that the generators of the Kerea,,, are

the elements of Im B.., by referring to the formulas (7) to (14). For (19),
we have

(M5, [)=(2"%, M5, )+ (2743, 274 (R —1)4-277146, 2742, 1)
(@27, 27k — 1) 2705, 27, 27, ) mod My,
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For (20), since (mkis, Knio)=2 (mhis, 2%, 1" ) mod M, by the inductive
hypothesis,

(m111,+3) 2n+2, [n—l)E(2n+3’ 2n+4(k_ 1)+2n+1,6, 27L+2’ In—l)

4 (273, 27 (R — 1) 42715, 212 QntL Tn-t) mod M, .
For (21), we have
(M5 Kna) =L (M5, 2741, I" )= 30(2"3, miiy5, I ) mod My, -
For (22),
(M5 17 D)=y 15, 2™%2, Kpyg)= 21y, 2772, 2742, [771)
= F1(2"3, 2MH(k — 1) 27145, 2m+2, 2nt, [o-1) mod My, -

For (23), we have
(Mys30 MYy )0y, M40, T
=273, 2"t (R —1)+4-2" e 6, m 1o, 1) +H(27F3, 274 — 1) 427105, il ., 271 1)

mod M,,;.
For (24), we have in case k=1,

(103 Moy M1y I ) (i 3y M0y Mgty 1) = (2" 3, 05,5, b9, M, I) mod My, .
(M 49 M0y W41, 1)+ (0 13, My 0, M iy, T)
=23, 33y Mgy My i1, D) (27H3, 27— 1) +-2"4 15, 1y oy yrr, [)  mod My, -

Also in case £>1 we can proceed in the same way.
By this we have Ker a,,;,=Im #,.;. This asserts the exactness
of the sequence. Q.E.D.

Tokyo Woman’s Christian College.
(Tokyo Joshi Daigaku)
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