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On the local property of the absolute summability
|C, a| for Fourier series.

By Mineo KIYOHARAD

(Received Oct. 1, 1957)

1. V.A. Magarik [4] has generalized Wiener’s theorem® on the absolute
convergence of Fourier series to the absolute summability |C, «|. His as-
sertion is as follows:

Let f(x) be Lebesgue integrable in the interval (—r,n) and periodic with
period 2r. If at every point y on the closed interval [ —n, n] there are a function
2,%) and a 6>0 such that (i) g,(x)=£(x) for |x—y|<<8, and (i) both the Fourier
series of g,(x) and its conjugate series are absolutely summable |C, a|,® then the
Fourier series of f(x) is absolutely summable |C, «|, where a = 0.

For the case a=1, W.C. Randels proved this proposition without
the condition on the absolute summability |C, 1| for the conjugate series.

In the present note, we shall show that the condition on the absolute
summability for the conjugate series is also superfluous for the general
case; that is, the following theorem will be established.

Tueorem. Let f(x) be Lebesgue integrable in the interval (—r, ) and periodic
with period 2r. If at every point y on the closed intevval [ —n,n] there are a
Sunction g,(x) and a 6>0 such that (i) g,(x)=f(x) for |x—y|<<d and (ii) the
Fourier series of g,(x) is absolutely summable |C, |, then the Fourier series of
S(x) is absolutely summable |C, |, where o= 0.

2. The case for a>1 of our theorem follows immediately from the
known theorem of L.S. Bosanquet [1]:

The absolute summability |C,«|, a>1, for Fourier sevies of a Lebesgue
integrable function with period 2w at @ point x=2x, depends only on the behaviour
of the gemerating function in the neighbourhood of the point x,.

On the other hand, L.S. Bosanquet and H. Kestelman proved that
the mentioned result of L.S. Bosanquet does not hold for a=1.

Thus, it is the case 0= a <1 in which we are interested. However, it

1) The author wishes to thank Dr. S. Yano for his valuable advice during the
preparation of this paper.

2) A. Zygmund [6], p. 140.

3) For the definition of absolute summability |C, a|, see below.



56 M. KivyoHARA

will be sufficient to prove our theorem only for 0<<a<C1, because the cases
for «=0 and a=1 were already proved by N. Wiener and W.C. Randels
respectively.

We must now make some general remarks about the absolute summa-
bility |C, a|.

Let « be any real number and put
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Then, it is well known? that if a#—1, —2,---
a~ N7
) A= NCESVE
For any given series i x, and any =0 we write
n=0

(3) UZZ”Zl\a,‘kZ::OAm_k X«

The series :‘j %, is said to be absolutely summable |C, a|, if the series

n=0
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is convergent.
We shall need the next lemmas which are due to M. E. Kogbetliantz [3]

Lemma 1. The series f} X, is absolutely summable |C,a| if and only if the

n=0

series

oo

1 n .
®) n§0 Awr l kZJokAn—r% X |
is convergent, where a+—1, —2,---.

LemMa 2. If the series f} x, is absolutely summable |C, &|, then the series
n=>0

oo

i 2]
© n}; o (n+1)e

is convergent, where a=0.
In order to apply this definition to Fourier series in the exponential
form we put '

4) A. Zygmund [6], p. 42.
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) Xa=(Cre"+c_ne~"%).

From it follows that if @ Fourier series is absolutely summable |C, &|
over any interval (a, b), then the series

_leal
® PN IEE

n=—oo

is convergent, where c,’s are the Fourier coefficients and a=0.

3. Let us proceed to the proof of [Theoreml We may suppose 0<<a <1
as it was remarked in the above section.

By the Heine-Borel covering theorem and the hypothesis of our theorem
there exist a finite number of overlapping intervals (§;, 8,”) covering (—=, 7)
and functions g;(x) such that the Fourier series of g,(x) is absolutely sum-
mable {C, a| and g;(x)=f(x) on (d,,8,”). These intervals may be chosen so
that 6, <<0;.," <<8;.; <0/.

The functions 4,(x) are now defined by

( Afx—0,)*+B(x—0.), 8 <x<<d,._,
L, 01/ Sx<0p11,
h()=¢{ 1—hi(x), O =x<<0,,
0, x<<0; or 0;/<x,
\ A(x+27),

where A;, B, are defined by the relations

3Ai(6z—1, - 61,)+ ZBb:O ’

A (01— 0.)°+ By(0;-,"— 0,)=1.
The second relation of (9) implies that %;(x) is continuous, and by the first
relation we see that

hz’(az):'hi/(ai—l/):hzl(ai-{il):}ltl(ai):O ’

so that #;/(x) is absolutely continuous and 4’/(x) is of bounded variation.
Therefore the Fourier coefficients of 4,(x) are

®

cull) = | e
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T o2nl), w?
10 =0n""%).
It is also clear that

e~ "%y

2 h(x)=1
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and

an J)= Zl: gi0h(x) .
The Fourier coefficients of g,(x)#;(x) will be given by
(12) engih)= 5 calh)en-ne)

where the series on the right hand side is convergent since #4;(x) is of
bounded variation. For convenience we put

clgichi)=cn, Cull)=bn, Cn(gi)zan-
Then from [Lemma 1 and we have to consider

né) 71}{:1* Iéo kAW cre™ 4 c_ye™ ™) |
= Z Au,+1 l Z ( k { An—-lklcke”w ‘
(13)
’—'Z Am+1 IZ lk(A IIcl Z bmak—melkx[

3 tnl e |3 1R AT e ne®l.

n=0 k=-n

A

Now let us put

o(m)= Z Awﬂ IL IklAn b1 @-ne™ | .

If m>0, we have

o(m)= Z Am+1 [Z ’kIAn fo1@p-me™” H‘ Z

=2m+1

Aw+1 I Z |klAn |Ic|ak me“M'
(14) =I+1,, say.
Since a,, being Fourier coefficients of g;, is bounded, we get
om ]_ n . .
a5 I :1LZ=:0 —Hwﬁ [ EIkA?{:,Kak_mez(k~m)x+a~k_mez(—k—m)x)[

2m

_Z Aw+1 {Z kAn—lc([ak—m{"}_la k— ml)}

=0{ i}n g,,lﬁr i: RAGZL}

n=0 n k=1

2m 1
ZO{Z (n+1)w+1 (”"‘ ) (% k+1)1 &}

=0{ Z T 1)w+1 (n+1D)(n+1)"}
=00m).
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Proceeding to the estimation of the sum I,, we divide its inner sum
into four parts:

Z [k}An Iklak met(k——m)x

k=-n
—'*_nzﬂrik[An o1 @p—me* ™ m)xt Z Ik—m[Ag:}k—mlak—mei(k_m)x
k=-n =-nt+m
+ 5 k=l (A= A ™
+ —Z—:n+gk[_lk m[)A"‘_mak_me‘(’“ me
=+t s, say,
where we set
16) A t=0 if k=-1,—-2,.
Then we have
s 1
[2=n=§n+l 74?? [f1+]2+f3+]4[ ;
Z AEll (|]11+|]21+|]3[+[f4l)
an =K+ K,+K,+K,, say.
The estimation of K; will go as follows:
Ki= 5 eer | 2 k| At e 7|
S'nZ2:m+1 AOH-I Ic*—é: m n—kla—k—ml
=0{ 3 —air 2 ko—k+ D o nl}
neam+1 BOT lc=n m
=00 % —tin 3 ont1-EP e gaw|)
n=am+1 M k=0

] A (k+n) l }
- o

n=2m+1

=0{3 nt1-ky 3
k=0

n=2m+1

=0{§0(m+1_k)a 1y [(624(_1:;;‘)”[ (k+n> }

Since kZ2m<n, (k+n> does not exceed a constant not depending on k&,m

and n#. Therefore
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K=0{% tnt1-p 5 el

n=2m+k+1

~off; on+1-wr £ 101

n=1
=0{m® 2 flfa‘;}l‘}.
" a=r BT

The absolute summability |C, «] for Fourier series of g;(x) gives

= la_nl
n§1 n” <o
by (8). Hence we get
(18) K, =0(m).

The sum K, will be easily estimated by using the assumption of g(x)

and Lemma 1:

oo 1 n+m _
K2: Z 74&-;—1 I Z {k m [ Ag- II«:—mIalc——mel(lc ™ [
n=3m+1 n k=-n+m

o 1 ”' - ikx
=n=§:m+1 74?&”;17 lk%‘—n[klAn_llk'ake ’ l

19) =0(1).

To estimate the sum K, its inner sum J; will be further divided into
two parts:

Jo="5 |k—m| (A%l — A%l E™*

k=-—n+m
e a—1 -1 ii k-n)x
zkgolk_n{ (A —tlc—n+mI—A%—lk—nl)dk—ne *=m

n

=3+ 1~L1+L2, say.

k=0 k=n+

Then we have

(20) Ksé Z AE+1 [L1l+ Z Aw+1 ‘L ‘

n=:im+1
We shall first estimate the first sum on the right hand side of this
inequality :

Z Aa+1 lL ‘ Aw+1 Z {k nl iAn lk—-n+ml ™ Az:}k—nl! lak—nl

n=2m+]

=§ s & (1= D) | Afeh— A @+

n=22m+1
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+ 5 e 5 0B [ A= AT ]
=M+M,, say.
Since
@b gk — A = E, At | =0( g fye)
we have

M=o 5

— = 1
-«O{mk‘éo (B+1)**

1
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n=k+m N l k—n]}

= (mAn)*t! [@omenl

—_—O{mk; C +1)2_,,

=0{m3} iy
=o{nZ 151}

For the sum M,, we have

Zo (k+m~+n)* \(m+n)*
g Ia_n I }

M= 5 ee 5 (=R Af— AT (a0l
n=2m+1 k=n-m+
::L:§n+l Aa+1 kZ (m k)[Aw Af{ m+klla—m+kl

co 1 m
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By the assumption of g;(x) and (8) we have

=0(m),

=0(m")=0(m) .

Hence we get

(22)

oo

n=am+1 A"+l

[L,|=0@m).

61
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Similarly

23) )3 7121? |L,|=O0m).

n=2m+1

Thus [(20), (22) and [(23) give
29 K;=0(m).

Finally, let us estimate the sum K,. Taking into account that
[]4{'_'I Z (lkl“lk mDAn Iklak mel(k-—m)x[

n+m
=m 2 ATl |@k-nl

k=-n+m

n
=mk_Z:_nA$:fm+kl [

=m Z ARl @i | +m Z A mn | @ |

=N+N,, say,
we obtain

had 1 N 1
(25) K= X . A‘%H“INJH” P . WTINH‘

n=2m+ n=2m+

For the first sum on the right hand side of we have

-1 1 T @1
n=§n+1 Aw+1 INII“O{”% vt (DT k{-“o (n—m—k+1) Iak[}
1
=o{nZle) %, i)
_ law!
=0{mZ, ity
(26) ~0{m % laly,
Similarly
o _ = lax|
@ B IN=0{n 5 Al
But by the assumption the series g}l dax] converges. Hence from
and we get
(28) K,=0(m).

Combining the above estimations (17), and, we obtain
(29 L,=0(m).
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Therefore, if m>0, we have
(30) p(m)=0(m)
by (14), and

A similar result for m=<0 can be proved in exactly the same manner,
and therefore by

5 _1bnloon=0{ £ _(ml-*Iml}

m= — o

=0{ i Im[‘2}<°°,

Mm= — oo

so that by (13)

(3D) B | 5 AT o) [ <oo

k=0
From this and it follows that the Fourier series of #;(x)g:(x)
is absolutely summable [C, «|, and so by [(11) f(x), being the sum_ of a finite
number of functions having Fourier series which are absolutely summable
|C, @], must also have a Fourier series which is absolutely summable |C, «|,
where 0<<a<<1.
This completes the proof of our theorem.

Mathematical Institute,
Tokyo Metropolitan University.

References

{13 L.S. Bosanquet, The absolute Cesaro summability of Fourier series, Proc.
London Math. Soc., 11 (1936), pp. 517-528.

[2] L.S. Bosanquet and H. Kestelman, The absolute convergence of series of
integrals, Proc. London Math. Soc., (2) 45 (1939), pp. 88-97.

[3]1 M.E. Kogbetliantz, Sur les séries absolument sommables par la méthode des
moyennes arithmétiques, Bull. Sci. Math., (2) 49 (1925), pp. 234-256.

[4] V.A. Magarik, On the summability [C, a| of Fourier series, Moskv. Gos. Univ.
Uc. Zap. 181, Mat., 8 (1956), pp. 183-196. (in Russian).

[51 W.C. Randels, On the absolute summability of Fourier Series, Duke Math. J.,
T (1940), pp. 204-207.

[6]1 A.Zygmund, Trigonometrical series, Warszawa, (1935).



	On the local property ...
	THEOREM. Let ...
	2.
	3.
	References


