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A reciprocity law of the power residue symbol.

By Yoshiomi FURUTA
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Let $l$ be a positive rational prime number and $k$ be an algebraic number
field of finite degree, containing a primitive l-th root $\zeta$ of unity. Denote
by $\zeta_{n}$ a primitive $l^{n}$-th root of unity, and set $k_{(n)}=k(\zeta_{n})$ .

Let $\mathfrak{p}$ be a prime ideal of $k$ prime to $l$, and $\alpha$ be an element of $k$ prime

to $\mathfrak{p}$ . For these $\alpha$ and $\mathfrak{p}$ , we define the symbol $[\frac{\alpha}{\mathfrak{p}}]_{tl}$ inductively as follows.

For $n=0$, we set always $[\frac{\alpha}{\mathfrak{p}}]_{n}=1$ .
For $n\geqq 1$ , this symbol is defined only when we have

(1) $l^{n}|N\mathfrak{p}-1$ and $[\frac{\alpha}{\mathfrak{p}}]_{n-}=_{1}1$ ,

and, if that is so, we set

(2) $[\frac{\alpha}{\mathfrak{p}}]_{n}=\zeta^{x}$

whenever we have
$\frac{N)-1}{n}$

(3) $\alpha\ell$ $\equiv\zeta^{x}$ $(mod \mathfrak{p})$ .
Since every l-th root of unity is mutually incongruent modulo $\mathfrak{p}$ , the value

of $[\frac{\alpha}{\mathfrak{p}}]_{n}$ is uniquely determined in $k$ by (2) and (3).

If $\mathfrak{m}$ is an ideal of $k$ prime to a and to 1 with the prime ideal decom-
position

$\mathfrak{m}=\mathfrak{p}_{1}^{m_{1}}\cdots \mathfrak{p}_{r}^{m_{7}}$ ,
then we set

$[\frac{\alpha}{\mathfrak{m}}]_{n}=[\frac{\alpha}{\mathfrak{p}_{1}}]_{n}^{m}\cdots[\frac{\alpha}{\mathfrak{p}_{r}}]_{n}^{m’}$

The symbol $[\frac{\alpha}{\mathfrak{m}}]_{n}$ is considered to generalize the Diriclet’s 4-th power

residue symbol and, as we see in the latter half of \S 1, it is closely related
to the “ restricted Artin’s symbol” in R\’edei [4].

In Kuroda [3], a reciprocity law of the 4-th power residue symbol is
given and, as an application, the decomposition law of rational primes in
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some non-abelian field is obtained. In the present paper, we shall have a
generalization of the reciprocity law of Kuroda [3].

\S 1. Fundamental properties of the power residue symbol.

By the definition, we have immediately the following
LEMMA 1. We have

$[\frac{\alpha}{\mathfrak{m}_{1}}]_{n}[\frac{\alpha}{\mathfrak{m}_{2}}]_{n}=[\frac{\alpha}{\mathfrak{m}_{1}\mathfrak{m}_{2}}]_{n}$

$[\frac{\alpha_{1}}{\mathfrak{m}}]_{n}[\frac{\alpha_{2}}{\mathfrak{m}}]_{n}=[\frac{\alpha_{1}\alpha_{2}}{\mathfrak{m}}]_{n}$ and

$[\frac{\alpha}{\mathfrak{m}}]_{n^{d}+a}^{l}=[\frac{\alpha}{\mathfrak{m}}]_{n}$

We have also

LEMMA 2. We have $[\frac{\alpha}{\mathfrak{p}}]_{n}=1$ if and only if $\mathfrak{p}$ decomposes completely in

$k_{(n)}(\sqrt[l^{n}]{\alpha})$ .
PROOF. In order that $\mathfrak{p}$ decomposes completely in $k_{(n)}(n\sqrt[1]{\alpha})$ , it is neces-

sary and sufficient that we have $l^{n}|N\mathfrak{p}-1$ and $\alpha\equiv 1\frac{N\mathfrak{p}-1}{\iota^{n}}(mod \mathfrak{p})$

, which is,

by definition, equivalent with $[\frac{\alpha}{\mathfrak{p}}]_{n}=1$ .
Now, set $K^{(n}$ ) $=k_{(n)}(\sqrt[l^{n}]{\alpha)},$ $\omega=W\overline{\alpha}$ and let $\psi$ be the character of the

Galois group $\mathfrak{A}$ of $K^{(n)}/k_{(n)}$ such that

(4) $\psi(\sigma)=\frac{\omega^{\sigma}}{\omega}$

for every element $\sigma$ of $\mathfrak{A}$. Then the character group of $\mathfrak{A}$ is generated by

$\psi$ . If $\mathfrak{P}$ is a prime ideal of $k_{(n)}$ and if we have $(\frac{K^{(n})/k_{(n)}}{\mathfrak{P}})=\sigma$ , then, by

the generalized Euler’s criterion1), we have

$\frac{\omega^{\sigma}}{\omega}\equiv\alpha\frac{N\mathfrak{P}-1}{\iota^{n}}$

$(mod \mathfrak{P})$ .

Moreover if $\mathfrak{p}$ is a prime ideal of $k$ which is divisible by $\mathfrak{P}$ and satisfies
the condition (1), then we have $N\mathfrak{P}=N\mathfrak{p}$ and we see that the right hand
side of (4) is congruent to a l-th root of unity. Therefore, if we set

(5) $\psi(\mathfrak{P})=\psi((\frac{K^{(n})/k_{(n)}}{\mathfrak{P}}))=\psi(\sigma)$ ,

1) See Hasse [1], II, p. 50.
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then we have

$\psi(\mathfrak{P})=\alpha\frac{N\mathfrak{p}-1}{\iota^{n}}$

(mod p).

By (2), (4) and (5), we have

LEMMA 3. If $l^{n}|N\mathfrak{p}-1$ and $[\frac{\alpha}{\mathfrak{p}}]_{n-1}=1$ , then we have

$[\frac{\alpha}{\mathfrak{p}}]_{n}=\psi(\mathfrak{P})=(\frac{\alpha}{\mathfrak{P}})_{\iota^{n}}$ ,

where $(\frac{\alpha}{\mathfrak{P}})_{\iota^{n}}$ is the ordinary $l^{n},th$ power residue symbol in $k_{(n)}$ .
Now, for a prime ideal $q$ of $k$ , let $\tilde{q}$ be the product of $q$ by all the

infinite places of $k$ , and call $q$ the finite part of $\tilde{q}$ . For such a $\tilde{q}$ , we define

the symbol $[\frac{\alpha}{1\{\sim}]_{n}by[\frac{\alpha}{\tilde{q}}]_{n}=[\frac{\alpha}{q}]_{n}$ only when $\alpha$ is totally positive.

Assume that $[\frac{\alpha}{\tilde{q}}]_{n}$ is defined and that we have $[\frac{\epsilon}{q}]_{n}=1$ for all total-

ly positive units $\epsilon$ of $k$ . Then we may set

(6) $[\frac{(\alpha)}{\tilde{q}}]_{n}=[\frac{\alpha}{q}]_{n}$

because, for a principal ideal $(\alpha)$ where $\alpha$ is totally positive, the value of
$[\frac{(\alpha)}{(1\sim}]_{n}$ is uniquely defined by (6).

For every $\tilde{q}$ , all the principal ideals $(\alpha)$ with $[\frac{\alpha}{\tilde{q}}]_{n}=1$ form a congru-

ence group $H^{()}n$ of $k$ defined modulo $\tilde{q}$ . Thus we obtain the class field $A^{(n)}$

over $H^{(n)}$ . In particular, $A^{(0)}$ is, for every $\tilde{q}$ , the absolute class field over $k^{2)}$

Denote by $\chi$ a character of the Galois group $\mathfrak{A}$ of $A^{()}n/k$ . Then, all the
characters $\chi$ which are defined by means of a similar relation to (5) form
the character group of the congruence group modulo $H^{(n)}$ . Since the factor
group of $(\alpha)$ modulo $H^{()}n$ is cyclic, we can choose a character $\chi$ such that

(7) $[\frac{(\alpha)}{\tilde{q}}]_{n}=\chi(\alpha)$

for every totally positive element of $k$ which is prime to $q$ . Let $l^{}$ be the
order of this character $\chi$ , and $k_{(n)}$ the field obtained by adjoining to $k$ all
the $l^{N}$-th roots of unity. Denote by $A_{\chi}^{(n)}$ the cyclic subfield of $A^{()}n$ over $k$

corresponding to $\chi$ , and by $\overline{A_{\chi}^{(n)}}$ the composite field of $A_{\chi}^{(n)}$ and $k_{(N)}$ . Then
$\overline{A_{\chi}^{(n)}}$ is a Kummer field over $k_{(N)}$ .

2) This means the absolute class field in the narrow sense, $i$ . $e.$ , the class field
over the ideal group consisting of all the principal ideals generated by totally
positive numbers.
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For this character $\chi$ of the Galois group $\mathfrak{A}$ of $A^{(n)}/k$ , let $\overline{\chi}$ stand for
the character of the Galois group ut of $\overline{A^{()}n}/k_{(N)}$ which is induced by

(8) $\overline{\chi}(\overline{\sigma})=\chi(\sigma)$ ,

where $\sigma$ is the restriction of $\overline{\sigma}$ to $A_{\chi}^{(n)}$ . Denote by $\omega$ the Kummer generator
of $\overline{A_{\chi}^{(n)}}$over $k_{(N)}$ corresponding to $\overline{\chi}$ , then we have

$\overline{\chi}(\overline{\sigma})=\frac{\omega^{\overline{\sigma}}}{\omega}$

for every $\overline{\sigma}$ of $\overline{\mathfrak{A}}$ . If we set $w=\omega^{\iota^{N}}$, then $w$ is an element of $k_{(N)}$ , and, for
an ideal $\mathfrak{m}$ prime to the conductor of $\overline{A_{\chi}^{(n)}}/k_{(N)}$ , we have

(9) $\overline{\chi}(\mathfrak{m})=(\frac{w}{\mathfrak{m}})_{\iota^{N}}$ ,

where the right hand side of (9) stands for the ordinary $l^{N}$-th power residue
symbol in $k_{(N)}$ . In particular, if $N_{k(N)}1^{k}\mathfrak{m}=(\alpha)$ , then, by (8), we have

(10) $\overline{\chi}(\mathfrak{m})=\overline{\chi}(\frac{\overline{A_{\chi}^{(n)}}/k_{(n)}}{\mathfrak{m}})=\chi(\frac{A_{\chi}^{(n)}/k}{N_{k_{(n)}/k}\mathfrak{m}})=\chi(\alpha)$ .

By (7), (9) and (10), we have

LEMMA 4. If $[\frac{(\alpha)}{\tilde{q}}]_{n}$ is defined, and if, for a sufficiently large $N$, we have

$(\alpha)=N_{k_{(N)/}}k\iota \mathfrak{n}$ with some ideal $\iota \mathfrak{n}$ of $k_{(N)}$ , then we have

$[\frac{(\alpha)}{\tilde{q}}]_{n}=\chi(\alpha)=(\frac{w}{\mathfrak{m}})_{\iota^{N}}$ .

By lemma 3 and lemma 4, we have the following fact.
Let $\pi$ and rc be two distinct prime numbers of $k$ prime to $l$. Suppose

that all the totally positive units $\epsilon$ of $k$ are $l^{n}$-th power residue modulo $\kappa$ ,
and that $N\pi-1$ is divisible by a sufficiently large power $l^{N}$ of $l$. Then we
have

$[\frac{\pi}{\kappa}]_{n}[\frac{\kappa}{\pi}]_{n}=(\frac{w\kappa^{\iota^{N-n}}}{\mathfrak{p}})_{\iota^{N}}$

where $\mathfrak{p}$ is a prime divisor of $\pi$ in $k_{(N)}$ .

\S 2. Reciprocity law in the rational number field.

From now on, we consider the case where $l=2$ and the ground field is
the rational number field $P$. We denote by $\zeta_{n}$ a primitive $2^{n}$-th root of
unity and set $P_{(n}$ ) $=P(\zeta_{n})$ .

For a positive rational odd prime number $p$ and a positive rational
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integer $a$ prime to $p$ , the symbol $[\frac{a}{p}]_{n}$ is simpIy determined as follows.

$[\frac{a}{p}]_{1}$ is equal to the ordinary quadratic power residue symbol $(\frac{a}{p})$

in $P$.
$[\frac{a}{p}]_{n}$ is defined only when $p-1$ is divisible by $2^{n}$ and $a$ is $2^{n-1}$ -th

power residue modulo $p$ , and, if that is so, $[\frac{a}{p}]_{n}$ is equal to 1 or $-1$

according as $a$ is $2^{n}$-th power residue modulo $p$ or not.
We now extend this symbol to the case of $p=2$ as follows.

$[\frac{a}{2}]_{n}$ is defined only when $a\equiv 1(mod 2^{n+1})$ , and, if that is so, $[\frac{a}{2}]_{n}$

is equal to 1 or $-1$ according as $a\equiv 1(mod 2^{n+2})$ or not.
Now, let $I_{n}$ be a prime ideal in $P_{(n)}$ dividing 2. Denote by $P_{2}$ and by

$P_{(n),1_{n}}$ the 2-adic and the $I_{n}$-adic completion of $P$ and of $P_{(n)}$ respectively.
Then we have

LEMMA 5. If an element $a$ , prime to 2, is a $2^{n}$-th power in $P_{(n),\mathfrak{l}_{n}}$ , then a
is already a $2^{n}$-th power in $P_{2}$ .

PROOF. If $U$ is the unit group of $P_{2}$ , then the factor group $U/U^{2^{n}}$ is
generated by $-1$ and 5. On the other hand $I_{n}$ is not decomposed in
$P_{(n),I_{n}}(v\overline{-1})/P_{(n),1_{n}}$ , ramifies in $P_{(n),1_{n}}(\sqrt{5})/P_{(n),I_{n}}$ and therefore ramifies

in $P_{(n),I_{n}}(^{2}\sqrt[n]{-1}\sqrt{5})/P_{(n),1_{n}}$ . Hence, none of $-1,5$ and $-5$ is a $2^{n}$-th power
in $P_{(n),I_{n}}$ . Our assertion is thereby proved.

THEOREM 1. We have $[\frac{a}{p}]_{n}=1$ if and only if a prime ideal $\mathfrak{p}$ of $P_{(n)}$ which

divides $p$ decomposes completely in $P_{(n)}(2\sqrt[n]{a})/P_{(n)}$ .
PROOF. In the case where $p$ is odd, the assertion is already proved by

lemma 2. We shall prove the case of $p=2$ . A prime ideal $I_{n}$ of $P_{(n)}$ divid-
ing 2 decomposes completely in $P_{(n)}(2\sqrt[n]{a})$ if and only if $a$ is a $2^{n}$-th power
in $P_{(n),1_{n}}$ . By lemma 5, this condition is equivalent with the condition that
$a$ is a $2^{n}$-th power in $P$, because $a$ is an element of $P$ prime to 2. Moreover,
$a$ is a $2^{n}$-th power in $P_{2}$ if and only if $a\equiv 1(mod 2^{n+2})$ , and the latter

condition is equivalent with $[\frac{a}{2}]_{n}=1$ . Thus the theorem is proved.

Now, in the case where the ground field is the rational number field,
the number $w$ of the previous section is explicitly written by means of
the Gaussian sum.

Let $q$ be a rational positive odd prime number such that $2^{n}|q-1$ , and
let $\chi_{(n)}$ be a character of order $2^{n}$ of the residue class group modulo $q$ .



A reciprocity law of the power residue symbol. 51

Denote by $\tau(\chi_{(n)})$ the Gaussian sum for such $\chi(n)$ ; namely

$\tau(\chi_{(n)})=_{x}\sum_{mod q}\chi(n)(x)\zeta^{x}$

where $\zeta$ is a primitive q-th root of unity. Then we have3)

(11) $\tau(\mathcal{X}(n))^{2^{n}}\in P$

and
(12) $\overline{A^{(n)}}=A^{(n)}P_{(n)}=P_{(n)}(\tau(\chi(n)))$ ,

where $A^{(n}$ ) is the class field over $P$ corresponding to $H^{()}n$ which consists

of all $(a)$ such that $[\frac{a}{q}]_{n}=1,$ $a>0,$ $a\in P$. If we set

$\pi(\chi_{(/J)}, \chi(\nu))=\sum_{2j}\chi_{(\mu)}(x)\chi(\nu)(y)x+\equiv 1mod q$

then we have
(13) $\tau(\chi_{(n)})^{2}=\tau(\chi^{2_{(n)}})\pi(\mathcal{X}(n), \chi(1))$

$=(\tilde{\chi}_{(n)}(2))^{2}\tau(\chi_{(n-1)})\pi(\chi(n), \chi_{(}1))$ for $n\geqq 2$ and

(14) $\tau(\chi(1))^{2}=\chi(1)(-1)q=(\frac{-1}{q})q$ ,

where $(\frac{-1}{q})$ is the ordinary quadratic power residue symbol in $P$, and $\tilde{\chi}$

is the complex conjugate of $\chi$ . Moreover, if we set

$\pi_{(n)}=(\tilde{\chi}_{(n)}(2))^{2}\pi(\chi_{(n)}, \chi_{(1)})$ for $n\geqq 2$ , and
$\omega_{q}^{(n)}=\pi_{(2)}\pi_{(3)}^{2}\cdots\pi_{(n)}^{2^{n-2}}$ ,

then, by (13), we have
$\tau(\chi_{(n)})^{2}=\tau(\chi(n-1))\pi_{(n)}$ for $n\geqq 2$ .

By repeating this process, it follows from (14) that we have

(15) $\tau(\chi_{()}n)^{2^{n}}=(\frac{-1}{q})q\omega_{q}^{(n)^{1}}$

Now we prove
THEOREM 2 Let $p$ and $q$ be positive rational odd prime numbers. If

$[\frac{p}{q}]_{n-1}=[\frac{q}{p}]_{n-1}=1$ , then we have

3) As for these properties of the Gaussian sum, see Hasse [2], \S 20.
4) In the case where $n=1$ , this is the reciprocity law of the quadratic power

residue symbol, and, in the case where $n=2$ , that of Kuroda [3]; namely in the
latter case we have $\omega_{q}^{(2)}=\pi(2)=A\pm 2Bi,$ $q=A^{2}+4B^{2}$ with $A_{\equiv}1(mod. 4),$ $A,$ $B\in P$,
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(16)
$[\frac{q}{p}]_{n}[\frac{p}{q}]_{n}=(\frac{(\frac{-1}{q})}{p})(\frac{\omega_{q}^{(n)}}{\mathfrak{p}_{n}})_{2^{n-1}}=(\frac{(\frac{-1}{p})}{q})(\frac{\omega_{p}^{(n)}}{q_{n}})_{2^{n-1}}$ .

If $[\frac{2}{p}]_{n-1}=[\frac{p}{2}]_{n-1}=1$ , then, for $n\geqq 2$ , we have

(17) $[\frac{2}{p}]_{n}[\frac{p}{2}]_{n}=(\frac{1-i}{\mathfrak{p}_{n}})_{2^{n-1}}=(\frac{\omega_{p}^{(n)}}{1-\zeta_{n}})_{2^{n-1}}$

PROOF. First we rewrite the left hand side of (16) by using the above
properties of the Gaussian sum and lemma 4. Namely we choose a charac-
ter $\chi$ such that we have

$\chi(\sigma)=\frac{\tau(\chi)^{\sigma}}{\tau(\chi)}$

for every element $\sigma$ of the Galois group $\mathfrak{G}(\overline{A^{()}n}/P_{(n)})$ of $\overline{A^{()}n}/P_{(n)}$ . Then, by

(11) and (12), $\chi$ is a generating character of order $2^{n}$ of $\mathfrak{G}(\overline{A^{()}n}/P_{(n)})$ . Since

$[\frac{p}{q}]_{n}=\pm 1$ , it follows from lemma 4 and (15) that, under the condition of

the theorem, we have

(18)
$[\frac{p}{q}]_{n}=(\frac{\tau(\chi_{(n)})^{2^{n}}}{\mathfrak{p}_{n}})_{2^{n}}=(\frac{(\frac{-1}{q})q\omega_{q}^{(n)^{2}}}{\mathfrak{p}_{n}})_{2^{n}}$

Next, applying lemma 3 to $K^{()}n=P_{(n)}(2\sqrt[n]{q})$ , we have under the condi-
tion of the theorem

(19) $[\frac{q}{p}]_{n}=(\frac{q}{p})_{2^{n}}$

Since we have $(\frac{-1}{q})=1$ for $n\geqq 2$ , it follows from (18), (19) and lemma

1 that we have

$[\frac{q}{p}]_{n}[\frac{p}{q}]_{n}=[\frac{q}{p}]_{n}^{2}(_{\frac{(\frac{-1}{q})}{\mathfrak{p}_{n}}})_{2^{n}}(\frac{\omega_{q}^{(n)}}{\mathfrak{p}_{n}})_{2^{n-1}}=(\frac{(\frac{-1}{q})}{p})(\frac{\omega_{q}^{(n)}}{\mathfrak{p}_{n}})_{2^{n-1}}$ .

Therefore the first equality (16) is proved.
In (18), it is not necessary that $p$ is odd. Furthermore, $(1-\zeta_{n})$ is a

prime divisor of 2 in $P_{(n)}$ , and we have $(\frac{-1}{p})=1$ for $n\geqq 2$ . Therefore, for

$n\geqq 2$ , we have

(20) $[\frac{2}{p}]_{n}=(\frac{p\omega_{p}^{(n)}’}{1-\zeta_{n}})_{2^{n}}$
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On the other hand, since we have $[-p2-]_{n-1}=1$ , theorem 1 implies

$(\frac{p}{1-\zeta_{n}})_{2^{n-1}}=(\frac{p}{N_{P}p(1-\zeta_{n}),(n)/(n-1)})_{2^{n-1}}=(\frac{p}{1-\zeta_{n-1}})_{2^{n-1}}=1$ .

Since $[\frac{p}{2}]_{n}$ is equal to 1 or $-1$ , we have

(21) $[\frac{p}{2}]_{n}=(\frac{p}{1-\zeta_{n}})_{2^{n}}$ .
By (20) and (21), we obtain

$[\frac{2}{p}]_{n}[\frac{p}{2}]_{n}=(\frac{\omega_{p}^{(n)}}{1-\zeta_{n}})_{2^{n-1}}$ for $n\geqq 2$ .

Now, in (19), it is not necessary that $q$ is odd. Therefore we have

(22) $[\frac{2}{p}]_{n}=(\frac{2}{\mathfrak{p}_{n}})_{2^{n}}$ .

On the other hand, $(\frac{i}{\mathfrak{p}_{n}})_{2^{n}}=1$ holds if and only if $N\mathfrak{p}_{n}=p\equiv 1(mod 2^{n+2})$ .

Hence by the definition of $[\frac{p}{2}]_{n}$ , we see that, if $[\frac{p}{2}]_{n-1}=1$ , then we have

(23) $[\frac{p}{2}]_{n}=(\frac{i}{\mathfrak{p}_{n}})_{2^{n}}$ .

By (22) and (23), we have

$[\frac{2}{p}]_{n}[\frac{p}{2}]_{n}=(\frac{2i}{\mathfrak{p}_{n}})_{2^{n}}=(\frac{-(1-i)^{2}}{\mathfrak{p}_{n}})_{2^{n}}=(\frac{-1}{\mathfrak{p}_{n}})_{2^{n}}(\frac{1-i}{\mathfrak{p}_{n}})_{2}n-1$

Since, however $[\frac{p}{2}]_{n-1}=1$ holds and therefore $p\equiv 1(mod 2^{n+1})$ , we have

$(\frac{-1}{\mathfrak{p}_{n}})_{2^{n}}=1$ for $n\geqq 2$, whence

$[\frac{2}{p}]_{n}[\frac{p}{2}]_{n}=(\frac{1-i}{\mathfrak{p}_{n}})_{2}n-1$

Our theorem is thus completely proved.

Mathematical Institute,
Nagoya University.
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