Journal of the Mathematical Society of Japan Vol. 10, No. 1, January, 1958

A reciprocity law of the power residue symbol.

By Yoshiomi FURUTA

(Received Aug. 26, 1957)

Let / be a positive rational prime number and % be an algebraic number
field of finite degree, containing a primitive /-th root ¢ of unity. Denote
by {, a primitive /*th root of unity, and set Z¢y=£~k((,).

Let p be a prime ideal of £ prime to /, and « be an element of k£ prime

to p. For these a and p, we define the symbol [%] inductively as follows.
n

For »=0, we set always [%]:1.

For »=1, this symbol is defined only when we have

n a —
) ["|Ny—1 and [—p{L:l,
and, if that is so, we set
o &Z
@ 1=

whenever we have

_Np~1
3 a " =¢* (mod p).
Since every /-th root of unity is mutually incongruent modulo b, the value
of [—%—] is uniquely determined in 2 by (2) and (3).

If m is an ideal of %2 prime to « and to / with the prime ideal decom-
position

m=p1m""prm’ H

1L T

The symbol [%] is considered to generalize the Diriclet’s 4-th power

then we set

residue symbol and, as we see in the latter half of §1, it is closely related
to the “restricted Artin’s symbol” in Rédei [4].

In Kuroda [3], a reciprocity law of the 4-th power residue symbol is
given and, as an application, the decomposition law of rational primes in
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some non-abelian field is obtained. In the present paper, we shall have a
generalization of the reciprocity law of Kuroda [3]

§1. Fundamental properties of the power residue symbol.

By the definition, we have immediately the following

Lemma 1. We have
o)
[ L1, o
EEVEER

We have also

Lemma 2. We have [C;*] =1 if and only if v decomposes completely in
kEay(Va).

Proor. In order that p decomposes completely in kuy(%/ @), it is neces-
No-1
sary and sufficient that we have /*|[Np—1and @ * =1 (mod p), which is,

by definition, equivalent with [%] =1.

Now, set K™=k (¥ a), w=%«a and let { be the character of the
Galois group A of K™ /k(, such that

_ o
@ V(o)==
for every element o of . Then the character group of % is generated by

Y. If P is a prime ideal of k¢, and if we have (K( LD )- o, then, by

the generalized Euler’s criterion!, we have

NP-1
°

o =% o (mod P).

Moreover if p is a prime ideal of £ which is divisible by P and satisfies
the condition (1), then we have NP=Np and we see that the right hand
side of (4) is congruent to a /-th root of unity. Therefore, if we set

(®) P = (D)) =vo,

1) See Hasse [1], II, p. 50.
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then we have

M-t
Y(P=a (mod p).
By (2), 4) and (5), we have

Lemma 3. If I"|NDP—1 and [%:I =1, then we have
n-1

« «
[“p‘]n:‘/f(ss):(_@)ln »
where (- %—)Ln is the ordinary I"-th power residue symbol in k().

Now, for a prime ideal q of &, let § be the product of q by all the
infinite places of %, and call q the finite part of §. For such a §, we define

the symbol [%]nby [%A]n: [%]n only when « is totally positive.

Assume that [%L] is defined and that we have [-cET] =1 for all total-

ly positive units ¢ of 2. Then we may set

® (9105

because, for a principal ideal («) where « is totally positive, the value of

[L?l] is uniquely defined by (6).

For every §, all the principal ideals («) with [‘g{l =1 form a congru-

ence group H™ of k defined modulo §. Thus we obtain the class field A™
over H™, In particular, A® is, for every’ {, the absolute class field over 4.2

Denote by y a character of the Galois group % of A™ /& Then, all the
characters y which are defined by means of a similar relation to (5) form
the character group of the congruence group modulo H™. Since the factor
group of (&) modulo H™ is cyclic, we can choose a character y such that

™ [{9] =x@

for every totally positive element of 2 which is prime to q. Let /¥ be the
order of this character y, and k(, the field obtained by adjoining to £k all
the /M-th roots of unity. Denote by A{ the cyclic subfield of A™ over &
corresponding to y, and by A% the composite field of A and k. Then
AP is a Kummer field over k.

2) This means the absolute class field in the narrow sense, i.e., the class field
over the ideal group consisting of all the principal ideals generated by totally
positive numbers.
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For this character y of the Galois group % of A™/k, let ¥ stand for
the character of the Galois group N of A™/k«yy which is induced by

® %(0)=x(0),
where o is the restriction of  to A{”. Denote by o the Kummer generator
of A over k) corresponding to ¥, then we have

4

7(@)="0-

for every & of . If we set w= o™, then w is an element of ks, and, for
an ideal m prime to the conductor of AP /By, we have

© Hm=(12) .,

where the right hand side of (9) stands for the ordinary /¥-th power residue
symbol in k. In particular, if Nkm)/km:(a), then, by (8), we have

10 o= ( AR ) () <.

ik

By (7), (9) and [10), we have
Lemma 4. If [—»(?-J is defined, and if, for a sufficiently large N, we have

(a)::Nk(N) [e1n with some ideal m of k), then we have

[~(fq~x )~:|n =x(a)= (%)LN

By lemma 3 and lemma 4, we have the following fact.

Let # and « be two distinct prime numbers of 2 prime to /. Suppose
that all the totally positive units ¢ of £ are /*-th power residue modulo &,
and that Nz—1 is divisible by a sufficiently large power [~ of /. Then we

have
lN-n
[EI0ET-(),

where p is a prime divisor of z in &¢y.

§2. Reciprocity law in the rational number field.

From now on, we consider the case where /=2 and the ground field is
the rational number field P. We denote by ¢, a primitive 2*th root of
unity and set Pg,y=P({,).

For a positive rational odd prime number p and a positive rational
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integer ¢ prime to p, the symbol [%] is simply determined as follows.

[—‘L] is equal to the ordinary quadratic power residue symbol (_a_)
p 4 P
in P.

[%] is defined only when p—1 is divisible by 2" and ¢ is 2" !-th

power residue modulo p, and, if that is so, [—z--~] is equal to 1 or -1
n

according as ¢ is 2"-th power residue modulo p or not.
We now extend this symbol to the case of p=2 as follows.

[“g{ln is defined only when ¢=1 (mod 2™), and, if that is so, [_622_],,

is equal to 1 or —1 according as ¢=1 (mod 2"*?) or not.

Now, let I, be a prime ideal in P, dividing 2. Denote by P, and by
Py, the 2-adic and the l,-adic completion of P and of P, respectively.
Then we have

Lemma 5. If an element a, prime to 2, is a 2"-th power in Py, then a
is already a 2"-th power in P,.

Proor. If U is the unit group of P, then the factor group U/U?" is
generated by —1 and 5. On the other hand {, is not decomposed in
Pa,i, (¥ =1)/Pw,1,, ramifies in P, (/5)/Pw,, and therefore ramifies

in Py, (¥ =1v'5)/Pu,i,. Hence, none of —1, 5 and —5 is a 2"th power
in Py.i,. Our assertion is thereby proved.

Taeorem 1. We have [%] =1 if and only if a prime ideal » of Py which

divides p decomposes completely in PN a )/ P

Proor. In the case where p is odd, the assertion is already proved by
lemma 2. We shall prove the case of p=2. A prime ideal [, of P, divid-
ing 2 decomposes completely in Puy(¥a) if and only if ¢ is a 2"-th power
in Pey,i, . By lemma 5, this condition is equivalent with the condition that
a is a 2"-th power in P, because @ is an element of P prime to 2. Moreover,
a is a 2"-th power in P, if and only if e=1 (mod 2"*?), and the latter

condition is equivalent with [—g—] =1. Thus the theorem is proved.

Now, in the case where the ground field is the rational number field,
the number w of the previous section is explicitly written by means of
the Gaussian sum.

Let ¢ be a rational positive odd prime number such that 2"[¢—1, and
let y¢» be a character of order 2" of the residue class group modulo g¢.
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Denote by t(x) the Gaussian sum for such y,; namely

T(X(m):médqx(n)(x)i””

where ¢ is a primitive ¢g-th root of unity. Then we have®

(11) (X))t € P
and
(12) A =A™ Py =Py (t(X ) »

where A™ is the class field over P corresponding to H®™ which consists

of all (@) such that [VZ“] =1, >0, acP. If we set

(X, xm)=x+y;§mod3}((u>(x)xm(y) )

then we have

(13) (X)) =1 )T (X (> X (1))
=T T (A a-0)"(X ), X))  for n=2 and
_ _(—1
(14) ) =r0(-De=("7")a

where <;ql) is the ordinary quadratic power residue symbol in P, and j%

is the complex conjugate of y. Moreover, if we set

T =A@ (X, x»)  for n=2, and
WP =T )Ty Ty

then, by we have
(X ) =1(Xn-0)T@m  for n=2.

By repeating this process, it follows from that we have

n -1 .
(15) (X (m)? :<77)qwf{” :

Now we prove
Tueorem 2.9 Let p and q be positive rational odd prime numbers. If

[_él]n_l:—l}g—]n_l:l, then we have

3) As for these properties of the Gaussian sum, see Hasse [2], § 20.

4) In the case where xn=1, this is the reciprocity law of the quadratic power
residue symbol, and, in the case where #=2, that of Kuroda [[3]; namely in the
latter case we have oP=r()=A+2Bi, ¢=A*+4B? with A=1 (mod. 4), A, BEP,
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w L)), G

Ir [ﬁ—]ﬂ_l=[12?— n_1=1, then, for n=2, we have

an %]n[_j‘zl]n: (}p%i)z"“l: (1%;2;) -t

Proor. First we rewrite the left hand side of (16) by using the above
properties of the Gaussian sum and lemma 4. Namely we choose a charac-
ter X such that we have

_
4 (0) = ( 1)

for every element ¢ of the Galois group &A™ /Pw)) of A™/Puy. Then, by
(11) and (12), x is a generating character of order 2" of G(A™/P,). Since
[{%] =1, it follows from lemma 4 and (15) that, under the condition of

the theorem, we have

-1 -
R A

Next, applying lemma 3 to K™ =Py (¥ /q), we have under the condi-
tion of the theorem

9] =(4.

(19) [p]n (p>2n.

Since we have (:‘}—1—>-—.=1 for =2, it follows from (18), (19) and lemma
1 that we have

-1 -1
o)1 -Le () [ =((7>)( wl
D i g I D Py 2™ Pp [ant Y Pn Zn_l.

Therefore the first equality (16) is proved.

In (18), it is not necessary that p is odd. Furthermore, (1-{,) is a

prime divisor of 2 in P¢,, and we have (;1)=1 for n=2. Therefore, for

b

n=2, we have -

NN
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On the other hand, since we have [*’,}] =1, theorem 1 implies
n—1

Y4 P b —
( 1”‘(7,, )2n-1=(NP(n)lP(n—l)(l_Cn) >2n—1=( I—Cn—l—)zn_rﬂl )
Since [—‘g{ln is equal to 1 or —1, we have

@ [51-Ge).-

By and we obtain

"2 Pl | o )
[7]1&[7]11_ (k]-TC; gn-t for n=2.

Now, in it is not necessary that ¢ is odd. Therefore we have
2 2
@2 (51~
On the other hand, ({~) , =1 holds if and only if Np,=p=1 (mod 2"*2).
n /2

Hence by the definition of [—‘g-] , we see that, if [JZL] 1=1, then we have

By and we have

[ 181G~ ()= G

Since, however [—‘g—] 1~:-1 holds and therefore p=1 (mod 2"*!), we have

(;:)z":l for n=2, whence
SRS RGO
Our theorem is thus completely proved.

Mathematical Institute,
Nagoya University.



54

C1]

£21
3]

£4]

Y. FuruTa

References

H. Hasse, Bericht uiber neuere Untersuchungen und Probleme aus der Theorie

der algebraischen Zahlkorper, I, Ia, II, Jber. Deutsch. Math. Verein., 35 (1926).
, Vorlesungen uber Zahlentheorie, Grund. Math. Wiss., 59 (1950).

S. Kuroda, Uber die Zerlegung rationaler Primzahlen in gewissen nicht-abel-

schen galoisschen Korpern, J. Math, Soc. Japan, 3, 1, Takagi commemoration

number, (1951), pp. 148-156.

L. Rédei, Bedingtes Artinsches Symbol mit Anwendung in der Klassenkorper-

theorie, Acta Math, Acad. Sci. Hungaricae, 4 (1953), pp. 1-29.




	A reciprocity law of the ...
	\S 1. Fundamental properties ...
	\S 2. Reciprocity law ...
	THEOREM 1. ...
	THEOREM 2 ...

	References


