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On the $P$-extension of topology.
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Let (X, $\mathfrak{T}$ ) be a topological space with the underlying point set $X$ and
the topology $\mathfrak{T}$ . For a subset $S$ of $X,$ $(S, \mathfrak{T})$ will mean the subspace of (X, $\mathfrak{T}$ )

with the topology induced by %. A property of topological spaces such as
compact, connected, etc., will be generally denoted by $P$ (especially the
property of being compact will be denoted by $K1$ . If we have to consider
spaces $X,$ $ Y,\cdots$ , we shall denote with $\Sigma_{P}^{X},$ $\Sigma_{P}^{Y},\cdots$ , the families of all the sub-
spaces of $X,$ $ Y,\cdots$ respectively, having the property $P$. We denote with $\tau_{P}\sim$

the topology of $X$ defined as follows: A subset $A$ of $X$ is closed for $\underline{\tau}_{P}$ if
and only if $A\cap S$ is closed in $(S, \mathfrak{T})$ for every $S\in\Sigma_{P}^{X}$ . Such topology was
considered by D. E. Cohen [2] who called it weak topology for $\Sigma_{P}^{X}$ . In case
$P=K$ the topology $\mathfrak{T}_{P}$ was called k-extention of $\mathfrak{T}$ by J.L. Kelley. In fact $\mathfrak{T}_{P}$

is always an extension of $\mathfrak{T},$
$i$ . $e$ . a topology weaker than $\mathfrak{T}$ . We shall call

$\underline{\tau}_{P}$ the P-extention of $\mathfrak{T}$ . It was proved in [3] that $(X\times Y, \mathfrak{T}_{K}\times \mathfrak{T}_{K}^{\prime})=(X\times Y$,
$(\mathfrak{T}_{K}\times \mathfrak{T}_{K}^{\prime})_{K})$ if $(Y, \mathfrak{T}_{K}^{\prime})$ is locally compact and compact sets in (X, $\mathfrak{T}_{K}$ ), $(Y, \mathfrak{T}_{K})$

are regular. In [3] a necessary and sufficient condition for $\mathfrak{T}=\mathfrak{T}_{K}$ is obtained.
We shall obtain analogous results to these ones for the P-extension in the
following lines.

PROPOSITION 1. $Z_{P}$ is the weakest topology among all topologies of $X$ which
induce the same topology as $\mathfrak{T}$ on each $S,$ $S\in\Sigma_{P}^{X}$ .

PROOF. We shall prove that $(S, \mathfrak{T})$ is homeomorphic to $(S, Z_{P})$ by the
identity map for $S\in\sum_{P}^{X}$ . Clearly the identity map is continuous. Now let
$K$ be a closed subset of $(S, \mathfrak{T}_{P})$ , then $K=S\cap K^{\prime}$ where $K^{\prime}$ is closed in (X, $\mathfrak{T}_{P}$ ).

Since $S\in\Sigma_{P}^{X},$ $S\cap K^{\prime}$ is closed in $(S, \mathfrak{T})$ . Thus the identity map is a homeo-
morphism. Let $\mathfrak{T}^{\prime}$ be any topology on $X$ such that $(S, \mathfrak{T}^{\prime})=(S, \mathfrak{T})$ for every
$S\in\Sigma_{P}^{X}$ . If $K$ is closed for $\mathfrak{T}^{\prime},$ $K\cap S$ is closed in $(S, \mathfrak{T}^{f})$ , hence $K\cap S$ is closed
in $(S, \mathfrak{T})$ .

REMARK. It is clear from the above proof that a subspace of (X, $\mathfrak{T}$ )

having the property $P$ is also a subspace of (X, $\mathfrak{T}_{P}$ ) having the property $P$,

therefore (X, $\mathfrak{T}_{P}$ ) $=(X, (\mathfrak{T}_{P})_{P})$ .
We shall call (X, $\mathfrak{T}$ ) a semi local P-space, if for each point $x$ of $X$ there

exists $S\in\Sigma_{P}^{X}$ which contains a nbd of $x$. Then we obtain
PROPOSITION 2. If (X, $\mathfrak{T}$ ) is a semi local P-space, then $\mathfrak{T}_{P}=\mathfrak{T}$ .
PROOF. It is sufficient to show that every closed subset $K$ of (X, $\mathfrak{T}_{P}$ ) is
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also closed in (X, $\mathfrak{T}$ ). For $x\in X$, there exist a nbd $U(x)$ of $x$ and an element
of $\Sigma_{P}^{X}$, such that $U(x)\subset S$. If $x\not\subset K$, since $S\cap K$ is clearly closed in $(S, \mathfrak{T})$ ,

there exists a nbd $V(x)$ of $x$ in (X, $\mathfrak{T}$ ) such that $ V(x)\cap S\cap K=\phi$ . Now put
$W(x)=V(x)\cap U(x)$ , then $W(x)$ is a nbd of $x$ in (X, $\mathfrak{T}$ ) and $W(x)\cap K=V(x)\cap U(x)$

$\cap K=\phi$ . Thus $K$ is closed in (X, $\mathfrak{T}$ ). This completes the proof.
In general the converse of the Proposition 2 is not true but we can find

a necessary and sufficient condition for (X, $\mathfrak{T}$ ) $=(X, \mathfrak{T}_{P})$ in case $P$ has the
following property (A): A space consisting of only one point has the pro-
perty $P$, and every continuous image of a space with the property $P$ has
also the property $P$. For the purpose we shall use the following notion.
$Let^{v}{}_{t}P$ and (X, $\mathfrak{T}$ ) be topological spaces and $f$ a continuous map of $P$ onto
(X, $\mathfrak{T}$ ). Then we shall call (X, $\mathfrak{T}$ ) the identification of $P$ by $f$ if and only if

$\mathfrak{T}$ is compatible with the identification topology by $f$. Then we obtain
PROPOSITION 3. Let $P$ have the property (A). We have (X, $\mathfrak{T}$ ) $=(X, \mathfrak{T}_{P})$ if

and only if (X, $\mathfrak{T}$ ) is an identificalion of a semi local P-space by a suitably

defined map $f$ of $P$ onto (X, $\mathfrak{T}$ ).

PROOF. Sufficiency: Let $f$ be the map of $P$ onto (X, $\mathfrak{T}$ ) and let $H$ be an
open subset in (X, $\mathfrak{T}_{P}$ ). Now if $f^{-1}(H)\ni p$ and $f(p)=x\in X$, then there exist a
nbd $V(p)$ of $p$ in $P$ and $S\in\Sigma_{P}^{P}$ such that $V(p)\subset S$. Since $f(S)\in\Sigma_{P}^{X},$ $f(S)\cap H$ is
open in $(f(S), \mathfrak{T})$ and $f(S)\cap H\ni x$, moreover there exist a nbd $U(x)$ of $x$ in (X,
$\mathfrak{T})$ such that $U(x)\cap f(S)\subset f(S)\cap H$ and a nbd $U(p)$ of $p$ in $P$ such that $f(U(p)$

$\cap S)\subset U(x)\cap f(S)\subset f(S)\cap H$ On the other hand we have $f(U(p)\cap V(p)\subset f(U(p)$

$\cap S)\subset f(S)\cap H\subset H$. Thus $H$ is open in (X, $\mathfrak{T}$ ).

Necessity: We shall construct $P$ and $f$ for a given (X, $\mathfrak{T}$ ) as follows:
$P$ consists of all pairs $(S, x)$ where $S\in\Sigma_{P}^{X},$ $x\in S$. For fixed $S$, the map $(S, x)$

$\rightarrow x$ is to be a homeomorphism onto $S$ (with the given topology), and the
set $\{(S, x), x\in S\}$ for fixed $S$ is to be both open and closed in $P$. This clearly
defines a topology. Let $f:P\rightarrow X$ be the map $(S, x)\rightarrow x$. Then $P$ is clearly a
semi local P-space and it is easy to show that $f$ is continuous and onto. If
(X, $\mathfrak{T}$ ) $=(X^{7_{P}}\sim),$ $(X, \mathfrak{T})$ is clearly the identification of $P$ by $f$. This completes
the proof.

Now we shall prove an analogous theorem to D. E. Cohen’s one [2]. The
property $P$ is called productive, if the product space of two topological space
with the property $P$ has also the property $P$. Then

PROPOSITION 4. If $P$ is productive and satisfies $(A)$ and furthermore $(Y, \mathfrak{T}^{\prime})$

is a Hausdorff, locally compact and semi local P-space, then $(X\times Y, \mathfrak{T}_{P}\times \mathfrak{T}_{P}^{\prime})$

$=(X\times Y, (\mathfrak{T}\times \mathfrak{T}^{\prime})_{P})$ .
PROOF. We shall consider another topology $\underline{\tau}*$ on the point set $x\times Y$

which is defined as follows: A subset $A$ of $x\times Y$ is closed for $\underline{\tau}*if$ and
only if $A\cap(S\times S^{\prime})$ is closed in $(S\times S^{\prime}, \mathfrak{T}\times \mathfrak{T}^{\prime})$ for every $S\in\Sigma_{P}^{X},$ $S^{\prime}\in\Sigma_{P}^{Y}$ and
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prove $\mathfrak{T}_{P}\times \mathfrak{T}_{P}^{\prime}=\mathfrak{T}^{*}=(\mathfrak{T}\times \mathfrak{T}^{\prime})_{P}$ . First we shall show $\mathfrak{T}^{*}=(\mathfrak{T}\times \mathfrak{T}^{\prime})_{P}$ . Let $H$ be an
open subset of $(X\times Y, (\mathfrak{T}\times \mathfrak{T}^{\prime})_{P})$ and $S\in\Sigma_{P}^{X},$ $S^{\prime}\in\Sigma_{P}^{Y}$ . Since $S\times S^{\prime}\in\Sigma_{P}^{X\times Y}$ by
the productivity of $P,$ $H\cap(S\times S^{\prime})$ is open in $(S\times S^{\prime}, \mathfrak{T}\times\underline{\tau}’)$ , therefore $H$ is
open in $(X\times Y, \tau\sim*)$ . Conversely let $H$ be an open subset of $(X\times Y^{\underline{7}*})$ and
$T\in\Sigma_{P}^{X\times Y}$. If we denote the image of $T$ by the natural projection onto each
factor space $X,$ $Y$ with $P_{X}(T),$ $P_{Y}(T)$ respectively, then $H\cap(P_{X}(T)\times P_{Y}(T))$ is
open in $(P_{X}(T)\times P_{Y}(T), \mathfrak{T}\times \mathfrak{T}^{\prime})$ by the definition of $\underline{\tau}*and$ the property (A) of
$P$. Now let $(x_{0}, y_{0})$ be any point of $H\cap T$, then there exist a nbd $U(x_{0})$ of $x_{0}$

in (X, %) and a nbd $U(y_{0})$ of $y_{0}$ in $(Y, \mathfrak{T}^{\prime})$ such that $ H\cap(P_{X}(T)\times P_{Y}(T))\supset(P_{X}(T)\cap$

$U(x_{0})\times P_{Y}(T)\cap U(y_{0}))$ , therefore $H\cap T=H\cap T\cap(P_{X}(T)\times P_{Y}(T))\supset T\cap(P_{X}(T)\cap U(x_{0})$

$\times P_{Y}(T)\cap U(y_{0}))\ni(x_{0}, y_{0})$ . Since $T\cap(P_{X}(T)\cap U(x_{0})\times P_{Y}(T)\cap U(y_{0}))$ is a nbd of
$(x_{0}, y_{0})$ in $(T, \mathfrak{T}\times \mathfrak{T}^{\prime}),$ $H$ is open in $(X\times Y, (\mathfrak{T}\times \mathfrak{T}^{\prime})_{P})$ .

Secondly we shall show $\mathfrak{T}_{P}\times \mathfrak{T}_{P}^{\prime}=\mathfrak{T}^{*}$ . Let $H$ be an open subset of $(X\times Y$,
$\mathfrak{T}_{P}\times \mathfrak{T}_{P}^{\prime})$ and $S\in\Sigma_{P}^{x},$ $S^{\prime}\in\Sigma_{P}^{Y}$ . If $(x_{0}, y_{0})$ is a point of $H\cap(S\times S^{\prime})$ , there exist a
nbd $U(x_{0})$ of $x_{0}$ in (X, $\mathfrak{T}_{P}$ ) and a nbd $U(y_{0})$ of $y_{0}$ in $(Y, \mathfrak{T}_{P}^{\prime})$ such that $H\supset(U(x_{0})$

$\times U(y_{0}))$ . On the other hand $(x_{0}, y_{0})\in(U(x_{0})\cap S\times U(y_{0})\cap S^{\prime})\subset H\cap(S\times S^{f})$ and
$(U(x_{0})\cap S\times U(y_{0})\cap S^{\prime})$ is open in $(S\times S^{\prime}, \mathfrak{T}\times \mathfrak{T}^{\prime})$ by the definition of $\mathfrak{T}_{P},$ $\mathfrak{T}_{P}^{\prime}$ ,
hence $H$ is open in $(X\times Y, \mathfrak{T}^{*})$ . Conversely let $H$ be an open subset of $(X\times$

$Y_{\sim^{*}}^{7})$ and $(x_{0}, y_{0})$ be any point of $H$ If we put $(x_{0}\times Y)\cap H=x_{0}\times\tilde{H},\tilde{H}$ is open
in $(Y, \mathfrak{T}_{P}^{\prime})$ , because for every $S^{\prime}\in\Sigma_{P}^{Y}$, we have $x_{0}\times(\tilde{H}\cap S^{\prime})=(x_{0}\times\tilde{H})\cap(x_{0}\times S^{\prime})=$

$(x_{0}\times Y)\cap H\cap(x_{0}\times S^{\prime})=H\cap(x_{0}\times S^{\prime})$ , so that $x_{0}\times\tilde{H}\cap x_{0}\times S^{\prime}$ is open in $((x_{0}\times S^{\prime})$ ,
$\mathfrak{T}\times \mathfrak{T}^{\prime})$ . By the assumption on $(Y, \mathfrak{T}^{\prime})$ there exist a nbd $W(y_{0})$ of $y_{0}$ in $(Y, \mathfrak{T}^{\prime})$

and $S^{\prime}\in\Sigma_{P}^{Y}$ such that $\tilde{H}\supset W(\overline{y}_{0}\overline{)}$ and $\overline{W(y_{0})}$ is compact and $\overline{W(y_{0})}\subset S^{\prime}$ . Now
we put $H^{*}=(x|x\times\overline{W(y_{0})}\subset H, x\in X)$ , then for $S\in\Sigma_{P}^{X},$ $(H^{*}\cap S\times\overline{W(y_{0})})\subset H\cap(S\times S^{\prime})$

and $H\cap(S\times S^{\prime})$ is open in $(S\times S^{\prime}, \mathfrak{T}\times \mathfrak{T}^{\prime})$ . Since $\overline{W(y_{0})}$ is compact, $H^{*}$ is open
in (X, $\mathfrak{T}_{P}$ ) and $H\supset H^{*}\times W(y_{0})\ni(x_{0}, y_{0})$ , thus $H$ is open in $(X\times Y, \mathfrak{T}_{P}\times \mathfrak{T}_{P}^{\prime})$ . This
completes the proof.
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