On the P-extension of topology.

By Seiya SASAO

(Received Feb. 10, 1958)

Let (X, \mathfrak{T}) be a topological space with the underlying point set X and the topology \mathfrak{T} . For a subset S of X, (S,\mathfrak{T}) will mean the subspace of (X,\mathfrak{T}) with the topology induced by \mathfrak{T} . A property of topological spaces such as compact, connected, etc., will be generally denoted by \boldsymbol{P} (especially the property of being compact will be denoted by K). If we have to consider spaces X, Y, \dots , we shall denote with $\sum_{P}^{X}, \sum_{P}^{Y}, \dots$, the families of all the subspaces of X, Y, \cdots respectively, having the property P. We denote with \mathfrak{T}_{P} the topology of X defined as follows: A subset A of X is closed for \mathfrak{T}_{P} if and only if $A \cap S$ is closed in (S, \mathfrak{T}) for every $S \in \Sigma_{\mathcal{T}}^{\mathcal{T}}$. Such topology was considered by D. E. Cohen [2] who called it weak topology for \sum_{P}^{X} . In case P=K the topology \mathfrak{T}_P was called k-extention of \mathfrak{T} by J.L. Kelley. In fact \mathfrak{T}_P is always an extension of \mathfrak{T} , i.e. a topology weaker than \mathfrak{T} . We shall call \mathfrak{T}_{P} the **P**-extention of \mathfrak{T} . It was proved in [3] that $(X \times Y, \mathfrak{T}_{K} \times \mathfrak{T}'_{K}) = (X \times Y, \mathfrak{T}_{K} \times \mathfrak{T}'_{K})$ $(\mathfrak{T}_{K} \times \mathfrak{T}'_{K})_{K}$ if (Y, \mathfrak{T}'_{K}) is locally compact and compact sets in $(X, \mathfrak{T}_{K}), (Y, \mathfrak{T}_{K})$ are regular. In [3] a necessary and sufficient condition for $\mathfrak{T}=\mathfrak{T}_K$ is obtained. We shall obtain analogous results to these ones for the P-extension in the following lines.

Proposition 1. \mathfrak{T}_P is the weakest topology among all topologies of X which induce the same topology as \mathfrak{T} on each $S, S \in \Sigma_P^X$.

PROOF. We shall prove that (S,\mathfrak{T}) is homeomorphic to (S,\mathfrak{T}_P) by the identity map for $S \in \Sigma_P^X$. Clearly the identity map is continuous. Now let K be a closed subset of (S,\mathfrak{T}_P) , then $K=S\cap K'$ where K' is closed in (X,\mathfrak{T}_P) . Since $S \in \Sigma_P^X$, $S \cap K'$ is closed in (S,\mathfrak{T}) . Thus the identity map is a homeomorphism. Let \mathfrak{T}' be any topology on X such that $(S,\mathfrak{T}')=(S,\mathfrak{T})$ for every $S \in \Sigma_P^X$. If K is closed for \mathfrak{T}' , $K \cap S$ is closed in (S,\mathfrak{T}') , hence $K \cap S$ is closed in (S,\mathfrak{T}) .

REMARK. It is clear from the above proof that a subspace of (X, \mathfrak{T}) having the property P is also a subspace of (X, \mathfrak{T}_P) having the property P, therefore $(X, \mathfrak{T}_P) = (X, (\mathfrak{T}_P)_P)$.

We shall call (X, \mathfrak{T}) a semi local **P**-space, if for each point x of X there exists $S \in \Sigma_{\mathbf{P}}^{X}$ which contains a nbd of x. Then we obtain

Proposition 2. If (X, \mathfrak{T}) is a semi-local **P**-space, then $\mathfrak{T}_{\mathbf{P}} = \mathfrak{T}$.

Proof. It is sufficient to show that every closed subset K of (X, \mathfrak{T}_p) is

also closed in (X, \mathfrak{T}) . For $x \in X$, there exist a nbd U(x) of x and an element of \sum_{P}^{X} , such that $U(x) \subset S$. If $x \notin K$, since $S \cap K$ is clearly closed in (S, \mathfrak{T}) , there exists a nbd V(x) of x in (X, \mathfrak{T}) such that $V(x) \cap S \cap K = \phi$. Now put $W(x) = V(x) \cap U(x)$, then W(x) is a nbd of x in (X, \mathfrak{T}) and $W(x) \cap K = V(x) \cap U(x)$ $\cap K = \phi$. Thus K is closed in (X, \mathfrak{T}) . This completes the proof.

In general the converse of the Proposition 2 is not true but we can find a necessary and sufficient condition for $(X,\mathfrak{T})=(X,\mathfrak{T}_P)$ in case P has the following property (A): A space consisting of only one point has the property P, and every continuous image of a space with the property P has also the property P. For the purpose we shall use the following notion. Let P and (X,\mathfrak{T}) be topological spaces and f a continuous map of P onto (X,\mathfrak{T}) . Then we shall call (X,\mathfrak{T}) the *identification of* P by f if and only if \mathfrak{T} is compatible with the identification topology by f. Then we obtain

PROPOSITION 3. Let P have the property (A). We have $(X,\mathfrak{T})=(X,\mathfrak{T}_{P})$ if and only if (X,\mathfrak{T}) is an identification of a semi-local P-space by a suitably defined map f of P onto (X,\mathfrak{T}) .

PROOF. Sufficiency: Let f be the map of P onto (X,\mathfrak{T}) and let H be an open subset in (X,\mathfrak{T}_P) . Now if $f^{-1}(H) \ni p$ and $f(p) = x \in X$, then there exist a nbd V(p) of p in P and $S \in \sum_{P}^{P}$ such that $V(p) \subset S$. Since $f(S) \in \sum_{P}^{X}$, $f(S) \cap H$ is open in $(f(S),\mathfrak{T})$ and $f(S) \cap H \ni x$, moreover there exist a nbd U(x) of x in (X,\mathfrak{T}) such that $U(x) \cap f(S) \subset f(S) \cap H$ and a nbd U(p) of p in P such that $f(U(p) \cap S) \subset U(x) \cap f(S) \subset f(S) \cap H$. On the other hand we have $f(U(p) \cap V(p) \subset f(U(p) \cap S) \subset f(S) \cap H \subset H$. Thus H is open in (X,\mathfrak{T}) .

Necessity: We shall construct P and f for a given (X,\mathfrak{T}) as follows: P consists of all pairs (S,x) where $S \in \Sigma_P^X$, $x \in S$. For fixed S, the map $(S,x) \to x$ is to be a homeomorphism onto S (with the given topology), and the set $\{(S,x),x\in S\}$ for fixed S is to be both open and closed in P. This clearly defines a topology. Let $f:P\to X$ be the map $(S,x)\to x$. Then P is clearly a semi local P-space and it is easy to show that f is continuous and onto. If $(X,\mathfrak{T})=(X,\mathfrak{T}_P)$, (X,\mathfrak{T}) is clearly the identification of P by f. This completes the proof.

Now we shall prove an analogous theorem to D. E. Cohen's one [2]. The property P is called *productive*, if the product space of two topological space with the property P has also the property P. Then

PROPOSITION 4. If **P** is productive and satisfies (A) and furthermore (Y, \mathfrak{T}') is a Hausdorff, locally compact and semi local **P**-space, then $(X \times Y, \mathfrak{T}_P \times \mathfrak{T}'_P) = (X \times Y, (\mathfrak{T} \times \mathfrak{T}')_P)$.

PROOF. We shall consider another topology \mathfrak{T}^* on the point set $X \times Y$ which is defined as follows: A subset A of $X \times Y$ is closed for \mathfrak{T}^* if and only if $A \cap (S \times S')$ is closed in $(S \times S', \mathfrak{T} \times \mathfrak{T}')$ for every $S \in \Sigma_P^X$, $S' \in \Sigma_P^Y$ and

306 S. Sasao

prove $\mathfrak{T}_{P} \times \mathfrak{T}'_{P} = \mathfrak{T}^* = (\mathfrak{T} \times \mathfrak{T}')_{P}$. First we shall show $\mathfrak{T}^* = (\mathfrak{T} \times \mathfrak{T}')_{P}$. Let H be an open subset of $(X \times Y, (\mathfrak{T} \times \mathfrak{T}')_{P})$ and $S \in \sum_{P}^{X}, S' \in \sum_{P}^{Y}$. Since $S \times S' \in \sum_{P}^{X \times Y}$ by the productivity of $P, H \cap (S \times S')$ is open in $(S \times S', \mathfrak{T} \times \mathfrak{T}')$, therefore H is open in $(X \times Y, \mathfrak{T}^*)$. Conversely let H be an open subset of $(X \times Y, \mathfrak{T}^*)$ and $T \in \sum_{P}^{X \times Y}$. If we denote the image of T by the natural projection onto each factor space X, Y with $P_X(T), P_Y(T)$ respectively, then $H \cap (P_X(T) \times P_Y(T))$ is open in $(P_X(T) \times P_Y(T), \mathfrak{T} \times \mathfrak{T}')$ by the definition of \mathfrak{T}^* and the property (A) of P. Now let (x_0, y_0) be any point of $H \cap T$, then there exist a nbd $U(x_0)$ of x_0 in (X, \mathfrak{T}) and a nbd $U(y_0)$ of y_0 in (Y, \mathfrak{T}') such that $H \cap (P_X(T) \times P_Y(T)) \supset (P_X(T) \cap U(x_0) \times P_Y(T) \cap U(y_0))$, therefore $H \cap T = H \cap T \cap (P_X(T) \times P_Y(T)) \supset T \cap (P_X(T) \cap U(x_0) \times P_Y(T) \cap U(y_0)) \equiv (x_0, y_0)$. Since $T \cap (P_X(T) \cap U(x_0) \times P_Y(T) \cap U(y_0))$ is a nbd of (x_0, y_0) in $(T, \mathfrak{T} \times \mathfrak{T}'), H$ is open in $(X \times Y, (\mathfrak{T} \times \mathfrak{T}')_{P})$.

Secondly we shall show $\mathfrak{T}_{P}\times\mathfrak{T}'_{P}=\mathfrak{T}^*$. Let H be an open subset of $(X\times Y,\mathfrak{T}_{P}\times\mathfrak{T}'_{P})$ and $S\in\Sigma_{P}^{\chi},S'\in\Sigma_{P}^{\chi}$. If (x_{0},y_{0}) is a point of $H\cap(S\times S')$, there exist a nbd $U(x_{0})$ of x_{0} in (X,\mathfrak{T}_{P}) and a nbd $U(y_{0})$ of y_{0} in (Y,\mathfrak{T}'_{P}) such that $H\supset(U(x_{0})\times U(y_{0}))$. On the other hand $(x_{0},y_{0})\in(U(x_{0})\cap S\times U(y_{0})\cap S')\subset H\cap(S\times S')$ and $(U(x_{0})\cap S\times U(y_{0})\cap S')$ is open in $(S\times S',\mathfrak{T}\times\mathfrak{T}')$ by the definition of $\mathfrak{T}_{P},\mathfrak{T}'_{P}$, hence H is open in $(X\times Y,\mathfrak{T}^*)$. Conversely let H be an open subset of $(X\times Y,\mathfrak{T}^*)$ and (x_{0},y_{0}) be any point of H. If we put $(x_{0}\times Y)\cap H=x_{0}\times \widetilde{H},\widetilde{H}$ is open in (Y,\mathfrak{T}'_{P}) , because for every $S'\in\Sigma_{P}^{Y}$, we have $x_{0}\times(\widetilde{H}\cap S')=(x_{0}\times\widetilde{H})\cap(x_{0}\times S')=(x_{0}\times Y)\cap H\cap(x_{0}\times S')=H\cap(x_{0}\times S')$, so that $x_{0}\times\widetilde{H}\cap x_{0}\times S'$ is open in $((x_{0}\times S'),\mathfrak{T}\times\mathfrak{T}')$. By the assumption on (Y,\mathfrak{T}') there exist a nbd $W(y_{0})$ of y_{0} in (Y,\mathfrak{T}') and $S'\in\Sigma_{P}^{Y}$ such that $\widetilde{H}\supset W(y_{0})$ and $W(y_{0})$ is compact and $W(y_{0})\subset S'$. Now we put $H^{*}=(x|x\times W(y_{0})\subset H,x\in X)$, then for $S\in\Sigma_{P}^{X}$, $(H^{*}\cap S\times W(y_{0}))\subset H\cap(S\times S')$ and $H\cap(S\times S')$ is open in $(S\times S',\mathfrak{T}\times\mathfrak{T}')$. Since $W(y_{0})$ is compact, H^{*} is open in (X,\mathfrak{T}_{P}) and $H\supset H^{*}\times W(y_{0})\ni (x_{0},y_{0})$, thus H is open in $(X\times Y,\mathfrak{T}_{P}\times\mathfrak{T}'_{P})$. This completes the proof.

University of Tokyo.

References

^[1] J. L. Kelley, General topology, 1955.

^[2] D.E. Cohen, Spaces with weak topology, Quart. J. Math. Oxford, 5 (1954), 77-80.

^[3] D. E. Cohen, Product and carrier theory, Proc. London Math. Soc., 7 (1957), 219-248.