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Ergodic property of recurrent diffusion processes.

By Hisao WATANABE and Minoru MOTOO
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§1. Introduction.

The purpose of this paper is to prove an ergodic theorem for recurrent
diffusion processes (cf. in §4). Let {X®(4 »)} be such a process
starting from x at =0 and let f(x) and g(x) be any m-integrable functions

b
such that j.g(x)dm(x);/:O, where m 1s Feller’s canonical measure of this

process. Then

j FXD(t, ))dt j Flx)dm(x)
(1.1) lim=¢ e

T f 2(X@(¢, w))dt j o(x)dm(x)

holds with probability one (cf. in §4).

Ergodic theorems of this type have been investigated by many authors;
by G. Kallianpur and H. Robbins and by Dermann for the Brownian
motion, by T. E. Harris [8], by P. Lévy and by K.L. Chung [1] for the
recurrent Markov chain with a denumerable number of states and by T.E.
Harris and H. Robbins [9] for the recurrent Markov chain with discrete
time parameter. Our formula is similar to that in [9], but the method
of our proof in §4 is based on the same idea as in [2] and [1]. Recently,
G. Maruyama and H. Tanaka [12] treated the same problem by a different
method. We learned from Prof K Ito that the same result can also be
derived directly from the Brownian motion case through the time change
which will be given in K. Ito and H. P. McKean Jr.’s forthcoming book. As
to this paper, we have obtained many valuable suggestions from the lectures
given by Prof. K. Ito at the University of Tokyo. We would like to ex-
press our hearty thanks to him and also to Mr. T. Watanabe for his kind
discussions.

§2. Preliminaries.

Let X(¢, w) be the so-called Feller’s diffusion process with canonical scale
s(x), canonical measure m(x) and state space R=[a,b]={x; a<x<b}, where
a,b are real numbers or +o (We shall fix the values ¢ and b in this paper.
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cf. [6], [7]). We shall use the notation X™ (¢, ), xR to express the path
starting from a real point x at #=0. For the space £, of all such paths,
a probability measure P,{ } with P{£2,}=1 is defined. If a non-negative
random variable r(w) defined on £, satisfies the condition: {w|t(w)<¢}eB®
for any ¢, where B{® is the Borel field generated by the system of all w-sets
of the form {wefl,|X®( w)eE} 0Zt<s, E€¥y,), and &5 is the Borel field
generated by the intervals in R, then t(w) is called a Markov time for
X® (e, w) (cf.[4], [5], [13]). As D. Ray [13] proved, Feller’s diffusion process
has strong Markov property and its path functions X® (¢, ») are continuous
in ¢, for almost all wef, with respect to the measure P.{ } (cf. [4], [5]
61 and [13]).

Now let 74, 00, @)=min{¢; X (¢, o)&(x,, ,)°} {or a<x, <<x<<x,=b. This
is a Markov time and is B®-measurable (cf. [4] or [13]).

We define:  P(x, 2y, %)= Po{ X' (7 (41,20 (%, @), @) =%},
P(x’ X1 x2>:Px{X(x)(T(m,m)<xr Q)), (‘)):xz} .
Then, as E. B. Dynkin proved, we have

P(x, x,, x2):_§2;3{§gc3)7 for any a<<x, <x<<x,<<b.

§3. Fundamental theorem.

From now on we assume that s(x)=x Let x,y,2€(b),x<<y<z and
consider the Markov time 7(,,,(y, ). Then we have

(31) E{T(x,z)(yi @)} <o
(see [4]).
Now, let yu, Mg, be the indicator of a set M, i.e.
1, xeM,
xM(x)=[
0, xeEM .

Then x,(X®(¢, w)) is a function measurable in ¢ Therefore, the following
functions are well-defined;

2) W, w)

T(w;yT(x,Z),M)=f:(w' XD, o)dt if XD (r(,,,(y, )=z,

=0 if XU(7@,(y, @)=x,
and
T(Ct) Y l (xa Z), M):O if X(y)(r(a:,z)(yr CL))):Z,

T(z,z) Y0

=77 X0 epdt i X0 (20, @)=1.

0
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We have easily the following lemma.

Lemma 3.1. For any fixed x,v,z, T(w;y1(x,2),M) and T(w;y] (x,2), M)
arve completely additive measurve functions with respect to M.

Furthermore, let

T(M; 31 (x2)=E{T(@; 31 (x,2), M)| XD (s (3, w)=2},
T(M;y) (% 2)=E{T(0; y] (x,2), M)| XD ((s, (5, @))=x}.

Then we have the next lemma.
Lemma 3.2. For any fixed x<<y<<z
1) TM;y1(x,2) and T(M;y]l (x,2) are bounded completely additive
measure functions with respect to M for fixed x,v,z.
2) TM;91(x2)=0 if MN(xz2)=¢,
T(M;y](x2)=0 if MN(x,2)=¢.

Proor. (2) is evident by the definition. Therefore, we have only to
prove (1). It follows easily from Lemma 3.1. that the above 7’s are finitely
additive measure functions with respect to M. Hence, we will show that
they are bounded and completely additive. By definition,

T(w; y1(%,2), M)ST(w; 31 (%, 2), (% 2) <T@y o).
But, by (3.1),

E{t (03, ) | X203, @) =2} 22

+E{T(w,z)(y’ Q))]X(y)(fu,z)(% O))):'Z} ;’:i =E{T(z,z)(yy Cz))}<—f-00 .

Therefore,
E{T(@; y 1 (x,2), M)| XO (v, (3, 0)) =2}

gE{T(x,z)(yy (1)) I X(y)(r(x,z)<y) C’))):x}

= z:; E{T(x,z)<y’ ®)}<+oo,

Since the right hand term is independent of M, T’s are bounded. Moreover,
since T’s are dominated by the integrable function t(,. (¥, ®), the complete
additivities of 7’s follow from those of T’s.

Lemma 3.3. For any x,y,z2€[A, B{(C(a, b)), where x<<y<<z, T(+; 31 (x,2))
and T(+; v (x,2)) are absolutely continuous with respect to some fixed measure
s=p14,8,(*).

Proor. Take a real number C&[ A4, B] arbitrarily and fix it.

Then, we have

TM; C1(A B)=T(M;»y1(A B) for y=C
and

. B—-C y—A

y T(M;y1(A, B) for y<C.
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Since it is clear that
TM; 1A BYZ2T(M; 31 (x2),

T(+;v7(x,2)) is absolutely continuous with respect to T'(+; C1 (4, B)). T(+;
y | (x, 2)) is also absolutely continuous with respect to T(+; C| (4, B)). There-
fore, taking

u()=T(; C1(4 B)+T(-;Cl(4, B),

we can see that our lemma is true. Hence, we can express as follows;

(3.2) T(M; 31 (5, 2)= clu; 31 (5 2)uldu),

(33) T(M; 9 (5 2)={ vy (x,2)uldn)

whére o’s are density functions of 7"s with respect to p#. Now, we will
prove the following theorem.
Tueorem 3.1. There exists a measure n(+) on (a,b) such that

(3.4) T 31 (2= f u—spatdn) i MC(s,5]

:WfM(z—u)(u—x)n(du) if Mcly,2),
(3.5) T(M; 31 (5 )=z [ (G wlu—nntdu)  if MC(5,],

= n D —winaw) if MCL3,2),

Furthermore, this measure n(+) is uniquely determined.

Proor. The uniqueness is evident since the integrands in (3.4) and (3.5)
are not zero in (x,2z). By the same reason, it is sufficient to prove that, for
any two sets of numbers (x,y,2), (x,3,2/), we can contruct a common 7(+)
satisfying (3.4), and (3.5) in the common domain of definition. Actually we
construct a »(+) for any countable dense set in any interval [A, B]C(a, ).

By the strong Markov property, we obtain the following relations for
I<r<f<a:

3.6) TM; 819, a))

B—0
a—o
B -7 ) (a B)r—¢ 6) .

+TM; 7106, @)},
(3.7) TM;r10,a)=TWM;r1,8)+TM; L1, a).
For T(M;r 1, a)) and T(M; B | d, @)) we have the following dual formulas
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(3.6)*, (3.7)*.

(3.6)* s T(M; 71 (5, @)

a—

_B—r (r—o)a—4p),

- T(M 710,58 HTE_E)RT’O‘) {T(M:710,8)
T(M:pBl0,a)}

3.7)* T(M; Bl 0,a)=TWM;Blr,a)+TM;7] 0 q).

From [3.2), [3.3), [3.6] and [3.7) follows

(3.8) P2 w810

=BT otus ﬂt(r,a>>+§§ B s 1 (1,
+(u; 1 100, @)}

for almost all # such that r<su«=a,

(39) Bl s 810, @)= g = wlus 1 10, @)
for almost all % such that d=su=<y,
(3.10) w(us 710, a))=t(u; 810, a))
for almost all # such that f<u=<q,
(3.11) t(u; 710, Q)=t(w; 719, 8)+(u; 81 a)

for almost all # such that é<u=<p.

As before, we have dual formulas (3.8)*%, (3.9)%, (3.10)* and (3.11)*.

Without loss of generality, we may suppose that the above results hold
for any «,8,r and 6<S. Since T(M;y1(x,2) and T(M; y] (x,2)) are non-
negative functions for any Me%g t(#;y1(x,2) and z(u;y] (x,2)) are also
non-negative for almost all # and we set =0 for exceptional values of .

By means of and (3.10)* we see that

(3.12) (u; r 10, a)=du,; (§,a) (independent of 7),
if r=u=za,
(3.12)* (w; Bl (0, a)=d(u; (J, @) if 0=su=p.

Furthermore, by
r(; B 100, a)="E=AT=0) 10 11 (5, )

if 0Zu=sy.
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Hence, as r—u-+40, we obtain
(3.13) s B 15, )= égwg))((g g; lim (w3 7 13, @) if 05%<g,
_ (a—p)(u—0)
- uj@*g) o'(u; (0, @))
and especially by
(85 B 19, a)):};% (858100, a)).
Hence (3.13) holds for é<u=p3.
Furthermore by [3.1T)
oGm0, ) =5 o 3, 8)
+Ez— %{Z—g;—p(u;(&a)) if o=su=sr.
Accordingly
Td%ﬂg):ﬁ_)“ o' (u; (9, a)):ﬁ o' (u; (0, 8)) if o=su=r.
Hence,
o'(u; (0, a))=~>§%}%~%g:2; o'(u; (6, B)) if osu<<h.
Therefore, there exists
Po(u; (5, B)) _
i 2 =
which is defined for #>d.
Thus, we obtain
o' (6, ay =% ((‘? g2 9. o(u, 5) if fsu<a.
By means of (3.13)
(3.14) s 105, a))—% ﬂa))((% ‘?) p(t, ) if o<u<B.
And similarly
(3.14)* s 716, @)= T PEE g ) if rsusa.
By using on r=u=sp
(3.15) o(u; (8, a))=o(n; (9, ﬂ))—l-vg(a?“%)((g—"g)) o(u, 0) if o<usp.
Similarly
(3.15)* au; @, @) =a(u; (r, @)+ L0050y a0y i rzu<a.

(a—8)(a—7)
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From this, we can conclude that there exist {lgim a(u; (6, 8)) and li1m a(u; (r,a)).
lu 7lu
By making use of on f=u=zaq,
B0 otus 6, an=-E=1) otu; (r, a4 2B D)

(a=d) ~(a-7) (@78
x {8 o, @)-+olus (0, @)}
Therefore,
(3.16) o(u; (8, @)=0(u; (1, a))—i—%%((%—_%))i o(u, ) for fsu=«.

Hence, it holds for y <#<«. Similarly

(@—pB)(u—0)*

BI6* a3, @)=dlu; (3, M)+ 55— 0 ) for o=u<p.
Next, making use of on r<susp,
«,(E“f(%j}aﬁ ou, )= "((35%)’(%}2} a(u; (6, @) for rsu<p,

and
VVVVV o(u; (0, @)

Ta_a)z o(u, 5)3“@_7,')(“*6)‘(7—6) for rsu<ca.

As a—u+40, we have
(r—0)lima(x; (9, @)
@l

olu, 0)= e )0 =5) for r<<u.
Furthermore, as ¥ —»«—0,
lim o(z; (0, @))=0.
wlu
And similarly
liTm o(u; (0, a))=0.
By (3.15), as g—u-+0,
(3.17) olus (5, a)):(???(“g?_%)“") plu; ) for s<u<a,
and
(3.17)* 5 (5, @)= (“_(Zﬁ’g)_ﬁ) Pl @) for s<u<a.
From (3.16) and (3.17)* follows
iy (D) ;) @OMED) iy
(r — o) —u)’ o(u; ) for r<u=za.

Ta—r a—s) °
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Since a—u>0, r—0>0, a—y>0 and a—§>0,

((Z g; ol 6>~“((Z¢7;} ol ) for r<u<e.

As a—u+0 and y—»—0, we can see that

lim p(#; v < p(u, ) <<+ oo

’r—"u
When y —#-}-0 in (3.17), we have
(3.18) olus; 0)=p(a; u)=o(u) for a<<u<<9.

(3.12}, (3.16) and give us

“le; 718, @)= o) for r<u<a,

And by means of and (3.15), we have

t(u; 7 10, a))= ((a 5))((2; ?) o(u) for d<<u<r.

Hence, we have only to take ¢(u)u(du) as n(du). This completes the proof.

Now we shall prove that our measure n(+) coincides with the canonical
measure. Namely, in a Feller process, the canonical measure is characterized
as follows; In any finite interval [x, 2], we set

DY) =E{7@,»(, ®)} where x<<y<z.
Then
AP _ iy )=
dy Yi-y+0 n—y
+
exists and i‘%(,l)— is monotone and continuous from the right. Then the
measure

+ +
m(yy, y9)= d Zg’%) d zg)yl)

1s the canonical measure. Now, we will prove #n(s)=mn(e).

Bt (y; 0Y=7 1 T(%2); 31 &)+ - T((z,%); ¥ | (x,2)

z”y)j‘ (u x%(du)-l—

(z,9] (z— x)2_f (Z u(u x)n(du)

+(z y) f (u —x)(zg— u)n(du)—l— (y x)f (z u)*n(du)

(z—x)? @,2]

z i; j (u— x)n(du)—l—i ))f(y,zgz—u)n(du)
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=E=D) iz, 02— 2= e wnln 0

(z—x) (z—2x)
(2—y) (y—x)

oy  m i ddu— G f | ntewidu,
%-2) (z x) f n (x, u]du-{—f(z“x; n(%, y]

(y—2)
- (z_xj‘\f('y,z?]/l(x’ u]du _{_7?‘*}5) (x) y]

=n(x, y)— (’fz%“xT j (J,Z(x, w)du .

Thereore, we have

m(yy, J’:)):gig”g;}@‘ d Z;yl) n( ¥, y2>

§4. Ergodic Properties.

We shall define the recurrent Markov process as follows.
DeriniTion. The Markov process is called recurrent, if
PAX®()=y for some t}=1
for any x,ye<(a, b).

Throughout this section we shall add the assumption of recurrence to
Al1—A4: that is; Ab. Our process is the recurrent one. Then the following
lemmais evident.

Lemma 4.1.  The boundary a (b) is rveached in finite time from any point x
in (a,b) with positive probability, if and only if a (b) is finite. And in this case
P X®(@)=a (b) for some t}=1,

Lemma 4.2, If a (b) is finite

E(tia,0)(3)<<oo (BT (z,51(¥)) <o)
where T[a,x)(y: a)):inf{t: X" (t) Q))GE[G, x)}
(7,3, @)=Inf{t : XD(¢, w)e(x, b]}).

Proor. By the Lemma 2 in [4], it is sufficient to prove that P,{r(,»(¥)

< T}>e>0 for any y=(a, x) where ¢ and T are some positive number inde-

pendent of y. As our process is recurrent, we shall easily see P,{7[q,(a)
< TY>¢ for some ¢ and 7. But,

Px{r[a,x) (d) < T}:J.Px{f[a,x) (a>ﬁ7[a,'y) (d) < T—_Sl z'[a,y)<a) :3}dPs{T[a,x) (d) :5}

:ij{T[a,x) (.y) <T- s}dPs{T[a,x) (a) :S}
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< [Polrta,0 (0 <TYAP,{ )

éPx{T[a,x)(y) <T}
which proves the lemma.
Lemma 4.3. If a (b) is finile, then

lim E{T[aix)(d)} =g,

rla X—a
tim Flreun@} _ 7,
xth b—x

exists and is finite, and m(a, x) (m(x, b)) is finite for any x<(a, b). And extending
the m-measure in (a,b) to [a,b] such that

m(a)=0 if a=—o0,
=0, if a>—o0,

m(b)=0 if b=oo,
=0, if b<<oo,

Sfor any x=y, (x,y<(a, b)) we have

B{[ X @)t} =(y—xpm(A)

where

F=inf{t: XO@)=x, =t}

and A is any Borel set in [a,b). (If a or b is infinite, m(A) may be infinity.)
Proor.

@) E{[xaxowar}=E{ [ g x@)ar}

ZAXO@)dt} .

@)@
Let # be any number in (a, x) and
7,/ =Iinf{¢ : X ()t (u, )},
t, =inf{t: X® (@) &(a, ), t >’} if XO(ry)=u,
t)/=inf{t: XO()=u,t>7} if XO(¢/)=u XO(r)=a,

XO(ry)=u,

X(w)(rl):a, i:l’ 21"') k—1 ’
XNz )=u,

"

7/ =inf{¢ : X®#)=wu, t> 1}
X(w)(f'l,):a) l:"_l) 27"'! k ’

.......................................
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Concerning the first term in the right side of we have

E{j-r[a e X(x)(t) dt}-
=B{{" V3 [E ™ 2 XO@at| X (ey)=u XO(c)=a i=1,, k—1}
k=1 Ti-1

H{[™ 2 X0t XO () =u XO(w)=a i=1,2:, k}]
Tk
X PT{X(x)(TOI):u X(x)(’t‘i):(l 121’ 2;"" k“‘l}

[f @ is finite, by using the strong Markov property, we have

B[ G x oy}

= B{[T 0 puxepary+ 3 B0 L xeo wnar
+£~Zﬂj‘:[a'u) Y (X® (t))dt} (%) (%—}Ziy_ '
But

E{j‘ 1)@ X(m)(t))dt}_.A,A* TA; x1 (u, )+ i}} f[ T(A; x| (u,9);

(a,y) ™ . o (u— Y
B{[ e xewmary=tim(3 70 T(A; w0904 T(As ul0,9)
the gives that

—X

E{j.r[a " X(x)( ))dt %— (a,ulN

(v aym(dv)-+(y—x)m((u, x 1N A)
(4.2)

(y=2)(y—a) (e ® s
+j'(x,z/]ﬂ‘(4y_v)nz(dv) (y—u)u—a)J, Xa(X(2))dt

For the left side of (4.2) is bounded by FEf{rf,,»(x)} (cf. Lemma 42), putting
T[a,u)(a)

A=(a,b], we can prove mla,x) is finite, and lim =g, exists and is

U—r00

finite.
Therefore

B{J, " i X0 =i E{ [ K X001}

~(y—2ml(a XINA+[  (y—o)mldo).
(x,y1NA
On the other hand

E{f’[a 20 3 (X(#) dt} lim E{f e y))t[a @ (XON(E)) dl‘}—f’l—m(")

ula

Finally, we have
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w3 B nxewat=-amle ANA+[_ (y-omid).

If ¢ is infinite, then P {X®(7(4,)(*))=a}=0. Therefore r[a,y>(x)=li§n T (u,y) (%)
uLa

with probability one.
Thus

(4.3) E{f’“‘ P X)) dt}—hm{x “ 1A T ()

ula

+ Z:u T(A; x| (, y))}

=(y—xml(a, AINA+[  (y—o)m(do)

(which may be infinity if A is not a bounded set).
Concerning the 2nd term in the right side of the strong Markov
property gives

BT xewal= B . X ()]

T[a’ ) ()

—E{jr(x’ 01 X(y) i))dt}

And by the similar argument as above, we have

(4.4 B{f"

Tla,v) (””)

From and (4.4), the lemma has proved.
Remark. If ¢ is finite for example, it can be shown that the correspond-

AX@O@)dt}=[  (o—xpm(d)+ml(3,BINA).

(x b]ﬂ

+
ing boundary condition of the process at ¢ is given by »f—(Q=ol=m(a), where

Af(a)

A is a infinitesimal operator of the process.
Lemma 44. If flx) is any m-summable and integrable function, then

E{j ;*(a}(Xm(t’ ))dt lx}z(y—x)f :f (x)dm(x) .

Proor. By the usual approximation procedure our lemma follows easily
from Lemma 4.3.

Turorem 4.1. Under the assumption A1—AS5, if f(x) and g(x) ave any two

D
real-valued m-summable functions and f gx)dm(x)#0, then we have for almost

all we ;.
Jrxow ot [ paime
lim 2

= Mg onar [ stam)
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where m is extended canonical measure; i.e. mla)=lim —Eggi@’“i—z(g»‘
wla -
—1im L Twn)
m(b)—lﬂrbl By S

Proor. Firstly consider the case where f(x)=0 for all x.

Let
tw)=inf{t; XD, @)=y}, t(0)=inf{t; t>t(w), XD, 0)=1},
t?:(w):lnf{ta t>t2<@)’ X(x)(t) @):y} 3t .

Since t*(w) is finite with probability 1, the sequence {#/(w)} is denumerable
for almost all we2,.
Let
ta; (@)
Vio)=["" AX®(, o)t .
tyi—g(w)
Then, the random variables Y,;(w) are independent and have the same dis-
tribution function by the stationary strong Markov property of X®(¢, ).
Now, let #(T'; w) be the largest even number such that ¢,(,6) <7, then

n(T,w) +1

n(T,w) T
Sy [ fxe opdis” 3 Y
i=1 0 i=

Since the process X™(¢, w) is recurrent, we have P, {lim #(T, w)=oc0}=1.

n-—roo

Therefore, it follows from the strong law of large numbers of Kolmo-
goroff and Khintchine and from Lemma 4.4 that

n (T, w)

Po{lim o7 j)‘=<y—")f Zf (a0} =1

T—oo n @

But since Y; is finite with probability 1,

[ rxe, oy :
[~ J1i S (VS —
(45) PAlim ° o =(-a)f fwdm}=1.
Thus (4.5) holds for any m-summable function f(x), since any function can
be expressed by the difference of positive valued functions. The same argu-
ments can be applied for g(x).

As we can easily see,
/)
E(e*()=(y—2) dm(x).

Hence, E{r*(w)} is finite for any x,y if and only if m([a, b]) is finite. The
case F{r*(w)}<Coo corresponds to positive states, and E{t*(w)}=o0 corresponds
for null states in Markov chains with a denumerable number of states.

In particular, when E{r*(®)}<Cc, we have the following theorem,
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b
Turorem 4.2. If f(x) is any m-summable function and fdm(x)<00, then

tim L f :f(X<x>(t, a)))dt:%-([%,bj)— { Z Fxydm(x).

T >c0

Proor. We shall use the same notation as in the [Theorem 4.1. We
remark that

im £ (" fxe im ML@) 1 T
(4.6) lim = f AXO( o)de=lim PR S AXO @, w)t

But, since T—#.(r,0) is finite with probability 1, by the strong law of large
numbers we have

o T g (=t A (e —fanog) b H(T— )
o P (T @) i e

=E{r*(w)}=m([a, b])(y—x)

with probability one.
Hence, from (4.7}, and follows the theorem.

Now we note that

T T b
() — y
B{ A, w)dt|x}=| dtf fn)Px dy).
Then, putting f(x)=yz(x) by means of eorem 4.2, we have

.1 T 1
for any Borel measurable set FE.

Let

' 1 1 z
Fy(x)=— j Py [t and  Fla)= oo j _dm(x).

Then, Fy(x), F(x) are monotone non-decreasing and bounded. lim Fp(x)=F(x)
T 00
holds at all continuity points of F(x), and F(a)—F(b)=1=lim [Fy(a)—Fy(b)].
T 500 .

Therefore, since P(¢,x, E) is bounded,

(4.8) { :P(t, %, Bydm(x)=m([a, b)) P(t,x E)F(x)
~lim m(Ca, b])[ P, % E)AFy(x)
:lTiEE m([a, b])f:P(t, % E) —%KP(S, ¥, dx)ds

. 1 ¢7
=1T1g m(La, b])—ffoP(ert, y, E)ds



286

H. WATANABE and M. MoToo

—lim m([a, bJ) LT( { OTP(t, » Eydt— :P(t, » E)dt)

T —o00

=m(E).

In we used the Chapman-Kolmogoroff’s equation and Fubini’s theorem.
From equation [4.8), we have the following corollary.

(1]
[2]

[3]
[4]

[5]
(6]

[7]
L8]

[9]
[10]
[11]
[12]
[13]

CororLvrAry. m(+) is an invaviant measure.
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