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Introduction.

Let $A,$ $B$ bc abelian groups and $n,$ $p\geqq 1$ be two integers. A cohomology
operation $\theta_{1}(A, B, n,p)$ of the first kind is a function $\theta_{1}$ , defined for every
$c$ . $s$ . $s$ . pair $(K, L)$ , of the cohomology group $H^{n}(K, L;A)$ into $H^{p}(K, L;B)$ ,
which satisfies the naturality condition. Given such a cohomology operation
$\theta_{1}(A, B, n,p)$ , an abelian group $C$ and an integer $q\geqq 1$ , a cohomology operation
of the second kind relative to $\{\theta_{1}(A, B, n,p), C, q\}^{1)}$ is a function

$\theta_{e})$ : $H^{n}(K, L;A)\supseteqq Ker(\theta_{1})\rightarrow H^{q}(K, L;C)/G_{\theta_{2}}(K, L)$ ,

defined for every $c$ . $s$ . $s$ . pair $(K, L)$ , of $Ker(\theta_{1})$ into a factor group of $H^{q}(K,$ $L$ ;
$C)$ by a subgroup $G_{\theta_{2}}(K, L)$ , where $G_{\theta_{2}}(K, L)$ are determined by $\theta_{2}$ in such a
way that

$G_{\theta_{2}}(K, L)\supseteqq f^{*}G_{\theta_{2}}(K^{\prime}, L^{\prime})$

for every simplicial map $f:(K, L)\rightarrow(K^{\prime}, L^{\prime})$ . Furthermore, we require that
$\theta_{2}$ satisfies the naturality condition, $i$ . $e$ . the following diagram is commuta-
tive:

$f^{*}$

$H^{h}(K^{\prime}, L^{\prime} ; A)\supseteq Ker(\theta_{1})-Kcr(\theta_{1})\subseteqq H^{n}(K, L;A)$

$\downarrow\theta_{2}$ $\downarrow\theta_{2}$

$H^{q}(K^{\prime}, L^{\prime} ; C)/G_{\theta_{t}}(K^{\prime}, L^{\prime})\rightarrow H^{q}(K, L;C)/G_{\theta}.(K, L)f^{*}$ .
The cohomology operations introduced by J. Adem [2], N. Shimada [8] and
T. Yamanoshita [9] are of the second kind.

It is well known that there exists a 1–1 correspondence between the
cohomology operations relative to $\{A, B, n,p\}$ and the elements of the Eilen-
berg-MacLane cohomology group $H^{I^{y}}(A, n;B)(n^{o}14, [3]),$ $i$ . $e$ . in the termi-
nology of J. F. Adams [1], the example-spaces of the first kind2) examplify
the cohomology operations of the first kind. Our purpose of this note is to
show that the example-spaces of the first and the second kind examplify the
cohomology operations of the second kind defined in the above.

1) Cf. \S 3. 6, [6].

2) An example-space of the n-th kind is a space with precisely $n$ non-vanishing
homotopy groups and is simple in all dimensions.
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1. Preliminalies. A $c$ . $s$ . $s$ . complex $X$ is a direct sum $\sum_{q\geqq 0}X_{q}$ of free

abelian groups together with face and degeneracy opeators $\partial_{i}$ : $X_{q}\rightarrow X_{q-1}$ ,
$s_{i}$ : $X_{q}\rightarrow X_{q+1}(0\leqq i\leqq q)$ which are homomorphisms and satisfy the following
conditions: (i) For each $q$ , the base of the group $X_{q}$ is given (the elements
of this base are called q-simplices and are denot $ed$ by $\sigma_{q},$ $\rho_{q}$ etc.). (ii) The
operators $\partial_{i}$ and $s_{i}$ map each simplex into a simplex and satisfy the FD-com-
mutation rules (\S 2, [4]). A simplicial map $f:X\rightarrow Y$ of a $c$ . $s$ . $s$ . complex $X$

into another $Y$ is a homomorphism which transforms a q-simplex into a
q-simplex for each $q$ and commutes with $\partial_{i}$ and $s_{i}$ . Throughout this paper,
simplicial maps will be refered to simply as maps. Two maps $f$ and $g:X\rightarrow Y$

arc called homotopic if there is a map $h:X\times I\rightarrow Y$ such that $hk_{0}=f,$ $hk_{1}=g$,
where $k_{0}$ and $k_{1}$ : $X\rightarrow X\times I$ are maps of $X$ into the base and the top of $X\times I$

respectively. We shall denote by $\Delta_{n}$ the $c$ . $s$ . $s$ . complex whose p-simplices
are $(p+1)$-tuples of integers $(i_{0}, i_{1},\cdots, i_{p})$ with $0\leqq i_{0}\leqq i_{1}\leqq\cdots\leqq i_{p}\leqq n$ . The opera-
tors $\partial_{i}$ and $s_{i}$ of $\Delta_{n}$ are defined by the usual manner. The non-degenerate
n-simplex will be denoted by the same letter $\Delta_{n}$ .

Let $\Pi$ be an abelian group and $n\geqq 0$ be an integer. The $c$ . $s$ . $s$ . complex
$1\psi(\Pi, n)$ is defincd as the complex whose q-simplices are the normalized
cochains of $C_{N}^{n}(\Delta_{q}, \Pi)$ . The Eilenbcrg-MacLane complex $K(\Pi, n)$ is a subcom-
plex of $1\psi(\Pi, n)$ . Let $X$ be a $c$ . $s$ . $s$ . complex. For a normalized cocycle
$k\in Z_{N}^{n+1}(X, \Pi)$ , the $c$ . $s$ . $s$ . complex $K(X, \Pi, n;k)$ is a subcomplex of the cartesian
product $x\times l\psi(\Pi, n)$ defined as follows: For a q-simplex $\sigma$ of $X$, there is a
unique map $\hat{\sigma};\Delta_{q}\rightarrow X$ with $\hat{\sigma}(\Delta_{q})=\sigma$ and $\hat{\sigma}$ induces $\hat{\sigma}^{t}$ : $C^{*}(X, \Pi)\rightarrow C^{*}(\Delta_{q}, \Pi)$ .
Then the q-simplices of $K(X, \Pi, n;k)$ are the q-simplices $(\sigma, \rho)\in X\times M(\Pi, n)$

satisfying $\delta_{\beta+\hat{\sigma}}\# k=0$ in $C^{n+1}(\Delta_{q}, \Pi)$ . Define a simplicial map $\lambda:K(X, \Pi, n;k)$

$\times K(\Pi, n)\rightarrow K(X, \Pi, n;k)$ by $\lambda((\sigma, \rho)\times\rho^{\prime})=(\sigma, \rho+\rho^{\prime})$ . For maps $f:K\rightarrow K(X,$ $\Pi,$ $n$ ;
k) and $g;K\rightarrow K(\Pi, n)$ , a map $\lambda(f\times g):K-\rangle$$K(X, \Pi, n;k)$ is defined by $\lambda(f\times g)(\sigma)$

$=\lambda(f(\sigma)\times g(\sigma))$ .
Let $A,$ $B$ be abelian groups and $n\geqq 1,$ $p\geqq 1$ be integers. We put $X=$

$K(K(A, n),$ $B,p-1;k$ )
$,$

$k\in Z^{p}(A, n;B)$ , and $X^{\prime}=K(B)p-1)$ . Denote by the same
letter $1_{0}$ the O-simplex of $X^{\prime}$ or $K(A, n)$ defined by $1_{0}(\Delta_{0})=0$ . Also, denote by
$1_{0}$ the O-simplex $(1_{0},1_{0})$ of $X$ and by $D$ the subcomplex of $X,$ $X^{\prime}$ or $K(A, n)$

generated by all $1_{q}=s_{q-1}\cdots s_{0}1_{0}$ with $q\geqq 0$ . Let $(K, L)$ be a $c$ . $s$ . $s$ . pair and
$f:(K, L)\rightarrow(X, D)$ and $g:(K, L)\rightarrow(X^{\prime}, D)$ be maps. Define a chain map

$R(f,g):(K, L)\rightarrow X$

as the composite of three chain maps:

$(K, L)(K, L)\succ’\backslash (K, L)X\times X^{\prime}-\rightarrow X\underline{e}\underline{R(f)\times R}\underline{(g)}$

where $e$ is the diagonal map, $R(f)\times R(g)$ is the cartesian product of $R(f)$
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and $R(g)$ which are defined by

$R(f)(\rho_{q})=f(\rho_{q})-1_{q}$ , $R(g)(\rho_{q}^{\prime})=g(\rho_{q}^{\prime})-1_{q}$ ,

and $\lambda$ is the map defined in the above. Let $C$ be an abelian group, $q\geqq 1$ be
an integer and $\mathfrak{y}\in H^{q}(X, C)$ be a cohomology class. We shall define an ele-
ment $\mathfrak{h}(f,g)\in H^{q}(K, L;C)$ by

$\mathfrak{y}(f,g)=R(f,g)^{*}\mathfrak{y}$ .
Corresponding to this notation, we shall denote by $\mathfrak{y}(f)$ for the element $R(f)^{*}\mathfrak{y}$ .
Since the element $\mathfrak{y}(f,g)$ depends only on the homotopy classes of maps $f$

and $g$ , and the homotopy class of $g$ is determined by the element $\xi=g^{*}b_{p-1}$

$\in H^{p-1}(K, L;B)$ , where $b_{p-1}\in H^{p-1}(B,p-1;B)$ is the basic cohomology class,
then we shall denote by $\mathfrak{y}(f, \xi)$ for $\mathfrak{h}(f,g)$ . The proofs of the following
lemmas are analogous to that of Theorems 7.1 and 10.2 of [5] respectively.

LEMMA 1. (Naturality) Let $(K, L)$ and $(K^{\prime}, L^{\prime})$ be c. s. s. pairs and $U:(K^{\prime}, L^{\prime})$

$\rightarrow(K, L)$ be a map. Then
$U^{*}(\mathfrak{y}(f, \xi))=\mathfrak{y}(fU, U^{*}\xi)$ , $U^{*}(\mathfrak{y}(f))=\mathfrak{y}(fU)$ .

LEMMA 2. $(Additi\iota’ ity)\mathfrak{y}(\lambda(f\times g))=|)(f, \xi)+\mathfrak{y}(f)+i^{*}\mathfrak{y}\vdash\xi$ , where $\xi=g^{*}b_{p-1},$ $i^{*}:$

$H^{q}(X, C)\rightarrow H^{q}(X^{\prime}, C)$ is induced by the inclusion map $i:X^{\prime}\rightarrow X$ and $\vdash$ is the
operation of Eilenberg-MacLane [51.

Let $\eta:X\rightarrow K(A, n)$ be the projection and $c_{p-1}\in C^{p-1}(X, B)$ be the basic
cochain which is defined by $c_{p-1}((\sigma, \rho))=\rho(\Delta_{p-1})$ . A map $f:(K, L)\rightarrow(X, D)$ is
determined by the map $\eta f$ and the cochain $c_{f}=c_{p-1}f\in C^{p-1}(K, L;B)$ which
satisfy the condition:
(1) $h(\eta f(\sigma_{p}))+\delta c_{f}(\sigma_{p})=0$ (cf. Lemma 1.1, [7]).

It follows from (1) that, for any two maps $f$ and $f^{\prime}$ : $(K)L)\rightarrow(X, D)$ such that
$\eta f=\eta f^{\prime}$ , the cochain $z=c_{f},-c_{f}$ is a cocycle, and if $g;(K, L)\rightarrow(X^{\prime}, D)$ is a map
such that $g(\rho_{p-1})(\Delta_{p-1})=z(\rho_{p-1})$ , then $f^{\prime}=\lambda(f\times g)$ . Conversely, for a cocycle
$z\in Z^{p-1}(K, L;B)$ , if $g:(K, L)\rightarrow(X^{\prime}, D)$ is a map such that $g(\rho_{p-1})(\Delta_{p-1})=z(\rho_{p-1})$ ,

then $c_{\lambda(f\times g}$) $=c_{f}+z$ . Now, consider the set $\{t)(\lambda(f\times g), \xi)\}\subseteqq H^{q}(K, L;C)$ consisting
of all elements $\mathfrak{y}(\lambda(f\times g), \xi)$ with a map $g:(K, L)\rightarrow(X^{\prime}, D)$ . It is easy to see
that, if $b_{n}\in H^{n}(A, n;A)$ is the basic cohomology class, this set depends only
on the cohomology class $\zeta=(\eta f)^{*}b_{n}$ and $\xi$ . Then we shall denote by $\mathfrak{y}(\zeta, \xi)$

for this set. The definition of the set $\mathfrak{y}(\zeta)$ is similar.

2. Classification of cohomology operations of the second kind.

Let $A,$ $B$ be abelian groups and $n\geqq 1,$ $p\geqq 1$ be integers. A cohomology
operation of the first kind $\theta_{1}(A, B, n,p)$ is determined by an element $ R_{\theta_{1}}\in$

$H^{p}(A, n;B),$ $i$ . $e$ . for each element $\zeta\in H^{n}(K, L;A)$ , there is a map $ f:(K, L)\rightarrow$
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$(K(A, n),$ $D$ ) such that $\zeta=f^{*}\backslash b_{n}$ and $\theta_{1}\zeta=R_{\theta_{1}}\vdash\zeta$ . We choose a cocycle $k_{\theta_{1}}$ re-
presenting $\theta_{\theta_{1}}$ and construct the complex $X=K(K(A, n),$ $B,p-1;k_{\theta_{1}}$ ).

Let $C$ be an abelian group and $t$) $\in H^{q}(X, C),$ $q\geqq 1$ , be a cohomology class.
For any $c$ . $s$ . $s$ . pair $(K, L)$ , we shall define a subgroup $G_{\mathfrak{h}}(K, L)\subseteqq H^{q}(K, L;C)$

as the subgroup generated by all the sets $\mathfrak{y}(\zeta, \xi)+i^{*}t)\vdash\xi$ with elements $\xi\in$

$H^{p-I}(K, L;B)$ and $\zeta\in H^{n}(K, L;A)$ such that $\theta_{1}\zeta=0$ . From the naturality of
the operations $\mathfrak{y}(\epsilon, \star)$ and $\vdash$ , we have

$f^{*}G_{t},(K^{\prime}, L^{\prime})\subseteqq G_{\mathfrak{v}^{(}}K,$ $L$ )

for every map $f:(K, L)\rightarrow(K^{\prime}, L^{\prime})$ .
Two cohomology classes $\mathfrak{y}$ and $\mathfrak{z}\in H^{q}(X, C)$ will be called to be equivalent

if
$G_{0}(X)=G_{\mathfrak{h}}(X)$ and $\mathfrak{y}-3\in G_{\mathfrak{h}}(X)$ .

It is clear that this relation is an equivalence relation. We shall denote by
$[\mathfrak{y}]$ the equivalent class containing t) and call it a characteristic class.

LEMMA 3. The group $G_{\mathfrak{h}}(K, L)$ is generated by all elements $\lambda(f\times g)^{*}|J^{-f^{*}\downarrow)}$

with maps $f:(K, L)\rightarrow(X, D)$ and $g:(K, L)\rightarrow(K(B,p-1),$ $D$ ).

PROOF. Since $\lambda(f\times g)^{*}\mathfrak{y}=|)(\lambda(f\times g))$ and $f^{*}\mathfrak{y}=\mathfrak{y}(f)$ , it follows from the
additivity formula that $1$) $(\lambda(f\times g))-\mathfrak{y}(f)=\mathfrak{y}(f,g)+i^{*}\mathfrak{y}\vdash g$.

LEMMA 4. Let $|$), $\partial\in H^{q}(X, C)$ be two cohomology classes. If $[$) $-\mathfrak{z}\in G_{\mathfrak{h}}(X)$ ,
then $G_{\mathfrak{h}}(K, L)=G_{\mathfrak{z}}(K, L)$ . Especially, $\mathfrak{y}$ and 8 are equivalent.

PROOF. This readily follows from Lemma 3, the naturality of $G_{\mathfrak{y}}(K, L)$

and the relation:

$(\lambda(f\times g)^{*}-f^{*})(\mathfrak{y}+\alpha)=(\lambda(f\times g)^{*}-f^{*})t)+\lambda(f\times g)^{*}\alpha-f^{*}\alpha$ ,

for $\alpha\in G_{\mathfrak{h}}(X)$ and maps $f:(K, L)\rightarrow(X, D)$ and $g:(K, L)\rightarrow(K(\prime B,p-1),$ $D$ ).

LEMMA 5. An element $\mathfrak{y}\in H^{q}(X, C)$ defines a cohomology operation of the
second king relative to $\{\theta_{1}(A, B, n,p))C, q\}$ If 1) and $\mathfrak{z}\in H^{q}(X, C)$ are equivalent,
they define a same cohomology operation of the second kind.

PROOF. Define a transformation

02: $H^{n}(K, L;A)\supseteqq Ker(\theta_{1})\rightarrow H^{q}(K, L;C)/G_{\mathfrak{y}}(K, L)$

by
$\theta_{2}(\zeta)=the$ element of $H^{q}(K, L;C)/G_{t)}(K, L)$ containing $\mathfrak{y}(\zeta)$ .

The naturality of $\theta\underline{)}$ is clear. The last proposition follows from Lemma 4.
The cohomology operation $\theta_{2}$ defined in the proof in the above, which is

fully determined by the characteristic class $[\mathfrak{y}]$ , is called to be defined by t)

or $[\mathfrak{y}]$ .
Let

$\psi_{2}$ : $H^{n}(K, L)A)\supseteq Ker(\theta_{1})\rightarrow H^{q}(K, L;C)/G_{\psi_{2}}(K, L)$

be a cohomology operation of the second kind relative to $\{\theta_{1}(A, B, n,p), C, q\}$ .
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We say that $\psi_{2}$ is minimal if the following condition is satisfied:
$(M)$ If there is a,cohomology operation of the second kind $\phi_{2}$ relative to

$\{0_{1}(A, B, n,p), C, q\}$ such that
(2) $G_{\phi_{g}}(K, L)\subseteqq G\psi_{2}(K, L)$ and $\psi_{2}=\tau\circ\phi_{2}$ ,

where $\tau;H^{q}(K, L;C)/^{\prime}G_{\phi_{B}}(K, L)\rightarrow H^{q}(K, L;C)/G\psi_{2}(K, L)$ is the factorization homo-
morphism, then we always have

$G_{\phi_{2}}(K, L)=G\psi_{2}(K, L)$ .
THEOREM 1. Let $0_{2}$ be a cohomology operation of the second kind relative

to $\{0_{1}(A, B, n,p), C, q\}$ . Then there is a minimal cohomology operation $\phi_{2}$ relative
to $\{\theta_{1}(A, B, n,p), C, q\}$ such that

$G_{\phi_{2}}(K, L)\subset G_{\theta_{2}}(K, L)$ and $0_{2}=\tau\circ\phi_{2}$ ,

where $\tau;H^{q}(K, L;C)/G_{\phi_{9}}(K, L)\rightarrow H^{q}(K, L;C)/G_{\theta_{2}}(K, L)$ is the factorization homo-
morphism.

PROOF. Let $c\in H^{n}(X, C)$ be the cohomology class of the cocycle $c$ which
is defined by $c((\sigma, \rho))=\sigma(\Delta_{n})$ . Since $c=\eta^{*}b_{n}$ , it follows from the definition that
$\theta_{1}c=\eta^{*}ff_{\theta_{1}}$ . Since, for each p-simplex $(\sigma, \rho)\in X$, we have $k_{\theta_{1}}\eta(\sigma, \rho)=k_{\theta_{1}}(\sigma)=$

$-\delta c_{p-1}((\sigma, \rho))$ , where $c_{p-1}$ is the basic cochain of $X$, then we have $0{}_{1}C=0$ . We
choose an element $\mathfrak{y}\in 0_{\Delta}c$ and denote by $\phi_{2}$ the cohomology operation defined
by $\mathfrak{y}$ . Let $f:(K, L)\rightarrow(X, D)$ and $g:(K, L)\rightarrow(K(B,p-1),$ $D$ ) be maps. It follows
from the naturality of $0_{1}$ that $0_{1}\zeta=0$ , where $\zeta=(\eta f)^{*}b_{n}=(\eta(\lambda(f\times g)))^{*}b_{n}$ .
Furthermore, from the naturality of $\theta_{2}$ , we have

$\theta_{2}\zeta=\theta_{2}(\eta f)^{*}b_{n}=\theta_{2}f^{*}\eta^{*}b_{n}=\theta_{2}f^{*}c=f^{*}\theta_{-}c$ ,
$\theta_{2}\zeta=\lambda(f\times g)^{*}\theta_{\Delta}c$ .

Since $f^{*}\mathfrak{y}\in f^{*}0_{2}c$ and $\lambda(f\times g)^{*}\mathfrak{y}\in\lambda(f\times g)^{*}\theta {}_{2}C$ , it follows from Lemma 3 that
$G_{\mathfrak{y}}(K, L)\subset G_{\theta_{2}}(K, L)$ and $\theta_{2}=\tau\circ\phi_{2}$ . Then the proof is complete from the follow-
ing lemma.

LEMMA 6. The cohomology operation $\psi_{2}$ defined by an element 1) of $H^{q}(X, C)$

is minimal.
PROOF. Since $\psi_{2}$ is the cohomology operation defined by $\mathfrak{y}$ , we see that

(3) $\mathfrak{y}\in\psi_{2}c$ ,

from the definition. Let $\phi_{2}$ be the cohomology operation of the second kind
satisfying the condition (2). As was shown in the proof of Theorem 1, the
cohomology operation $\theta_{-}$, defined by an element $\int\in\phi_{2}c$ satisfies the condition

(4) $G_{0}(K, L)\subseteqq G_{\phi_{2}}(K, L)$ and $\phi_{2}=\tau\cdot\circ\theta_{2}$ .
It follows from (3), (4) and $\mathfrak{z}\in\theta {}_{2}C$ that $\mathfrak{y}-\mathfrak{z}\in G_{\mathfrak{y}}(X)$ . Then, from Lemmas 4
and 5, $\mathfrak{y}$ and 8 are equivalent and $G_{\mathfrak{h}}(K, L)=G_{\partial}(K, L)$ . This completes the
proof.
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The following theorem follows from Lemmas 5 and 6.
THEOREM 2. There exists $a$ 1-1 correspondence between the minimal coho-

mology operations relative to $\{\theta_{1}(A, B, n,p), C, q\}$ and the characteristic classes of
elements of $H^{q}(K(K(A, n),$ $B,$ $p-1;k_{\theta_{1}}$ )

$,$

$C$).

Amagasaki High School, Amagasaki City.
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