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In the previous paper [1] we introduced a generalization $\#$ of the natural
supporter in of J. Dixmier [2] (cf. [1], Prop. 2.6-2.8) and studied the local
theory concernining elements of $AW^{*}$-algebras (cf. [1], \S \S 1-3; especially
Prop. 3.7).

In this paper, we shall prove the following two theorems, as applications
of these results.

THEOREM I. Let $R$ be a semi-finite $AW^{*}$-algebra acting on a Hilbert space
$\mathfrak{H}$ satisfying the condition that every point of norm one of $\mathfrak{H}$ is p-normal in the
sense of J. Feldman $[3]^{*)}$ considered as a state of R. Then $R$ is a $W^{*}$ -algebra
acting on the same space $\mathfrak{H}$

This is a generalization of a theorem of J. Feldman [3], Theorem 1; we
deal here with semi-finite $AW^{*}$-algebras, whereas J. Feldman dealt only with
finite ones; it is not yet known whether the condition of semi-finiteness is
also redundunt or not.

THEOREM II. Let $R_{i}(i=1,2)$ be $AW^{*}$-algebras acting on a Hilbert space
$\mathfrak{H}_{i}$ satisfying the conditions: (1) the unit element of $R_{i}$ is the identity operator
on $\mathfrak{H}_{i}$ , and (2) every point of norm one of $\mathfrak{H}_{i}$ is p-normal considered as a state
of $R_{i}$ . Let $\varphi$ be an algebraic $*$-isomorphism of $R_{1}$ onto $R_{2}$ in the sense of J. $v$ .
Neumann [4]. Suppose the commutants $R_{1}^{\prime},$ $R.$

)$\lrcorner/ofR_{1},$ $R_{2}$ respectively are nor-
mally infinite in the sense of [1]. Then $\varphi$ is spacial ( $i$ . $e$ . $\varphi$ is written as $\varphi(c_{1})$

$=uc_{1}u^{*}$ for all $c_{1}\in R_{1},$ $u$ being a linear isometry mapping $\mathfrak{H}_{1}$ onto $\mathfrak{H}_{2}$ ), if and
only if there exists an algebraic $*$-isomorphism of $R_{1}^{\prime}$ onto $R_{2}^{\prime}$ whose restriction
on the center $R_{10}$ of $R_{1}$ coincides with that of $\varphi$ on $R_{10}$ .

This is a generalization of a theorem of Y. Misonou [5]. We shall give
a direct proof of this theorem and an alternative proof for the case where
$R_{i}$ are $W^{*}$-algebras. This latter proof is derived from (the local form of) a
result of F. L. Griffin ([6] Theorem 9, [7] Theorem 3) giving a ecessary and
sufficient condition for an algebraic $*$-isomorphism between essentially
bounded $W^{*}$-algebras $R_{1},$ $R_{2}$ to be spacial. We shall give also a proof from

$\star)$ A point $f$ of $\mathfrak{H}$ is called $p$-normal after [3], if for any orthogonal system
$(e_{\iota} ; f\in I)$ of projections of $R$ we have $(\oplus (e_{\iota} ; c\in I)f, f)=\sum((e_{\iota}f, f)$ ; $f\in I$),
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our standpoint for this result of E. L. Griffin’s, which we shall call Theorem
III, as well as for a more general theorem (due to R. Kadison [16], dropping
the condition of essential boundedness), which will be called Theorem IV.
(Our Theorem II itself may be also obtained along the lines of E. L. Griffin’s,
but the proof would be more complicated to describe.)

In \S 1, we introduce the notion of ” mixed relative dimension”. It is
defined for two $AW^{*}$-algebras $R_{1},$ $R_{2}$ acting on Hilbert spaces $\mathfrak{H}_{1)}\mathfrak{H}_{2}$ respec-
tively, when they are algebraically $*$-isomorphic, and it is determined by the
algebraic $*$-isomorphism $\varphi$ of $R_{1}$ onto $R_{2}$ . Next we reestablish the theory of
” qualitative comparison of $\mathfrak{R}$? and $\mathfrak{M}_{J^{M}}$ due to F. J. Murray and J. $v$ .
Neumann [8], Chap. IX in making no use of infinite operator theoretical
method and finally we prove Theorem I with the help of a result of J. Feld-
man [3], Theorem 1.

In \S 2, we first give a direct proof of Theorem II. Next we reestablish
the theory of the coupling operator due to E. L. Griffin [6], [7] with the aid
of our local theory. Then we prove the local form (in the sense of [1])

Theorem IIIi of Theorem III, from which Theorem III and the $ W^{\prime}\triangleright$ -case of
Theorem II follow. Finally we shall prove Theorem IV.

Throughout this paper we use terminologies in [1] without further
reference.

I wish to express my deep gratitude to Prof. S. Iyanaga for his kind
encouragements and to Prof. O. Takenouchi for his valuable remarks. Also,
I express my hearty thanks to Dr. T. Kuroda and Mr. M. Nakai for their
valuable discussions.

\S 1. Mixed relative dimension.

We introduce the following
DEFINITION 1.1. An $AW^{*}$ -algebra is a pair $(R, \mathfrak{H})$ formed by a Hilbert space

$\mathfrak{H}$ and an $AW^{*}$ -algebra acting on $\mathfrak{H}$ satisfying the following conditions:
(1.1) the unil 1 of $R$ is the identity operator of $\mathfrak{H}$,
(1.2) for any point $f$ of $\mathfrak{H}$ and for any orthogonal system $(e_{\iota} ; c\in I)$ of projec-

tions of $R$ we have $(\oplus(e_{\iota} ; \ell\in I)f, f)=\sum((e_{\iota}f, f);f\in I)$ ,

where we denote by $(f, g)$ the inner producl of points $f,$ $g$ of $\mathfrak{H}$

Let $R$ be an $AW^{*}$-algebra formed by $\mathfrak{H}$ and $R$ . We call $\mathfrak{H},$ $R$ the under-
lying Hilbert space, and the underlying $AW^{*}$-algebra of $R$ respectively. We
denote by $R_{0}$ the center of $R$ and call $R_{0}(=((R_{0}, \mathfrak{H}))$ the center of $R$ . Denote
by $\Vert f\Vert$ the norm of a point $f$ of $\mathfrak{H}$ and by the same $f$ the state of $R$ defined
by $f(a)=(af, f)$ for all $a\in R$ .

LEMMA 1.1. Let $R$ be an $AW^{*}$ -algebra and $\mathfrak{H}$ be its underlying Hilberl
space. Then we have $af=0\iota f$ and only if $e_{*}(a)f=0(a\in R, f\in \mathfrak{H})$ .
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PROOF. Sufficiency: Since $a=ae_{*}(a)$ , we have $af=a(e_{*}(a)f)=0$ . Necessity:
Denote by $(e_{t} ; 0\leqq\alpha<\infty)$ the resolution of the unit of $a^{*}a$ . From $\alpha e_{\alpha}^{c}\leqq a^{*}a$

$(\alpha^{\sim_{-}}\prime 0)$ it follows that $e_{\alpha}^{c}f=0$ for $\alpha>0$ . As making $\alpha\downarrow 0$ , we get $e_{0^{c}}f=0$ .
Since $e_{()}^{\prime}=e_{*}(a)$ , we obtain our lemma. $q$ . $e$ . $d$ .

LEMMA 1.2. Let $R$ be an $AW^{*}$ -algebra and $f$ be a point of $\mathfrak{H}$ If we denote
by $j\psi_{f}$ the set of operators $a’ s$ of $R$ with $af=0$ , then we have $1\psi_{f}=Re_{f}$ for some
(uniquely determined) projection $e_{f}$ of $R$ .

PROOF. It is easy to see that ]$\psi_{f}$ is a closed left ideal of $R$ . Denote by
$E_{f}$ a maximally orthogonal system of projections of $1\psi_{f}$ and by $e_{f}$ the supre-
mum of $E,$ . Then we can see $e_{f}\in M_{f}$ by (1.2). If $a\in M_{f}$ , then we have
$ae_{f^{C}}\in]\psi_{f}$ . Hence we have $e_{*}(ae_{f^{C}})f=0$ by Lemma 1.1. By the maximality of
$E_{J}$ , we have $e_{*}(ae_{f^{C}})=0$ , that is, $ae_{f^{C}}=0$ . Thus we get the desired equality
$fIT,=R_{f}^{\rho}’$ . $q$ . $e$ . $d$ .

The complement $e_{f^{c}}$ of $e_{f}$ is called the supporter of $f$ in $R$ and denoted
by $e(f)$ . Similarly the supporter $f$ in the center $R_{0}$ of $R$ is called the central
supporter of $f$ in $R$ and denoted by $e_{0}(f)$ . We say that a projection $e$ of $R$

fixes a point $f$ of $\mathfrak{H}$ if $ef=f$.
LEMMA 1.3. 1) $e(f)$ is the minimal projection of $R$ fixing a point $f$ of $\mathfrak{H}$ .
2) $e_{0}(f)$ is the minimal projection of $R_{0}$ fixing a point $f$ of $\mathfrak{H}$ .
3) $e_{0}(f)=e(f)^{\mathfrak{h}}$ .
4) $e(af)--e(ae(f))$ .
$p_{ROOF}$ . Proof of 1). We have $e(f)f=f$, because $e(f)^{c}f=0$ . On the other

hand, from $ef=f$ it follows that $e^{c}f=0$ , that is, $e^{c}e(f)=0$ by Lemma 1.2. Thus
we get $e(f)\leqq e$ .

Proof of 2) is similar.
Proof of 3). We have $e(f)^{\eta}f=f$, because $e(f)\leqq e(f)^{\mathfrak{h}}$ . Hence it holds that

$e_{0}(f)\leqq e(f)^{\mathfrak{h}}$ . On the other hand, since $e_{0}(f)f=f$, we have $e(f)\leqq e_{0}(f)$ . IIence
we see $e(f)^{\mathfrak{h}}\leqq e_{0}(f)$ . Thus we get 3).

Proof of 4). We have $e(af)\leqq e(ae(f))$ , because $e(ae(f))af=e(ae(f))ae(f)f$

$=af$. Further, denoting $e(af)$ briefly by $e$ , we have $e^{c}af=0$ . Hence we have
$e_{*}(e^{c}a)f=0$ by Lemma 1.1, that is, $e_{*}(e^{c}a)e(f)=0$ by Lemma 1.2. This means

$l$

that $e^{c}ae(f)=0$ , that is, $e(ae(f))\leqq e$ by the definition of $e(ae(f))$ . Thus we get
the desired equality 4). $q$ . $e$ . $d$ .

Let $R_{i}(i=1,2)$ be $AW^{*}$-algebras and $\varphi$ be an algebraic $*$-isomorphism
of $R_{1}$ onto $R_{2}$ . We denote by $R_{i}^{\prime}$ the commutant of $R_{i}$ on $\mathfrak{H}_{t}$ and by $R_{i^{\prime}}$ the
$AW^{*}$-algebra formed by $\mathfrak{H}_{i}$ and $R_{i^{\prime}}$ . We shall say that $R_{\dot{\lambda}}^{\prime}$ is the commutant
of $R_{i}$ . Denote by $A$ the set of operators $a’ s$ mapping $\mathfrak{H}_{1}$ into $\mathfrak{H}_{2}$ satisfying
$ac_{1}=\varphi(c_{1})a$ for all $c_{1}\in R_{1}$ . We use the same notations as in [1], \S 2. (As
$AW^{*}$ -algebras $R_{i},$ $R$ in [1], \S 2, we take $R_{i}^{\prime}$ , the full algebra of operators on
$\mathfrak{H}_{1}\oplus \mathfrak{H}_{2}$ respectively.) Then it can be seen that $a^{*}b\in R_{1}^{\prime},$ $ab^{*}\in R_{2}^{\prime}$ , and $R_{d}^{\prime}$

)
$aR_{1}^{\prime}$
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$\subseteq A$ for $a,$ $b\in A$ . Denote by $I_{i}$ the unit of $R_{i}$ , by $d_{i}$ the relative dimension
of $R_{i}$ , and by $d_{i}^{\prime}$ (or $d_{ii}^{\prime}$ ) that of $R_{i^{\prime}}$ . Moreover we denote by $d_{12^{\prime}}(=d_{0_{1},\lrcorner}^{\prime})$

the relative dimension of $R_{1}^{i}$ into $R_{2}^{\prime}$ and we write $d_{12}^{\prime}(e_{1}^{\prime})\leqq d_{12}^{\prime}(e_{2^{\prime}})$ (or $d_{12}^{\prime}(e_{1^{\prime}})$

$\geq d_{I9}^{\prime}(e^{\prime}\underline{)}))$ for projections $e_{i^{\prime}}$ of $R_{i}^{\prime}$ if there exists an operator $a$ of $A$ satis-
fying $e_{*}(a)=e_{1}^{\prime}$ and $e(a)\leqq e_{\grave{\Delta}}^{\prime}$ (or satisfying $e_{*}(a)\underline{<}e_{1}^{\prime}$ and $e(a)=e_{2}^{\prime}$ ). We write
$d_{12}^{\prime}(e_{1}^{\prime})=d_{12}^{\prime}(e_{2}^{\prime})$ if $d_{12}^{\prime}(e_{1^{\prime}})\leqq d_{12^{\prime}}(e_{2^{\prime}})$ and $d_{12}^{\prime}(e_{1}^{\prime})\geqq d_{12}^{\prime}(e_{2}^{\prime})$ . Then $d_{12}^{\prime}(e_{1^{\prime}})=d_{12}^{\prime}(e_{2}^{\prime})$

holds if and only if there exists an operator $a$ of $A$ satisfying $e_{A}(a)=e_{1}^{\prime}$ and
$e(a)=e_{2}^{\prime}$ . The relative dimensions $d_{l1}^{\prime},$ $d_{22}^{\prime}$ , and $d_{12}^{\prime}(=d_{21^{\prime}})$ satisfy the follow-
ing properties: (1) three conditions $d_{11}^{\prime}(e_{1}^{\prime})\leqq d_{11}^{\prime}(e_{1}^{(1)^{\prime}}),$ $d_{12}^{\prime}(e_{1}^{(1)^{\prime}})\leqq d_{12}^{\prime}(e_{2}^{(1)^{\prime}})$ ,

and $d_{\underline{)}2^{\prime}}(e_{2}^{(1)^{\gamma}})\leqq d_{22}^{\prime}(e_{2}^{\prime})$ imply $d_{12}^{\prime}(e_{1^{\prime}})\leqq d_{12}^{\prime}(e_{2}^{\prime})$ , (2) three conditions $ d_{11}^{\prime}(e_{1}^{\prime})\leqq$

$d_{11}^{\prime}(e_{1}^{(1)^{\prime}}),$ $d_{12}^{\prime}(e_{1}^{(1})^{\prime})\leqq d_{12}^{\gamma}(e_{2}^{(1)^{\prime}})$ , and $d_{21}^{\prime}(e_{2}^{(1)/})\leqq d_{0}^{\prime}\lrcorner 1(e_{1}^{(2)}/)$ imply $ d_{11}^{\prime}(e_{1}^{\prime})\leqq$

$d_{11}^{\prime}(e_{1}^{(2)\prime})_{i}$ and the duals of these. (For any property depending on 1, 2, the
suffixes of $R_{1}^{\prime},$ $R\underline{)}/$ , we call the property obtained by interchanging the role
of 1, 2, its dual.) Denoting by $E_{i^{\prime}}$ the set of projections of $R_{i^{\prime}}$ , we can find
a mapping $d^{\prime}$ , which carries $E_{\iota^{\gamma}}\cup E_{2}^{\prime}$ (the union of $E_{\iota^{\prime}}$ and $E_{2}^{\prime}$ as point-sets)

onto some semi-ordered set, satisfying the following condition:
(1.3) $d^{\prime}(e_{1}^{\prime})\leqq d^{f}(e_{2}^{\prime})$ holds if and only if $d_{11}^{\prime}(e_{1}^{\prime})\leqq d_{11}^{\prime}(e^{\prime}\underline{)})$ for $e_{1}^{\prime},$ $e\underline{)}/\in E_{1}^{\prime}$ ,
$d_{3}^{\prime}\underline{)}(e_{\rfloor}^{\prime})\leqq d_{\rightarrow\underline{)}}^{\prime})(e_{2^{\prime}})$ for $e_{1^{\prime}},$ $e_{2}^{\prime}\in E_{2}^{\prime},$ $d_{12}^{\prime}(e_{1^{\prime}})\leqq d_{1^{Q}}^{f}(e_{2^{\prime}})$ for $e_{1}^{\prime}\in E_{\downarrow’-}^{\prime/}e$

)
$\in E$

)

$/$ and
$d_{)1}^{f}(e_{1}^{\prime})\leqq d_{1^{\prime}})(e^{\prime}\underline{)})$ for $e_{1}^{\prime}\in F_{\lrcorner)}^{\prime},$$e_{\tau}\Delta\wedge^{\prime}\in E_{1}^{\prime}$ .
Obviously the semi-ordered set $d^{\gamma}(E_{1}^{\prime}\cup E_{2}^{\prime})$ is uniquely determined except for
isomorphism as a semi-ordered set. We call $d^{\prime}$ the mixed relative dimension
of $R_{1}$

i and $R_{2}^{\prime}$ determined by $\varphi$ . Sometimes we denote $d^{\prime}(e_{1}^{\prime})\leqq d^{\prime}(e_{2}^{\prime})$ briefly
by $ e_{1}^{\prime}\prec e_{2^{\prime}}\sim$ .

We denote by $e^{\prime}(f_{i})$ the supporter of a point $f_{i}$ of $\mathfrak{H}_{i}$ in $R_{i}^{\prime}$ .
PROPOSITION 1.1. $I_{1}\#=I_{2}$ and $I_{2}^{\mathfrak{p}}=I_{1}$ .
PROOF. We shall prove $ I_{1}=I_{2}\#$ . Let us start by denying it. Then we

can find a non-zero point $f_{1}^{\prime\prime}$ of $\mathfrak{H}_{1}$ with $f_{1}^{\prime\prime}(I_{2}^{\oint})=0$ and a non-zero point $f_{2}$
’

of $\mathfrak{H}_{2}$ with $f_{2}^{\prime}((\varphi(e(f_{1}^{\prime\prime})))^{c})=0$ . We put $e_{2}^{(1)}=e(f_{2}^{\prime}),$ $e_{1}^{(1)}=\varphi^{-1}(e_{2}^{(1)})$ , and $f_{1}^{\prime}=$

$e_{1}^{(1)}f_{i}^{\prime\gamma}$ . Since $e_{-)}^{(I)}=\varphi(e(f_{1}^{\prime\prime}))$ , it holds that $e_{1}^{(1)}=e(f_{1}^{\prime\prime})$ . Hence we get $e_{1}^{(1)}=$

$e(f_{1}^{\prime})$ by Lemma 1.3. By a well known method, we may find a projection $e_{I}$

of $R_{1}$ with $e_{1}\leqq e_{1}^{(1)}$ such that $f_{2}^{\prime}(\varphi(e, $(2) )) $=\theta f_{1}^{\prime}(e, $(2) ) for each projection $e_{1}^{(2)}$ of
$R_{1}$ with $e_{1}^{(2)}=e_{1}$ , where $\theta$ is a positive constant. We put $e_{2}=\varphi(e_{1})$ and $f_{i}=e_{i}f_{t^{\prime}}$ .
Then we have $e_{i}=e(f_{i})$ by Lemma 1.3 and $\Vert\varphi(c_{1})f_{2}\Vert\leqq\theta\Vert c_{\rfloor}f_{1}\Vert$ for each operator
$c_{1}$ of $R_{1}$ . We denote by $a^{0}$ the module-isomorphism of $R_{1}f_{1}$ onto $R_{2}f_{2}$ defined
by $a^{0}c_{\rfloor}f_{1}=\varphi(c_{1})f_{2}$ for each operator $c_{1}$ of $R_{1}$ . Then $a^{0}$ can be extended to
the operator $a$ mapping $\mathfrak{H}_{\iota}$ into $\mathfrak{H}_{2}$ with $e_{*}(a)\leqq e^{\prime}(f_{1})$ and $e(a)=e^{\prime}(f_{2})$ . It is
easy to see that $0\neq a\in A$ . Hence we get $ 0_{\mp}^{\prime}e_{*}(a)\leqq I\underline{)}\#$ . On the other hand,
from $f_{1}=e_{1}e_{1}^{(1)}f_{1}^{\prime\prime}$ it follows that $ 0\neq e_{\aleph}(a)\leqq e^{\prime}(f_{1}^{\prime/})\leqq I_{1}-I_{2}\#$ . This leads to a
contradiction. Thus we get $I_{1}=I_{2}^{1}$ . Similarly, we obtain $I_{2}=I_{1^{\prime}}^{\mu}$ . $q$ . $e$ . $d$ .

Let $R_{i}(i=1,2)$ be $AW^{*}$ -algebras and $\varphi$ be an algebraic $*$ -isomorphism
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of $R_{1}$ onto $R_{2}$ . Denote by $R_{i0}$ the center of $R_{i}$ , by $R_{i0}^{\prime}$ the center of the
commutant $R_{i^{\prime}}$ of $R_{i}$ , and by $\varphi_{0}$ the restriction of $\varphi$ on $R_{10}$ . We notice that
$R_{i0}\subseteqq R_{i0}^{\prime}$ , but I can not verify that $R_{i0}=R_{i0}^{\prime}$ . According to Prop. 1.1, $\#$ is
extended to an algebraic $*$-isomorphism (denoted again by $\#$) of $R_{10}^{\prime}$ onto
$R)0^{\prime}$ by [1], Prop. 2.8. Moreover, we have from the proof of [1], Prop. 2.8,
$\varphi_{0}(e_{10})=e_{10}\#$ for $e_{10}\in E_{I0}(=E_{1}\cap R_{10})$ and so $\varphi_{0}(c_{10})=c_{10^{\#}}$ for $c_{10}\in R_{10}$ . The
algebraic*-isomorphism $\#$ induces a homeomorphism $\nu^{\prime}$ mapping the spectrum
$2_{1}^{\prime}$ of $R_{10}^{\prime}$ onto the spectrum $f2_{2}^{\prime}$ of $R_{20}^{\prime}$ . We identify a point $\lambda_{1}^{\prime}$ of $\Omega_{1}^{\prime}$

with its image $\nu^{\prime}(\nu_{1}^{\prime})$ of $\Omega_{2}^{\prime}$ by $\nu^{\prime}$ and denote these $\lambda_{1}^{\prime},$ $\nu^{\prime}(\lambda_{1})$ by $\lambda^{\prime}$ . In this
sense, we may consider the local relative dimension $d_{12,\lambda}^{\prime}$ , of $R_{1}^{\prime}$ into $R_{2}^{\prime}$ .
Namely, we say that $d_{12,\lambda/}^{\prime}(e_{1}^{\prime})\leqq d_{12,\lambda/}^{\prime}(e_{2}^{\prime})$ holds for $e_{i}^{\prime}\in E_{t}^{\prime}$ if and only if
$d_{12}^{\prime}(e_{10}(\lambda^{\prime})e_{1^{\prime}})\leqq d_{12}^{\prime}(\varphi^{0}(e_{10}(\lambda^{\prime}))e_{2}^{\prime})$ holds for some projection $e_{10}(\lambda^{\prime})$ of $E_{10}(\lambda^{\prime})$ .
( $\Gamma_{d}^{r_{1()}}(\lambda^{\prime})=the$ set of projections $e_{10}(\lambda^{\prime})s$ of $R_{10}^{\prime}$ with $\lambda^{\prime}(e_{10}(\lambda^{\prime}))=1.$ ) By a similar
argument as before, we may consider the local relative dimension $d_{\lambda}^{\prime}$ between
$R_{1}^{\prime}$ and $R_{2}^{\prime}$ . It is composed of $d_{11.\lambda/}’,$ $d_{2^{\underline{Q}},\lambda}^{\prime}$ , and $d_{12,\lambda’}^{\prime}(=d_{21,\lambda},’)$ . Sometimes
we denote $d_{\lambda^{f}}^{\prime}(e_{1^{\prime}})\leqq d_{\lambda}^{\prime}(e_{2}^{\prime})$ briefiy by $e_{1}^{\prime}\prec e_{2}^{\prime}\sim\lambda^{\prime}$ .

PROpOSITION 1.2. The semi-order of $d_{\lambda’}^{\prime}(E_{1}^{\prime}\cup E_{2}^{\prime})$ induced by $d_{\lambda/}^{\prime}$ is linearly
ordered.

PROOF. Let $e_{i^{\prime}}(i=1,2)$ be an arbitrary projection of $R_{i^{\prime}}$ ; Then we can
find a maximal partial isometry $u$ of $A$ satisfying $e_{*}(u)\leqq e_{1^{\prime}}$ and $e(u)\leqq e_{2}^{\prime}$ .
Then we have $(e_{\supset,\lrcorner}^{\prime}-e(u))A(e_{1^{\prime}}-e_{*}(u))=0$ . Hence it holds that $(e_{2}^{\prime}-e(u))^{g}(e_{1}^{\prime}$ –

$e_{*}(u))^{\mathfrak{h}}=0$ by [1], Prop. 2.6. If $\lambda((e_{2^{\prime}}-e(u))\#)=0$ , we have $ e_{2}^{\prime}\prec,e_{1}^{\prime}\sim\lambda$ . And, if
$\lambda((e_{I}^{\prime}-e_{*}(u))^{\mathfrak{h}})=0$ , we get $e_{1}^{\prime}\preceq e^{\prime}$ . This completes the proof combining with
[1], Prop. 3.7. $q$ . $e$ . $d$ .

We say that a projection $e$ of $R$ is cyclic if it is the supporter of a point
of $\mathfrak{H}$ It is not hard to see that every cyclic projection is countably decom-
posable. (Here we say that a projection $e$ is countably decomposable if, for any
decomposition $e=\oplus(e_{\iota} ; \ell\in I),$ $I$ must be at most countable.) Moreover we have
the following

LEMMA 1.4. Let $R$ be an AW’-algebra and $d$ be ils relative dimension. If
$e_{1},$ $e_{2}$ are normally infinite cyclic projections of $R$ with $e_{1}^{\mathfrak{h}}=e_{\Delta}^{\mathfrak{h}}$ , then we have
$d(e_{1})=d(e_{2})$ .

PROOF. By [1], Prop. 3.7, we may assume that $e_{1}\leqq e_{2}$ . Since $e_{1}$ is normally
infinite, we have a decomposition $e_{1}=\oplus(e_{1}^{(n)} ; 1\leqq n<\infty)$ with $d(e_{1}^{(I)})=d(e_{1}^{(n)}$ ;
$1\leqq n<\infty)$ by [1], Prop. 3.2. Then there exist a projection $e_{0}$ of $R_{0}$ and a
decomposition $e_{0}e_{2}=\oplus(e_{0}e_{1}^{()} ;\iota f\in I)$ such that $d(e_{0}e_{1}^{(\iota)})=d(e_{0}e_{1}^{(1)})(f\in I)$ and that
$I$ contains all natural numbers. Since $e_{2}$ is countably decomposable, $I$ is a
countable set. Hence we get $d(e_{0}e_{1})=d(e_{0}e_{2})$ . This completes the proof, because
the equivalence is normal as a property in the sense of [1], \S 1. $q$ . $e$ . $d$ .

The following lemma is due to F. J. Murray and $J,$ $v$ . Neumann [8], but
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the present proof uses only bounded linear operators.
LEMMA 1.5. Let $R$ be an $AW^{*}$ -algebra and $f,$ $f_{n}(1\leqq n<\infty)$ be points of $\mathfrak{H}$

Suppose that (1) $f_{n}\rightarrow f$ (strong) and (2) $d(e(f_{n}))\leqq d(e)$ for some projection $e$ of $R$ .
Then it holds that (3) $d(e(f))\leqq d(e)$ .

PROOF. If $e(f)=0$ , then (3) is obvious. Hence we may assume that $e(f)$

$\neq 0$ . By taking $e(f)f_{n}$ instead of $f_{n}$ , we may assume that $e(f_{n})\leqq e(f)$ . From
the fact that $e(f_{n})f\rightarrow e(f)f$ it follows that $e(f_{n})\rightarrow e(f)$ (strong). In fact, it
holds that $(bf;b\in R^{\prime})$ is dense in $e(f)\mathfrak{H}(=(e(f)g;g\in \mathfrak{H}))$ , that $e(f_{n})bf\rightarrow e(f)bf$,

and that $\Vert e(f_{n})\Vert\leqq 1(1\leqq n<\infty)$ . We shall prove the lemma locally. Moreover
we may assume that $e\leqq e(f)$ by [1], Prop. 3.7. First, if $e$ is locally normally
infinite, we have $d_{\lambda}(e)=d_{\lambda}(e(f))$ by Lemma 1.4, for the supporter of a point is
countably decomposable. Next, if $e(f)$ is locally finite, from the fact that
$e(f_{n})\rightarrow e(f)$ (strong) follows that $t(e(f_{n}))\rightarrow t(e(f))$ locally (strong) by a (similar)

theorem of J. Dixmier [2], theorem 17, where we denote by $t$ the trace of $R$

defined locally, whose existstence was proved by Ti. Yen [9]. Hence, in
view of (2), we get $t(e(f))=t(e)$ locally, that is, $d_{\lambda}(e(f))=d_{\lambda}(e)$ . Pinally, if $e$ is
locally finite and if $e(f)$ is locally normally infinite, by taking an arbitrary
locally finite projection $e^{\prime}$ of $R$ with $e^{\prime}\leqq e(f)$ instead of $e(f)$ and by taking
$e^{\prime}f,$ $e^{\prime}f_{n}$ instead of $f,$ $f_{n}$ respectively, and by repeating the above argument,
we can obtain $d_{\lambda}(e^{\prime})\leqq d_{\lambda}(e)$ . This is a contradiction. Since the property that
$d(e(f))\leqq d(e)$ is normal as a property in the sense of [1], \S 1, we arrive at (3).

$q$ . $e$ . $d$ .
The following proposition is a generalization of [8], Lemma 9.3.3.
PROPOSITION 1.3. Let $R_{l}(i=1,2)$ be $AW^{Y}$ -algebras and $\varphi$ be an $al_{i^{\zeta j}}\supset ebraic$

$*$-isomorphism of $R_{1}$ onto $R_{0,\lrcorner}$. Then $d(\varphi(e(f_{1})))\leqq d(e(f_{2}))$ holds if $d^{\prime}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{\rightarrow})))$

holds.
PROOF. Since $d^{\prime}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{2}))$ , we can find a partial isometry $u$ of $A$

with $e_{*}(u)=e^{\prime}(f_{1})$ and $e(u)\leqq e^{\prime}(f_{2})$ . Put $f_{2}^{\prime}=uf_{1}$ . Then we have (1) $e^{\prime}(f_{2}^{\prime})=e(u)$

and (2) $e(f_{2}^{\prime})=\varphi(e(f_{1}))$ . In fact, $e_{2^{\prime}}f_{2}^{\prime}=0(e_{2}^{\prime}\in E_{2}^{\prime})$ holds if and only if $e_{2}^{\prime}uf_{1}$

$=0$ , that is, $u^{*}e_{2}^{\prime}uf_{1}=0$ and so $u^{*}e_{2}^{\prime}ue^{\prime}(f_{1})=0$ by Lemma 1.3 and then $e_{2}^{\prime}ue^{\prime}(f_{1})$

$=0$ . Since $e_{*}(u)=e^{\prime}(f_{1})$ , this implies that $e_{2}^{\prime}u=0$ and so $e_{2}^{\prime}e(u)=0$ . This shows
(1). Similarly, $\varphi(e_{1})f_{2}^{\prime}=0(e_{1}\in E_{1})$ holds if and only $\varphi(e_{1})uf_{1}=0$ and so $ue_{1}f_{1}$

$=0$ and then $e_{*}(u)e_{1}f_{1}=0$ by Lemma 1.1. Since $e_{\backslash }\}_{\backslash }(u)=e^{\prime}(f_{1})$ , this implies that
$e_{1}f_{1}=0$ . This shows (2). Since $e^{\prime}(f_{2}^{\prime})\leqq e^{\prime}(f_{2})$ , we can find a sequence ( $c_{n}$ ;
$1\leqq n<\infty)$ of elements of $R_{2}$ such that $c_{n}f_{2}\rightarrow f_{2}^{\prime}$ (strong). Since $d(e(c_{n}f_{2}))=$

$d(e(c_{n}e(f_{2})))\leqq d(e(f_{2}))$ by Lemma 1.3, it holds that $d(e(f_{2}^{\prime}))\leqq d(e(f_{2}))$ by Lemma
1.5. From this and from (2) we get the assertion. $q$ . $e$ . $d$ .

$CoROLLARY$ . Let $R$ be an AW*-algebra and $f_{i}(i=1,2)$ be points of $\mathfrak{H}$ . Then
$d(e(f_{1}))\leqq d(e(f_{2}))$ holds if $d^{\prime}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{2}))$ holds.

PROOF. We consider $R$, the identity mapping as $R_{i},$
$\varphi$ in Prop. 1.3 respec-
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tively. Then we get readily the assertion. $q$ . $e$ . $d$ .
DEFINITION 1.2. An $AW^{*}- al_{\mathscr{Z}}braR$ is called $W^{*}$ if its underlying $AW^{*}-$

algebra $R$ is a $W^{\{\prime}\backslash $ -algebra acting on its underlying $Ifi$lbert space $\mathfrak{H}$

Let $R$ be an $AW^{*}$-algebra. Denote by $\overline{R}$ the weak closure of $R$ on $\mathfrak{H}$.
The $W^{*}$ -algebra formed by $\overline{R}$ and $\mathfrak{H}$ is called the weak closurc of $R$ and
denoted by $\overline{R}$. Denote by $\overline{e}(f)$ the supporter of a point $f$ of $\mathfrak{H}$ in $\overline{R}$ ; denote
by $\overline{d}$ the relative dimension of $\overline{R}$ .

Now, we impose the following assumption:
$(A)$ $\overline{d}(\overline{e}(f_{1}))=\overline{d}(\overline{e}(f_{2}))$ holds if $d(e(f_{1}))=d(e(f_{2}))$ holds $(f_{1}, f_{\sim^{)}}\in\zeta_{\circ}))$ .

It seems to me that this assumption is valid for any $AW^{*}$-algebra, but I can
not verify it. It is obvious that $(\Lambda)$ holds for any $W^{*}$-algebra.

From now on we shall denote by putting * the result which is valid
under the assumption $(A)$ .

LEMMA* 1.6. Let $R$ be an $AW^{*}$ -algebra with $(A)andf_{i}$ be points of $\mathfrak{H}$

Then we have $\overline{d}(\overline{e}(f_{1}))\leqq\overline{d}(\overline{e}(f_{2}))$ if $d(e(f_{1}))\leqq d(e(f_{\sim^{)}}))$ holds.
PROOF. Since $d(e(f_{1}))\leqq d(e(f_{2}))$ , we can find a partial isometry $u$ of $R$ with

$e_{*}(u)=e(f_{1})$ and $e(u)\leqq e(f_{\lrcorner}))$ . Put $f_{2}^{\prime}=e(u)f_{2}$ . Then we have $e(f_{2}^{\prime})=e(u)$ by
Lemma 1.3 and so $d(e(f_{2}^{\prime}))=d(e(f_{1}))$ . Hence we have $d^{\prime}(e^{\prime}(f_{2}^{\prime}))=d^{f}(e^{\prime}(f_{1}))$ by
$(A)$ . On the other hand, it is easy to see that $e^{\prime}(f_{\mathfrak{g}^{\prime}})\leqq e^{\prime}(f_{2})$ . From these it
follows that $d^{\prime}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{2}))$ . By taking $R^{\prime}$ instead of $R$ and by repeating
the above argument, from $d^{\prime}(e^{\gamma}(\int_{1}))\leqq d^{\prime}(e^{\prime}(f_{2}))$ it follows that $\overline{d}(\overline{e}(f_{1}))\leqq\overline{d}(\overline{e}(f_{2}))$ ,

for $R$ is $W^{*}$ and so satisfies $(A)$ . $q$ . $e$ . $d$ .
$p_{ROPCSITION^{*}}1.3$ . Let $R_{i}(i=1,2)$ be $AW^{*}$ -algebras with $(A)$ ; let $\varphi$ be

an $al_{o^{\circ}}ebraic$ $*$ -isomorphism; let $f_{i}(i=1,2)$ be points of $\mathfrak{H}_{i}$ . Then following
statements are equivalent to each other:
(1.4) $d(\varphi(e(f_{1})))=d(e(f_{\sim^{)}}))$ ,

(1.5) $d^{\prime}(e^{\prime}(f_{1}))=d^{\prime}(e^{\prime}(f_{2}))$ .
PROOF. (1.5) implies (1.4). This implication has already shown in Prop.

1.3.
(1.4) implies (1.5). In order to see (1.4), we need only to see it locally

with respect to a spectre $\lambda^{\prime}$ of $R_{i^{\prime}}$ by making use of [1], Prop. 1.1. Further,
if $d_{\lambda’}^{\prime}(e^{f}(f_{1}))\leqq d_{\lambda’}^{\prime}(e^{\prime}(f)))$ , we get (1.5) locally and so we may assume that
$d_{\lambda}^{\prime}(e^{\prime}(f_{2}))\leqq d_{\lambda}^{\prime}(e^{\prime}(f_{1}))$ by Prop. 1.2. Hence we can find two projections $e_{i0}^{\prime}(\lambda^{\prime})$

of $E_{i0}(\lambda^{\prime})(i=1,2)$ with $e_{10^{\prime}}(\lambda^{\prime})^{\mu}=e_{20}^{\prime}(\lambda^{\prime})$ such that $d^{\prime}(e_{20}^{\prime}(\lambda^{\prime})e^{f}(f_{2}))\leqq d^{f}(e_{10}^{\prime}(\lambda^{\prime})e^{\prime}(f_{1}))$ .
Write $f_{i^{0}}$ for $e_{i0}^{f}(\lambda^{\prime})f_{i}$ and denote by $e_{i0}$ the minimal projection of R. fixing
$e_{i0^{\prime}}(\lambda^{\prime})$ . Then we have $\varphi_{0}(e_{10})=e_{20}$ , for $\varphi_{0}$ is the restriction of $\#$ . Further we
have $e(f_{i}^{0})=e_{i0}e(f_{i})$ and so $d(\varphi(e(f_{1}^{0})))\leqq d(e(f_{2}^{0}))$ . Moreover we have $e^{\prime}(f_{i^{0}})=$

$e_{i0}^{\prime}(\lambda^{\prime})e^{\prime}(f_{i})$ and so $d^{f}(e^{\prime}(f_{2}^{0}))\leqq d^{\prime}(e^{\prime}(f_{1}^{0}))$ . $r_{1^{\backslash }hus}$ we have shown that, to see
(1.5), we may assume without loss of generality that $d^{\prime}(e^{\prime}(f_{2}))\leqq d^{\prime}(e^{\prime}(f_{1}))$ .
Therefore there exists a partial isometry $u$ of $A$ with $e_{*}(u)\leqq e^{\prime}(f_{1})$ and $e(u)$
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$=e^{\prime}(f_{2})$ . Put $f_{1}^{\prime}=u^{*}f_{2}$ . Then we have $e^{\prime}(f_{1}^{\prime})=e_{*}(u)$ and $\varphi(e(f_{1}^{\prime}))=e(f_{2})$ by a
similar argument as in the proof of Prop. 1.3. Since $d(\varphi(e(f_{1})))\leqq d(e(f_{2}))=$

$d(\varphi(e(f_{1}^{\prime})))$ , we have $d(e(f_{1}))\leqq d(e(f_{1}^{\prime}))$ , for the relative dimension is an alge-
braical property in the sense of J. $v$ . Neumann [4]. Hence we have $\overline{d}(\overline{e}(f_{1}))$

$\leqq\overline{d}(\overline{e}(f_{1}^{\prime})I$ by $(A)$ and so $d^{f}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{1}^{\prime}))$ by Prop. 1.3 (applying to $\overline{R}_{1}$ ).

On the other hand, we have already had $e^{\prime}(f_{1}^{\prime})=e_{*}(u)\leqq e^{\prime}(f_{1})$ . Hence we
obtain $d^{\prime}(e^{\prime}(f_{1}))=d^{\prime}(e^{\prime}(f_{1}^{f}))$ and so $=d^{\prime}(e_{*}(u))=d^{\prime}(e(\iota\iota))=d^{\prime}(e^{\prime}(f_{2}))$ . This shows
(1.5). q. e. $d$ .

$CoROLLARY*$ . Let $R$ be an $AW^{*}$ -algebra with $(A)$ and $f_{t}(i=1,2)$ be points

of $\mathfrak{H}$. Then folloov$ing$ statements are mutually equivalent:
(1.6) $d(e(f_{1}))\leqq d(e(f_{2}))$ ,
(1.7) $d^{\prime}(e^{\prime}(f_{1}))\leqq d^{\prime}(e^{\prime}(f_{2}))$ ,
(1.8) $\overline{d}(\overline{e}(f_{1}))\leqq\overline{d}(\overline{e}(f_{2}))$ .

PROOF. The implications $(1.7)\rightarrow(1.8),$ $(1.8)\rightarrow(1.7)$ , and $(1.7)\rightarrow(1.6)$ are con-
sequences of Prop. 1.3 and so these are valid without the assumption $(A)$ .
And the implication $(1.6)\rightarrow(1.8)$ is nothing but $(\Lambda)$ . $q$ . $e$ . $d$ .

$p_{ROPOSITION^{*}}1.4$ . $R_{0^{\prime}}=R_{0}$ .
PROOF. In order to see Prop*. 1.4, we need only to see that $e_{0^{\prime}}(f)=e_{0}(f)$

for any point $f$ of $\mathfrak{H}$ , where we denote by $e_{0}^{f}(f)$ the stipporter of $f$ in $R_{0^{\prime}}$ .
So, let us denying the above assertion for some point $f$ of $\mathfrak{H}$ We notice that
$e_{0^{\prime}}(f)\leqq e_{0}(f)$ and so we can find a non-zero point $g$ of $\mathfrak{H}$ such as $(e_{0}(f)-e_{0^{\prime}}(f))g$

$=g$. Since $g\neq 0$ , we have $0\neq e_{0}(g)\leqq e_{0}(f)$ . IIence $e(g)^{\mathfrak{h}}e(f_{1^{\mathfrak{h}}}\neq 0$ by $Lemma$ ] $.3$ .
Therefore there exists a non-zero partial isometry $u$ of $R$ with $e_{*}(u)\leqq e(g)$

and $e(u)\leqq e(f)1\supset y[1]$ , Prop. 2.7, (2.18). Put $g^{\prime}=e_{*}(u)g$ and $f^{\prime}=e(u)f$. Then
we have $e(g^{\prime})=e_{*}(u)$ and $e(f^{\prime})=e(u)$ by Lemma 1.3. Thus we have $ d(e(g))\geqq$

$d(e(g^{f}))=d(e(f^{\prime}))\leqq d(e(f))$ . Applying Corollary* of Prop*. 1.3 to these formula,
we get $d^{\prime}(e^{\prime}(g))\geqq d^{\prime}(e^{\prime}(g^{\prime}))=d^{f}(e^{\prime}(f^{\prime}))\leqq d^{\prime}(e^{\prime}(f))$ . Since $g^{\gamma}\neq 0$ and $f^{\prime}\neq 0$ by the
definition of supporter, wc have from these $e^{\prime}(g)^{\mathfrak{h}}e^{\prime}(f)^{\mathfrak{h}}\neq 0$ by [1], Prop. 2.7,
(2.18). Since $e^{\prime}(g)^{\mathfrak{h}}=e_{0^{\prime}}(g)$ and $e^{\prime}(f)\#=e_{0^{\prime}}(f)$ by Lemma 1.3, we get thus
$e_{0^{\prime}}(g)e_{0^{\prime}}(f)\neq 0$ . This is a contradiction, for $e_{0}^{\prime}(f)g=e_{0^{\prime}}(f)(e_{0}(f)-e_{0}^{\prime}(f))g=0$ and
so $e_{0^{\prime}}(g)e_{0}^{\prime}(f)=0$ . $q$ . $e$ . $d$ .

By virtue of Prop*. 1.4 every spectrum of $R^{\prime}$ is considered as a spectrum
of $R$ .

The following proposition is due to F. J. Murray-J. $v$ . Neumann [8], I. E.
Segal [10], and E. L. Griffin [6].

$P_{ROPOSlTION^{*}}1.5$ . Let $R$ be an $AW^{i^{\prime}}\backslash $ -algebra wilh $(A)$ . Then we have
(I) $e^{\prime}(f)$ is an irreducible projection of $R^{\prime}$ if and only if $e(f)$ is an irre-

ducible projection of $R$.
(II) $e^{\prime}(f)$ is a finite projection of $R^{\prime}$ if and only if $e(f)$ is a finite projec-

tion of $R$.
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(III) $e^{\prime}(f)$ is a purely infinite projection of $R^{\prime}$ if and only if $e(f)$ is a
purely infinite projection of $R$, where we say that a proiection $e$ of $R$ is purely

infinite if $eRe$ is purely infinite, that is, of type (III).
$p_{ROOF}$ . Proof of (III). Let $e_{i^{\prime}}(i=1,2)$ be projections of $R^{\prime}$ with $e_{i^{\prime}}\leqq e^{\prime}(f)$

and $e_{\iota^{\mathfrak{h}}}=e^{\prime}(f)^{\mathfrak{h}}(i=1,2)$ . Then we have $e_{i^{\prime}}=e^{\prime}(e_{\iota^{\prime}}f)$ by Lemma 1.3 and $d(e(e_{i}^{\prime}f))$

$\leqq d(e(f))$ by Prop. 1.3. $\grave{\circ}^{C}incee(f)$ is purely infinite, we have from the former
$d(e(e_{1^{\prime}}f))=d(e(f))=d(e(e_{2}^{\prime}f))$ . Applying Prop*. 1.3 to this fact, we get $d^{\prime}(e_{1}^{\prime})$

$=d^{\prime}(e_{2}^{\prime})$ . This means that $e^{f}(f)$ is purely infinite.
Proof of (II). First we shall prove (II) locally. Since $e(f)$ is finite, it

is locally finite (with respect to any spectre $\lambda$ of $R$) by [1], Prop. 1.1.
Hence, by the local form of (III) just proved, $e^{\prime}(f)$ is not locally purely
infinite and hence we can find a locally finite projection $e^{\prime}$ of $R^{\prime}$ satisfying
that $\lambda(e^{\prime \mathfrak{h}})=\lambda(e^{\prime}(f)\#)$ and that $e^{\prime}\leqq e^{\prime}(f)$ . We denote $e(e^{\prime}f)$ briefly by $e$ . Then,
from the fact that $e(e^{\prime}f)\leqq e(f)$ it follows that $e$ is locally finite. Moreover,

if $e$ is locally non-singular projection of $e(f)Re(f)$ , we may find a local
decomposition e $(f)=\lambda\oplus(e_{\iota};1\leqq i\leqq n)withd_{\lambda}(e_{\iota})\leqq d_{\lambda}(e)(1\leqq i\leqq n)$ . $Wedenotee^{\prime}(e_{i}f)$

briefiy by $e_{i^{\prime}}$ . Since $d_{\lambda}(e_{i})\leqq d_{\lambda}(e)$ , we see $d_{\text{{\it \‘{A}}}^{\prime}}(e_{i^{\prime}})\leqq d_{\lambda}^{\prime}(e^{\prime})$ by the local form of
Corollary* of Prop.$*1.3$ . We denote $\cup$ $(e_{i^{\prime}} ; 1\leqq i\leqq n)$ by $e^{(1)}/$ . Then $e^{(1)}/is$

locally finite. On the other hand, we have $e^{(1)^{\prime}}e_{i}f=ef(1\leqq i\leqq n)$ , that is
$e^{(1)\prime}f=\lambda f$. This means that $e^{\prime}(f)\leqq\lambda e^{(1)^{\prime}}$ . (Here, we use the notation $f=\lambda g(f,$ $g$

$\in \mathfrak{H})$ , which means that $e_{0}(\lambda)f=e_{0}(\lambda)g$ for some $e_{0}(\lambda)\in E_{0}(\lambda).)$ Hence $e^{\prime}(f)$ is
locally finite. By [1], Lemma 4.2, it is easy to see that a spectre with respect
to which $e$ is locally singular, is a limiting spectre of spectres with respect
to which $e$ is locally non-singular. From this and from the normality of
f}nitencss of a projection, we can conclude that $e^{\prime}(f)$ is $1oC_{\epsilon_{\vee}^{111y}}^{\prime}$ finite, even if
wc drop the assumption that $e$ is locally non-singular. Thus we arrive at
the assertion by [1], Prop. 1.1.

Proof of (I). First we notice that $e(e^{\prime}f)=e^{\prime \mathfrak{h}}e(f)$ for $e^{\prime}\leqq e^{\prime}(f)$ if $e(f)$ is an
irreducible projection of R. $\ln$ fact, $e(e^{\prime}f)=e(e^{\prime}f)^{\mathfrak{h}}e(f)=e_{0}(e^{\prime}f)e(f)=e^{\prime}(e^{\prime}f)^{\mathfrak{h}}e(f)$

$=e^{\prime \mathfrak{h}}e_{\langle}^{\prime}f)$ . Now we take two projections $e_{1}^{\prime},$ $e_{2}^{\prime}$ of $R^{\prime}$ satisfying that $e_{1}^{\prime}e_{2}^{\prime}=0$

and that $e^{\gamma}(f)\geqq e_{1}^{\prime}\sim e_{2}^{\prime}\leqq e^{\prime}(f)$ . Since $(e_{1}^{\prime}\oplus e_{2}^{\prime})^{v}e(f)=e_{1}^{\prime \mathfrak{h}}e(f))$ we obtain $e_{1}^{\prime}\oplus e_{2}^{\prime}$

$\sim e_{1}^{\prime}$ by Corollary* of Prop.$*1.3$ . Since $e(f)$ is irreducible, it is finite and
hence $e^{\prime}(f)$ is finite by (II). Hence $e_{1}^{\prime}\oplus e_{2}^{\prime}$ is also finite. Then we must have
$e_{1^{\prime}}=e_{2}^{\prime}=0$ . This means that $e^{\prime}(f)$ is irreducible. q. e. $d$ .

$C_{oROLLARY^{*}}$ . Let $R$ be an $AW^{*}$ -algebra with $(A)$ . Then we have
(I) $R^{\prime}$ (or $\overline{R}$) is of lype (I) if and only if $R$ is of type (I).

(II) $R^{\prime}$ (or $\overline{R}$) is of type (II) if and only if $R$ is of type (1I).

(I1I) $R^{\prime}$ (or $\overline{R}$ ) is of type (I1I) if and only if $R$ is of type (III).

PROOF. If $R$ is of type $(X^{\prime})$ ($*=I$ , II, III), there exists a projection $e(f)$

$(f\in \mathfrak{H})$ of $R$ of the same type $(*)$ and so $e^{\prime}(f)$ is of the same type $(*)$ . This
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implies that $R^{\prime}$ is of the same type (k). Similarly, since $e(f)$ is of the same
$typ_{\vee}^{\circ}(i\}^{\prime})$ by applying Prop.$*1.5$ to $R^{\prime},\overline{R}$ is of the same type $(*)$ . By a similar
argument, we obtain also the ” only if ” part of the assertion. $q$ . $e$ . $d$ .

A triple $(R, \mathfrak{H}\cdot f)$ formed by an AW’-algebra $R(=(R, \mathfrak{H}))$ and a point $f$

of $\mathfrak{H}$ with $e(f)=1$ is called a cyclic $AW^{*}$-algebra.
Let $R$ be a finite, cyclic $AW^{k}$ -algebra formed by $\mathfrak{H},$ $R$ , and $f$. By virtue

of a theorem of Ti. Yen [9], $R$ has a trace $t$ (also cf. [1], Theorem 4.2).

$De1^{1_{L}}ote$ by $\tau$ the $p$ -normal state of $R$ defined by $\tau(c)=f(t(c))(c\in R)$ . Then $R$ is
considered as a unitary space with an inner product $(a, b)$ defined by $(a, b)$

$=\tau(b^{*}\backslash a)(a, b\in R)$ . D-.llote by $\mathfrak{H}_{\tau}$ its completion and by $\eta$ the injection of $R$

into $\mathfrak{H}_{\tau}$ The Hilbert space $\mathfrak{H}_{\tau}$ is a representation space of $R$ and its repre-
sentation $\phi$ is faithful. J. Feldman [3] proved that this triple $R_{\tau}(=(\phi(R)$ ,
$\mathfrak{H}_{\tau},$ $\eta(1)))$ is a cyclic $W^{*}$-algebra, where we denote the unit of $R$ by 1. By
making use of this $reQ_{\lrcorner}u1\iota$ of J. Feldman, we prove the following

LEMMA 1.7. Every finite $AW^{1^{\prime}}\backslash $ -algebra is $W^{*}$ .
PROOF. Let $ Rb_{\vee}\neg$ a fnite $AW^{*}$-algebra and let $f$ be a point of $\mathfrak{H}$ . In

order to prove Lemma 1.7, we need only to $s\circ.e$ that $\overline{e}(f)=e(f)$ , for every
opcrator of $R$ is $writ_{\vee}^{L}en$ as a uniform limit of linear combinations of projec-
tions of $R$ and $eacl_{1}$ projection of $R$ is expressed as an orthogonal sum of
such projections as $\overline{e}(f)$ for some $f\in \mathfrak{H}$ . lIence we may assume that $R$ is a
finite, cyclic $AW^{\{\prime}\backslash $ -algebra formed by $\mathfrak{H},$ $R$ , and $f$. By a well known method,
we can find a $non- z_{\vee}^{\neg}ro$ projection $e_{1}$ of $R$ such that $\theta_{1}\Vert ce_{1}f\Vert\leqq\Vert\phi(ce_{1})\eta(1)\Vert\leqq$

$\theta_{\sim^{)}}\Vert ce_{1}f\Vert(c\in R)$ , wherc $\theta_{1},$ $\theta_{2}$ are positive constants. From this it follows that
$d^{\prime}(e^{\prime}(e_{\rfloor}f))=d^{\prime}(e^{\prime}(\phi(e_{1})\eta(1)))$ by a similar argument as in the proof of Prop. 1.1.
Since $R_{\tau}$ is $W^{*},$ $\phi(e_{1})R_{\tau}\phi(e_{1})$ is also $W$“ and so $e_{1}Re_{1}$ is a $W^{*}$ -algebra acting
on $\mathfrak{H}$ . Since the property that $\overline{e}(f)\in R$ , is normal as a property in the sense
of [1], \S 1, we may assume without loss of generality that $e_{1}$ is simple of
order $n$ by [1], Lemma 4.2, Def. $4_{-}$), Hence we can find a decomposition
$1=\oplus(e_{i} ; 1\leqq i\leqq n)$ , with $d(e_{i})=d(e_{1})(1\leqq i\leqq n)$ . Since $d(e_{i})=d(e_{1})$ , there exists a
partial isometry $u_{i}$ of $R$ with $e_{*}(u_{i})=e_{i}$ and $e(u_{i})=e_{1}$ .

Let $(c_{\iota} ; f\in I)$ be an arbitrary weak Cauchy-hypersequence of operators of
$R$ . Denote its limit by $\overline{c}$ . In order to see Lemma 1.7, we need only to show
that $\overline{c}\in R$ . Since $e_{1}Re_{1}$ is $W^{*}$ , the weak limit $u_{j}\overline{c}u_{i^{*}}$ of $(u_{j}c_{\iota}u_{i^{*}} ; c\in I)$ is
contained in $e_{1}Re_{1}$ and hence in R. ’rherefore $e_{j}\overline{c}e_{i}(=u_{j^{*}}u_{j}\overline{c}u_{i^{*}}u_{i})$ is contained
in $R$ and so $\overline{c}(=\sum_{\iota^{n_{j=1}}},e_{j}\overline{c}e_{i})$ is contained in $R$ . Thus we get $\overline{e}(f)\in R$ and
$\overline{e}(f)=e(f)$ . q. e. d.

PROOF OF THEOREM I. Let $R$ be a semi-finite $AW^{*}$-algebra and $f$ be a
point of $\mathfrak{H}$ . If $e(f)$ is finite, $(e(f)Re(f), e(f)\mathfrak{H})$ is $W^{*}$ by Lemma 1.7. Hence
$e(f)(=\overline{e}(f))$ is finite in $\overline{R}$ . This means that $\overline{R}$ is also semi-finite. Therefore,
we need only to see that $e(f)$ is finite with $\overline{e}(f)$ . Let us start by denying
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this fact. Hence we may assume that $e(f)$ is normally infinite in $R$ .
Since $e(f)$ is semi-finite, tltere exists a finite projection $e_{1}$ such that $ e_{1}\leqq$

$e(f)$ . Then we can find a maximal decomposition $\oplus(e_{\iota} ; \ell\in I)\leqq e(f)$ (the suffix
$1\in I)$ with $d(e_{\iota})=d(e_{1})(\ell\in I)$ . Since $d(e_{1})\leqq d(e-\oplus(e_{\iota} ; f\in I))do\Leftrightarrow.s$ not hold, we
have $d_{\lambda}(e-\oplus(e_{\iota} ; \ell\in I))\leqq d_{\lambda}(e_{1})$ for some spectre $\lambda$ of $R$ by [1], Prop. 3.7. $\ln$

view of this fact, $I$ must be infnite and further it is countable (say $I=(n$ ;
$1\leqq n<\infty))$ . Thus we get a new $u^{1}$ ccomposidon $e(f)=\oplus(e_{n} ; 1\leqq n<\infty)$ with
$d(e_{n})=d(e_{1})(1\leqq n<\infty)$ by a well known tricke of [8]. $We$ put $e^{(N)}=\oplus(e_{n}$ ;
$1\leqq n\leqq N)$ . Then $e^{(N)}$ is finite and so $(e^{(N)}Re^{(N)}, e^{(N)}f_{t^{\backslash }}))$ is $W^{*}$ by Lemma 1.7
Since $e^{\prime}(e^{(N)}f)\leqq e^{\prime}(f)$ , we have $\overline{d}(e^{(N)})=\overline{d}(\overline{e}(e^{(N)}f))\leqq\overline{d}(\overline{e}(f))$ by Lemma 1.3 and
by Prop. 1.3. This is a contradiction. Thus we arrive at the assertion. $q$ . $e$ . $d$ .

\S 2. Spacial isomorphism.

Let $C_{t}(i=1,2)$ be arbitrary systems of operators on Hilbert spaces $\mathfrak{H}_{i}$

$(i=1,2)$ and let $\varphi$ be a one-to-one correspondence of $C_{1}$ onto $C_{2}$ . Denote by
$B_{i}$ the commutant of $C_{i}$ on $\mathfrak{H}_{i}$ and by $D_{i}$ the $W^{*}$ -algebra generated by $C_{i}$

and $B_{t}$ . The correspondence $\varphi$ is called spacial (after F. J. Murray and J. $v$ .
Neumann [8]), if there exists a partial isometry $n$ mapping $\sigma)_{1}c$ onto $\mathfrak{H}_{2}$ satis-
fying $\varphi(c_{1})=uc_{1}u^{\prime}\backslash (c_{1}\in C_{1})$ . Concernlng this, we have the following generali-
zation of thcorems of K. Yosida [11], $\beta_{i^{1}}I$ . Eidelheit $[12]-Y$ . Kawada [13], and
I. E. Segal [10].

TiIEOREM 2.1. The correspondence $\varphi$ is spacial if and only if it is extendable
to an $algebraic’\backslash t$:-isomorphism of $D_{1}$ onto $D_{2}$ .

PROOF. Necessit $y$ : Thc mapping $d_{1}\rightarrow ud_{1}u^{\triangleright}\backslash $ is obviously an algebraic
$*$-isomorphism of $D_{1}$ onto $D_{2}(=uD_{1}u^{*})$ , which is the extension of $\varphi$ in ques-
tion.

Sufficiency: We notice that $D_{i}$ has the commutative commutant $D_{i}^{\prime}$ .
Denote by $I_{i}$ the unit of $D_{i}^{\prime}$ and by the same $\varphi$ the given extension of $\varphi$ .
Then we have $I_{\iota^{\#}}=I_{2}c\gamma nd$ $ I_{\lrcorner}^{*}\rangle$ $=I_{1}$ by Prop. 1.1. Wc shall see the sufficiency
locally. In view of Prop. 1.2 we may assume without loss of generality that
$I_{1}\sim_{\lambda}e_{20^{\prime}}\leqq I_{2}$ for some projection $e_{0\triangleleft^{)}}^{\prime}$ of $D_{2}^{\prime}$ . Since $\lambda(I_{1})=1$ , we have $\lambda(e_{20}^{\prime})=1$

and so $\lambda(\tau_{2_{-)}^{-e_{0^{\prime}})=0}}$ IIence it holds that $e_{2}=I_{2}$ . Thus we gct $d_{\lambda}^{\prime}(I_{1})=d_{\lambda^{\prime}}(I_{2})$

and so $d^{\prime}(I_{1})=d^{\prime}(I_{2})$ by [1], Prop. 1.1. This shows the assertion. $q$ . $e$ . $d$ .
We need the following lemma for the proof of Theorem II.
LEMMA 2.1. Let $R$ be an $AW^{*}$ -algebra and $e$ be a projection of R. Then

there exists a decomposition
(2.1) $e^{\mathfrak{h}}=\oplus(e_{0\iota} ; \ell\in_{0}I)$ , where each $e_{0}\in E_{0}$ ,
and, for each $\ell\in I$, there occurs one of following three cases:
(2.2) $e_{0^{\iota}}e^{\mathfrak{h}}$ is finite,
(2.3) $e_{0^{t}}e^{\mathfrak{h}}\sim e_{0\iota}e$ ,
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(2.4) $e_{0\iota}e^{q}=\oplus(e_{\kappa};\kappa\in K_{\iota})$ ,
where $e_{\kappa}-ee_{0\iota}(\kappa\in K_{\iota})$ and $\aleph_{0}\leqq\overline{K}_{\iota}$ (the cardinal number of $K_{\iota}$ ).

PROOF. $SinC^{\backslash }$ finiteness and equivalence are normal properties in our
$s_{\vee}^{a}nse$ , wc may assume without loss of generality that (2.2) and (2.3) do not
occur. There exists a $ma_{-}\searrow^{\prime}1ma1$ orthogonal system $(e_{0^{\iota}} ; \ell\in I)$ of projections of
$E_{0}$ , each of which satisfies (2.4). Denote $e^{\mathfrak{h}}-\oplus(e_{0\iota} ; \ell\in I)$ by $e_{0^{\prime}}$ . In view of
[1], Prop. 3.7, it is easy to see that, if $e_{0^{\prime}}-\neq 0$ , there exists a non-zero projec-
tion $e_{0}$ of $E_{0}$ with $e_{0}\leqq e_{0}^{\prime}$ such that $e_{0}e=\oplus(e_{\kappa} ; \kappa\in K_{\iota})$ with $e_{\kappa}\sim e_{0}e(\kappa\in K_{\iota})$ . If
$e_{0}e$ is (locally) finite, we have $\aleph_{0}\leqq\overline{K}_{\iota}$ , because (2.2) does not occur and so $e_{0}e^{\#}$

is normally infinite. On the other hand, if $e_{0}e$ is (locally) normally infinite,

we have also, $\aleph_{0}\leqq\overline{K}_{\iota}$ . For, otherwise, we must have $e_{0}e^{\mathfrak{h}}\sim e_{0}e$ by [1], Prop.
3.2. This is impossible, for (2.3) does not occur. From these we get always
$\aleph_{0}\leqq\overline{K}_{\iota}$ . This contradicts the property of $e_{0}^{\prime}$ . Therefore wc must have $e_{0^{\prime}}=0$

and so we get the desired assertion. $q$ . $e$ . $d$ .
We are now in a position to prove Theorem II.
PROOF OF THEOREM II. In view of Prop. 1.2, we may assume without loss

of generality that $d^{f}(I_{1})=d^{f}(e_{2^{\prime}})$ for some projection $e_{2}^{\prime}$ of $R_{),\lrcorner}^{\prime}$ . Use now
Lcmma 2.1 with respcct to $e_{2^{\prime}}$ . Since the spacial isomorphism is a normal
property in our $sens^{\circ}.$ , we can moreover assume without loss of generality
that one and only one of $(2.2)-(2.4)occurs^{\backslash }$ and $e_{0}^{\eta}=I_{2}$ . But (2.2) can not
occur. If (2.3) takes place, $e_{2}^{\prime}\sim I_{2}$ , and our theorem clearly holds. If (2.4) is
the case, we still have $e_{2}^{\prime}-I_{2}$ , because, first we have $I_{2}=\oplus(e_{\kappa}^{\prime} ; \kappa\in K)(e_{2^{\prime}}-e_{\mathcal{K}^{\prime}}$

for any $\kappa\in K$ ) by (2.4), and hence $I_{1}=\oplus(\varphi^{\prime-\rfloor}(e_{\kappa}^{\prime});\kappa\in K)(\varphi^{\prime-1}(e_{\kappa}^{\prime})s$ are mutually
equivalent), and further $e_{),\lrcorner}^{\prime}=\oplus(e_{\kappa}^{f\prime} ; \kappa\in K)$ ( $e_{\kappa}^{\prime\prime}$ ’s are mutually equivalent) by
the fact that $e_{\Delta}^{\prime}$

)
$\sim I_{1}$ with respect to the mixed relative dimension by $\varphi$ , and

thus we have $I_{2}=\oplus(e_{\kappa\kappa}, ; \kappa, \kappa^{\prime}\in K)$ ( $e_{\kappa\kappa},$ $s$ are mutually equivalent), and then
we get finally $e_{2}^{\prime}\sim I_{2}$ as $\overline{K}^{2}=\overline{K}$. $q$ . $e$ . $d$ .

COROLLARY 1. Let $R_{i}(i=1,2)$ be purely infinite $W^{*}$-algebras and let $\varphi$ be
an algebraic $*$ -isomorphism of $R_{1}$ onto $R_{A}$

). Denote its commutant by $R_{\iota^{\prime}}$ . Sup-
pose lhat lhere is an algebraic $*$-isomorphism of $R_{1}^{\prime}$ onto $R_{2}^{\prime}$ , which coincides
with $\varphi$ on the center $R_{10}$ of $R_{1}$ . Then $\varphi$ is spacial.

PROOF. Since $R_{i}$ is purely infinite, $R_{i}^{\prime}$ is also purely infinite by Corollary*
of Prop.$*1.5$ and hence normally infinite. Thus $\varphi$ is spacial by Theorem II.
$q$ . $e$ . $d$ .

The following corollary involves the result of Y. Misonou [5].

COROLLARY 2. Let $R_{i}(i=1,2)$ be $AW^{*}$ -algebras with the normally infinite
commutant and with the underlying separable Hilbert space and let $\varphi$ be an
algebraic $*$ -isomorphism of $R_{1}$ onto $R_{2}$ . Then $\varphi$ is spacial.

PROOF. In view of Prop. 1.2, we may assume without loss of generality
that $d^{\prime}(I_{1})=d^{\prime}(e_{2}^{\prime})$ for some projection $e_{2^{\prime}}$ of $R_{2}^{\prime}$ . Since $R_{1}^{\prime}$ is normally infinite,
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$e_{2}^{\prime}$ is normally infinite and satisfies $e_{2}^{\prime \mathfrak{U}}=I_{2}$ . As we say in the proof of [1],

Theorem 4.1, we can find a state $f_{2}$ of $R_{2}^{\prime}$ such that $f_{2}(e^{\prime})=0$ if and only if
$e^{\prime}=0(e^{\prime}\in E_{2}^{\prime})$ . Hence $e_{2}^{\prime}$ and also $I_{2}$ are countably decomposable. From
these it follows that $e_{2}^{\prime}\sim I_{2}$ by virtue of the proof of Lemma 1.4. Thus we
have $d^{\prime}(I_{1})=d^{\prime}(I_{2})$ . $q$ . $e$ . $d$ .

COROLLARY 3. Let $R$ be a purely infinile (or finite) $W^{*}$ -algebra and $\varphi$ be
an $algebraic*$ -automorphism of $R$ , which coincides with the identical mapping on
its center. Then $\varphi$ is spacial.

PROOF. According to Theorem 11, we have only to show that our asser-
tion holds, when $R^{\prime}$ is finite, in which case $R$ also is finite from our assump-
tion (see Corollary’ of Prop.$*1.5$). Let $f_{1}^{\prime}$ be a point of $\mathfrak{H}$ with $f_{1}^{\prime}(f_{1}^{c})=0$

and $f_{2}$ be a point of $\mathfrak{H}$ with $f_{2}((\varphi(e(f_{1}^{\prime})))^{c})=0$ . Put $e_{2}=e(f_{2}),$ $e_{1}=\varphi^{-1}(e_{2})$ , and
$f_{1}=e_{1}f_{1}^{\prime}$ . Since $e_{\rangle,\lrcorner}=\varphi(e(f_{1}^{\prime}))$ , we have $e_{1}=e(f_{1}^{\prime})$ . Hence we have $e_{1}=e(f_{1})$ by
Lemma 1.3. Denote the trace of $R$ by $t$ . By Prop.$*1.3$ , we have $e^{\prime}(f_{1})\sim e^{\prime}(f_{2})$

with respect to the mixed relative dimension determined by $\varphi$ considered as
an algebraic $*$ -isomorphism of $R_{1}(=R)$ onto $R_{2}(=R)$ . By the uniqueness of
$t$ , we get $t(c)=t(\varphi(c))$ for $c\in R$ . Hence we have $t(e_{1})=t(e_{2})$ , that is, $e_{1}\sim e_{2}$ by
[1], (4.14). Therefore we have $e^{f}(f_{1})\sim e^{\prime}(f_{2})$ with respect to the relative di-
mension of $R^{\prime}$ by Prop’. 1.3. Hence $e^{\prime}(f_{1})\sim e^{\prime}(f_{1})$ with respect to the mixed
relative dimension determined by $\varphi$ .

Let $E_{1}^{\prime}$ be the set of projections $e^{\prime}$ of $R^{\prime}$ satisfying $e^{\prime}-e^{\prime}$ with respect
to the mixed relative dimension determined by $\varphi$ and let $E_{2}^{\prime}$ be a maximal
orthogonal system of projections of $E_{1}^{\prime}$ . Denote the supremum of $E_{2}^{\prime}$ by $e^{\prime}$ .
Then we have $e^{\prime}\in E_{1}^{\prime}$ . Moreover we have $e^{\prime}=I$. For, otherwise, taking the
point $f_{1}^{\prime}$ such that $f_{1}^{\prime}(e^{\prime})=0$ in the above argument, we get at last a projec-
tion $e^{\prime}(f_{1})$ such that $e^{\prime}(f_{1})\sim e^{\prime}(f_{1}),$ $e^{\prime}(f_{\rfloor})^{\prime}=1-e^{\prime}$ , which is a contradiction. Hence
we get $e^{\prime}=I$ and thus arrive at the assertion. $q$ . $e$ . $d$ .

Now, we reestablish the theory of the coupling operator of rings of opera-
tors due to E. L. Griffin [6], [7] by use of the local theory.

Let $R$ be a $W^{*}$-algebra. We @ay that a spectre $\lambda$ of $R$ is cyclic if there
exists a point $f$ of $\mathfrak{H}$ with $\lambda(e_{0}(f))=1$ satisfying following postulates $(2.5)-(2.8)$ :
(2.5) $t_{\lambda}(e(f))\neq 0$ if $R$ is locally finite, where $t_{\lambda}$ is the local trace of $R$ ,
(2.6) $e_{0}(f)=\oplus(e_{\iota} ; \ell\in I),$ $e_{\iota}\sim e(f)(\ell\in I)$ if $R$ is locally normally infinite,
(2.7) $t_{\lambda}^{\prime}(e^{\prime}(f))\neq 0$ if $R^{\prime}$ is locally finite, where $t_{\lambda}^{\prime}$ is the local trace of $R^{\prime}$ ,
(2.8) $e_{0}(f)=\oplus(e_{\iota}^{\prime} ; \ell^{\prime}\in I^{\prime}),$ $e_{\iota/}^{\prime}-e^{\prime}(f)(/\in I^{\prime})$ if $R^{\prime}$ is locally normally infinite.

For a cyclic spectre $\lambda$ of $R$, we write $\kappa_{\lambda}(a)$ for $t_{\lambda}(e(f))^{-1}$ , if $R$ is locally
finite and (b) for $\overline{I}$ ( $=the$ cardinal number of $I$ ), if $R$ is locally normally
infinite. Similarly, for a cyclic spectre $\lambda$ of $R$, we write $\kappa_{\lambda}^{\prime}(a^{\prime})$ for $t_{\lambda}^{\prime}(e^{\prime}(f))^{-1}$ ,

if $R^{\prime}$ is locally finite and $(b^{\prime})$ for $\overline{I}^{\prime}$ if $R^{\prime}$ is locally normally infinite. From
now on we shall consider cyclic spectres only.
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For the definition of the coupling operator of $R$ , we prepare following
two lemmas.

LEMMA 2.2. When $R,$ $R^{f}$ are both locally finite, $\kappa^{\prime}/\kappa$ is independent of the
choice of $f$.

PROOF. Let $f_{i}(i=1,2)$ be points of $\mathfrak{H}$ satisfying $\lambda(e(f_{i}))=1$ and $(2.5)-$

(2.8). In order to see Lemma 2.2, we need only to verify
(2.9) $t_{\lambda}(e(f_{1}))/t_{\lambda}^{\prime}(e(f_{1}))=t_{\lambda}(e(f_{2}))/t_{\lambda}^{\prime}(e^{\prime}(f_{2}))$ .
By Prop. 1.2, we may assume that $e(f_{2})\sim e\leqq e(f_{1})$ for some projection $e$ of $R$ .
Put $f_{2}^{\prime}=ef_{1}$ . Then we have $e(f_{2}^{\prime})=e$ by Lemma 1.3. Hence we have $e(f_{2}^{\prime})\sim e(f_{2})$

and then $e^{\gamma}(f_{2}^{\prime})\sim e^{\gamma}(f_{2})$ by Prop.$*1.3$ . To see (2.9), thus, we may assume
without loss of generality that $e(f_{\underline{\gamma}})\leqq e(f_{1})$ and $f_{\underline{)}}=e(f\underline{)})f_{1}$ .

Write briefiy $e,$
$e^{\prime}$ , and $f$ for $e(f_{1}),$ $e^{\prime}(f_{1})$ , and $f_{1}$ . Denote by $R_{1}$ the cyclic

$W$ ’-algebra formed by $ee^{\prime}Hee^{\prime},$ $R_{1}(=ee^{\prime}Ree^{f})$ , and $f$. Applying [8], Lemma
11.3.2, p. 186 twice, we get $R_{1}^{\prime}=ee^{\prime}R^{\prime}ee^{f}$ . Hencc $e(f_{i}),$ $e^{f}(f_{i})$ in $R_{1},$ $R_{1}^{f}(i=1,2)$

coincide with those in $R,$ $R^{\prime}resp\circ.ctively$ , because $f_{-}$) $=e(f_{2})f_{1}$ and $e(f_{2})\leqq e(f_{1})$ .
Therefore we may take $R_{1}$ in place of $R$ without loss of generality.

Now construct the numerical trace $\tau$ and the finite cyclic $W^{*}$ -algebra $R_{\tau}$

formed by $\mathfrak{H}_{\tau},$ $R_{\tau}$ and $\eta(1)$ as in \S 1. Then $\phi$ in \S 1 is an algebraic $*$-isomor-
phism of $R_{1}$ onto $R_{\tau}(=R_{2})$ . Since $\phi(e(f))=e(\eta(1))$ , we have from Prop.$*1.3$
$e^{\prime}(f)\sim e^{\prime}(\eta(1))$ with respect to the mixed relative dimension determined by $\phi$ .
But $e^{\prime}(f)$ and $e^{\prime}(\eta(1))$ are both identical operators and so $R_{1}$ is spacially
isomorphic to $R_{\tau}$ . Therefore, to see (2.9), we may take $R_{\tau}$ in place of $R_{1}$ .

By J. Feldman [3], the commutant $R_{\tau^{\prime}}$ of $R_{\tau}$ is dual-isomorphic to $R_{\tau}$ (in

the sense of [14], \S 2.2) under the mapping $\phi(a)\rightarrow\psi(a)(a\in R_{1})$ defined by
$\psi(a)\eta(c)=\eta(ca)(c\in R_{1})$ . Hence we have $t_{\lambda}^{\prime}(\psi(a))=t_{\lambda}(\phi(a))(a\in R_{1})$ , where $t_{\lambda}$ is
the local trace of $R_{\tau}$ and $t_{\lambda}^{\prime}$ is the local trace of $R_{\tau^{\prime}}$ . Since $e^{\prime}(f_{2})=\psi(\phi^{-1}(e(f_{2})))$ ,

we get $t_{\lambda}(e(f_{2}))=t_{\lambda}^{\prime}(e^{f}(f_{2}))$ . On the other hand, it is obvious that $t_{\lambda}(e(f_{1}))=$

$t_{\lambda}^{\prime}(e^{\prime}(f_{1}))(=1)$ . This shows (2.9) and so completes the proof. $q$ . $e$ . $d$ .
LEMMA 2.3. If $R$ is locally normally infinite, lhen $\kappa_{\lambda}$ is independent of the

choice of $f$ except for $\kappa_{\lambda}$ being $1\leqq\kappa_{\lambda}\leqq\aleph_{0}$ . In this exceptional case, there exists
a point $f$ of $\mathfrak{H}$ such as $\kappa_{\lambda}=\aleph_{0}$ .

PROOF. Let $f_{i}(i=1,2)$ be points of $\mathfrak{H}$ satisfying $\lambda(e_{0}(f_{i}))=1$ and
(2.10) $e_{0}(f_{i})=\oplus(e_{\iota}^{()};i0\ell^{()}i\in I^{()}i),$ $e_{\iota}^{()0}i\sim e(f_{i})(\ell^{(i})\in I^{()}i)$ $(i=1,2)$ .
Put $e_{0}=e_{0}(f_{1})e_{0}(f_{2})$ . Since $\lambda(e_{0})=\lambda(e_{0}(f_{1}))\lambda(e_{0}(f_{2}))=1$ , we have $e_{0}\neq 0$ and
(2.11) $e_{0}=\oplus(e_{\iota}^{()} ;i \ell^{()}i\in I^{(i}))$ $(i=1,2)$ ,

where each $e_{\iota}^{(i}$ ) is a cyclic projection of $R$ , that is, $e_{\iota}^{(i}$ ) $=e(f_{\iota}^{(i}))$ for some $f_{\iota}^{(t_{)}}$

of $\mathfrak{H}$ For each index $\ell^{(1)}$ of $I^{(1)}$ , we denote by $K_{\iota}^{(1)}$ the set of indices $\ell^{(2)}s$

of $I^{(2)}$ such as $e_{\iota}^{(1)}e_{\iota}^{(2)}\neq 0$ . Since $\Sigma_{\iota^{(2)}}e_{t}^{(1)}e_{\iota}^{(2)}=e_{\iota}^{(1)}\neq 0,$ $K_{\iota}^{(1)}$ is non-empty
(cf. [7], Lemma 1.2). Also, if $e_{\iota}^{(1)}e_{\iota}^{(2)}\neq 0,$ $e_{\iota}^{(2)}f_{\iota}^{(1)}\neq 0$ and so $\overline{K_{\iota}(1)}\leqq\aleph_{0}$ (cf.

ibd.). Hence we get $I_{\iota}^{(2)}\subseteqq\cup(K_{\iota}^{(1)} ; \ell^{(1)}\in I^{(1)})$ and so $I^{(1)}\leqq\aleph_{0}I^{(2)}$ . Therefore,
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if $\overline{I^{()}\lrcorner\prime}\leqq\aleph_{0},\overline{I^{(1)}}\leqq\aleph_{0}$ . This implies that “
$\kappa_{\lambda}\leqq\aleph_{0}$

” is independent of the choice
of f.

If $\aleph_{0}\neq\overline{I^{(1)}}$ and $\aleph_{0}\leqq\overline{I^{(1)}}$, we have $\aleph_{0}\neq I^{\overline{(z)}},$ $\aleph_{0}\leqq\overline{I^{()}\Delta)}$ and $\overline{I^{(1)}}\leqq I^{\overline{(}\underline{)}}\overline{)}$. Similarly
we have $I^{(\Delta)}-\leqq I^{(\rfloor)}$ . Thus we get $\overline{I^{(J)}}=\overline{I^{(2)}}$ if $\aleph_{0}\neq I^{(1_{/}^{-}}$ and if $\aleph_{0}\leqq\overline{I^{(1)}}$. This
shows that $\kappa_{\lambda}$ is indepcrdent of the choice of $f$ if $\aleph_{0}\neq\kappa_{\lambda}$ and if $\aleph_{0}=\kappa_{\lambda}$ .

Suppose that $\overline{I}\leqq\aleph_{0}$ in (2.6) and use the notations in (2.6). If $e(f)$ is
locally finite, we must have $\overline{I}=\aleph_{0}$ . On the other hand, if $e(f)$ is locally
normally infinite, we have from [1], Prop. 3.2,
(2.12) $e_{0}(\lambda)e(f)=\oplus(e_{n} ; 1\leqq n<\infty),$ $e_{1}\sim e_{n}(1\leqq n<\infty)$ for some $e_{0}(\lambda)\in E_{0}(\lambda)$ .
Since $e_{\mathfrak{l}}=e(f),$ $e_{I}$ is cyclic, say $e_{I}=e(g)$ for a suitable $g\in \mathfrak{H}$ Since $e_{\iota}\sim e(f)$ , for
each $\ell$ , we can get
(2.13) $e_{0}(\lambda)e=\oplus(e_{n,\iota} ; 1\leqq n<\infty),$ $21\sim e_{n}$ , $(1\leqq n<\infty)$

and so we get
(2.14) $e_{0}(\lambda)e_{0}(f)=\oplus(e_{n.\iota} ; 1\leqq n<\infty, \ell\in I),$ $e_{1}-e_{n,\iota}(1\leqq n<\infty, \ell\in I)$ ,
where the cardinal number of the set of indices of $e_{\eta\iota}’ s$ is $\aleph_{0}I$ and so $\aleph_{0}$ .
This completes the proof. $q$ . $e$ . $d$ .

We say that $R$ is locally countably decomposable if $I\leqq\aleph_{0}$ . In order to
fix our idea, we shall put $\kappa_{\lambda}=\aleph_{0}$ in this case. When $R$ is locally normally
infinite, we call $\kappa_{\lambda}$ the local degree of $R$ .

We are now in a position of introduce the following

DEFINITiON 2.1. We call the following number or the pair of cardinal num-
bers $\theta_{\lambda}$ the local coupling operator of $R$ ; namely
(2.15) $\theta_{\lambda}=\kappa^{\prime}/\kappa$ if $R$ and $R^{\prime}$ are both locally finite,
(2.16) $\theta_{\lambda}=(\kappa^{\prime}, 1)$ if $R$ is locally finite and if $R^{\prime}$ is locally normally infinite,
(2.17) $\theta_{\lambda}=(1, \kappa)$ if $R$ is locally normally infinite and if $R^{\prime}$ is locally finite,
(2.18) $\theta_{\lambda}=(\kappa^{\prime}, \kappa)$ if $R$ and $R^{\gamma}$ are both locally normally infinite.

Let $R_{t}(i=1,2)$ be $W^{*}$ -algebras, and let $\varphi$ be an algebraic $*$ -isomorphism
of $R_{1}$ onto $R_{2}$ . Then $\varphi$ induces a resptriction $\varphi_{0}$ on the center $R_{10}$ of $R_{I}$ and
$\varphi_{0}$ induces a homeomorphism $\nu$ of the spectrum $\Omega_{1}$ of $R_{10}$ onto the spectrum
$\Omega_{2}$ of $R_{20}$ . We identify each point $\lambda_{1}$ of $\Omega_{1}$ with its image $\lambda_{2}$ by $\nu$ and denote
$\lambda_{1}$ and $\lambda_{2}$ by the same notation $\lambda$ . Denote by $(\theta_{\lambda})_{i}$ the local coupling operator
of $R_{i}$ with respect to $\lambda$ . Now we introduce the following

DEF.INITION 2.2. We say that $\varphi_{0}$ (or $\varphi$ ) takes $(\theta_{\lambda})_{1}$ into $(\theta_{\lambda})_{2}$ if $(\theta_{\lambda})_{1}=(0_{\lambda})_{2}$ .
Moreover we say that a $W^{*}$-algebra $R$ (or its local coupling operator) is

locally essentially bounded if $R$ is not locally normally infinite or if $R^{\prime}$ is not
locally finite.

The following theorem is the local form of theorems of E. L. Griffin [6],

[7] (cf. [6], Theorem 9, [7], Theorem 3).

THEOREM III’. Let $R_{i}(i=1_{f}2)$ be $W^{*}$ -algebras with the locally essentially
bounded local coupling operator ( $\theta_{\lambda)_{i}}$ and let $\varphi$ be a (locally) algebraic $*$ -isomor-
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phism of $R_{1}$ onto $R_{2}$ . Then $\varphi$ is spacial if and only if it takes $(\theta_{\lambda})_{1}$ into $(\theta_{\lambda})_{2}$ .
PROOF. The necessity is obvious and so we have only to verify the

sufficiency. We divide the proof into two parts.
1) Let $R_{1}$ and $R_{1}^{\prime}$ be both locally finite. Then $(\theta_{\lambda})_{1}$ is a scalar. Since

$(\theta_{\lambda})_{1}=(0_{\lambda})_{2},$ $(\theta_{\lambda})_{2}$ is also a scalar. Hence $R_{9}$ and $R_{2}^{\prime}$ are also both locally finite.
Select an arbitrary non-zero point $f_{1}^{f\prime}$ of $\mathfrak{H}_{1}$ and then a non-zero point $f_{2}^{\prime}$ of
$\mathfrak{H}_{0}\lrcorner$ such that $f_{2}^{\prime}(\varphi(e(f_{1}^{\prime\prime}))^{c})=0$ . Put $f_{1}^{\prime}=\varphi^{-1}(e(f_{2}^{\prime}))f_{1}^{\prime\prime}$ . Since $e(f_{2}^{\prime})\leqq\varphi(e(f_{1}^{\prime/}))$ ,
we get $e(f_{1}^{\prime})=\varphi^{-1}(e(f_{\sim^{)}}^{\prime}))$ by Lemma 1.3, that is, $e(f_{2})=\varphi(e(f_{1}^{\prime}))$ . Since $t_{\lambda}^{\prime}(e^{\prime}(f_{1}^{\prime}))$

$\neq 0$ ( $t_{\lambda}^{\prime}$ being the local trace of $R_{1}^{\prime}$ ), we can find a natural number $n$ such
that $n^{-J}=t_{\lambda}^{\prime}(e^{\prime}(f_{1}^{\prime}))$ and a projection $e_{1}^{\prime}$ of $R_{1}$

i satisfying $e_{1}^{\prime}=e^{\gamma}(f_{1})$ and $t_{\lambda}^{\prime}(e_{1}^{\prime})$

$=n^{-1}$ . Put $f_{1}=e_{1^{\prime}}f_{1}^{\prime}$ and $f_{2}=\varphi(e(f_{1}))f_{2}^{\prime}$ . Then it is not hard to see that $e(f_{0}-)$

$=\varphi(e(f_{1}))$ and $t_{\lambda}^{\prime}(e^{f}(f_{1}))(=t_{\lambda}^{\prime}(e_{1}^{\prime}))=n^{-1}$ . Since $R_{1}$ is $algebraically*$ -isomorphic
to $R_{\rightarrow}$

)’ we have $t_{\lambda}(e(f_{1}))=t_{\lambda}(e(f_{\leftarrow}\rangle))$ , where $t_{\lambda}$ is the local trace of $R_{t}$ . From this
and the assumption we have $t_{\lambda}^{\prime}(e^{f}(f_{\rfloor}))=t_{\lambda}^{\prime}(e^{\prime}(f_{0}-))$ , where $l_{\lambda}^{\prime}$ is the local trace
of $R_{i^{\prime}}$ . Therefore we get $t_{\lambda}^{\prime}(e^{\prime}(f\underline{)}))=n^{-1}$ . Hence we can find a local decom-
position $I_{i\lambda}=\oplus(\rho_{i,l^{\prime}} ; 1\leqq j\leqq n),$ $e_{I}\sim e_{j^{\prime}}(1\leqq j<_{-}n)$ with respect to the local
mixed relative demension determined by $\varphi$ . Therefore we have $I_{1}\sim_{\lambda}I_{2}$ .

2) If $R_{1}^{\prime}$ is locally normally infinite, $R_{\underline{)}}^{\prime}$ is also locally normally infinite
by the same reason as in 1). Then we can find a decomposition $e_{0}(\lambda)_{i}I_{i}=$

$\oplus(e_{i,\iota^{\prime}} ; \ell\in I)$ for some projection $e_{0}(\lambda)_{i}\in E_{0}(\lambda)_{\gamma}(F_{0}\rightarrow(\lambda)_{i}$ being the set of projec-
tions $e_{0}(\lambda)_{i}s$ of $R_{i0}$ such as $\lambda(e_{0}(\lambda)_{i})=1)$ , where $e_{i,\iota}^{\prime}\sim e_{0}(\lambda)_{l}e^{\prime}(f_{\iota}^{\prime})$ and $f_{i}^{\prime}s$ are
points obtained in 1). Since $e^{\prime}(f_{1}^{\prime})-e^{f}(f_{\lrcorner}^{\prime}\supset)$ , wc get readily $e_{0}(\lambda)_{t}I_{1}\sim e_{0}(\lambda)_{\lrcorner})I_{2}$ and
so $I_{1}\sim_{\lambda}I_{2}$ by making use of the complete additivity of the mixed relative
dimension determined by $\varphi$ . This completes the proof.

Let $R_{i}(i=1,2)$ be $W^{*}$ -algebras and $\varphi$ be an algebraic $ j\ltimes$ -isomorphism of
$R_{1}$ onto $R_{2}$ . We say that a spectre $\lambda$ of $R_{i}$ is bicyclic if it is cyclic both in
$R_{1}$ and in $R_{2}$ . Suppose that $\lambda$ is a bicyclic spectre of $R_{t}$ and that $R_{i}$ is
locally normally infinite with respect to this spectre $\lambda$ . Then we denote by
$(\kappa_{\lambda})_{i}$ the degree of $R_{i}$ .

LEMMA 2.4. $(\kappa_{\lambda})_{1}=(\kappa_{\lambda})_{n})$ . (The local degree of a locally normally infinite
$W^{*}$ -algebra is an “ algebraic invariant ”.)

PROOF. Since $\lambda$ is cyclic in $R_{1}$ , there cxist a point $f_{1}^{\prime}$ of $\mathfrak{H}_{1}$ and a decom-
position $e_{0}(f_{1}^{\prime})=\oplus(e_{1,\iota} ; f\in I)$ satisfying $e(f_{1}^{\prime})\sim e_{1,\iota}(\ell\in I),$ $\aleph_{0}\leqq I=(\kappa_{\lambda})_{I}$ , and
$\lambda(e_{0}(f_{1}^{\prime}))=1$ . Similarly, there exists a point $f_{2}^{\prime}$ of $\mathfrak{H}_{2}$ such that $\lambda(e_{0}(f_{2}^{\prime}))=1$ .
Since $\lambda(e(f_{\iota^{\prime}}))=1(i=1,2)$ , we can find a partial isometry $u_{2}$ of $R_{2}$ such that
$e_{*}(u_{2})\leqq e(f_{2}^{\prime}),$ $e(u_{2})\leqq\varphi(e(f_{1}^{f}))$ , and $\lambda(e_{*}(u_{\triangleleft}))^{\mathfrak{h}})=1$ by [1], Prop. 2.6. Put $f_{2}=u_{2}f_{2}^{\prime}$ .
Then we have $e(f_{2})\leqq\varphi(e(f_{1}^{\prime}))$ and $e(f_{2})=e_{*}(u_{2})$ . Hence we have $\lambda(e_{0}(f_{2}))=1$

and so we may assume without loss of generality that $e_{0}(f_{2})=1$ . Put $f_{1}=$

$\varphi^{-t}(e(f_{\sim^{)}}))f_{1}^{\prime}$ . Then we have $e(f_{2})=\varphi(e(f_{1}))$ by Lemma 1.3. Further we have
$e_{0}(f_{1})=\varphi_{0^{-1}}(e_{0}(f_{2}))=1$ . Since $e(f_{1})\geqq e(f_{1}^{\prime})$ , there exists a maximally orthogonal
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system $(e_{\iota\prime}^{0} ; i^{\gamma}\in I^{\prime})$ of projections of $R_{1}$ such that $e_{\iota}^{0}\sim e(f_{1})(\ell^{\prime}\in I‘)$ . Then, by
[11, Prop. 3.7, there exists a spcctre $\mu$ of $R_{1}$ such that $e_{0}(,\alpha)=\oplus(e_{0}(\mu)e_{\iota/}^{0} ; t^{\prime}\in I^{\prime})$

for some $e_{0}(!\alpha)\in E_{0}(\mu)_{1}$ and we have $e_{0}(\mu)e_{\iota}^{0}\sim e(e_{0}(\mu)f_{1})(\ell^{\prime}\in I^{\prime})$ . Hence we have
$\overline{I}^{\prime}=\overline{I}$ by the proof of Lemma 2.3 and so $\overline{I}^{\prime}=(\kappa_{\lambda})_{1}$ . By Zorn’s Lemma, there
exists a maximally orthogonal system $(e_{0\rho} ; \rho\in P)$ of projections of $R_{10}$ such
that, for each $\rho$ , there is a decomposition $e_{0\rho}=\oplus(e_{\iota}^{(\rho)} ; \ell^{\prime}\in I^{(\rho)})$ with $ e_{\iota},(\rho)\sim$

$e(e_{00}fl)(\ell^{\prime}\in I^{(\rho)})$ . It is easy to see that $1=\oplus(e_{0\rho} ; \rho\in P)$ . In view of the above
argument, we get $\overline{I^{(\beta)}}=\overline{I}$ and so me may identify $I^{(\rho)}$ with $f$. Put $e_{\iota}=\oplus(e_{\iota}^{(\rho)}$ ;
$\rho\in P)$ . Then we have $1=\oplus(e_{\iota} ; f\in I),$ $e_{\iota}\sim e(f_{1})(\ell\in I)$ by the complete additivity
of the relative dimension. Since the relative dimension is an ” algebraic
invariant “, we get from this a decomposition $1=\oplus(\varphi(e_{\iota});\ell\in I),$ $\varphi(e_{\iota})\sim e(f_{2})$

$(f\in I)$ . In view of Lemma 2.3, this shows that $(\kappa_{\lambda})_{1}=(\kappa_{\lambda})_{2}$ . q. e. d.
With the aid of Lemma 2.4, Theorem II follows from Theorem II1’. We

see this as follows. First we notice that we need only to see it locally with
respect to a bicyclic spectre $\lambda$ . In fact, we can write $I_{i}$ as an orthogonal
sum $\oplus(e_{0\iota_{L}^{(i)}} ; f^{(i})\in I^{()}i)$ of projections of $R_{i0}$ such that, for each $\ell^{()}i$ every
spectre $\lambda$ with $\lambda(e_{0i,\iota}^{()}i)=1$ is cyclic and so for each $\iota^{(1)},$ $\ell^{(2\rangle}$ , if $e_{0I,\iota}(1)e_{02,\iota}^{()}\underline{)}\neq 0$ ,

every spectre $\mu$ with $/\ell(e_{01\iota}(1)e_{0_{\wedge}^{o},\iota}^{(2)})=1$ is bicyclic, and moreover $ 1=\oplus$

$(e_{01,\iota}(1)e_{02,\iota}^{(2)} ; e_{01,\iota}(1)e_{02,t}^{(2)}\neq 0, f^{()}i\in I^{()}i(i=1,2))$ . Therefore, if Theorem 2 holds
locally with respect to any bicyclic spectre, we have $e_{01,\iota}(1)I_{1}\sim e_{02,\iota}^{(2)}I_{2}$ by [1],

Prop. 1.1 and so $I_{1}\sim I_{2}$ by the complete additivity of the mixed relative
dimension.

LOCAL PROOF OF THEOREM II. Denote by $($rci $\lambda)_{i}$ the local degree of $R_{i}^{\prime}$ .
Then we have $(\kappa_{\lambda}^{\prime})_{1}=(\kappa_{\lambda}^{\prime})_{3}$ by Lemma 4.4, because $R_{1}^{\prime}$ is algebraically ik-iso,

morphic to $R_{),\lrcorner}^{\prime}$ and $R_{\iota^{\prime}}$ ’s are both normally infinite. Denote by $(\kappa_{\lambda})_{i}$ the local
degree of $R_{i}$ . If $R_{i}$ is locally finite, there is no question. On the other hand,

if $R_{i}$ is normally infinite, we have $(\kappa_{\lambda})_{1}=(\kappa_{\lambda})_{2}$ by Lemma 2.4. Hence follows
$(\theta_{\lambda})_{1}=(\theta_{\lambda})_{2}$ . This shows that $I_{1}\sim_{\lambda}I_{2}$ by Theorem II’. $q$ . $e$ . $d$ .

Let $R$ be a $W^{*}$-algebra. A projection $e_{1}$ of $R$ is called centrally orlhogonal
to a projection $e_{2}$ of $R$ if $e_{1}^{\mathfrak{h}}e_{2}^{A}=0$ . A point $f_{1}$ of $\mathfrak{H}$ is called centrally ortho-
gonal to a point $f_{2}$ of $\mathfrak{H}$ (with respect to $R$) if $e_{0}(f_{1})e_{0}(f_{2})=0$ . We say that a
projection $e$ of $R$ is quasi-cyclic (in $R$) if there exists a centrally orthogonal
system $F$ of points of $\mathfrak{H}$ such that $e=\oplus(e(f);f\in F)$ . We denote $e$ by $e(F)$ .
In this case, $\oplus(e^{\prime}(f);f\in F)$ is also quasi-cyclic (in $R^{f}$ ). We denote by $e^{\prime}(F)$ .
We say that a spectre $\lambda$ of $R$ is quasi-cyclic if it satisfies following postulates:
(2.19) $R$ is locally finite
or
(2.20) $\lambda$ is the limiting spectre of spectres $\mu’ s$ , for which $R$ is locally
normally infinite of the local degree $\kappa$ ( $\kappa$ being independent of $\mu$ )

and
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(2.21) $R^{\prime}$ is locally finite
or
(2.22) $\lambda$ is the limiting spectre of spectres $\mu’ s$ , for which $R^{\prime}$ is lccally
normally infinite of the local degree $\kappa^{\prime}$ ( $\kappa^{\prime}$ being independent of $\mu$).

Denote by $e_{0f}$ the (uniquely determined) maximal projection of $R_{0}$ in the
sense that $e_{0}R$ and $e_{0}R^{\prime}$ are both finite. We write $\theta_{0}$ for the function defined
on the set of cyclic spectres $\lambda’ s$ of $R$ with $\lambda(e_{0f})=1$ , whose value is $\theta_{\lambda}$ at $\lambda$ .

If $\lambda$ is a quasi-cyclic spectre of $R$ with $\lambda(e_{0f})=0$ , then $\lambda$ is the limiting
spectre of cyclic spectre $\mu’ s$ of $R$ with the common local coupling operator $\theta$

by an easy computation. We write $\theta_{\lambda}$ for $\theta$ and call $\theta_{\lambda}$ the local coupling
operator of $R$ at $\lambda$ . Then it is not hard to see that there exists a (uniquely
determined) maximal projection $e_{0\theta}$ of $R_{0}$ in the sense that the local coupling
operator is $\theta$ at every spectre $\lambda$ of $R$ with $\lambda(e_{0\theta})=1$ . The spectre $\lambda$ of $R$ is a
quasi-cyclic spectre of $R$ with the local coupling operator $\theta$ if and only if
$\lambda(e_{0\theta})=1$ .

We write $\theta$ for the formal sum
$\theta_{0}+\oplus(\theta e_{0} ; \theta\in\Theta)$ ,

where $\theta$ runs over $(1, \aleph)$ , $(\aleph^{\prime}, 1),$ $(\aleph^{\prime}, \aleph)(\aleph_{0}=\aleph, \aleph^{\prime})$ (or $\Theta=(\theta_{\lambda} ; \lambda(e_{0f})=0)\rangle$

and call $\theta$ the coupling operator of $R$ after E. L. Griffin [6], [7].

REMARK. We can find a quasi-cyclic projection $e$ of $R$ with $e^{\mathfrak{h}}=e_{0f}$ such
that $e=\oplus(e(f);f\in F),$ $F$ being a centrally orthogonal system of points of $\mathfrak{H}$

E. L. Griffin used $t(e(F))/t^{\prime}(e^{\prime}(F))$ instead of $\theta_{0}$ in the definition of the coupled
operator of $R$ , where $t$ is the trace of $e_{0}R$ and $t^{\prime}$ is the trace of $e_{0}R^{\prime}$ .
These function coincide with each other at every cyclic spectre $\lambda$ of $R$ with
$\lambda(e_{0f})=1$ and as these are essentially the same.

We say that $R$ is essentially bounded if it is locally essentially bounded
with respect to every cyclic spectre of $R$ . It is easy to see that this defini-
tion of essential boundedness coincides with that due to E. L. Griffin [6], [7].

Let $R_{i}(i=1,2)$ be $W^{*}$-algebras and $\varphi$ be an algebraic $*$-isomorphism of
$R_{1}$ onto $R_{2}$ . Denote by $(\theta)_{i}$ the coupling operator of $R_{i}$ . We say that $\varphi$ takes
$(\theta)_{1}$ into $(\theta)_{2}$ if it takes $(\theta_{\lambda})_{1}$ into $(\theta_{\lambda})_{2}$ with respect to any bicyclic spectre $\lambda$

of $R_{i}$ . It is not hard to see that this definition coincides with that due to
E. L. Griffin [6], [7].

We are now in a position to prove, as an application of Theorem III’, the
following theorem of E. L. Griffin [6], Theorem 9 [7], Theorem 3.

THEOREM III. Let $R_{i}(i=1,2)$ be essentially brounded $W^{*}$-algebras and $\varphi$

be an algebraic $*$ -isomorphism of $R_{1}$ onto $R_{2}$ . Then $\varphi$ is spacial if and only if
it takes $(\theta)_{1}$ into $(\theta)_{2}$ .

PROOF. The necessity is obvious and so we need only to see the sufficiency.
According to Theorem III’, $\varphi$ is locally spacial with respect to any bicyclic
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spetre $\lambda$ of $R_{i}$ , because it takes $(\theta_{\lambda})_{1}$ into $(\theta_{\lambda})_{2}$ . On the other hand, the set of
bicyclic spectres of $R_{i}$ is dense in the spectrum of $R_{i0}$ and spacial isomor-
phism is a normal property in our sense. Hence $\varphi$ is spacial by [1], Prop.
1.1. q. e. $d$ .

REMARK. Let $R$ be a $W^{*}$-algebra of type $(II_{\infty})$ with $(II_{1})$ commutant.
Denote by $I$ the unit of the commutant $R^{\prime}$ of $R$. Then we have

LEMMA 2.5. I is quasi-cyclic.
PROOF. By the exhaustion method, we need only to see it locally with

respect to any spectre $\lambda$ of $R$, for which $I$ is locally cyclic in $R_{0}$ . Let $\lambda$ be
such a spectre of $R$. Since $I$ is locally cyclic in $R_{0}$ , we can find a projection
$e_{0}$ of $R_{0}$ with $\lambda(e_{0})=1$ such that $e_{0}$ is cyclic in $R_{0}$ , that is, $e_{0}=e_{0}(f)$ for some
$f$ of $\mathfrak{H}$ . For the sake of brevity, we may assume that $e_{0}=I$. Denote by $t^{\prime}$

the trace of $R^{\prime}$ , by $\tau^{\prime}$ the state $f\circ t^{\prime}$ composed by $f$ and $t^{\prime}$ , and by $\mathfrak{H}_{\tau}$, the
completion of the unitary space $\eta^{\prime}(R^{\prime})$ with the inner product $<\eta^{\prime}(a^{\prime}),$ $\eta^{\prime}(b^{\prime})>$

$=\tau^{\prime}(b^{\prime*}a^{\prime})$ for $a^{\prime},$ $b^{\prime}\in R^{\prime}$ . For any $a^{\prime}$ of $R^{\prime}$ , we define the bounded linear
operator $\phi^{\prime}(a^{\prime})$ acting on $\mathfrak{H}_{\tau/}$ such that $\phi^{\prime}(a^{\prime})\eta(b^{\prime})=\eta(a^{\prime}b^{\prime})$ . Then, by [3], Theo-
rem 1, the triple of $\mathfrak{H}_{\tau},,$ $\phi^{\prime}(R^{\prime})$ , and $\eta^{\prime}(I)$ forms a $W^{*}$-algebra and $\phi^{\prime}(I)$ is
cyclic in $\phi^{\prime}(R^{\prime})$ . Since $R$ is normally infinite and the commutant of $\phi^{\prime}(R^{\prime})$ is
finite, we can easily see that $\phi^{\prime}(I)_{\sim}\prec$ [ with respect to the mixed relative
dimension by $\phi^{\prime}$ . Hence we can find a partial isometry $u$ with $u^{*}u=\phi^{\prime}(I)$

such that $u\phi^{\prime}(a^{\prime})=a^{\prime}u$ for $a^{\prime}\in R^{\prime}$ . Write $f^{\prime}$ for $u\eta(I)$ . Then we have $I=e^{\prime}(f^{\prime})$ .
In fact, if $a^{\prime}f^{\prime}=0$ , we have $a^{\prime}u_{\eta^{\prime}}(I)=0$ and so $u\phi^{\prime}(a^{\prime})\eta^{\prime}(I)=0$ , that is, $\eta^{\prime}(a^{\prime})=0$

and then $a^{\prime}=0$ . This means that $I=e^{\prime}(f^{\prime})$ and so $I$ is locally cyclic. $q$ . $e$ . $d$ .
By Lemma 2.5, there exists a centrally orthogonal system $F^{\prime}$ of points of $\mathfrak{H}$

such that $I=e^{\prime}(F^{\prime})$ . We write $e_{1}$ for $e(F^{\prime})$ . Thereby the relative dimension
$d(e_{1})$ of $e_{1}$ is independent of a choice of $F^{\prime}$ within the condition that $I=e^{\prime}(F^{\prime})$ .
For a finite projection $e_{2}$ of $R$, we write $D(e_{2}/e_{1})$ for $D(e_{2})/D(e_{1})$ , where $D$ is
the relative dimension function of $eRe$ and $e$ is a finite projection of $R$ with
$e_{1}\leqq e,$ $e_{2}\leqq e$, and $D(e_{1}\cup e_{2})\geqq\epsilon>0$ for some positive number $\epsilon$ . It is not hard
to see that $D(e_{2}/e_{1})$ is independent of the choice of $e$ . Moreover $D(e_{2}/e_{1})$ is
considered as a continuous function on the spectrum of $R_{0}$ , which may take
$\infty$ as its value. We call this function $D(*/e_{1})$ the relative dimension function
of $R$ with respect to $e_{1}$ .

Let $R_{i}(i=1,2)$ be $W^{*}$-algebras of type $(\Pi_{\infty})$ with $(II_{1})$ commutant and
let $\varphi$ be an algebraic $*$ -isomorphism of $R_{1}$ onto $R_{2}$ . Denote by $I_{i}$ the unit of
the commutant $R_{i}^{\prime}$ of $R_{i}$ . By Lemma 2.5, we have $I_{i}=e^{\prime}(F_{i}^{\prime})$ for some cen-
trally orthogonal system $F^{\prime}$ of points of $\mathfrak{H}_{i}$ We write $e_{i}$ for $e_{i}(F^{\prime})$ . Denote
by $D(*/e_{i})$ the relative dimension function of $R_{i}$ with respect to $e_{i}$ . After R.
Kadison [16], we can $D(\varphi(e_{1})/e_{2})$ the linking operator for $\varphi$ and denote it by $\Delta$ .
It is easy to see that $\Delta$ depends only on $\varphi$ .
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The following lemma is due to R. Kadison [16].

LEMMA 2.6. Let $R_{i}(i=1,2)$ be $W^{*}$-algebras of type $(II_{\infty})$ with $(II_{1})$ com-
mutant and let $\varphi$ be an algebraic $*$-isomorphism of $R_{1}$ onto $R_{2}$ . Then $\varphi$ is
spacial if and only if $\Delta=1$ .

PROOF. The necessity is obvious and so we need only to see the suffici-
ency.

If $\Delta=1$ , we have $d(\varphi(e_{1}))=d(e_{2})$ . Since $e_{i}=e(f_{i}^{\prime})$ , we have $d^{\prime}(e^{\prime}(f_{1}^{f}))=$

$d^{\prime}(e^{\prime}(f_{2}^{\prime}))$ by Prop.$*1.3$ and so $d^{\prime}(I_{1})=d^{\prime}(I_{2})$ . Thus we get the assertion. $q$ . $e$ . $d$ .
Combining Theorem III with Lemma 2.6, we have the following

THEOREM IV. Let $R_{i}(i=1,2)$ be $W^{*}$-algebras and $\varphi$ be an algebraic $*$-iso-
morphism of $R_{1}$ onto $R_{2}$ . Then $\varphi$ is spacial if and only if the following condi-
tions are satisfied:

(a) $R_{i}’ s$ are both locally essentially bounded or both not locafly essentially
bounded with respect to any spectre $\lambda$ of $R_{i}$ ,

(b) when $R_{i}’ s$ are both locally essentially bounded, $\varphi$ takes $(\theta_{\lambda})_{1}$ into $(\theta_{\lambda})_{2}$

and
(c) when $R_{i}’ s$ are not both locally essentially bounded, the local linking

operator $\Delta_{\lambda}$ for $\varphi$ is locally equal to the identity operator.
PROOF. The necessity is obvious and so we need only to see the suffici-

ency.
If (b) (or $(c)$ ) is the case, we may assume without loss of generality that

$R_{i}’ s$ are both essentially bounded (or both not essentially bounded) and the
assertion is valid for this case by Theorem III (or Lemma 2.6). Hence $\varphi$ is
spacial by [1], Prop. 1.1. $q$ . $e$ . $d$ .
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Addendum

After this paper had been prepared, Mr. J. Tomiyama has kindly sent me his
recent paper:
[17] J. Tomiyama, A remark on the invariants of $W^{*}$-algebras, Tohoku Math. J., 10

(1958), 47-41,
which is closely related to this paper; especially Theorem II.

Also, after this paper had been prepared, the following paper had appeared.
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