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1. Preliminaries.

Let $a,$
$b$ be two points in $|z|<1$ , then the hyperbolic metric $[a, b]$ is

defined by

(1) $[a, b]=|1-\frac{b}{a}ba---|$ .

Let $E$ be a bounded closed set, contained entirely in $|z|<1$ , such that $E$ and
$|z|=1$ bound a connected domain $D_{0}$ .

By introducing the hyperbolic metric (1) in $|z|<1$ , Tsuji ([15], [161)

defined a potential of positive mass distribution on $E$ and a hyperbolic trans-
finite diameter of $E$, and obtained some results analogous to those of Frostman
[2] and dc la Vallee-Poussin [17] in the theory of logarithmic potential and
also to those of P\’olya and Szcgo [12] in the theory of transfinite diameter.

We summarize the results obtained by Tsuji as follows:
(i) Let $d\nu(a)\geqq 0$ be a positive mass distributed on $E$ of total mass 1 and

consider

(2) $I(\nu)=\int\int_{E}\log[a, b]^{-d\nu(a)d\nu(b)}$ $\nu(E)=1$ ,1

(3) $V=\inf_{\nu}I(\nu)$ , $\infty\geqq V>0$ .

Then there exists $/\nu\geqq 0_{y}$ such that

(4) $I(l^{l})=\int\int_{E}\log[\overline{a}^{1}b\overline{]}d\mu(a)d_{l}4(b)=V,$ $\mu(E)=1$ .

(ii) For the potential of the mass distribution $d\mu(a)$ on $E$

(5) $u(z)=\int_{E}\log[z^{1}a]-,-d\mu(a)=\int_{F_{1}}\log|_{\frac{1-}{z-}}^{\overline{a}_{a}z_{-}}|d\mu(a)$ ,

we have, similarly to the result of Frostman,

(6) $\sup_{|z|<1}\{u(z)\}=V$

and
(6) $u(z)=V$ on $E$ ,
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except on a set of capacity zero.
(iii) Define the hyperbolic transfinite diameter, similarly to the definition

by Fekete [1], as follows:
Let

(7) $d_{n}=d_{n}(E)=^{(}\frac{2n){\rm Max}}{p_{i}\in E,p_{j}\in E}\prod_{i\triangleleft}^{n}\overline{[p}_{i}\overline{p_{j}]}^{-},$ ,

where $p_{1},p_{2},\cdots,p_{n}$ are any $n$ points in $E$, then the sequence $\{d_{n}\}$ is monotone
decreasing and there exists

(8) $\lim_{n\rightarrow\infty}d_{n}(E)=\tau(E)$ .

Hereafter we shall call $\tau(E)$ the hyperbolic transfinite diameter of $E$.
In the special case where the set $E$ is a continuum, there holds a relation

1(9)
$\tau(E)=_{M(D_{0})}$ ,

$M(D_{0})$ being a Riemann modulus of the ring domain $D_{0}$ bounded by $|z|=1$

and $E$ ([15], [16]).
(iv) Define the hyperbolic capacity $C(E)$ of $E$, similarly to the definition

of capacity in the usual potential theory, as follows:

$C(E)=e^{-V}$ .
Then we have
(10) $\tau(E)=C(E)$ .

Recently the present author [9] has proved some theorems on values
omitted by functions belonging to a certain class of functions which are
regular and univalent in an annulus $Q<|z|<1$ , by the method of symmetri-
zation due to P\’olya and Szego [13].

The object of this paper is to extend the above theorems to the case of
some classes of the analytic functions which are not necessarily univalent in
an annulus.

The method used here is analogous to the method of logarithmic trans-
finite diameter utilized by Hayman [6]. The above results on the hyperbolic
transfinite diameter will be effectively utilized in this paper instead of the
logarithmic transfinite diameter.

2. An application of the hyperbolic transfinite diameter.

In this section we deduce a fundamental theorem which will play an
important r\^ole in the sequel.

For the purpose we take an annulus in the z-plane

$D:Q<|z|<1$ $(Q>0)$
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as a doubly-connected basic domain. We now consider a class $\mathfrak{F}$ of the func-
tions $w=f(z)$ which are single-valued and analytic (not necessarily univalent)

in $D$ , and whose ranges of values $D_{f}$ for $D$ lie in the domain $|w|<1$ and
have the boundary component $|w|=1$ , which is the image of outer circle $|z|=1$

of $D$ , among other boundary components.
For simplicity we denote by $p$ the number of rotations of $w=f(z)$ along

$|z|=1,$ $i$ . $e.$ ,

(11) $\Delta\arg f(z)={\rm Im}\{\oint_{|z|=1}\frac{df(z)}{f(z)}\}=2\pi p$ .

Then we have the following
THEOREM 1. Suppose that a function $w=f(z)\in \mathfrak{F}$ and let $E_{f}$ be the comple-

ment of $D_{f}$ with respect to the open circular disk $|w|<1$ in the w-plane. Then
the following inequality holds for the hyperbolic transfinite diameter of $E_{f}$ :

(12) $\tau(E_{f})\leqq Q$ .
The equality sign holds if and only if $w=f(z)$ is univalent and so maps univa-
lently the annulus $D$ onto the ring-domain $D_{f}$ .

PROOF. We first restrict ourselves to the case $ V<\infty$ . For the proof we
use the equilibrium potential described in (ii) of Sec. 1:

(13) $u(w)=\int_{E_{f}}\log\frac{1}{[w,a]}d\mu(a)$ , $\mu(E_{f})=1$ ,

in the w-plane. From (ii)

$u(w)=V$ on $E_{f}$ ,

except a capacity zero. Furthermore, obviously

$u(w)=0$ on $|w|=1$ .
By the maximum principle for harmonic functions [11], we have
(14) $0<u(w)<V$
in $D_{f}$ .

Next, we consider the function

(15) $U(z)=\frac{z)\}\log\frac{1}{|z|}}{\log\frac{1}{Q}}\underline{u\{}f(V$

which is harmonic in the annulus $D$ and satisfies the conditions:
(i) $U(z)=0$ on $|z|=1$ ,
(ii)

$\varlimsup_{z\rightarrow Qc^{?\theta}}U(z)\leqq 0$ at every point $Qe^{t\theta}$ on $|z|=Q$ ,

(iii) $U(z)$ is bounded from above in $D$ .
By applying again the maximum principle to the function $U(z)$ , we have
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either $U(z)<0$ or $U(z)\equiv 0$ in the annulus $D$ . Since $U(z)$ is also harmonic on
$|z|=1$ and $\partial U/\partial n_{z}\leqq 0$ there, we have

(16) $ 0\geqq\frac{1}{2\pi}\int_{|z^{1}=1}\frac{\partial U(z)}{\partial n_{z}}ds_{z}=\frac{1}{2\pi V}\int_{|z_{l}^{1}=1}\frac{\partial u\{f(z)\}}{\partial n_{z}}d\theta$

$-\frac{l}{2\pi\log\frac{1}{Q}}\int_{|z|=1}\frac{\partial}{\partial n_{z}}\log\frac{1}{|z|}ds_{z}$

$(z=e^{i\theta})$ ,

where $ds_{z}$ denotes the arc-element along $|z|=1$ and $\partial/\partial n_{z}$ the differentiation
performed with respect to the inward-drawn normal on $|z|=1$ . On $|z|=1$ ,
there obviously holds

(17) $\frac{\partial u}{\partial n_{z}}=\frac{\partial u}{\partial n_{w}}|\frac{dw}{dz}|$

$=\frac{\partial u}{\partial n_{w}}\frac{|z|}{|w|}|\frac{dw}{dz}|=\frac{\partial u}{\partial n_{w}}|\frac{d\log w}{d\log z}|=\frac{\partial u}{\partial n_{w}}\frac{d\varphi}{d\theta}$

$\partial/\partial n_{w}$ denoting the differentiation performed with respect to the inward-
drawn normal on $|w|=1(w=e^{i^{\prime}p})$ . Accordingly, the first integral of the right-
hand side of (16) is equal to

(18) $\frac{p}{2\pi V}\int_{|w|\subset 1}\frac{\partial u(w)}{\partial n_{w}}d\varphi=\frac{p}{2\pi V}\int_{E_{f}}\{\int_{|w|=1}\frac{\partial}{\partial n_{w}}\log|\frac{1-\overline{a}w}{w-a}|d\varphi\}d\mu(a)$

$=\frac{p}{2\pi V}\int_{E_{f}}\{\int_{|w|=1}d\arg(w-a)\}d\mu(a)=\frac{p}{V}$ ,

by virtue of the Cauchy-Riemann equation and $l\alpha(E_{f})=1$ . Thus we obtain
from (16) and (18)

$0\geqq--\frac{1}{\log\frac{1}{Q}}p\overline{V}$

$e^{V}\geqq(\frac{1}{Q})^{p}$

(19) $\tau(E_{f})=e^{-V}\leqq Q^{p}\leqq Q$ (by (iv)).

Considering the inequalities (16) and (19), the equality sign of (12) holds only
if $\partial U(z)/\partial n_{z}=0$ everywhere on $|z|=1$ and $p=1,$ $i$ . $e.$ ,

(20) $\Delta\arg f(z)=2\pi$ .
Then, if we put

$W(z)=U(z)+iV(z)$ ,

$V(z)$ being a conjugate harmonic function of $U(z),$ $W(z)$ is obviously single-
valued and analytic in the annulus $1-\epsilon\leqq|z|\leqq 1$ for any $\epsilon>0$ . Furthermore
$U(z)=0$ and $V(z)=const$ . on $|z|=1$ , since $\partial U(z)/\partial n_{z}=0$ there. Therefore $W(z)$

$=const$ . in the annulus $1-\epsilon\leqq|z|\leqq 1$ and so in the annulus $D$ . Thus we obtain
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$U(z)=const.=0$ in $D$ ,

$\frac{u\{f(z)\}}{V}=\frac{\log\frac{1}{|z|}}{\log\frac{1}{Q}}$ in $D$ .

Accordingly,

$\frac{u\{f(z}{V})\}\rightarrow 0$ as $z\rightarrow e^{i\theta}$ $(0\leqq\theta<2\pi)$ ,

$\frac{u\{f(z)\}}{V}\rightarrow 1$ as $z\rightarrow Qe^{i\theta}$ $(0\leqq\theta<2\pi)$ .

Thus we conclude that $w=f(z)$ must always approach the boundary of $D_{f}$

(either $|w|=1$ or $E_{f}$) as $|z|\rightarrow 1$ or $|z|\rightarrow Q$ .
Here we utilize the following lemma due to Heins quoted in Hayman’s

paper [6]:

LEMMA. Suppose that $f(z)$ is meromorphic in a domain $D$ , that the values
which $f(z)$ takes in $D$ lie in a domain $D_{f}$ , and that as $z$ tends to the boundary

of $D$ in any manner $f(z)$ always approaches the boundary of $D_{f}$ . Then $f(z)$ takes
every value of $D_{f}$ an equal finite number of times in $D$ .

In our case we may apply the lemma with $Q<|z|<1$ for $D$ , and see
that $f(z)$ takes every value in $D_{f}$ exactly once, since $f(z)$ satisfies the condition
(20), $i$ . $e$ . $f(z)$ is univalent in $D$ .

Conversely, let $f(z)$ be univalent in the annulus $D$ , then $D_{f}$ is a ring-
domain and $\tau(E_{f})=1/M(D_{f})=Q$ from (iii) of Sec. 1 and by the invariant
property of Riemann modulus under any univalent mapping. Thus the
equality sign holds in (12).

It is trivial to consider the case $ V=\infty$ , since in this case $\tau(E_{f})=0$ from
(10). q. e. $d$ .

REMARK 1. Although the inequality (12) is also obtainable from the
principle of harmonic measure [11], it seems to be somewhat complicated to
investigate the case of equality of (12), because for the present it must be
assumed that the boundary of $D_{f}$ is composed of a finite number of closed
Jordan curves.

REMARK 2. In the above theorem, the domain $D_{f}$ is not always doubly-
connected. We denote by $\tilde{D}$ a ring-domain having the outer boundary com-
ponent $|w|=1$ and containing $D_{f}$ , and denote by $\tilde{E}$ the complement of $\tilde{D}$ with
respect to the disk $|w|<1$ . Schiffer ([14], [10]) proved that

(21) $-Q^{-\leqq M(\tilde{D})}1$

under the essentially same assumptions as those of our theorem. The ine-
quality (21) is equivalent to
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(22) $\tau(\tilde{E})\leqq Q$ ,

in terms of the hyperbolic transfinite diameter. Since the set function $\tau(E)$

is monotone increasing and $\tilde{E}\subset E_{f}$ ,

$\tau(\tilde{E})\leqq\tau(E_{f})$ .
Therefore Schiffer’s theorem follows from our result (12) as an immediate
consequence.

3. A fundamental theorem on the range of valueS of $f(z)\in \mathfrak{F}$ .
For preparations we introduce some notations necessary for the discussions

in this section.
We denote the ring-domain bounded by $|w|=1$ and the rectilinear slit

$<P,$ $+\infty>(P>1)$ by $G_{P}$ which is called the Grotzsch’s extremal domain [4]

and whose Riemann modulus is denoted by $\Phi(P)$ . It is well-known that $\Phi(P)$

is a strictly increasing function of $P$. Let $Q(<1)$ be a positive number such
that

1(23) $=\Phi(P)$ ,
$-Q$

then the annulus $1<|z|<Q^{-1}$ can be mapped onto $G_{P}$ in the w-plane, in such
a way that the circle $|w|=1$ and the slit $<P,$ $+\infty>$ correspond to $|z|=1$ and
$|z|=Q^{-1}$ respectively, by the so-called Grotzsch’s extremal function $w=F(z$ ;
$Q^{-1})(F(1;Q^{-1})=1)$ . It can be explicitly represented in terms of the elliptic
functions [8]. Obviously, by the reflection principle, the function $w=F(z;Q^{-1})$

univalently maps the annulus $Q<|z|<1$ onto the ring-domain $G_{P}^{\prime}$ bounded
by $|w|=1$ and the rectilinear slit $<0,1/P>$ .

After the above preparations, we deduce a fundamental theorem on the
range of values taken by the function $f(z)\in \mathfrak{F}$ in the annulus $D$ :

THEOREM 2. Let $e$ be a closed set of real numbers which is contained in
$|-$ the interval $0\leqq x<1$ and whose Lebesgue measure is at least $1/P(1/Q=\Phi(P))$ .

For each $x\in e$, let be associated a closed set of points $C(x)$ contained entirely in
$:_{\leftarrow-}F$ the circle $|w|<1$ in the w-plane such that, if $w_{1},$ $w_{2}$ be any points on $C(x_{1}),$ $C(x_{2})$

respectively, then the inequality

(24) $[w_{1}, w_{2}]\geqq[x_{1}, x_{2}]$

always holds. Then the range of values $D_{f}$ taken by $f(z)\in \mathfrak{F}$ in the annulus $D$

contains at least one of the sets $\{C(x)\}$ , except possibly when $e$ is an interval of
length $1/P$ and $w=f(z)$ takes the form
(25) $f(z)\equiv S\{F(z;Q^{-1})\}\in \mathfrak{F}$ ,

$S$ denoting any linear transformation mapping tfte unit circular disk $|w|\leqq 1$ onto
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itself.
PROOF. To prove Theorem 2, suppose that $D_{f}$ contains none of the sets

$\{C(x)\}$ completely, so that $E_{f}$ contains at least one point on each set $C(x)$ .
We shall have to show that $f(z)$ takes the form (25) and to do this we show
that $\tau(E_{f})\geqq Q$ .

Let $a,$
$b$ be the lower and upper bounds for $x$ in $e$ , and for any $x$ in $e$ let

$l(x)$ be the measure of the part of $e$ in the interval $<a,$ $x>$ . Thus $l(a)=0$ ,
$l(b)\geqq 1/P$. Let $e^{*}$ denote the interval on the real $\xi$-axis $0\leqq\xi\leqq l(b)$ , then we
shall show that $\tau(E_{f})\geqq\tau(e^{*})$ . To do this we recall the definition (7) of $d_{n}(E_{f})$ ,
$i$ . $e.$ , the hyperbolic diameter of order $n$ . Now let $\xi_{1},$ $\xi_{2},\cdots,$ $\xi_{n}$ be points of $e^{*}$

such that

(26) $\{d_{n}(e^{*})\}\frac{n(n-1)}{2}=\prod_{1\leqq i<J\leqq n}[\xi_{i}, \xi_{j}]$ .

Since $l(x)$ is continuous and only changes at $x$, if $x$ is a limit point of $e$ , and
since $e$ is closed, we can find $x_{i}(i=1,2,\cdots, n)$ in $e$ such that

$l(x_{i})=\xi_{i}$

and hence using (24) a point $w_{i}$ on each set $C(x_{i})$ and in $E_{f}$ , such that
$[w_{i}, w_{j}]\geqq[x_{i}, x_{j}]\geqq[\xi_{i}, \xi_{j}]$ ,

using the obvious inequality

$|\frac{x_{i}-x_{j}}{1-x_{i}x_{j}}|\geqq|\frac{\xi_{i}-\xi_{j}}{1-\xi_{i}\xi_{j}}|$ .

Thus there are points $w_{1},$ $w_{2},\cdots,$ $w_{n}$ of $E_{f}$ such that

$\prod_{1\leqq i\triangleleft\leqq n}[w_{i}, w_{j}]\geqq\prod_{1\leqq i<j\leqq n}[\xi_{i}, \xi_{j}]$ .
Using this and (26) we easily obtain

$\{d_{n}(E_{f})\}\frac{n(n-1)}{2}\geqq$
$\prod_{1\leqq i<j\leqq n}[\xi_{i}, \xi_{j}]=\{d_{n}(e^{*})\}\frac{ntn-1)}{2}$ ,

so that
$d_{n}(E_{f})\geqq d_{n}(e^{*})$ ,

and hence, as $ n\rightarrow\infty$ ,
(27) $\tau(E_{f})\geqq\tau(e^{*})$ .
Now $e^{*}$ is an interval of length $l(b)(\geqq 1/P)$ on the positive real axis and the
hyperbolic transfinite diameter of such an interval is the reciprocal of Rie-
mann modulus of the ring-domain bounded by $|w|=1$ and the slit $<0,$ $l(b)>$

$(l(b)\geqq 1/P)$ . Therefore we have
(28) $\tau(e^{*})\geqq Q$ ,

using the monotonic dependence of Riemann modulus upon the respective
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ring-domain. From (27) and (28), we obtain

(29) $\tau(E_{f})\geqq Q$ .
On the other hand, by Theorem 1, there holds

$\tau(E_{f})\leqq Q$ ,

with the equality sign only if $f(z)$ is univalent in the annulus $D$ . Thus we
have

$\tau(E_{f})=\tau(e^{*})=Q$ , $(1/Q=\Phi(P))$ .
Accordingly the Lebesgue measure of $e$

“ and therefore that of $e$ are equal to
$1/P$, and $f(z)$ is univalent in $D$ . Then we must have $b-a\geqq 1/P$, and hence

$[a, b]=|1\frac{a-b}{-a}b|\geqq\frac{1}{P}$ .
with the equality sign only if $e$ is an interval of length $1/P$. From (24) there
exist two points $w_{1}$ and $w_{2}$ belonging to $E_{f}$ such that

$[w_{1}, w_{2}]\geqq P^{1}$ $w_{1}\in C(a)$ , $w_{2}\in C(b)$ .

Using a linear transformation $S$ carrying $w_{1}$ and $w_{2}$ into $0$ and $w_{2}^{\prime}$ respec-
tively, we obtain

$[w_{1}, w_{2}]=[0, w_{2}^{\prime}]=|w_{2}^{\prime}|\geqq\frac{1}{P}$ ,

for a value $w_{2}^{\prime}$ omitted by $S\{f(z)\}$ in $D$ .
On the other hand, by Grotzsch’s theorem [4] (or author’s lemma [9]),

there holds for the univalent function $S\{f(z)\}$

$[0, w_{2}^{\prime}]=|w_{2}^{\prime}|\leqq\frac{1}{P}$ ,

with the equality sign only if the function $S\{f(z)\}$ univalently maps the
annulus $D$ onto a ring-domain bounded by the circle $|w|=1$ and the slit
$<0,1/P>(1/Q=\Phi(P))$ , except a rotation about the origin $w=0$ . Thus we
obtain

$f(z)\equiv S^{-1}\{F(z;Q^{-1})\}$ ,

$S^{-1}$ denoting the inverse transformation of S. $q$ . $e$ . $d$ .

4. A consequence of Theorem 2.

We can clearly show a number of applications of Theorem 2 by giving
various particular forms to the set $C(x)$ . We may, for instance, take for $C(x)$

the circle about the origin $w=0$ passing through a point $x$ on the positive
real axis. It is obvious that the assumption (24) is satisfied. Thus we can
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prove the following
THEOREM 3. Suppose that $f(z)\in \mathfrak{F}$ and $f(z)\neq 0$ in D. Then $u\cdot e$ have the

inequality

(30) $r_{f}\leqq\frac{1}{P}$ $(--=\Phi(P)Q1)$ ,

$r_{f}$ being $lhe$ lower bound of radii of the circles $|w|=r$ contained completely in
the range of values $D_{f}$ . The equality sign holds in (30) if and only if

$f(z)\equiv e^{i\theta}F(z;Q^{-1})$ ,

where $\theta$ is a real number.
PROOF. We take the closed interval $<0,1/P>(1/Q=\Phi(P))$ and the circle

$|w|=x(x\in e)$ for the set $e$ and for the set $C(x)$ , respectively, as described
above, in Theorem 2. Then the inequality

(31) $r_{f}<\frac{1}{P}$

follows immediately from Theorem 2, unless the function $f(z)$ takes the form
(25).

For the case where $f(z)\equiv S\{F(z;Q^{-1})\}$ ($f(z)\neq 0$ in $D$), the complement $E_{f}$

of $D_{f}$ is a closed rectilinear segment containing the origin $w=0$ . Then some
detailed discussion leads us to the inequality (31), except possibly for the
case ] $(z)\equiv e^{i\theta}F(z;Q^{-1})$ ( $\theta$ : real).

Conversely, if $f(z)\equiv e^{i\theta}F(z;Q^{-1})$ , then there holds the equality sign in (30).
$q.e.d$ .

Here we newly take an annulus in the z-plane

(32) $D$ : $1<|z|<R$

as a doubly-connected basic domain and consider a class $\mathfrak{R}$ of the functions
$w=f(z)$ which are single-valued and analytic (not necessarily univalent) in $D$,
and whose ranges of values $D_{f}$ for $D$ lie in the domain $|w|>1$ and have the
boundary component $|w|=1$ , as the image of inner circle $|z|=1$ of $D$ , among
other boundary ones. Then we immediately obtain the following

THEOREM 4. Suppose that $w=f(z)\in \mathfrak{R}$ and let $d$ be the shortest distance
from the origin $w=0$ to the outer boundary component of $D_{f}$ . Then it holds
that
(33) $d\geqq P$ $(R=\Phi(P))$ .
The equality sign holds if and only if

$w=f(z)\equiv e^{i\theta}F(z;R)$ , ( $\theta$ : real) ,

$F(z;R)$ being the Grotzsch’s extremal function described in Sec. 3.
PROOF. Applying Theorem 3 to the function $1/f(1/z)$ , we can easily prove

the theorem. $q$ . $e$ . $d$ .
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REMARK. Recently Hayman ([5], [6]) has generalized the Koebe’s 1/4-

Theorem on the class of univalent functions to a class of regular functions
in the unit circle $|z|<1$ . The above Theorem 4 is regarded as a generali-
zation of Hayman’s result to the case where the basic domain is an annulus
$1<|z|<R$ .

5. Theorem on a class $\mathfrak{M}$ of meromorphic functions.

In this section we consider a somewhat wider class SM of the functions
$w=f(z)$ which are single-valued and meromorphic (not necessarily univalent)

in $D$ , and whose ranges of values $D_{f}$ for $D$ lie in the domain $|w|>1$ and
have the boundary component $|w|=1$ , as tlte image of inner circle $|z|=1$ of
$D$ , among other boundary ones. Obviously $t$ here holds $\mathfrak{F}\subset \mathfrak{M}$ . For such a
class of functions we have the following

THEOREM 5. Let $ 1<a<b\leqq+\infty$ . Then the necessary and suJficient condi-
tion that for every $f(z)\in \mathfrak{M},$ $D_{f}$ contains some circle $|w|=r$ with $a<r<b$ is that

(34) $[\frac{1}{a},$ $\frac{1}{b}]>_{P^{-}}^{1}-$ $(R=\Phi(P))$ .

PROOF. Necessity. Suppose that

$[-a1,$ $\frac{1}{b}]\leqq P^{1_{-}}$

Then we have
1

$1+bP$
(35)

$a\geqq\overline{\frac{1}{P}+}\overline{\frac{1}{b}}$

.

On the other hand, we consider the composite function of the Grotzsch’s
extremal function $\zeta=F(z;R)$ and the linear fractional function $w=w(\zeta)=$

$(\zeta+\underline{1}b^{-})/(1+-\frac{\zeta}{b})$ . The function

$w=w\{F(z;R)\}\in \mathfrak{M}$

univalently maps the annulus $1<|z|<R$ onto the ring-domain bounded by
$|w|=1$ and the rectilinear segment $<a^{\prime},$ $b>$ , where

(36) $a^{\prime}=\frac{1+\frac{1}{bP}}{\frac{1}{P}+\frac{1}{b}}$ .

Therefore this function takes no real value $w$ for which $a\leqq w\leqq b$ , since $a^{\prime}\leqq a$

from (35) and (36).

Sufficiency. Suppose that for some function $f(z)$ the range of values $D_{f}$
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contains none of circles $|w|=r(a<r<b)$ . Performing a linear transformation
$S$ to the function $f(z)$ , if necessary, we consider the function $1/S\{f(1/z)\}$ in
the annulus $1/R<|z|<1$ , where $S$ transforms $a$ and $b$ into $a^{\prime}$ and $\infty$ respec-
tively, such that

$[\frac{1}{a},$ $\frac{1}{b}]=[\frac{1}{a’},$ $0]=\frac{1}{a’}$ .

In Theorem 2 we may take for the set $C(x)$ the image of the circle $|w|=r$

$(a\leqq r\leqq b)$ under the transformation $TS,$ $T$ being the reciprocal transformation,
and take for the set $e$ of $x$ the interval $<0,1/a^{\prime}>$ . Thus we obtain from
this theorem that

$\frac{1}{a’}\leqq\frac{1}{P}$ ,

and accordingly

$[\frac{1}{a},$ $\frac{1}{b}]\leqq\frac{1}{\overline{P}}$ .

Therefore, if (34) is satisfied, then for every $f(z)\in \mathfrak{M},$ $D_{f}$ must always contain
some circle $|w|=r$ with $a<r<b$ . $q$ . $e$ . $d$ .

6. Class of bounded analytic functions.

Let $w=f(z)\in \mathfrak{R}$ and be bounded in the annulus $D:1<|z|<R,$ $i$ . $e.,$ $1<$

$|f(z)|<M$ in $D$ . In this section we consider the class of such functions $f(z)$

and deduce some theorems on the range of values $D_{f}$ . We obtain immediately
from Theorem 1 the following

THEOREM 6. $S$uppose that $w=f(z)\in \mathfrak{R}$ and is bounded in $D:1<|z|<R,$ $i$ . $e.$ ,
$1<|f(z)|<M$ in D. Then we have

(37) $R\leqq M$ .
The equality sign in (37) holds if and only if $w=f(z)\equiv e^{t\theta}z$ ( $\theta$ : real).

PROOF. We consider the function $w_{1}=1/f(1/z)$ , single-valued and analytic
in the annulus $1/R<|z|<1(Q=1/R)$ , and apply Theorem 1 to this function.
Let $\tilde{E}$ be the complement of the range of values taken by the function.
Then we have

(38) $\tau(\tilde{E})\leqq Q=\frac{1}{R}$ .

Since the closed circular disk $|w_{1}|\leqq 1/M$ is contained in $\tilde{E}$, its hyperbolic
transfinite diameter $(=1/M)$ is not greater than that of $\tilde{E},$ $i$ . $e.$ ,

(39) $\frac{1}{j\psi}\leqq\tau(\tilde{E})$ .
From (38) and (39), we obtain
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$\frac{1}{M}\leqq\frac{1}{R}$ , $R\leqq M$ .

It is obvious that the equality sign in (37) holds if and only if $w=f(z)$ is
univalent in $D$ and $D_{f}$ coincides with the ring-domain $1<|w|<M$, and hence
$w=f(z)=e^{i\theta}z$ ( $\theta$ : real). $q$ . $e$ . $d$ .

Here we notice that this theorem is also obtainable from the principle of
harmonic measure or Schiffer’s theorem (see Remark 2 of Sec. 2).

Let the annulus $D:1<|z|<R$ be univalently mapped by some bounded
function $w=f(z)\in \mathfrak{R}$ onto the annulus $1<|w|<M$ slit along a rectilinear seg-
ment $<r,$ $M>$ . Then there holds $M\geqq R$ by Theorem 6. It is well-known
that the value of $\gamma$ uniquely depends upon only $M(\geqq R)$ and yet is a strictly
decreasing function of $M$ such that

$\lim^{r=R}$ and $\lim_{JI\rightarrow\infty}\gamma=P$ $(R=\Phi(P))$ .

Hereafter, for preciseness, we denote the value of $\gamma$ by $\gamma(M)$ . Then we
prove the following

THEOREM 7. Suppose that $\iota 0=f(z)\in \mathfrak{R}$ and is bounded in $D:1<|z|<R,$ $i.e.$ ,
$1<|f(z)|<M$ in $D$ , and let $d$ be the shortest distance from the origin $w=0$ to
the outer boundary component of $D_{f}$ . Then we have

(40) $d\geqq\gamma(M)$ .
The equality sign holds if and only if $w=e^{i\theta}f(z)$ is the above described function
which univalently maps $D$ onto the annulus $1<|w|<11l$ slit along the segment
$<\gamma(M),$ $M>$ , where $\theta$ is a real number.

PROOF. Without any loss of generality, we may assume that a point
$w=d(>0)$ on the outer boundary component of $D_{f}$ has the shortest distance
from the origin $w=0$ . Let $\zeta=F$ ($w$ ; A4) be the Grotzsch’s extremal function
which univalently maps the annulus $1<|w|<M$ onto the domain $|\zeta|>1$ slit
along the rectilinear segment $<P$ ‘, $+\infty>(M=\Phi(P^{\prime}))$ . Then there obviously
holds
(41) $P\leqq P^{\prime}(R=\Phi(P), M=\Phi(P^{\prime}))$ ,

since $\Phi(P)$ is the strictly increasing function of $P$ and $R\leqq M$ from (37).

Consider the composite function $\zeta=F(f(z);M)\in \mathfrak{R}$ and apply Theorem 4
to this function. Then we obtain

(42) $P\leqq F(d;M)$ .
On the other hand, since the annulus $1<|w|<M$ slit along $<\gamma(M),$ $M>$

and the domain $|w|>1$ slit along $<P,$ $+\infty>$ are conformally equivalent to
the annulus $D:1<|z|<R$, there holds

(43) $F(\gamma(M);M)=P$ .
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From (42) and (43), we obtain

(44) $F(\gamma(1W);M)\leqq F(d;M)$ ,
and therefore

$\gamma(M)\leqq d$ ,

since $F(z;M)$ is a strictly increasing function for real $z\in<1,$ $M>$ .
The equality of (40): $r(M)=d$ entails the equality of (42): $P=F(d;M)$ .

Hence, by Theorem 4, we have
$F(f(z);M)\equiv F(z;R)$ ,

in other words, $zv=f(z)$ univalently maps the annulus $D$ onto the annulus
$1<|w|<M$ slit along the segment $<\gamma(M),$ $M>$ . It is obvious from (41).

Conversely, the equality sign holds in (40) for such functions. $q$ . $e$ . $d$ .
REMARK. Under the additional assumption that $f(z)$ is univalent in $D$ , the

above theorem was proved by Grotzsch [4] and Komatu [8].

7. Circular disks omitted by functions $\in \mathfrak{R}$ .
A few years ago, Goodman [3] proved the following theorem:

Let $\iota v=f(z)=\sum_{n=1}^{\infty}a_{n}z^{n},$ $(|a_{1}|=1)$ , be regular and univalent in $E:|z|<1$ . Let

$c$ be fixed and suppose that for $z$ in $E,$ $f(z)$ omits all $\xi$ for which
$|\xi-c|\leqq R_{0}$ .

Then

$R_{0}\leqq|c|_{1}^{1}\frac{4}{4}\frac{c|-1}{c|+1}$ .
The result is best possible.

In this section we attempt to extend the result to the case of class $ 9\backslash \iota$ of
analytic functions in $D:1<|z|<R$ and prove the following

THEOREM 8. Let $w=f(z)\in \mathfrak{R}$ and let $c(|c|>P, R=\Phi(P))$ be any fixed point
not belonging to the sinzply-connected domain which is bounded by the outer
boundary of $D_{f}$ and contains $D_{f}$ . Suppose that in the annulus $D,$ $w=f(z)$ omits
all $\xi$ for which
(45) $|\xi-c|<R_{0}$ .
Then we have

(46) $R_{0}\leqq M(\frac{|c|}{\gamma(M)}1)$ ,

$M$ being uniquely determined by the relation

(47) $|c|=\frac{\gamma(M)(M^{2}-1)}{M^{2}-\gamma(M)^{2}}$

for each value of $|c|$ . The result is best possible.
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PROOF. Without loss of generality we may assume that $c>0$ . For the
proof, we now introduce the following linear transformation [7]:

(48) $\zeta=\frac{tM}{\overline{R}_{0}}\frac{w-c+s}{w-c+t}$ ,

$s$ and $t$ being the roots of the equations

(48’) $s\cdot t=\overline{R}_{0}$ , $(c-s)(c-t)=1$ , $(s>t)$ ,

and two constants M $\overline{R}_{0}$ are connected with each other by a relation

$(48^{\prime/})$ $JI=\overline{R}_{0}\frac{(c-\gamma)}{t}$ .

By this transformation, the whole w-plane with two circular holes: $|w|\leqq 1$

and $|w-c|\leqq\overline{R}_{0}$ , is univalently mapped onto the annulus $1<|\zeta|<M$, in such
a way that the circles $|\zeta|=1$ and $|\zeta|=M$ correspond to the circles $|w|=1$ and
$|n)-c|=\overline{R}_{0}$ , respectively. Two points $w=c-\vdash\overline{R}_{0}$ and $ w=\infty$ are carried into
$\zeta=M$ and $\zeta=t\eta_{i}T/\overline{R}_{0}$ . Determining $M$ so as to satisfy the relation

$(48^{\prime\prime/})$ $\underline{t}_{\overline{R}}\underline{M_{0}}=\gamma(M)$ ,

and using $(48^{f})$ and $(48^{\prime\prime})$ , we obtain

(49) $\overline{R}_{0}=M(\overline{\gamma(}\overline{M)}-1c)$

and

(50) $c=_{M}^{\underline{\gamma(}M_{2}}\frac{)(M^{2}-1)}{-\gamma(M)^{2}}$ .

If $c$ is regarded as a function of $M(\geqq R)$ , it becomes a strictly decreasing
function such that $\lim_{M\rightarrow R}c=+\infty$ and $\lim_{M\rightarrow\infty}c=P$. Therefore, for any fixed $c(>P)$ ,

$M$ and so $\overline{R}_{0}$ can be uniquely determined from (50) and (49), respectively.
The details of calculations will be omitted here, since these seem to be essen-
tially analogous to those appearing in the preceding paper by the author [9].

Thus the annulus $D:1<|z|<R$ becomes conformally equivalent to the annulus
$1<|\zeta|<M$ slit along $<tM/R_{0},$ $M>$ and also to the ring-domain bounded by
$|w|=1,$ $|w-c|=\overline{R}_{0}$ and the slit $<c+\overline{R}_{0},$ $+\infty>$ .

After the above preparations we prove the theorem. Suppose now that
$R_{0}>\overline{R}_{0}$ for some function $w=f(z)\in \mathfrak{R}$ and for some point $c$ , and consider the
image domain $D_{\zeta}$ in the $\zeta$-plane of $D$ by the composite function of $w=f(z)$

and (48). It belongs to the class $\mathfrak{R}$ and is bounded above by $M$. Then we
have for every point $\zeta$ on the outer boundary of $D_{\zeta}$

(51) $|\zeta|>\gamma(M)$

from Theorem 7. It should be noticed that the equality sign never holds
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here, since the assumption $R_{0}>\overline{R}_{0}$ entails the result that $D_{\zeta}$ is contained in
some smaller annulus: $1<|\zeta|<M^{\prime}(<M)$ .

On the other hand, since $w=f(z)$ is single-valued and analytic in $D$ , the
point $\zeta=\gamma(M)$ in the $\zeta$ -plane never belongs to the simply-connected domain
bounded by the outer boundary of $D_{\zeta}$ , containing $D_{\zeta}$ . Hence there exists
some point $\zeta^{\prime}$ on the outer boundary such that

$|\zeta^{\prime}|\leqq\gamma(M)$ .
The result is contradictory to (51). Thus we have $R_{0}\leqq\overline{R}_{0}$ .

Using again Theorem 7, we can prove that the equality sign of (46) holds
if and only if $w=f(z)$ univalently maps $D$ onto the ring-domain bounded by
$|w|=1,$ $|w-c|=\overline{R}_{0}$ and the slit $<c+\overline{R}_{0},$ $+\infty>$ , except a rotation about the
origin $w=0$ . But the details will be omitted here. $q$ . $e$ . $d$ .

REMARK. Under the additional assumption that $f(z)$ is univalent in $D$,
the author [9] proved the above theorem.

8. Class of analytic functions with bounded real parts.

In this section we consider a subclass of $\mathfrak{R},$
$i$ . $e.$ , a class $\mathfrak{R}_{c}$ of functions

$f(z)$ such that $f(z)\in \mathfrak{R}$ and satisfy the condition

(52) ${\rm Re}\{f(z)\}>-c$ ,

in $D$ , where $c$ is a fixed positive constant. Thus we obtain the following
THEOREM 9. Suppose that $w=f(z)\in \mathfrak{R}_{c}$ . Let $\tau$ be any point on the outer

boundary component of the range of values $D_{f}$ taken by $f(z)$ in D. Then we
have

(53) $|\tau|\leqq\frac{1+M\gamma(M)}{M+\gamma(M)}$ ,

$M$ being uniquely determined so as to satisfy the condition

(54) $M+\frac{1}{M}=2c$ $(M\geqq R)$ ,

for any fixed $c\geqq(R+R^{-1})/2$ . The result is best possible.
PROOF. We introduce the following transformation [7]:

(55) $\zeta=-tM^{2}\frac{w+2c-s}{w+2_{C}-t}$ $(t<s)$ ,

$s$ and $t$ being the roots of the equations

(56) $s\cdot t=1$ , $s+t=2c$ $(t<s)$ ,

and $M$ being connected with $s$ and $t$ by the relation

(57) $\frac{1}{M^{2}}=\frac{t}{2c-t}(=\frac{t}{s})$ .
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By this transformation, the w-plane with two circular holes [ $w+2c|\leqq 1$ and
$|w|\leqq 1$ is univalently mapped onto an annulus $1<|\zeta|<M^{2}$ in such a way
that the circles $|\zeta|=1$ and $|\zeta|=M^{2}$ correspond to the circles $|w|=1$ and $|w+$

$2c|=1$ respectively. Therefore, by the reflection principle, the ring-domain
bounded by the straight line ${\rm Re}\{w\}=-c$ and the circle $|w|=1$ is univalently
mapped onto the annulus $1<|\zeta|<M$ in such a way that the circle $|w|=M$

corresponds to the line ${\rm Re}\{w\}=-c$ . From (56) and (57), (55) may be rewritten
in the from

(58)
$\zeta=-M\frac{w+2c-M}{w+2c-\frac{1}{M}}$

,

$M$ being uniquely determined by the relation

(59) $M+\frac{1}{M}=2c$ .

The details of calculations will be omitted here, since these seem to be
essentially analogous to those appearing in the preceding paper by the author
[9].

In the $\zeta$-plane, we consider the range of values $D_{\zeta}$ taken in $D$ by the
composite function of $w=f(z)$ and (58). By Theorem 7, for any point $\zeta^{\prime}$ on
the outer boundary of the range $D_{\zeta}$ , there holds

(60) $|\zeta^{f}|\geqq\gamma(M)$ .
Using (58)

$\zeta+\frac{1}{M}-$

(61)
$w=\overline{1+\frac{\zeta}{M}}$

.

For any point $\tau$ on the outer boundary of $D_{f}$ , from (60) and (61), we obtain

$|\tau|=|\frac{\zeta^{\prime}+\frac{1}{M}}{1+\frac{\zeta}{M}}|\geqq\frac{|\zeta^{\prime}|+\frac{1}{M}}{1+\frac{|\zeta’|}{M}}\geqq\frac{\gamma(M)+-}{1+\underline{\gamma(}M,M}-\underline{M_{)}1}$ .

Thus we have the inequality (53). Using again Theorem 7 we can prove
that the equality sign of (53) holds if and only if $w=f(z)$ univalently maps
$D$ onto the ring-domain bounded by the circle $|w|=1$ , the straight line ${\rm Re}\{w\}$

$=-c$ and the slit along the real axis from $-c$ to $-\{\gamma(M)+\frac{1}{M}\}/\{1+\frac{\gamma(M)}{M}\}$ .
$q$ . $e$ . $d$ .

REMARK 1. Applying Theorem 6 to the composite function of $w=f(z)$ and
(58), and considering (59), it is easily proved that for the fixed constant $c$ we
necessarily have $c\geqq(R+R^{-1})/2$ .
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REMARK 2. Under the additional assumption that $f(z)$ is univalent in $D$ ,
the author [9] proved the above theorem.

Kyoto Prefectural University
of Medicine.
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