On intermediate many-valued logics.

By Toshio Umezawa

(Received Oct. 5, 1958)

There have been many reseaches on many-valued propositional logics. Rosser and Turquette [1], Dienes [2] and Church [3] investigated manyvalued logical extensions of two-valued logic which have the analogous properties to classical logic. Eukasiewicz and Tarski [4] and Kleene [5] gave many-valued propositional logics which are not considered to be classical logic. Furthermore, the truth-tables given in [4] and [5] do not contain all formulas which are provable in intuitionistic propositional logic. In fact, $(A \supset \supset A) \supset フ A$ which is provable intuitionistically does not always take the designated truth value in [4] and $A \supset A$ in [5] where \supset and 7 denote implication and negation respectively.

A treatment of many-valued propositional logics, in which every intuitionistically provable formula is true but not necessarily all classically provable formulas, viz. of intermediate many-valued logics in our terminology, was first achieved by Jaśkowski [6]. The purpose of this paper is to investigate details of intermediate many-valued logics.

A sufficient condition for a many-valued propositional logic to contain every intuitionistically provable propositional formula is given in §1. Let L_{1}, \cdots, L_{n} be arbitrary many-valued logics. We call L_{1}, \cdots, L_{n} mutually independent, if for every distinct i and j there is a formula which is true in L_{i} and not true in L_{j}. In $\S 2$, it is proved that there are at least enumerably infinite mutually independent many-valued propositional logics.

In § 3 we construct a sequence of intermediate many-valued propositional logics in which every member is a sublogic of the preceding ones. This sequence is well-ordered and the ordinal number of the sequence is called the length of the sequence. It is proved that there is a sequence of intermediate many-valued propositional logics whose length is $\omega^{\omega^{\omega}}$. In §4, special many-valued propositional logics \Re_{n} and \Re_{ω} are discussed. The many-valued logics which can be reduced to \Re_{n} is studied. Every provable formula in LR_{n} and LP_{2}, special intermediate propositional logics in axiomatic stipulation (cf. Umezawa [8] and [9]), is true in \Re_{n} and \Re_{ω} respectively.

In $\S 5$ we extend the results in $\S 2$ and $\S 3$ to predicate calculus. Quantifiers \forall and \exists can be defined in the propositional logics which appear in the
proof of Theorems 2 and 3 and hence these logics can be regarded as predicate logics.

§ 1. A sufficient condition for a many-valued propositional logic to contain all propositional formulas which are intuitionistically provable.

Let L be any many-valued propositional logic, the set S of whose elements is non-empty. We denote the logical operations in L i. e. conjunction, disjunction, implication and negation by $\wedge, \vee \supset \supset$ and $>$ respectively. For elements a, b of $S, a \equiv b$ means that a and b are in a same subclass for a classification of S. We make use of set-theoretic notations such as $\},\{\mid\}$ and \in.

The following is called (J)-condition.
(J)-condition. There is a classification of S such that the following holds. Let a, b, c be elements of S.

1. If $a \equiv b$ and $b \equiv c$, then $a \equiv c$.
2. If $a \equiv b$, then $a \wedge c \equiv b \wedge c$ and $a \vee c \equiv b \vee c$.
3. If $a \equiv b$, then $a \wedge b \equiv a \vee b \equiv a$.
4. $a \wedge b \equiv b \wedge a$ and $a \vee b \equiv b \vee a$.
5. $a \wedge(b \wedge c) \equiv(a \wedge b) \wedge c$ and $a \vee(b \vee c) \equiv(a \vee b) \vee c$.
6. $a \wedge(a \vee b) \equiv a$ and $a \vee(a \wedge b) \equiv a$.
7. $a \wedge(b \vee c) \equiv(a \wedge b) \vee(a \wedge c)$ and $a \vee(b \wedge c) \equiv(a \vee b) \wedge(a \vee c)$.
8. There are sets T and F defined thus:
$T=\{t \mid$ for all $x \in S x \wedge t \equiv x\}$ and
$F=\{f \mid$ for all $x \in S x \wedge f \equiv f\}$
9. For a and b, there is a set which contains $a \supset b$ and whose element, say r, satisfies the condition:
For all $x \in S,(a \wedge x) \wedge b \equiv a \wedge x$ is equivalent to $x \wedge r \equiv x$.
10. For any $a \in S$, there is a set which contains $7 a$ and whose element, say r, satisfies the condition:
For all $x \in S,(a \wedge x) \wedge f \equiv a \wedge x$ is equivalent to $x \wedge r \equiv x$ where f is an element of F in 8.
In virtue of $6, T$ and F can be also defined as follows:
$T=\{t \mid$ for all $x \in S \quad x \vee t \equiv t\}$ and
$F=\{f \mid$ for all $x \in S x \vee f \equiv x\}$.
Lemma 1. For any elements $a, b \in S, a \supset b \in T$ is equivalent to $a \wedge b \equiv a$.
Proof. Let $a \supset b \in T$. By 9, we see that for all $x \equiv S(a \wedge x) \wedge b \equiv a \wedge x$ is equivalent to $x \wedge(a \supset b) \equiv x$. From the assumption and $8, x \wedge(a \supset b) \equiv x$ for all $x \in S$. Then for all $x \in S(a \wedge x) \wedge b \equiv a \wedge x$ follows. Hence $(a \wedge a) \wedge b \equiv a \wedge a$.

Since $a \equiv a$ holds，we obtain $a \wedge b \equiv a$ ，using 1,2 and 3 ．Conversely，assume that $a \wedge b \equiv a$ ．By means of $1,2,4$ and 5 ，we obtain $(a \wedge x) \wedge b \equiv a \wedge x$ ．Con－ sequently，the set $\{r \mid$ for all $x \in S(a \wedge x) \wedge b \equiv a \wedge x$ is equivalent to $x \wedge r \equiv x\}$ is equal to $\{r \mid$ for all $x \in S x \wedge r \equiv x\}$ ，i．e．to T ．Hence，$a \supset b \in T$ ．

Lemma 2．Let f be an element of $F . \quad>a \in T, a \supset f \in T$ and $a \in F$ are equi－ valent one another．

Proof．Let $7 a \in T$ ．Then $x \wedge フ a \equiv x$ for all $x \in S$ ．By $10,(a \wedge x) \wedge f \equiv a \wedge x$ is equivalent to $x \wedge フ a \equiv x$ for all $x \in S$ ．Hence，$(a \wedge x) \wedge f \equiv a \wedge x$ for all $x \equiv S$ ． Substituting a for x and using $a \wedge a \equiv a$ ，we obtain $a \wedge f \equiv a$ ．By Lemma 1， this means $a \supset f \in T$ ．From $a \supset f \in T$ ，Lemma 1 and $a \wedge f \equiv f$ ，we obtain $a \equiv f$ ． Hence，$a \in F$ ．Finally，let $a \in F$ ．By the definition of $F, x \wedge a \equiv a$ for all $x \in S$ and hence $f \wedge a \equiv a$ ．Consequently，for all $x \in S(a \wedge x) \wedge f \equiv(f \wedge a) \wedge x \equiv a \wedge x$ ． In terms of the equivalence of $(a \wedge x) \wedge f \equiv a \wedge x$ to $x \wedge フ a \equiv x$ ，we obtain $x \wedge フ a$ $\equiv x$ for all $x \in S$ ．Hence $>a \in T$ ．

A formula is called true in L or L－true if the formula always takes the designated element of L no matter what set of elements of L is assigned to the variables of the formula．

Theorem 1．Every intuitionistically provable propositional formula is true in any L which satisfies the（J）－condition and takes T as the set of designated elements．

Proof．We make use of Gentzen＇s LJ［7］to deduce all the intuitionis－ tically provable formulas．Since Gentzen adopts the sequent calculus，we interprete a sequent as follows．A sequent $\Gamma \rightarrow \Delta$ with non－empty Γ, Δ is considered $\Gamma^{*} \supset \Delta^{*}$ where Γ^{*} and Δ^{*} denote $A_{1} \wedge \cdots \wedge A_{m}$ and $B_{1} \vee \cdots \vee B_{n}$ if Γ and Δ represent A_{1}, \cdots, A_{m} and B_{1}, \cdots, B_{n} respectively．$\Gamma \rightarrow \Delta$ with empty Γ or with empty Δ is considered Δ^{*} or $7 \Gamma^{*}$ with the same meaning of $*$ as the above．

As for initial sequent $A \rightarrow A$ ，the theorem holds by 3 ，because $a \supset a \in T$ is equivalent to $a \wedge a \equiv a$ by virtue of Lemma 1．Then we proceed inductively．

Thinning－in－antecedent．This inference has the shape $\frac{\Gamma \rightarrow H}{A, \Gamma \rightarrow H}$ because of the intuitionistic limitation．Hence，it should be proved that if $\gamma \supset h \in T$ ， then $(a \wedge \gamma) \supset h \in T$ where r is an element of L representing the value of Γ^{*} ． By assumption and Lemma 1，it follows that $r \wedge h \equiv r$ ．Using 2 and 5，we obtain $(a \wedge \gamma) \wedge h \equiv a \wedge \gamma$ and hence $(a \wedge \gamma) \supset h \in T$ ．

Thinning－in－succedent．It suffices to prove that if $7 \gamma \in T$ ，then $\gamma \supset a \in T$ for any element a of L ．Let $7 \gamma \in T$ ．In virtue of Lemma 2，$r \in F$ and hence $r \wedge a \equiv r$ ．By Lemma 1，we obtain $r \supset a \in T$ ．

Cut．This inference has the shape $\frac{\Gamma \rightarrow A A, \Delta \rightarrow H}{\Gamma, \Delta \rightarrow H}$ ．Hence，it should be proved that if $\gamma \supset a \in T$ and $(a \wedge \delta) \supset h \in T$ ，then $(\gamma \wedge \delta) \supset h \in T$ ．By assumption
and Lemma 1, we may assume that $r \wedge a \equiv r$ and $(a \wedge \delta) \wedge h \equiv a \wedge \delta$. Then it follows successively that $(r \wedge \delta) \wedge h \equiv(r \wedge a) \wedge \delta \wedge h \equiv r \wedge((a \wedge \delta) \wedge h) \equiv r \wedge(a \wedge \delta)$ $\equiv(r \wedge a) \wedge \delta \equiv r \wedge \delta$. Hence, $(r \wedge \delta) \supset h \in T$.

Since other rules of inference can be proved similarly, we omit the rest of proof.

§ 2. Many-valued propositional logics which are mutually independent.

Let L_{1}, \cdots, L_{n} be arbitrary many-valued propositional logics. L_{1}, \cdots, L_{n} are called mutually independent if for each i and $j(i \neq j 1 \leqq i, j \leqq n)$ there is a formula which is true in L_{i} and not true in L_{j}.

Theorem 2. There are at least enumerably infinite many-valued propositional logics which are mutually independent.

Proof. Let S_{i} be the set defined as

$$
S_{i}=\left\{(x, y) \mid x=y=0 \quad \text { or } \quad\left(x=1,2, \cdots, 2^{n+1-i}(n+1) \quad \text { and } \quad y=1,2, \cdots, i\right)\right\}
$$

where $1<n$ and $2 \leqq i \leqq n+1$.
Let $S_{i} \ni a, b$ and $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$. Logical operations are defined thus:

$$
\begin{aligned}
& a \wedge b=\left(\operatorname{Max}\left(a_{1}, b_{1}\right), \operatorname{Max}\left(a_{2}, b_{2}\right)\right) . \\
& a \vee b=\left(\operatorname{Min}\left(a_{1}, b_{1}\right), \operatorname{Min}\left(a_{2}, b_{2}\right)\right) . \\
& a \supset b=\left\{\begin{array}{llll}
(0,0) & \text { if } & a_{1} \geqq b_{1} & \text { and } \\
\left(1, b_{2}\right) & \text { if } & a_{1} \geqq b_{2} & \text { and } \\
\left(b_{2}<b_{2},\right. \\
\left(b_{1}, 1\right) & \text { if } & a_{1}<b_{1} & \text { and } \\
b & \text { if } & a_{2} \geqq b_{2},
\end{array}\right. \\
& >a=b_{1} \text { and } \\
& a_{2}<b_{2} .
\end{aligned},
$$

The many-valued logic whose truth values are elements of S_{i} and whose logical operations are the just defined ones is denoted by L_{i} where (0,0) is the designated element.

We prove that $L_{2}, L_{3}, \cdots, L_{n+1}$ are mutually independent. It suffices to prove that for $2 \leqq j<i \leqq n+1 L_{i}$ and L_{j} are mutually independent. Let us consider a formula $\bigvee_{C}\left(A_{p} \supset A_{q}\right)$ where V denotes the disjunction of $\left(A_{p} \supset A_{q}\right)$'s with p and q which satisfy the condition $C: 1 \leqq p \leqq i, 1 \leqq q \leqq i$ and $p \neq q$. This formula is L_{j}-true, since, by the assumption $j<i$, there are p and q such that the truth value corresponding to $\left(A_{p} \supset A_{q}\right) \vee\left(A_{q} \supset A_{p}\right)$ is $(0,0)$. However, this is not L_{i}-true if the value of $A_{r}(1 \leqq r \leqq n)$ is $(r, i+1-r)$. Next we consider $\bigvee_{D}\left(A_{p} \supset A_{q}\right)$ where D is the condition: $p, q \in S_{j}$ and $p \wedge q \neq p$. Since the number of elements of S_{j} is greater than that of elements of S_{i}, there are t and s,
distinct elements of S_{j}, such that A_{t} and A_{s} take a same truth value in S_{i}. For any distinct $p, q \in S_{j}, p \wedge q \neq p$ or $p \wedge q \neq q$ and hence the value of $A_{t} \supset A_{s}$, a fortiori, of $\underset{D}{\bigvee}\left(A_{p} \supset A_{q}\right)$ is $(0,0)$. However, this formula is not L_{j}-true, if the truth value which A_{r} takes is r. Since n is an arbitrary positive integer, the theorem follows.

§ 3. A sequence of intermediate many-valued logics.

First we introduce some definitions.

$$
\alpha=\omega^{\omega i_{i}+\cdots+\omega t_{1}+t_{0}}\left(t_{i}, \cdots, t_{0} \geqq 0\right) \text { and } w_{h}=\sum_{j=h}^{i}(j+1) t_{j}
$$

($h \leqq i$) where α naturally depends upon t_{i}, \cdots, t_{0} and w_{h} upon t_{i}, \cdots, t_{h}.

$$
p(k)=\frac{2^{k w_{0}}-1}{2^{w_{0}}-1} \quad \text { where } \quad w_{0} \neq 0
$$

We define $S\left(t_{i}, \cdots, t_{0}, n\right)$ recursively. Let A, B, A_{x} be arbitrary sets. $A \cup B$ denotes the sum set of A and B and $\bigcup_{C} A_{x}$ the sum set of A_{x} 's which satisfy the condition C.

$$
S(n)=\{(k, k) \mid 0 \leqq k \leqq n\} .
$$

$S\left(t_{i}, \cdots, t_{0}, n\right)=\left\{\left(\alpha\left(2^{l} p(k)\right), \alpha\left(2^{m} p(k)\right)\right) \mid 0 \leqq k \leqq n\right.$ and $\left[l=0,1, \cdots, w_{n} m=\sum_{j=h}^{i}(j-\right.$ $h) t_{j}$ where $\left.\left.0<h \leqq i ; l=0,1, \cdots, w_{0} m=\sum_{j=h}^{i} t_{j}, w_{0}\right]\right\} \cup\left\{\left(\alpha\left(2^{w_{0}} p(k)\right)+x, \alpha\left(2^{w_{0}} p(k)\right)+y\right) \mid 0\right.$ $\leqq k<n$ and $(x, y) \in \bigcup_{C} S\left(t_{i}, \cdots, t_{j+1}, t_{j}-1, s_{j-1}, \cdots, s_{0}, m\right)$ where j is determined by the condition $t_{0}=\cdots=t_{j-1}=0$ and $t_{j}>0$ and C denotes that $0<s_{j-1}<\omega$ and $0<m<\omega\}$.

$$
S\left(0, t_{i}, \cdots, t_{0}, n\right)=S\left(t_{i}, \cdots, t_{0}, n\right)
$$

Example. $S(1, n)$ is the set, $\left\{\left(\omega\left(2^{l} p(k)\right), \omega\left(2^{m} p(k)\right)\right) \mid 0 \leqq k \leqq n\right.$ and $\left.l, m=0,1\right\}$ $\cup\{(\omega(2 p(k))+x, \omega(2 p(k))+y) \mid 0 \leqq k<n$ and $(x, y) \in \underset{0<m<\omega}{\bigcup} S(m)\}$ where $p(k)=2^{k}-1$.

We express the set of t_{i}, \cdots, t_{0}, n occurring in the definition of $S\left(t_{i}, \cdots, t_{0}, n\right)$ by $\left(t_{i}, \cdots, t_{0}, n\right)$. Given $\left.n, m(n>0),\left(t_{i}, \cdots, t_{0}, n\right)\right\rangle\left(s_{j}, \cdots, s_{0}, m\right)\left(\left(s_{j}, \cdots, s_{0}, m\right)<\left(t_{i}, \cdots, t_{0}\right.\right.$, n)) means that i) $i>j$ or ii) there is an x such that $i=j, t_{i}=s_{j}, \cdots, t_{x+1}=s_{x+1}$, $t_{x}>s_{x}$ or iii) $i=j, t_{i}=s_{j}, \cdots, t_{0}=s_{0}, n>m$ or iv) $m=0 .\left(t_{i}, \cdots, t_{0}, n\right)=\left(s_{j}, \cdots, s_{0}, m\right)$ means that $i=j, t_{i}=s_{j}, \cdots, t_{0}=s_{0}, n=m$.
$S\left(t_{i}, \cdots, t_{0}, n\right)$ contains $S\left(s_{j}, \cdots, s_{0}, m\right)$ as a proper subset if $\left(t_{i}, \cdots, t_{0}, n\right)>\left(s_{j}, \cdots\right.$, $\left.s_{0}, m\right)$.

We denote by \boldsymbol{n} a finite sequence of (t_{i}, \cdots, t_{0}, n)'s such that if (s_{j}, \cdots, s_{0}, m) is a preceding member of ($\left.u_{k}, \cdots, u_{0}, l\right)$, then $\left(s_{j}, \cdots, s_{0}, m\right)>\left(u_{k}, \cdots, u_{0}, l\right)$ and $j \neq k$ or for some $x s_{x} \neq u_{x}$. Let \boldsymbol{n}_{x} and \boldsymbol{m}_{x} be x-th members of \boldsymbol{n} and \boldsymbol{m} respectively. $\boldsymbol{n}\rangle \boldsymbol{m}(\boldsymbol{m}<\boldsymbol{n})$ means that there is an x such that $\boldsymbol{n}_{1}=\boldsymbol{m}_{1}, \cdots, \boldsymbol{n}_{x-1}=\boldsymbol{m}_{x-1}$,
$\boldsymbol{n}_{x} \succ \boldsymbol{m}_{x}$. The number of members of \boldsymbol{n} is denoted by $\operatorname{lh}(\boldsymbol{n})$.
Let $\beta\left(\boldsymbol{n}_{x}\right)=\alpha\left(2^{w_{0}} p(n)\right)$ where α, w_{0} and $p(n)$ are defined for t_{i}, \cdots, t_{0}, n in \boldsymbol{n}_{x}. $S\left(t_{i}, \cdots, t_{0}, n\right)$ is also denoted by $S\left(\boldsymbol{n}_{x}\right)$ if \boldsymbol{n}_{x} is $\left(t_{i}, \cdots, t_{0}, n\right)$. Now we define $S_{1}\left(\boldsymbol{n}_{r}\right)$ and $T(\boldsymbol{n})$.

$$
S_{1}\left(\boldsymbol{n}_{r}\right)=\left\{\left(\sum_{x=1}^{r-1} \beta\left(\boldsymbol{n}_{x}\right)+y, \sum_{x=1}^{r-1} \beta\left(\boldsymbol{n}_{x}\right)+z\right) \mid(y, z) \in S\left(\boldsymbol{n}_{r}\right)\right\}
$$

where $\sum_{x=1}^{r-1} \beta\left(\boldsymbol{n}_{x}\right)=\beta\left(\boldsymbol{n}_{1}\right)+\beta\left(\boldsymbol{n}_{2}\right)+\cdots+\beta\left(\boldsymbol{n}_{r-1}\right)$.

$$
T(\boldsymbol{n})=\bigcup_{1 \leqq r \leqq l h(\boldsymbol{n})} S_{1}\left(\boldsymbol{n}_{r}\right)
$$

Logical operations are defined in $T(\boldsymbol{n})$ in what follows. Let a and b are elements of $T(\boldsymbol{n})$ and $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$.

$$
\begin{aligned}
& a \wedge b=\left(\operatorname{Max}\left(a_{1}, b_{1}\right), \operatorname{Max}\left(a_{2}, b_{2}\right)\right) . \\
& a \vee b=\left(\operatorname{Min}\left(a_{1}, b_{1}\right), \operatorname{Min}\left(a_{2}, b_{2}\right)\right) .
\end{aligned}
$$

Let c be the least ordinal number of x s occurring in $\left(x, b_{2}\right) \in T(\boldsymbol{n})$ and d the least ordinal number of y 's occurring in $\left(b_{1}, y\right) \in T(\boldsymbol{n})$.

$$
a \supset b=\left\{\begin{array}{llll}
(0,0) & \text { if } a_{1} \geqq b_{1} & \text { and } a_{2} \geqq b_{2} \\
\left(c, b_{2}\right) & \text { if } a_{1} \geqq b_{1} & \text { and } a_{2}<b_{2} \\
\left(b_{1}, d\right) & \text { if } a_{1}<b_{1} & \text { and } a_{2} \geqq b_{2} \\
\left(b_{1}, b_{2}\right) & \text { if } a_{1}<b_{1} & \text { and } a_{2}<b_{2}
\end{array}\right.
$$

Let γ be the greatest ordinal number of all x 's occurring in $(x, y) \in T(\boldsymbol{n})$.

$$
7 a=a \supset(\gamma, \gamma)
$$

$T(\boldsymbol{n})$ is closed with regard to $\wedge, \vee, \supset, 7$.
We denote by $L(\boldsymbol{n})$ the many-valued propositional logic as defined above where the designated element is $(0,0)$.

Lemma 3. $L(\boldsymbol{n})$ is an intemediate many-valued propositional logic.
Proof. In virtue of Theorem 1, it suffices to prove that $L(\boldsymbol{n})$ satisfies (J)-condition. We take a trivial classification where every subclass consists of only one element. Then \equiv becomes $=$ between elements of $L(\boldsymbol{n}) .1$ and 2 are evident. $3-7$ can be easily proved. As to $8, T$ and F are taken to be $\{(0,0)\}$ and $\{(\gamma, \gamma)\}$ where γ is the greatest ordinal number of all x 's occurring in $(x, y) \in L(n)$.

Concerning 9 and 10 , we take $\{a \supset b\}$ and $\{7 a\}$ as sets required in 9 and 10 respectively. We prove that for all $x \in L(\boldsymbol{n}),(a \wedge x) \wedge b=a \wedge x$ is equivalent to $x \wedge(a \supset b)=x$. Let $x=\left(x_{1}, x_{2}\right), a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$. In case both $a_{1} \geqq b_{1}$ and $a_{2} \geqq b_{2}$, it is evident. Assume that $a_{1} \geqq b_{1}$ and $a_{2}<b_{2}$. It suffices to show that $\operatorname{Max}\left(b_{2}, x_{2}\right)=\operatorname{Max}\left(a_{2}, x_{2}\right)$ is equivalent to both $\operatorname{Max}\left(x_{1}, c\right)=x$ and $\operatorname{Max}\left(x_{2}, b_{2}\right)$
$=x_{2}$ where c denotes the least ordinal number of x^{\prime} s occurring in $\left(x, b_{2}\right) \in L(\boldsymbol{n})$. For $x_{2}<b_{2}$, it clearly holds. For $x_{2}=b_{2}$, it also holds, since if $x_{2}=b_{2}$, then $x_{1} \geqq c$, and for $x_{2}>b_{2}, x_{1} \geqq c$ is also valid. Hence, what is to prove holds for any $\left(x_{1}, x_{2}\right) \in L(\boldsymbol{n})$. Furthermore, it can be proved that $\{a \supset b\}$ is the only set which satisfies 9 . Other cases can be treated similarly.

We say that $L(\boldsymbol{n})$ is a sublogic of $L(\boldsymbol{m})$, if every $L(\boldsymbol{n})$-true formula is $L(\boldsymbol{m})$-true and the converse is not the case.

Theorem 3. If $\boldsymbol{n}>\boldsymbol{m}$, then $L(\boldsymbol{n})$ is a sublogic of $L(\boldsymbol{m})$.
Proof. It follows from the assumption $\boldsymbol{n}>\boldsymbol{m}$ that there is an x such that $\boldsymbol{n}_{1}=\boldsymbol{m}_{1}, \cdots, \boldsymbol{n}_{x+1}=\boldsymbol{m}_{x+1}, \boldsymbol{n}_{x}>\boldsymbol{m}_{x}$. Let r be the x as required. For every y such that $r \leqq y \leqq l h(\boldsymbol{m}), \boldsymbol{n}_{r}>\boldsymbol{m}_{y}$ and it is seen from the definition of $S\left(t_{i}, \cdots\right.$, $\left.t_{0}, n\right)$ that $\left(\sum_{x=r}^{y-1} \beta\left(\boldsymbol{m}_{x}\right)+z_{1}, \sum_{x=r}^{y-1} \beta\left(\boldsymbol{m}_{x}\right)+z_{2}\right) \in S\left(\boldsymbol{n}_{r}\right)$ where $\left(z_{1}, z_{2}\right) \in S\left(\boldsymbol{m}_{y}\right)$. Consequently, $S_{1}\left(\boldsymbol{m}_{y}\right)(r \leqq y \leqq l h(\boldsymbol{m}))$ is a subset of $S_{1}\left(\boldsymbol{n}_{r}\right)$ and hence $\underset{r \leqq y \leqq l h(\boldsymbol{m})}{\bigcup} S_{1}\left(\boldsymbol{m}_{y}\right) \subset S_{1}\left(\boldsymbol{n}_{r}\right)$. Therefore $T(\boldsymbol{m})$ is a subset of $T(\boldsymbol{n})$ and we obtain that if a formula is $L(\boldsymbol{n})$ true, then it is $L(\boldsymbol{m})$-true.

Then, for the proof, it suffices to show a formula which is $L(\boldsymbol{m})$-true but not $L(\boldsymbol{n})$-true. Let us define
$S^{\prime}\left(\boldsymbol{n}_{r}\right)=\left\{\left(\sum_{x=1}^{r-1} \beta\left(\boldsymbol{n}_{x}\right)+\alpha\left(2^{l} p(k)\right), \sum_{x=1}^{r-1} \beta\left(\boldsymbol{n}_{x}\right)+\alpha\left(2^{m} p(k)\right)\right) \mid 0 \leqq k \leqq n\left[l=0, \cdots, w_{n} m=\right.\right.$ $\left.\left.\sum_{j=n}^{i}(j-h) t_{j}: l=0, \cdots, w_{0} m=\sum_{j=0}^{i} j t_{j}, w_{0}\right]\right\}$ where $\boldsymbol{n}_{r}=\left(t_{i}, \cdots, t_{0}, n\right)$ and $\alpha, p(k), w_{h}$ are defined for the t_{i}, \cdots, t_{0}.

We consider a formula $F: \bigvee_{C}\left(A_{x} \supset A_{y}\right)$ where V denotes the disjunction of ($A_{x} \supset A_{y}$)'s with x, y which satisfy the condition $C: x, y \in \bigcup_{1 \leqq z \leq r} S^{\prime}\left(\boldsymbol{n}_{z}\right)$ and for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), \operatorname{Max}\left(x_{1}, y_{1}\right) \neq x_{1}$ or $\operatorname{Max}\left(x_{2}, y_{2}\right) \neq x_{2}$. Since $S^{\prime}\left(\boldsymbol{n}_{z}\right)$ and r are finite, F is a formula in propositional calculus. F is not $L(\boldsymbol{n})$-true, because if the value of A_{x} is x, every $A_{x} \supset A_{y}$ in F does not take (0,0) as its value, as is seen from the definition of \supset.

Next we consider F in $L(\boldsymbol{m})$. Any $A_{x} \supset A_{y}$ in F where $x, y \in \bigcup_{1 \leqq x<1} S^{\prime}\left(\boldsymbol{n}_{x}\right)$ can take a value different from (0,0) in the same way as the above. Let \boldsymbol{n}_{r} be $\left(t_{i}, \cdots, t_{0}, n\right)$ and $\boldsymbol{m}_{r}\left(s_{j}, \cdots, s_{0}, m\right)$. Since $\boldsymbol{n}_{r}>\boldsymbol{m}_{r}$, i) $i>j$ or ii) there is an x such that $i=j, t_{i}=s_{j}, \cdots, t_{x+1}=s_{x+1}, t_{x}>s_{x}$ or iii) $i=j, t_{i}=s_{j}, \cdots, t_{0}=s_{0}, n>m$ or iv) $m=0$. Let $i>j$. $\quad S^{\prime}\left(\boldsymbol{m}_{y}\right)(r \leqq y \leqq l h(\boldsymbol{m}))$ does not contain $i+1$ elements such that $a \supset b \neq(0,0)$ and $b \supset a \neq(0,0) . \quad A_{x}$'s in $F^{\prime}: \bigvee\left(A_{x} \supset A_{y}\right)$ in F where $x, y \in S^{\prime}\left(\boldsymbol{n}_{r}\right)$ must take values from $\underset{i \leqq y \leqq l n(\boldsymbol{m})}{\bigcup} S^{\prime}\left(\boldsymbol{m}_{y}\right)$ in order that the value of F be not $(0,0)$. Since F^{\prime} contains a subformula of form $\underset{x \neq y}{ } \bigvee_{x, y=1, \cdots, i+1}\left(B_{x} \supset B_{y}\right)$, then F^{\prime} takes $(0,0)$ as its value in $L(\boldsymbol{m})$. Hence F is $L(\boldsymbol{m})$-true. Also in other cases, not all $A_{x} \supset A_{y}$ in F^{\prime} can take values different from $(0,0)$ in $\underset{r \leqq y \leq \ln (\boldsymbol{m})}{ } S^{\prime}\left(\boldsymbol{m}_{y}\right) . \quad F^{\prime}$ and
hence F take $(0,0)$ as their values. Therefore F is $L(\boldsymbol{m})$-true.
We consider a sequence of $L(\boldsymbol{n})$'s in which every member is a sublogic of the preceding ones. This sequence is well-ordered. The ordinal number of such a sequence of $L(\boldsymbol{n})$ is called the length of the sequence.

Tehorem 4. There is a sequence of intermediate many-valued propositional logics whose length is $\omega^{\omega^{\omega}}$.

Proof. For convenience, we write "the length for n " instead of "the length of a sequence of all $L(\boldsymbol{m})$'s where $\boldsymbol{m}<\boldsymbol{n}$ and every mumber of the sequence is a sublogic of preceding ones".

We take $L(\boldsymbol{n})$ where \boldsymbol{n} consists of only $\boldsymbol{n}_{1}=(1,1)$. Since for any \boldsymbol{m} consisting of only (m), $\boldsymbol{m}<\boldsymbol{n}$, the length for the \boldsymbol{n} is ω. Assume that the length for \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=(1,0, \cdots, 0,1)$ with i zeros is $\omega^{\omega i}$. Then the length for \boldsymbol{n} consisting of only ($1,0, \cdots, 0, p$) with i zeros is $\omega^{\omega i} p$ and hence the one for \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=(1,0, \cdots, 0,1,1)$ with $i-1$ zeros is $\omega^{\omega i^{i+1}}$. It can be proved that the length for \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=\left(1,0, \cdots, 0, t_{0}, 1\right)$ with $i-1$ zeros is $\omega^{\omega^{i}+t_{0}}$ and hence for \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=(1,0, \cdots, 0,1,0,1)$ with $i-1$ zeros it is $\omega^{\omega^{i}+\omega}$. Similarly, it is proved that the length for \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=(1,0, \cdots, 0,1)$ with $i+1$ zeros is $\omega^{\omega^{i}+1}$. Since we can take any integer for i, the theorem follows.

§ 4. Special many-valued propositional logics.

In this section we treat special many-valued logics. $L(\boldsymbol{n})$ with \boldsymbol{n} consisting of only $\boldsymbol{n}_{1}=(n)$ in the preceding section is denoted by \Re_{n}. We represent \Re_{n} in terms of truth-tables. Let $0,1,2, \cdots, n$ be truth values of \Re_{n} and 0 the designated element. Logical operation \wedge, \vee, \supset and $>$ are defined in what follows:

\wedge	0	1	2	\cdots	n
0	0	1	2	\cdots	n
1	1	1	2	\cdots	n
2	2	2	2	\cdots	n
\cdot	\cdots	\cdots	\cdots		
n	n	n	n	\cdots	n

\vee	0	1	2	\cdots	n
0	0	0	0	\cdots	0
1	0	1	1	\cdots	1
2	0	1	2	\cdots	2
\cdot	\cdots	\cdots	\cdots		
n	0	1	2	\cdots	n

\supset	0	1	2	3	\cdots	n	7
0	0	1	2	3	\cdots	n	n
1	0	0	2	3	\cdots	n	n
2	0	0	0	3	\cdots	n	n
\cdot		\cdots	\cdots	\cdots		\cdot	
$n-1$	0	0	0	0	\cdots	n	n
n	0	0	0	0	\cdots	0	0

In virtue of Theorem 3, it follows that if $n>m$, then \Re_{n} is a sublogic of \Re_{m}. \Re_{0} is the contradictory logic and \Re_{1} is the usual two-valued logic.

Two many-valued logics are called equivalent if the sets of true formulas
are the same. We now give two many-valued logics which are equivalent to \Re_{n}.
4.1. Let $S_{0}, S_{1}, \cdots, S_{n}$ be arbitrary non-empty sets, each two of which is disjoint. The elements of $S_{0}, S_{1}, \cdots, S_{n}$ are taken as truth values of L_{1}. Logical operations are defined in the following.

Let $a_{i} \in S_{i}$ and $b_{j} \in S_{j}$.
i) $a_{i} \wedge b_{j} \in S_{\max (i, j)}$.
ii) $a_{i} \vee b_{j} \in S_{\min (i, j)}$.
iii) $a_{i} \supset b_{j} \in S_{0} \quad$ if $i \geqq j$ and $a_{i} \supset b_{j} \in S_{j}$ if $i<j$.
iv) $>a_{n} \in S_{0}$ and $>a_{i} \in S_{n}$ if $i<n$.

The designated elements of L_{1} are elements of S_{0}. Then L_{1} is equivalent to \Re_{n}, because if we classify elements of L_{1} into $S_{0}, S_{1}, \cdots, S_{n}$, then the resulting logic is isomorphic to \Re_{n}.
4.2. Let S be any non-empty set. $f_{i}(0 \leqq i \leqq n)$ is defined to be a function such that for all $x \in S, f_{i}(x)=i$. Let F be the set of all functions of one variable x with S as the range of x and with $\{0,1\}$ as the domain. $f_{i}(1<i \leqq n)$ and elements of F are truth values of $L_{2} . f_{0}$ and f_{1} are elements of F. Let $f, g \in L_{2}$.
$f \wedge g=h_{1}$ where $h_{1}(x)=\operatorname{Max}(f(x), g(x))$.
$f \vee g=h_{2}$ where $h_{2}(x)=\operatorname{Min}(f(x), g(x))$.
$f \supset g=h_{3}$ where $h_{3}(x)=0$ if $f(x) \geqq g(x)$ and $h_{3}(x)=g(x)$ if $f(x)<g(x)$.
$\neg f=f \supset f_{n}$.
f_{0} is the only designated element of L_{2}. Then we prove that L_{2} is equivalent to \Re_{n}.
$f_{0}, f_{1}, \cdots, f_{n}$ form a subtable isomorphic to \Re_{n}. Hence, if a formula is $L_{2}{ }^{-}$ true, then it is also \Re_{n}-true.

Let $S \ni a$ and $T_{a}=\{f \mid f(a)=0$ and $f \in F\}$. We denote the relative complement of T_{a} with regard to F by $F-T_{a}$. For $g, h \in T_{a}$ and for $k, l \in F-T_{a}$, the following hold:
i) $g \wedge h \in T_{a}$ and $g \wedge k, k \wedge g, k \wedge l \in F-T_{a}$. For $2 \leqq j \leqq i \leqq n, g \wedge f_{i}=f_{i} \wedge g=$ $k \wedge f_{i}=f_{i} \wedge k=f_{j} \wedge f_{i}=f_{i} \wedge f_{j}=f_{i}$.
ii) For $2 \leqq i \leqq n, g \vee h, g \vee k, k \vee g, g \vee f_{i}, f_{i} \vee g \in T_{a} \quad$ and $\quad k \vee l, k \vee f_{i}, f_{i} \vee k \in$ $F-T_{a}$. For $2 \leqq j \leqq i \leqq n, f_{j} \vee f_{i}=f_{i} \vee f_{j}=f_{j}$.
iii) For $2 \leqq j \leqq i \leqq n, g \supset h, k \supset g, k \supset l, f_{i} \supset g, f_{i} \supset k, f_{i} \supset f_{j} \in T_{a}$ and for $2 \leqq j<$ $i \leqq n, g \supset f_{i}=k \supset f_{i}=f_{j} \supset f_{i}=f_{i}$.
iv) For $i<n, 7 g=7 k=7 f_{i}=f_{n}$ and $7 f_{n} \in T_{a}$.

It is seen from i)-iv) that $T_{a}, F-T_{a}, f_{2}, \cdots, f_{n}$ form a subtable isomorphic to \Re_{n} where T_{a} corresponds to the designated element of \Re_{n}. Therefore, if a formula is \mathfrak{R}_{n}-true, then it takes an element of T_{a} as its value. Since $a \in S$ is an arbitrary element, the value of \Re_{n}-true formula is $\bigcap_{a \in S} T_{a}=f_{0}$ and hence
L_{2}-true.
4.3. We here show some relations between many-valued logics and logics by axiomatic stipulation. Concerning our axiomatic stipulation, we refer to Gentzen [7] and Umezawa [8], [9].
LR_{n} is defined in $[8, \S 4]$ or in $[\mathbf{9}, \S 4]$ to be the intermediate logic resulting from LJ^{\prime} (cf. $[\mathbf{9}, \S 1]$) by adding the following as a new schema of initial sequents

$$
R_{n}: \rightarrow A_{1}, A_{1} \supset A_{2}, A_{2} \supset A_{3}, \cdots, A_{n-1} \supset A_{n}, \supset A_{n} .
$$

For any sequent Z, the formula which we obtain from Z in the same way as in the proof of Theorem 1 is denoted by Z^{*}.
$R_{n}{ }^{*}$ is \Re_{n}-true, as is seen from the truth-tables of \Re_{n}. Since \Re_{n} satisfies the (J)-condition, we obtain that every R_{n}-provable propositional formula is \Re_{n}-true. $R_{i}{ }^{*}(i<n)$ is not \Re_{n}-true, since if the truth value of A_{j} is j, then $R_{i}{ }^{*}$ takes 1 as its truth value.
LP_{2} is defined in $[8, \S 2]$ to be the logic resulting from LJ^{\prime} by adding P_{2} as a new schema of initial sequents

$$
P_{2}: \quad \rightarrow A_{1} \supset A_{2}, A_{2} \supset A_{1} .
$$

We denote by \Re_{ω} the truth-tables similar to \Re_{n} except we take $0,1,2, \cdots, \omega$ as truth values instead of $0,1, \cdots, n$.
$P_{2}{ }^{*}$ is \Re_{ω}-true, because for any a and b of $\Re_{\omega}, a \geqq b$ or $b \geqq a$. Since \Re_{ω} also satisfies the (J)-condition, it follows that every P_{2}-provable propositional formula is \Re_{ω}-true. However, any $R_{n}{ }^{*}$ is not \Re_{ω}-true, as is seen from the truth-tables of \Re_{ω}. It remains open whether the converse holds or not.

§ 5. Extension of propositional to predicate calculus.

Now quantifiers \forall and \exists are adjoined to the set of logical operations in propositional calculus. We consider quantifiers to be defined for any subset of our basic set of truth values. Let S be the basic set of truth values. For any subset M of $S, \forall x M x$ and $\exists x M x$ take some elements of S as their values.
(J)-condition with the following is called the extended (J)-condition.
11. For any subset M of S, there is a set which contains $\forall x M x$ and whose element, say r, satisfies the condition:

For all $y \in S$, that for all $z \in M y \wedge z \equiv y$ is equivalent to $y \wedge r \equiv y$.
12. For any subset M of S, there is a set which contains $\exists x M x$ and whose element, say r, satisfies the condition:

For all $y \in S$, that for all $z \in M y \wedge z \equiv z$ is equivalent to $y \wedge r \equiv r$.
13. Let $M \wedge b$ be the set, $\{x \wedge b \mid x \in M\}$. For any subset M of S and for
any $b \in S$, $\exists x(M \wedge b) x \equiv \exists x M x \wedge b$.
A formula in predicate calculus is called true in L or L-true if the formula always takes the designated element of L under the interpretation that a predicate variable $A(x)$ represents an element $M x$ of a subset M of S and $\forall x A(x), \exists x A(x)$ represent $\forall x M x, \exists x M x$ respectively.

Theorem 5. Every intuitionistically provable formula in predicate calculus (of the first order) is true in any logic which satisfies the extended (J)-condition and takes T as the set of designated elements.

Proof. We use the same method as in the proof of Theorem 1. In virtue of 'Theorem 1, it suffices to treat the rules of inference for predicate calculus.
\forall-in-antecedent has the shape: $\frac{A(a), \Gamma \rightarrow H}{\forall x A(x), \Gamma \rightarrow H}$. We prove that for any subset M of S, if $(M a \wedge \gamma) \supset h \in T$, then $(\forall x M x \wedge \gamma) \supset h \in T$ where $M a$ is an element of M and r and h are elements of S. From 11, we obtain for all $y \in S$, that for all $z \in M y \wedge z \equiv y$ is equivalent to $y \wedge \forall x M x \equiv y$. Taking $\forall x M x$ as y, it follows that for all $z \in M \forall x M x \wedge z \equiv \forall x M x$. Hence $\forall x M x \wedge M a \equiv \forall x M x$. In virtue of Lemma 1 and the assumption, $(M a \wedge \gamma) \wedge h \equiv M a \wedge \gamma$. Therefore, $\forall x M x \wedge(M a \wedge \gamma \wedge h) \equiv \forall x M x \wedge(M a \wedge \gamma)$. By the above fact, we obtain $(\forall x M x \wedge \gamma)$ $\wedge h \equiv \forall x M x \wedge \gamma$ and hence, in virtue of Lemma 1, $(\forall x M x \wedge \gamma) \supset h \in T$.

For \exists-in-antecedent: $\frac{A(a), \Gamma \rightarrow H}{\exists x A(x), \Gamma \rightarrow H}$ with the restriction on variable that a shall not occur in the lower sequent, it suffices to prove that for any subset M of S, if $(M a \wedge \gamma) \supset h \in T$ where a is an arbitrary element of M, then $(\exists x M x \wedge \gamma)$ $\supset h \in T$. By Lemma 1 and the assumption, $(M a \wedge \gamma) \wedge h \equiv M a \wedge \gamma$. Since a is an arbitrary element of M, it follows that for all $z \in M \wedge \gamma z \wedge h \equiv z$. Hence, we obtain, using 12, that $h \wedge \exists x(M \wedge \gamma) x \equiv \exists x(M \wedge \gamma) x$. In virtue of 13 , $(\exists x M x \wedge \gamma)$ $\wedge h \equiv \exists x M x \wedge \gamma$ follows and hence $(\exists x M x \wedge \gamma) \supset h \in T$.

Proofs for \forall-in-succedent and for \exists-in-succedent are similar.
In case the set of truth values is finite, 11, 12 and 13 are satisfied by defining $\forall x M x$ by $M_{1} \wedge \cdots \wedge M_{n}, \exists x M x$ by $M_{1} \vee \cdots \vee M_{n}$ where M_{1}, \cdots, M_{n} are elements of M. This is proved as follows. The condition which the elements of the requied set of 11 satisfy can be expressed thus: For all $y \in S$, that for all $i(1 \leqq i \leqq n) y \wedge M_{i} \equiv y$ is equivalent to $y \wedge r \equiv y$. Thence, we obtain that $M_{1} \wedge \cdots \wedge M_{n} \wedge r \equiv M_{1} \wedge \cdots \wedge M_{n}$ and for all $i(1 \leqq i \leqq n) r \wedge M_{i} \equiv r$. Hence $r \equiv M_{1} \wedge \cdots \wedge M_{n}$. Since $M_{1} \wedge \cdots \wedge M_{n}$ naturally exists for any $M, 11$ can be written thus: $\forall x M x \in\left\{r \in S \mid r \equiv M_{1} \wedge \cdots \wedge M_{n}\right\}$ where $M=\left\{M_{1}, \cdots, M_{n}\right\}$. This is clearly satisfied if $\exists x M x$ is defined as $M_{1} \wedge \cdots \wedge M_{n}$. Similarly for 12.13 is obvious for this definition of $\exists x M x$.

Hence, if we define \forall and \exists for S_{i} appeared in the proof of Theorem 2 in the above way, then S_{i} is a predicate logic and the proof of Theorem 2 is
valid. Then we obtain
Theorem 6. There is a set of intermediate many-valued predicate logics which are mutually independent with any desired number of elements.

Next we introduce \forall and \exists into $T(\boldsymbol{n})$ in $\S 3$ by defining them thus. Let M be a subset of $T(\boldsymbol{n}) . \forall x M x$ is the element r of $T(\boldsymbol{n})$ such that for all $y \in T(\boldsymbol{n})$, that for all $z \in M y \wedge z=y$ is equivalent to $y \wedge r=y . \quad \exists x M x$ is the element r of $T(\boldsymbol{n})$ such that for all $y \in T(\boldsymbol{n})$, that for all $z \in M y \wedge z=z$ is equivalent to $y \wedge \alpha=\alpha$. Uniqueness of such elements can be easily proved. Existence of $\exists x M x$ for any subset M is seen from the following: For any subset M of $T(\boldsymbol{n})$ there are d_{1}, \cdots, d_{n} in M such that for $i \neq j d_{i} \wedge d_{j} \neq d_{i}$ and $d_{i} \wedge d_{j} \neq d_{j}$ and for every $x \in M$ there is a $d_{i}(1 \leqq i \leqq n)$ which satisfies $x \wedge d_{i}=x$. It can be proved that $\exists x M x=d_{1} \vee \cdots \vee d_{n}$. Hence, the existence of $\exists x M x$ is clear. Existence of $\forall x M x$ can be proved from the existence of $\exists x M x$.

Therefore 11 and 12 follow. We prove that 13 holds. Let $x \wedge b \in M \wedge b$. Since $x \in M$, there is a d_{i} such that $x \wedge d_{i}=x$ and hence there is a $d_{i} \wedge b$ such that $(x \wedge b) \wedge\left(d_{i} \wedge b\right)=x \wedge b$. From 12, it is seen that for all $y \in T(\boldsymbol{n})$, that for all $z \in M \wedge b y \wedge z=z$ is equivalent to $y \wedge \exists x(M \wedge b) x=\exists x(M \wedge b) x$. Taking ($d_{1} \vee$ $\left.\cdots \vee d_{n}\right) \wedge b$ as y, it follows that $\left(\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge b\right) \wedge z=z$ for all $z \in M \wedge b$ is equivalent to $\left(\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge b\right) \wedge \exists x(M \wedge b) x=\exists x(M \wedge b) x$. In virtue of the above fact, for all $z \in M \wedge b$ where $z=x \wedge b$ for an $x \in M,\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge b \wedge z=\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge$ $b \wedge(x \wedge b)=\left(d_{1} \wedge \cdots \vee d_{n}\right) \wedge b \wedge(x \wedge b) \wedge\left(d_{i} \wedge b\right)=d_{i} \wedge b \wedge x \wedge b=x \wedge b=z$. Hence $\left(d_{1} \vee\right.$ $\left.\cdots \vee d_{n}\right) \wedge b \wedge \exists x(M \wedge b) x=\exists x(M \wedge b) x$. On the other hand, we obtain, by taking $\exists x(M \wedge b) x$ as y, that for all $z \in M \wedge b \exists x(M \wedge b) x \wedge z=z$. Therefore for all $i(1 \leqq i \leqq n) \exists x(M \wedge b) x \wedge d_{i} \wedge b=d_{i} \wedge b$ and hence $\exists x(M \wedge b) x \wedge\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge b=$ $\left(d_{1} \vee \cdots \vee d_{n}\right) \wedge b$. Combining the above equations, we see that $\exists x(M \wedge b) x=\left(d_{1} \vee\right.$ $\left.\cdots \vee d_{n}\right) \wedge b$. Since $\exists x M x=d_{1} \vee \cdots \vee d_{n}$, thence 13 follows.

Hence, $L(\boldsymbol{n})$ in which \forall and \exists are defined in the above way is an intermediate many-valued predicate logic. The proof of Theorem 3 goes validly. Consequently, in virtue of Theorem 4, we obtain

Theorem 7. There is a sequence of intermediate many-valued predicate logics whose length is $\omega^{\omega \omega}$.

Mathematical Institute, Nagoya University.

Bibliography

[1] J. B. Rosser and A. R. Turquette, Many-valued logics, Studies in logic and the foundations of mathematics, Amsterdam, 1952.
[2] Z. P. Dienes, On an implication function in many-valued systems of logic, J. Symbolic Logic, 14 (1949), 95-97.
[3] Alonzo Church, Non-normal truth-tables for the propositional calculus, Boletin de la Sociedad Matematica Mexicana, 10 (1953), 41-52.
[4] Łukasiewicz and Tarski, Untersuchungen über den Aussagenkalkül, Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23 (1930), 1-21.
[5] S.C. Kleene, On notation for ordinal numbers, J. Symbolic Logic, 3 (1938), 150 -155.
[6] S. Jaśkowski, Recherches sur le système de la logique intuitioniste, Actualité scientifiques et industrielles 393, Paris, 1936, 58-61.
[.7] G. Gentzen, Untersuchungen über das logische Schliessen, Math. Zeit., 39 (1934 -5), 176-210, 405-431.
[8] T. Umezawa, Über die Zwischensysteme der Aussagenlogik, Nagoya Math. J., 9 (1955), 181-189.
[9] T. Umezawa, On intermediate propositional logics, A forthcoming issue of J. Symbolic Logic.

