On a certain cup product.

By Seiya Sasao

(Received Oct. 4, 1958)

Introduction. Let \boldsymbol{K} be a complex of a form $S^{q} \cup e^{n} \cup e^{n+q}$, i. e. a complex obtained from a q-sphere S^{q} by attaching an n-cell e^{n} and then an $(n+q)$-cell e^{n+q} where $n-2 \geqq q \geqq 2$. It is clear that the integral cohomology ring of \boldsymbol{K} is as follows:

$$
\begin{array}{ll}
\boldsymbol{H}^{0}(\boldsymbol{K}) \approx \boldsymbol{H}^{q}(\boldsymbol{K}) \approx \boldsymbol{H}^{n}(\boldsymbol{K}) \approx \boldsymbol{H}^{n+q}(\boldsymbol{K}) \approx \boldsymbol{Z}, \\
\boldsymbol{H}^{i}(\boldsymbol{K})=0 \quad i \neq 0, q, n, n+q,
\end{array}
$$

where Z denotes the ring of integers.
Let x, y, z denote the cohomology classes carried by e^{n}, S^{q}, e^{n+q} respectively. Then there is an integer m determined by $m z=x \cup y$. Let $\alpha \in \pi_{n-1}\left(S^{q}\right)$ denote the homotopy class of a map, $S^{n-1} \rightarrow S^{q}$, by which e^{n} is attached to S^{q}. I. M. James [5] described then K as a complex of type (m, α) and proved the following theorem (Theorem (1.8) 1. c.).
J. Let $\left[\alpha, l_{q}\right] \in \pi_{n+q-2}\left(S^{q}\right)$ denote the Whitehead product of α and a generator $l_{q} \in \pi_{q}\left(S^{q}\right)$. Then there exists a complex of type (m, α), if and only if $m\left[\alpha, l_{q}\right]$ is contained in the image of the homomorphism $\alpha_{*}: \pi_{n+q-2}\left(S^{n-1}\right) \rightarrow \pi_{n+q-2}\left(S^{q}\right)$ which is induced by α.

At the end of the introduction of [5], James remarks that it is possible to discuss this topic in term of the cohomology invariant of mappings which are defined in [10], although his discussion in [5] is based on different methods. We shall show in this paper that \mathbf{J} can be indeed simply and mechanically proved by the cohomology invariant of mappings.

Let \boldsymbol{L} be a complex of a form $S^{q} \cup e^{n}$ which is obtained by attaching e^{n} to S^{q}. Since the homotopy type of \boldsymbol{L} depends only on the homotopy class of the attaching map, we denote by $\boldsymbol{L}(\boldsymbol{\alpha})$ the complex \boldsymbol{L} which has a map of the class $\alpha \in \pi_{n-1}\left(S^{q}\right)$ as the attaching map. Then all complexes of type (m, α) have $L(\alpha)$ as a subcomplex.

Now consider a relative functional cup product of a map $g:\left(\boldsymbol{E}^{n+q-1}\right.$, $\left.\dot{\boldsymbol{E}}^{n+q-1}\right) \rightarrow\left(\boldsymbol{L}(\alpha), S^{q}\right)$, where \boldsymbol{E}^{n+q-1} denotes an $(n+q-1)$-cell and $\dot{\boldsymbol{E}}^{n+q-1}$ its boundary. If we denote by \tilde{x} the generator of $\boldsymbol{H}^{n}\left(\boldsymbol{L}(\alpha), S^{q}\right)$ identified with the cohomology class of $\boldsymbol{H}^{n}(\boldsymbol{L}(\boldsymbol{\alpha}))$ which is carried by e^{n} and denote by \tilde{y} the cohomology class of $\boldsymbol{H}^{q}(\boldsymbol{L}(\alpha))$ which is carried by S^{q}, then we have $\tilde{x} \cup \tilde{y}=0$
and $g^{*}(\tilde{x})=0$, where g^{*} is the homomorphism of the cohomology ring induced by g.

From the definition, $\tilde{x} \cup \tilde{y}$ is an element of $\boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right)$ which is isomorphic with $\boldsymbol{H}^{n+q-2}\left(\dot{\boldsymbol{E}}^{n+q-1}\right) \approx \boldsymbol{Z}$, because $\boldsymbol{H}^{n-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right)=\boldsymbol{H}^{n+q-1}(\boldsymbol{L}(\alpha)$, $\left.S^{q}\right) \approx 0$ (see $\S 12$ of [10]). Therefore, there is an integer m such that $\tilde{x} \cup \tilde{y}$ is m times a generator of $\boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right)$. Since it is clear that m is a homotopy invariant of g, we obtain the correspondence $\boldsymbol{T}: \pi_{n+q-1}\left(\boldsymbol{L}(\alpha), S^{q}\right) \rightarrow \boldsymbol{Z}$ with respect to a fixed generator of $\boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right)$.

Then we have
Lemma 1. The above correspondence \boldsymbol{T} is a homomorphism.
Proof. Let $\boldsymbol{E}_{1}^{n+q-1} \cup \boldsymbol{E}_{2}^{n+q-1}$ denote the union of two copies of \boldsymbol{E}^{n+q-1} and $\{g\}$ denote the homotopy class of g. If $\{g\},\{h\} \in \pi_{n+q-1}\left(\boldsymbol{L}(\alpha), S^{q}\right)$, then we can easily construct a map F with the following properties

$$
\begin{align*}
& F:\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right) \rightarrow\left(\boldsymbol{E}_{1}^{n-q-1} \cup \boldsymbol{E}_{2}^{n+q-1}, \dot{\boldsymbol{E}}_{1}^{n+q-1} \cup \dot{\boldsymbol{E}}_{2}^{n+q-1}\right), \tag{I}\\
& F^{*}{ }_{o p}{ }_{i}^{*}: \boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}_{i}^{n+q-1}, \dot{\boldsymbol{E}}_{i}^{n+q-1}\right) \rightarrow \boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right) \tag{II}
\end{align*}
$$

is an isomorphism and orientation preserving.
(III) If we define ϕ as follows:

$$
\begin{aligned}
\phi(p) & =g(p) & & p \in \boldsymbol{E}_{1}^{n+q-1} \\
& =h(p) & & p \in \boldsymbol{E}_{2}^{n+q-1},
\end{aligned}
$$

then

$$
\{\phi \circ F\}=\{g\}+\{h\} .
$$

Therefore we have $\tilde{x} \bigcup_{\phi \circ F} \tilde{y}=F^{*}\left(\tilde{x} \bigcup_{\phi} \tilde{y}\right)$ by the invariance of the functional cup product under transformations [10]. Hence $\tilde{x} \bigcup_{\{g\}} \tilde{y}+\tilde{x} \bigcup_{\{n\}} \tilde{y}=\tilde{x} \underset{\{g\}+\{n\}}{\cup} \tilde{y}$ by (II) and (III),

Let $[,]_{r}$ denote the relative Whitehead product and $\bar{\alpha}$ denote the map: $\left(\boldsymbol{E}^{n}, \dot{\boldsymbol{E}}^{n}\right) \rightarrow\left(\boldsymbol{L}(\alpha), S^{q}\right)$ such that $\bar{\alpha}$ maps homeomorphically the interior of \boldsymbol{E}^{n} onto e^{n} and $\left\{\bar{\alpha} \mid \dot{\boldsymbol{E}}^{n}\right\}=\alpha$. Then James has proved in [1] that $\pi_{n+q-1}\left(\boldsymbol{L}(\alpha), S^{q}\right)$ is isomorphic to the direct sum of the infinite cyclic group generated by $\left[\bar{\alpha}, l_{q}\right]_{r}$ with $\bar{\alpha} \circ \pi_{n+q-1}\left(\boldsymbol{E}^{n}, \dot{\boldsymbol{E}}^{n}\right)$. Therefore, for any $\{g\} \in \pi_{n+q-1}\left(\boldsymbol{L}(\alpha), S^{q}\right)$, there exist an integer m, and an element $\rho \in \pi_{n+q_{-1}}\left(\boldsymbol{E}^{n}, \dot{\boldsymbol{E}}^{n}\right)$ such that $\{g\}=m\left[\alpha, l_{q}\right]_{r}$ $+\bar{\alpha} \circ \rho$. Then we have

Lemma 2. $\boldsymbol{T}(\{g\})= \pm m$, where the sign depends only on the choice of orientations.

Proof. We have only to show that $\boldsymbol{T}\left(\left[\alpha, l_{q}\right]\right)=1$ or -1 and $T(\bar{\alpha} \circ \rho)=0$. Then our Lemma 2 will follow from Lemma 1. We have

$$
\tilde{x} \bigcup_{\bar{\alpha} \circ \rho} \tilde{y} \tilde{\alpha}(\tilde{x}) \bigcup_{\rho}^{*} \bar{\alpha}^{*}(\tilde{y})=\bar{\alpha}^{*}(\tilde{x}) \bigcup_{\rho} 0=0
$$

by the invariance of the functional cut product under transformations. Define a map $\psi:\left(\boldsymbol{E}^{n} \cup \dot{\boldsymbol{E}}^{q+1}, \dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right) \rightarrow\left(\boldsymbol{L}(\alpha), S^{q}\right)$ as follows:

$$
\begin{aligned}
\psi(p) & =\bar{\alpha}(p) & & p \in \boldsymbol{E}^{n} \\
& =(p) & & p \in \boldsymbol{E}^{q+1} .
\end{aligned}
$$

On the other hand, we can easily construct a map φ with the following properties:

$$
\begin{align*}
& \varphi:\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right) \rightarrow\left(\boldsymbol{E}^{n} \cup \dot{\boldsymbol{E}}^{q+1}, \dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right), \tag{I}\\
& {\left[\bar{\alpha}, l_{q}\right]_{r} }=\{\psi \circ \varphi\} \tag{II}\\
& {\left[\alpha, l_{q}\right] }=\left\{\psi \circ \varphi \mid \dot{\boldsymbol{E}}^{n+q-1}\right\} \tag{III}
\end{align*}
$$

Then we have $\tilde{x} \bigcup_{\psi \circ \varphi} \tilde{y}=\psi^{*}(\tilde{x}) \bigcup_{\varphi} \psi^{*}(\tilde{y})$ by the invariance of the functional cup product under transformations. Let δ_{1} denote the coboundary homomorphism: $\boldsymbol{H}^{n+q-2}\left(\dot{\boldsymbol{E}}^{n+q-1}\right) \rightarrow \boldsymbol{H}^{n+q-1}\left(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}\right)$ and δ_{2} the coboundary homomorphism: $\boldsymbol{H}^{n-1}\left(\dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right) \rightarrow \boldsymbol{H}^{n}\left(\boldsymbol{E}^{n} \cup \dot{\boldsymbol{E}}^{q+1}, \dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right)$. Then there exists an element x^{\prime} of $\boldsymbol{H}^{n-1}\left(\dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right)$ such that $\delta_{2}\left(x^{\prime}\right)=\psi^{*}(\tilde{x})$. Hence, by (13.2) of [10] we have

$$
\delta_{1}\left(x^{\prime} \underset{\varphi \mid \dot{E}^{n+q-1}}{\bigcup} \psi^{*}(\tilde{y})\right)=-\left\{\delta_{2}\left(x^{\prime}\right) \bigcup_{\varphi} \psi^{*}(\tilde{y})\right\}=-\left\{\psi^{*}(\tilde{x}) \bigcup_{\varphi} \psi^{*}(\tilde{y})\right\}
$$

It is clear that $\psi^{*}, \delta_{1}, \delta_{2}$ are isomorphisms and $x^{\prime}, \psi^{*}(\tilde{y})$ are generators of $\boldsymbol{H}^{n-1}\left(\dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right)$ and $\boldsymbol{H}^{q}\left(\dot{\boldsymbol{E}}^{n} \cup \dot{\boldsymbol{E}}^{q+1}\right)$ respectively. Therefore, from (19.1) of [10], $x^{\prime} \underset{\varphi \mid \dot{E}^{n+q-1}}{\cup} \psi^{*}(\tilde{y})$ is a generator of $\boldsymbol{H}^{n+q-2}\left(\dot{\boldsymbol{E}}^{n+q-1}\right)$. This completes the proof of the Lemma 2.

Now let j^{*} be the inclusion homomorphism, and η be the map: $\boldsymbol{E}^{n+q-1} \rightarrow$ S^{n+q-1}, which carries $\dot{\boldsymbol{E}}^{n+q-1}$ to point s_{0} and the interior of \boldsymbol{E}^{n+q-1} homeomorphically onto $S^{n+q-1}-s_{0}$. Then, by the invariance of the functional cup product we have

Lemma 3. Let f be a map $\left(S^{n+q-1}, s_{0}\right) \rightarrow\left(\boldsymbol{L}(\alpha), f\left(s_{0}\right)\right)$ and j be a map $(\boldsymbol{L}(\alpha)$, $\left.f\left(s_{0}\right)\right) \rightarrow\left(\boldsymbol{L}(\alpha), S^{q}\right)$, then

$$
\tilde{x} \bigcup_{j \circ f \circ \eta} \tilde{y}=\eta^{*}\left(j^{*}(\tilde{x}) \bigcup_{f} \tilde{y}\right) .
$$

We notice that η^{*} is an isomorphism and orientation preserving. Now suppose that \boldsymbol{K} is a complex which is obtained by attaching e^{n+q} to $L(\alpha)$ and f is its attaching map. From the definition, we have $j^{*}(\tilde{x}) \cup_{f} \tilde{y} \in \boldsymbol{H}^{n+q-1}\left(S^{n+q-1}, s_{0}\right) \approx \boldsymbol{Z}$. Therefore we can identify $j^{*}(\tilde{x}) \bigcup_{f} \tilde{y}$ with an integer.

Lemma 4. $x \cup y=\left(j^{*}(\tilde{x}) \bigcup_{f} \tilde{y}\right) z$
Proof. We can identify \boldsymbol{K} with the space which is obtained from the mapping cylinder \boldsymbol{L}_{f} of $f: S^{n+q-1} \rightarrow \boldsymbol{L}(\alpha)$ by shrinking S^{n+q-1} to a point \boldsymbol{K}_{0}. Let ψ be the identification map. Consider the following commutative diagram.

Then we have Lemma 4 by the naturality of cup product and the definition of the functional cup product.

Now we can easily obtain the following theorem from the Lemmas 2, 3 and 4.

Theorem 1. Let \boldsymbol{K} be a complex of type (m, α) as above, then

$$
j^{*}(\{f\})= \pm m\left[\bar{\alpha}, l_{q}\right]_{r}+\bar{\alpha} \circ \rho
$$

for some $\rho \in \pi_{n+q-1}\left(\boldsymbol{E}^{n}, \dot{\boldsymbol{E}}^{n}\right)$.
Now, theorem \mathbf{J} is an easy consequence of Theorem 1.
University of Tokyo.

References

[1] I. M. James, On the homotopy group of certain pair and triads, Quat. J. Math. Oxford. Lon., 5 (1954), 260-270.
[2] I. M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
[3] I. M. James, Multiplication on spheres 1, Proc. Amer. Math. Soc., 8 (1957), 192196.
[4] I. M. James, Multiplication on spheres, Trans. Amer. Math. Soc., 84 (1957), 545568.
[5] I. M. James, Note on cup products, Proc. Amer. Math. Soc., 8 (1957).
[6] I. M. James, On spaces with a multiplication, Pacif. J. Math., 4 (1954), 1083-1100.
[7] I. M. James, Commutative product on spheres, Proc. Cambridge Philos. Soc., 53 (1957), 63-68.
[8] I. M. James, Symmetric functions of several variables, whose range and domain is a sphere, Boletin de la Sociedad Matematica Mexicana, 1 (1956), 85-88.
[9] J. P. Serre, Groupes d' homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-274.
[10] N. E. Steenrod, Cohomology invariant of mappings, Ann. of Math., 54 (1949), 954-988.

