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On projective transformations of Riemannian manifolds.

By Yoshihiro TASHIRO

(Received Sept. 22, 1958)

The main purpose of this paper is to prove the following theorems:
THEOREM 1. Let $M$ and $M^{\prime}$ be n-dimensional Riemannian manifolds and

suppose that $M$ is locally reducible (but $1\psi^{r}$ is not necessarily locally reducible).

If there exists a projective transformation of $1\psi$ to $M^{\prime}$ , then
1) the transformation preserves the curvature tensor, $or$

2) the local homogeneous holonomy group at any point of $1\psi^{\prime}$ is the proper
orthogonal group $O^{+}(n)^{1)}$

THEOREM 2. Let $ j\psi$ and 1M’ be complete Riemannian manifolds. In order
that there exist a non-affine projective transformation of $M$ to $M^{\prime}$ , it is necessary
that both $1\psi$ and $M^{\prime}$ be irreducible.

By Theorem 2 and a theorem due to T. Y. Thomas [8] and A. Lichnerowicz
[3], we have

$CoROLLARY^{2)}$ If a complete Riemannian manifold with parallel Ricci tensor
admits a non-affine proiective transformation, then the manifold is an irreducible
Einstein manifold.

Recently, several authors [4], [7] investigated the manifolds with parailel
Ricci tensor and T. Nagano [4] proved that a complete Einstein manifold
admitting a non-affine projective transformation is the only manifold whose
universal covering space is a sphere.

The author expresses his hearty thanks to his colleague T. Nagano who
gave him many valuable suggestions in the course of the preparation of this
paper.

\S 1. Preliminaries.

Let $M$ and $M^{\prime}$ be n-dimensional Riemannian manifolds and $f$ a diffeomor-
phism of $M$ to $M^{\prime}$ . For a geometric object $\Omega^{\prime}$ on $M^{\prime}$ , we denote by $’\Omega$ the
geometric object on $M$ induced from $\Omega^{\prime}$ by $f$. For instance we denote by

1) In this paper we suppose that the class of differentiability of manifolds and of
transformations is not less than 4. If the class is of $C^{\infty}$ , then, in Case 2), the
infinitesimal holonomy group of $M^{\prime}$ is also $0+(n)$ . As to these holonomy groups, see
A. Nijenhuis [5].

2) T. Nagano has proved this corollary by a different method.
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$/g_{/’\lambda}$ the induced metric tensor on $M$ from the metric tensor of $M^{\gamma 3)}$ .
A transformation $f$ is said to be projective if it carries geodesics in $M$

to geodesics in $M^{\prime}$ . As is well-known, a necessary and sufficient condition
for a transformation $f$ to be projective is that there exist a vector field $p_{\lambda}$

on $M$ such that
(1.1) $’\{/z^{\kappa}\lambda\}=\{\mu^{\kappa}\lambda\}\perp_{1}p_{/J}A_{\lambda}^{\kappa}\dashv- p_{\lambda}A_{t}^{\kappa}$ ,

$A_{\lambda^{\kappa}}$ being the unity tensor. The vector field $p_{\lambda}$ should be a gradient vector
field:
(1.2) $p_{\lambda}=\partial_{\lambda}p$ ,

$p$ being a scalar field. If $p_{\lambda}$ is the null vector field, the transformation is
affine.

It is well known that, for a projective transformation, we have
(1.3) $\prime K_{\nu\mu\lambda^{\kappa}}=K_{\nu\mu\lambda^{\kappa}}+A_{\nu^{\kappa}}p_{\mu\lambda}-A_{t^{\mathcal{K}}}p_{\nu\lambda}$

and
(1.4) $\nabla_{\nu}^{\prime}g_{/p\lambda}=2p_{\nu}^{\gamma}g_{/\lambda}J+p_{/z^{\prime}}g_{\nu\lambda}+p_{\lambda^{\prime}}g_{\nu/1}$ ,

where $\nabla$ indicates the covariant differentiation with respect to $\{_{\mu^{\kappa}\lambda}\},$ $K_{\nu\mu\lambda^{\kappa}}$ is
the curvature tensor of $M$ and we have put

(1.5) $p_{\mu\nu}=-\nabla_{J}p_{\lambda}-$} $p_{\mu}p_{\lambda}$ .
From the integrability condition of (1.4), we have

(1.6) $K_{\nu\mu\lambda^{\alpha\prime}}g_{\alpha\kappa}+K_{\nu\mu\kappa}^{a\prime}g_{a\lambda}=p_{\nu\lambda^{\prime}}g_{/1\mathcal{K}}+p_{\nu\kappa^{\prime}}g_{\mu\lambda}-p_{\mu\lambda^{\prime}}g_{\nu\kappa}-p_{/t\kappa^{\prime}}g_{\nu\lambda}$ .
On the other hand, a Riemannian manifold $M$ is said to be locally re-

ducible at a point of $M$, if the local holonomy group at the point is reducible;
in other words, in a neighborhood of the point, the manifold is locaiiy a
product of a number of Riemannian manifolds:

(1.7) $M_{1}\times M_{2}\times\cdots\times M_{r}$ ,

that is, there is a coordinate system in which the metric tensor field $g_{\mu\lambda}$ is
given by a reduced matrix4)

(1.8) $\left\{\begin{array}{lll}g_{j_{l}i_{1}}(x^{h_{l}}) & & \\ & g_{j_{2}i_{2}}(x^{h_{2}}) & \\\cdots & \cdots & \cdots\\ & & g_{Jr^{i}r}(x^{h_{r}})\end{array}\right\}$

3) In this paper we follow the notations of J. A. Schouten [6], especially, pp.
287-296.

4) Supposing that the dimension of each part $M_{t}$ is $n_{t}(t=1,2,\cdots, r),$ $n_{1}+n_{2}+\cdots+n_{7}=$

$n$ , the indices $h_{t},$ $i_{t},$ $ i_{t},\cdots$ run from $n_{1}+\cdots+n_{t-1}+1$ to $n_{1}+\cdots+n_{t}$ .
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each $g_{J_{t^{i}t}}$ depending only on $x^{\hslash_{t}}s$ . Such a coordinate system will be called a
separating coordinate system. If $M$ is locally reducible at every point, then
$M$ is said to be locally reducible; otherwise $M$ is said to be irreducible.

If a Riemannian manifold is complete and reducible, that is, the restricted
homogeneous holonomy group is reducible, then the product (1.7) has the
global meaning of de Rham decomposition [1]: The universal covering
space of the manifold is a direct product of a number of irreducible Rie-
mannain manifolds in the large.

In a separating coordinate system, the non-vanishing components of $\{_{\mu^{\kappa}\lambda}\}$

and of $K_{\nu\mu\lambda^{\kappa}}$ are respectively only $\{_{j_{t}^{h}i^{t_{t}}}\}$ and $K_{k_{t}j_{t}i_{t^{h_{t}}}}$, which are dependent only
on $x^{n_{t}}(t=1,2,\cdots, r)$ . These properties still hold when we decompose locally
$M$ into two parts $M_{1}\times M_{2}$ , where $M_{1}$ and $M_{2}$ may be reducible or not. In
the proofs of lemmas in \S 2, we shall use this decomposition.

\S 2. Lemmas.

LEMMA 1. Let $1V$ be locally reducible at a point $x$ and $f$ a projective trans-
formation of $M$ to $M^{\prime}$ . If the induced metric tensor field $\prime g_{\mu\lambda}$ has the property

(2.1) ’
$g_{j_{2}i_{1}}=0$

in a separating coordinate neighborhood of $x$ in $M$, then $M^{\prime}$ is also reducible at
$x^{\prime}=f(x)$ and the transformation $f$ is $aJfine$ at $x$.

PROOF. By assumption, we have

(2.2) $\prime g^{\dot{\iota}_{2}h_{1}}=0$ .
Putting $\kappa=h_{2},$ $\lambda=i_{1},$ $\mu=j_{1}$ in (1.1), we have

(2.3) ’ $\{_{J^{h_{1}r}}i_{1}\}=-\frac{1}{2}\prime g^{\hslash_{2}a_{2}}\partial_{a_{2}}^{\prime}g_{j_{1}i_{1}}=0$ .

Hence $g_{j_{1}\dot{t}_{1}}$ are independent of $x^{h}’ s$ . Similarly $\prime g_{j_{2}i_{2}}$ are independent of $x^{h_{1}}s$ .
Thus $M^{\prime}$ is locally reducible. Putting again $\kappa=h_{2},$ $\lambda=i_{1},$ $\mu=j_{2}$ in (1.1), we
have $p_{i},$ $=0$ and similarly $p_{i_{2}}=0$ . Thus the vector field $p_{\lambda}$ of the transforma-
tion vanishes.

LEMMA 2. Let $M$ be a locally reducible Riemannian manifold, but $M^{\prime}$ not
necessarily locally reducible. For a projective transformation of $M$ to $M^{\prime}$ , we
have an equation

(2.4) $p_{\mu\lambda}=\sigma^{\prime}g_{\mu\lambda}$ ,

$\sigma$ being a proportional factor.
PROOF. In a separating coordinate system at an arbitrary point of $M$,

we prove first that we have
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$p_{/pi_{1}}=\sigma_{i_{1}}^{\prime}g_{\mu i_{1}}$ ,
(2.5) (not summed in $i_{1}$ and $i_{2}$ )

$p_{\mu?r}=\sigma_{?\mathfrak{g}}^{\prime}g_{/1\dot{t}_{2}}$

for every $i_{1}$ and every $i_{2}$ , where $\sigma_{i_{1}}$ and $\sigma_{i}$ . are proportional factors. We
suffice to prove the first equation of (2.5) for a fixed $i_{1}$ . Putting $\kappa=\lambda=i_{1}$

and $\nu=k_{2}$ in (1.6), we have

(2.6) $p_{k_{1}i_{1}}^{\gamma}g_{/ti_{1}}=P_{/Ji_{1}}^{\prime}g_{k_{2}i_{1}}$ (not summed in $i_{1}$ ).

If $\prime g_{k_{2}i_{1}}\neq 0$ for some $k_{\underline{o}}$ , then the envisaged equation follows directly from
(2.6). If $\prime g_{k_{2}i_{1}}=0$ for all $k_{2}$ , we have $p_{k_{2}i_{1}}=0$ for all $k_{2}$ . Then, putting $\lambda=$

$i_{1},$ $\mu=j_{1},$ $\nu=k_{2}$ in (1.6), we have

(2.7) $p_{k_{2}\kappa^{\prime}}g_{j_{1}i_{1}}=P_{j_{1}i_{1}}^{\prime}g_{k_{2}\kappa}$ .
Since not all of $\prime g_{k_{2}t}$ vanish, we have
(2.8) $p_{j_{1}i_{1}}=\sigma_{i_{1}}^{\prime}g_{j_{1}i_{1}}$ (not summed in $i_{1}$ )

and hence we obtain (2.5).

Next, if $\prime g_{j_{2}i_{1}}\neq 0$ , then we have clearly $\sigma_{i}$ . $=\sigma_{j_{2}}$ . On the other hand, if
$/g_{j_{2}i_{1}}=0$ , then, putting $\kappa=\mu=j_{2}$ and $\lambda=\nu=i_{1}$ in (1.6), we have

(2.9) $(\sigma_{j_{2}}-\sigma_{i_{1}})^{\prime}g_{i_{1}i_{1}}^{\prime}g_{j_{2}j_{2}}=0$ (not summed in $i_{1}$ and $j_{2}$).

Since any principal minor matrix of a positive definite matrix is also positive
definite, we have

(2.10) $\sigma_{i}$ . $=\sigma_{j_{2}}=\sigma$

for all $i_{1}$ and for all $j_{2}$ . Q. E. D.
LEMMA 3. Under the hypothesis of Lemma 2, we have an equation

(2.11) $K_{\nu\ell I}\lambda^{\kappa}p_{\kappa}=0$ .
PROOF. Substituting (2.4) into (1.6), we have

(2.12) $K_{\nu\mu\lambda^{\alpha/}}g_{\alpha\kappa}+K_{\nu\mu\kappa^{\alpha\prime}}g_{\alpha\lambda}=0$ ,

and, in a separating coordinate system,

(2.13) $K_{k_{1}j_{1}t_{1}^{a_{1}\prime}}g_{a_{1}h_{2}}=0$ .
Differentiating covariantly this equation with respect to $x^{l_{2}}$ and substituting
(1.4), we obtain

(214) $K_{k_{1}j_{1}i_{1}}^{a_{1}}p_{a_{1}}^{\prime}g_{l_{2}ha}=0$ .
Since not all of $\prime g_{lzha}$ vanish, we have
(2.15) $K_{k_{1j1}i_{1}}^{a_{1}}p_{a_{1}}=0$ .
Similarly we have $K_{k_{2}j_{2}\iota_{2}^{a_{2}}}p_{a},$ $=0$ . Q. E. D.

From (2.13) and Lemma 1, we can state
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TIIEOREM 3. Let a Riemannian manifold $M$ be locally $decompos_{\vee}^{\rho}d$ into
$M_{1}\times\cdots\times M_{r}$ . If the components $K_{J_{t^{i}t}}$ of the Ricci tensor $K_{z\lambda}$ corresponding to
one of the parts $M_{t}’ s$ form a regular matrix in a separating coordinate neigh-
borhood, then a projective transformation of $M$ to a Riemannian manifold $M^{\prime}$

is affine in the neighborhood.
From the equations (1.3), (2.4) and (2.11), we obtain an important equation

(2.16) $\prime K_{\nu/1\lambda^{\kappa}}p_{\kappa}=\sigma(p_{\nu}^{\gamma}g_{\mu\lambda}-p_{/z^{\prime}}g_{\nu\lambda})$ .
LEMMA 4. The proportional factor $\sigma$ is a constant.
PROOF.5) The equation (1.5) can be written in the form

(2.17) $-’\nabla_{t}p_{\lambda}-p_{\mu}p_{\lambda}=\sigma^{\prime}g_{\mu\lambda}$

by means of ’
$\{_{\mu^{\kappa}\lambda}\}$ . Differentiating covariantly this equation with respect to

$’\{_{\mu^{\kappa}\lambda}\}$ , and applying the Ricci formula, we obtain

(2.18) $(\partial_{\nu}\sigma)^{\prime}g_{\mu\lambda}-(\partial_{\mu}\sigma)^{\prime}g_{\nu\lambda}=0$ ,

and thus $\partial_{\nu}\sigma=0$ . Q. E. D.
PROOF OF THEOREM 1. 1) If and only if $\sigma$ is equal to zero, the transfor-

mation preserves the curvature tensor. 2) If $\sigma$ is not equal to zero, the
equation (2.16) shows that the local homogeneous holonomy group (or the
infinitesimal holonomy group) is the proper orthogonal group $O^{+}(n)$ .

\S 3. Local structure of the manifold $M^{\prime}$ .
Since we shall deal only with $M^{\prime}$ in this paragraph, we shall drop ‘ prime,’

distinguishing quantities of $M^{\prime}$ from those of $M$, for brevity.
Now we consider hypersurfaces $V^{\prime}’ s$ in $M$ ‘ defined by equations

(3.1) $p=constant$ .
Transvection of (2.17) with $p^{u}(=\prime g^{u_{\lambda}}p_{\lambda})$ leads to

(3.2) $ p^{\mu}\nabla_{1}p\lambda=-(\sigma+p_{\mu}p^{\prime z})p\lambda$

and hence the integral curves of the vector field $p^{\mathfrak{r}}$ are geodesics and the
congruence $C^{\prime}$ of these geodesics is normal to the hypersurfaces $V^{\prime}’ s$ . If
$i^{\kappa}$ is the unit vector field of $p^{\kappa}$ on $M^{\prime}$ and we put

(3.3) $p^{\kappa}=qi^{\kappa}$ ,

then we have from (2.17)

(3.4) $-(\nabla_{1}q)i_{\lambda}-q\nabla_{\mu}i_{\lambda}-q^{2}i_{\mu}i_{\lambda}=\sigma g_{/1\lambda}$

and
(3.5) $\nabla_{\mu}q=-(\sigma+q^{2})i_{\mu}$ .

5) This simple proof is due to Prof. K. Yano.
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These imply that
(3.6) $\nabla_{\mu}i_{\lambda}=-h(g_{\mu\lambda}-i_{\mu}i_{\lambda})$ ,
where
(3.7) $h=\sigma/q$ .

We choose a local coordinate system $u^{a}(a, b, c, d=1,2,\cdots, n-1)$ in one of
the hypersurfaces $V^{\prime}’ s$ and give the same coordinates to the points of other
hypersurfaces which lie on the same geodesic of $C^{\prime}$ . On each hypersurface
$V^{\prime}$ , the second fundamental tensor is
(3.8) $h_{cb}=-B_{cb}^{\mu\lambda}\nabla_{\mu}i_{\lambda}=h\overline{g}_{cb}$ ,

where $B_{b}^{\lambda}=\partial_{b}x^{\lambda}$ and $\overline{g}_{cb}$ is the induced metric tensor of $V^{\prime}$ . Therefore the
hypersurfaces are totally geodesic if $\sigma=0$ or totally umbilical if $\sigma\neq 0$ .

From the Codazzi equation

(3.9) $\nabla_{a}h_{cb}-\nabla_{C}h(1b=B_{acb}^{\nu\mu\lambda}K_{\nu\mu\lambda\kappa}i^{\kappa}$

and (2.16), we obtain
(3.10) $(\nabla_{d}h)\overline{g}_{cb}-(\nabla_{c}h)\overline{g}_{tlb}=0$ .
By transvection with $\overline{g}^{cb}$ , we see that $h$ is constant on each of the hyper-
surfaces and consequently so is $q$.

Along a geodesic $x^{\kappa}=x^{\kappa}(s)$ of the congruence $C^{\prime}$ , where $s$ is the arc-
length in $M^{\gamma}$ , we have

(3.11) $i^{\kappa}=dx^{\kappa}/ds$ ,

(3.12) $q=p_{\lambda}(dx^{\lambda}/ds)=dp/ds$ ,

and (2.17) becomes an ordinary differential equation

(3.13) $\frac{d^{2}p}{ds^{2}}+\left(\begin{array}{l}-d\underline{p}\\ds\end{array}\right)+\sigma=0$ .

According to the sign of $\sigma$ , we put

(3.14) $\sigma=0\left\{\begin{array}{l}I)\\II)\\III)\end{array}\right.$ $-c^{2}+^{0_{2}}c$ ,

$c$ being a positive constant. Then, solving (3.13), $q$ is given by

(3.15) $q=\left\{\begin{array}{l}I)\\II)\\III,i)\\III,ii)\end{array}\right.$ $-cta^{S}n^{-a_{c(s-a)}}cc^{(}othc^{)}(s-a)C1/_{\tanh^{c(s-a)}}$

,

$f_{f_{0}^{O}}r_{r}$ $|_{|b|}q|>_{<^{C}c}$
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and the general solution $p$ is given by

(3.16) $p=\left\{\begin{array}{l}I) log|s-a_{1}^{|}+b,\\II) log|cosc(s-a)|+b,\\III,i) log|sinhc(s-a)|+b,\\III,ii) 1ogcoshc(s-a)+b,\end{array}\right.$

$a$ and $b$ being arbitrary constants.
Since $p$ and $q$ are constant on each $V^{\prime}$ , we can assume, by a suitable

choice of $a$ and $b$ , that the points on all geodesics of $C^{\prime}$ corresponding to
the same value of $s$ are on the same hypersurface, which we denote by $V^{\prime}(s)$ .
Moreover, without loss of generality, we may put $a=0$ and $b=0$ .

If we regard the parameter $s$ of the geodesics of $C^{\prime}$ as the n-th coordi-
nate of the manifold $M^{\prime}$ , then $(u^{a}, s)$ constitute a local coordinate system of
$M^{\prime}$ . In this coordinate system, the metric tensor has components

$g_{cb}(u^{a}, s)=\overline{g}_{cb}(u)$ on $V^{\prime}(s)$ ,
(3.17)

$g_{nb}=0$ , $g_{nn}=1$ ,

and the vector of the projective transformation has components

(3.18) $p_{b}=0$, $p_{n}=q$ .
If we put $\lambda=b,$ $/1=c$ in (2.17), we have an equation

(3.19) $\frac{1}{2}q\frac{\partial g_{cb}}{\partial s}+\sigma g_{cb}=0$ ,

whose solution is given by

(3.20) $g_{cb}(u, s)=\exp(-2\sigma\int\frac{1}{q}- ds)f_{cb}(u)$ ,

that is,

(3.21) $g_{cb}(u, s)=\left\{\begin{array}{l}I) f_{ob}(u),\\II) (sincs)^{2}f_{cb}(u),\\III,i) 4(coshcs)^{2}f_{cb}(u),\\III,ii) 4(sinhcs)^{2}f_{cb}(u),\end{array}\right.$

where $f_{cb}(u)$ depend only on $u^{1},\cdots,$ $u^{n-1}$ . Thus the local structure of $M^{\prime}$ has
been determined.

Theorem 1 tells us that, if both $M$ and $M^{\prime}$ are locally reducible, then a
projective transformation of $M$ to $M$ ‘ preserves the curvature tensor, that
is, $\sigma=0$ . Conversely, if there is a non-affine projective transformation pre-
serving the curvature tensor, then we have
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(3.22) $p_{/’\lambda}=0$ ,

and therefore $M$ and $M^{\prime}$ are locally reducible. Therefore we can conclude
THEOREM 4. A necessary and sufficient condition that Riemannian manifolds,

which are locally related to each other by a non-affine projective transformation,
be both locally reducible, is that the tran.$\sigma formation$ preserve the $curvat\iota rre$ tensor.

\S 4. Proof of Theorem 2.

It is sufficient to prove that, if one of the manifolds, say $M$, is locally
reducible, then there exists no non-affine projective transformation. We use
again ‘ prime ‘ to distinguish quantities of $M^{\prime}$ from those of $M$. We see from
(3.16) that, if $M^{\prime}$ is complete, the function $p$ has singularities on a hyper-
surface $V^{\prime}(O)$ in Case $I)^{6)}$ or in Case III, i) or on $V^{\prime}(\pi/2c)$ in Case II).

In Case III, ii), we consider the inverse image of a geodesic $x^{\kappa}=x^{\kappa}(\prime s)$ of
$C^{\prime}$ . The image is also a geodesic in $M:x^{\kappa}=x^{\kappa}(s),$ $s$ being the arc-length in
$M$. Along the geodesic in $M$, the equation (1.4) becomes

(4.1) $\frac{d}{ds}(\frac{d^{\prime}s}{ds})^{2}=4\frac{d}{d}\frac{p}{s}(\frac{d^{\prime}s}{ds})^{2}$ .

Then, we have
(4.2) $d^{\prime}s/ds=A\cosh^{\underline{o}}c^{\prime}s$ ,

$A$ being an arbitrary constant, and the solution of (4.1) with initial condition
$’ s=0$ for $s=0$ is given by

(4.3) $s=(\tanh c^{\prime}s)/Ac$ ,

or
(4.4) $\exp 2c$ $’ s=(1+Acs)/(1-Acs)$ .

Substituting (4.4) into (3.16, III, ii), we have

(4.5) $p=-(\log(1-(Acs)^{2}))/2$ .

Therefore, if $M$ is complete, $p$ has singularities on a hypersurface $V(1/Ac)$

in $M$. Q. E. D.

Department of Mathematics,
Okayama University

6) In case I), the theorem has been proved by S. Ishihara [2].
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