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Characteristic classes of 2-fold symmetric
products of spheres.
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In this note we shall compute characteristic classes of §?x8?, §*%8* and
S®xS8® in the sense of my previous paper [3] The notation and terminology
of this note are the same as in [3]

1. Cohomology groups of S"xS".

Let 8"*% 8" = {S"%S", S"x S", S"x S", ¢, G} be the 2n-dimensional C>-M-space
of the symmetric product of S* mentioned in [3, Example 1.3].
In case where » is even, non-trivial cohomology groups of S"%S" are as

follows (Liao [1]):
z q=0,n, 2n;

Zy g=n+2k+1 0<k=[(n—1)/2]).

HY(S*"%xS"; Z) =

Thus S*%S™ is not topological manifold unless z =2, because the Poincaré
duality relation does not hold for S"xS™ Let i be the injection S"—S"x S
defined by

Z/(-x) = (x’ xo) ’

where x, is a point of S Then a generator u,™ of H™S"xS"; Z)=Z is
given by
i*e*u,™ = {S"}, (1.1)

where {S"} is the generator of H*(S*; Z) = Z determined by the orientation
of S». Furthermore we denote the generator of H**(S"xS"; Z)~ Z determined
by the orientation of S"*S™ by u,,(™.

Now let S;* be the diagonal sphere of S”x S™ and let NS,* be a sufficiently
small (closed) normal tube neighbourhood of S, in S"xS". Let NS, =
{NS p,Ss", 2", GL(n; R)} be the normal bundle. (R(S,®) is equivalent to
the tangent bundle of S™) We consider fibre bundles R°(S;”) = {Int NS,*,
£, S Int 2™, GL(n; R)}, e(R°(Sq™) = {e(Int NS, p, S¢*, Int(2F"/G), I'} and their
spectral sequences [3, Section 5].
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Since 3"/G is contractible, we obtain
Hy"(Int(2"/G); 2)= Z,
Hy'(Int(2"/G); Z)=0.
Therefore, we have “d,’k*%e, =0 (2 =s < o) for any element “e, of H*S,"; Z)
Q Hiy(Int(E™/G); Z). Moreover, as is easily verified, we have
efarhnl =0 (g=0,n),
1¥(PE ™) = Hx*™(p(Int NS,™); Z) (@g=0,mn).
Hence we obtain the following lemma:
LemMma 1.1. S*x8™ satisfies the assumption (AVI) of [3, Section 5] for

¥ =mn, 2n.
The following diagram is commutative (¢g=0, n):

oK oo?
E0"=HYS,"; Z) Q Hx"(Int 2™ Z) — H,4"(Int NS,*; Z)
T id.Qe* LI T p* (1.2)

B = HYS,; Z) @ He'(Int (37/G); Z2)  —  H®"(p(Int NS;™; 2).
Denote by x4, the generator of HS,"; Z)~Z. Then we have
0¥ (1O ® {Int 27} = {S"},
where ¢, denotes the map S"x S"—(S*x S", 9NS,”). Hence we obtain by
and
6% 2 (10 @ {Int(27/G)}) = 21, ™, (1.3)
where ¢, denotes the map S"#S"—(S"*S", @(ONS™).
Furthermore the tangent D-bundle [3, Definition 3.3] of S"*S™ is given
as the following collection (i), (ii):
(i) The tangent bundle I(S"x S™) = {T(S"XS™), p, S*XS*, E?", SO(2n; R)}.
(ii) An isomorphism 'a of G into the group of bundle maps of T(S"x S™)
defined by. 'a(g) = dg.

2. C-classes of S?x%S2.

Let us regard S? as the space of 2 homogeneous complex variables [«, 8]
Since S?XxS? has the complex analytic structure and G operates analytically
on S*xS?% S?2x87={S?%S?% S?xS5% S?xS?% G, ¢} is a 2-dimensional complex
analytic M-space.

Consider the complex projective plane CP? as the space of 3 homo-
geneous complex variables [«, #,7]. We define the analytic map h, of S*xS?
onto CP? by

hla, B, [/, B’ =[aa’, af’ +a'B, BB'].
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Then }, gives the homeomorphic map %4, of S$?*S? onto CP? such that
ﬁo - h() o ¢ .
Therefore S*+S? and CP? are homeomorphic.
Let K= {0 o', 0,2 0,2} be a cellular decomposition of S? such that

o*=[11], o' ={[1,48]; |81=1},
o={[1,4]1; |Bl=1}, o= {[a,1]; |a| =1}.
Then KXK gives a cellular decomposition of S? x S
Since $*—[0,1]={[1, 7} (resp. $*—[1,0]= {[«a,1]}) is diffeomorphic to
the complex line (B) (resp. («)), there exists a continuous orthonormal vector

field {Vy 1} on S*—[0,1] (resp. {’ Vi1t on S2—[1,0]) such that each Viys
(resp. 'Vig,11) is the vector at [1,3] (resp. [a,1]) parallel to the vector

(Tl——— Ve in (B) (resp. (a)). Denote by (8/|81) Vs (B # 0) the vector at [1, 5]
which is parallel to (8/|A)V, where the multiplication of B/|8| means
the orthogonal transformation determined by g/|8]. It is easily shown that

B/NBD Ve =—0R1/B) Vi B#0). 2.1)

Now let K; be a cellular decomposition of S,% consisting of {6, 0!, 04,3
04,2} such that v

0" = (0% 0", o,)={(x%x);xc0'}, 04°={xx);x=07},
04" = {(x, %) ; x € 0,°} .
Then {p~(0s"), p~(04Y), p™ 042, p~(04,%)} gives a cellular decomposition of
Int NS;2. Denote by (6Xo6")~ (6,0’ € K) the set oxo’—Int NS;2 Then the
collection of p~'(0,) (0; € K,;) and suitable cellular subdivisions of (oXo’)~

(0,0’ € K) define an admissible cellular decomposition K of $?xS% We can
assume without loss of generality that

| K2 |—Int NS —(0,*X 0%)—(0°X 0,) = ($*—[0, 1) X (S*—[0, ]) - (2.2)

Denote the subcomplex of K which gives a cellular decomposition of NS,
(resp. S?xS?*—Int NS;2) by NK' (resp. I?C).

In the following let us denote by V, the normalized vector of non-zero
vector V.

First we compute the first C-class of S§2%.S2

Let v, be the continuous field of normalized normal vectors with the
outer direction defined on yK~K,. We can regard v, as an extension of
the set of vectors

{(B=B) Vi1, B —B) Vigdws (1,810, 5D €op™(Ss— U0, 51N},
where U([0,4]) is a sufficiently small neighbourhood of [0,3]. Let v, be
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the continuous field of normalized vectors defined on Nﬁmffgz which is the
restriction of the set of vectors

{(Viren Visgows (LL AL L A'D) € (SP— U0, )X (S*—= U0, 1))} -
v, and v, are two non-zero mutually orthogonal vector fields, and define a
continuous field of orthonormal 2-frames f® on Nf?ml?(ﬁ. Obviously f® is
invariant under dg, that is, f® is a G-cross section of TM(S5*XS?) on N[t’m]%?.
We take f® as the standard cross section of T(M(S§?xS%. The continuous
field of normalized vectors defined on (S*— U([0, 7)) X (S2—U([0, 1))—Int NS

0 ={{(B—B) Vg (B —B)Viedws (1,81 [L D e

(S*=U(0, BD)*(S*—U([0, #1)—Int NS4?}

is an extension of ;. The continuous field of normalized vectors defined on
(S*—U(L0, B X(S*—=U(L0, B

5= {(Ves,83 Vingdws (1 81, [1, 870) € (S*—U(O, 1)) x (S*—U(L0, A}
is an extension of v,, The vectors of v, and v, are mutually orthogonal at
each point of (S*—U[0, f])X(S*—U[0, #])—Int NS;2. Therefore the restric-
tions of v, and v, on K,' define a continuous field 7® of orthonormal 2-frames
which is invariant under dg.

Let us consider the obstruction &(7®). By the restrictions of v, v,
on (g'Xe¢!)~ are
{(d/a)y—1/aNa®  Vig,1, (L/a)—A/aNa’? Vig,11)n;
(Ca, 13, [/, 1) € (o' x a)7},
{(—a? " Vg1 =" Vig,ow; (@, 1], [a/,1]) € (o' x ')}

Let f, be the map (o' x ¢°)~— U(2) defined by
a? O\/1—1/a)/|IV2 —(V2 Ja)| 1/V2
R v |

0 1/\(1/a)—1)/|IV2 —(V2 /)| 1/¥2

The map (0'X06%)” — |fla, 0% = a?(1—1/a))/
|1—(1/)| is homotopic to a generator of z,(U(2)),
because the maps from 0(s!xs%~ (Fig. 1) into
St defined by

(a,1)—a?,
(a, D—>(1—(1/a))/|1—(1/a)]
have degree 2, —1 respectively. Thus we have
E(fO) (032 % 0%)™) = 8(f®) (0"} 0,)™) =1. -
Moreover it is obvious by (2.2) that Fig. 1.
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E(f@)@)=0 @G e K, 5+ (0.2% 0%, (6"% 0,2)™)

Therefore, as is easily verified, the cohomology class {¢’(f)} ([3, Section 57)
satisfies

¥ *e*({c'())) = (S} .
Using [(1.1), we obtain
(N = 1™ (23)

On the other hand, we have
EFO(p 0N =1.
Denote {c;(f)} in [3, Section 5] simply by {cy(f)}. Then we have by

F{ex(FO)) =2p,® .
Therefore ¢(T™(8?x8?) is given by
EED(S?%87) = {c(FM)} =3, ®.
Furthermore the second C-class of S?#.S8? is 34, by [3, Theorem 8.1].

Hence we obtain the following theorem:

TueorEM 2.1. C-classes of the 2-dimensional complex analytic M-space S*= S?
are as follows:

Ci(S8?%8%) =3u,™,
Cy(S?%8%) =3u,® .

Remark 2.1. In a forthcoming paper [4] this theorem will be reproved
by considering the invariance of characteristic classes of M-spaces under
the isomorphic in the wider sense.

3. P-classes of S*xS! S8xS8.

First, we shall compute P-classes of S*xS*.

Let 0 and o’ be two poles of S‘% We can regard the open set S'—o’
(resp. S'—o) of S* as the set of quaternions {(g); llgll<1} (resp. {(g)’; lgll <1}).
By means of the identification (¢) and ((1—|ql)g/lgl)’ (g+ 0), we obtain the
natural differentiable structure of S

Let K=1{0%0¢%0,%0,'} be a cellular decomposition of S! consisting of
cells

0°=(1/2), o*={(@; llgl =1/2},
o ={@; lall =1/2}, o'={{(@)'; lqll =1/2}.
The quaternion space (¢) (resp. (g)’) has a continuous field of normalized
vectors { Vi(@)} (resp. {V(g)}), where Vi(q) (resp. V,'(¢g)) is the parallel trans-
lation of the normalized vectors at the origin defined by real axis of (g)
(resp. (@))-
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It is obvious that
Vi@ =—V(A—lqlDq/llgl) (g+#0). (3.1)
Since the first Pontrjagin class of S* is zero, there exists a continuous
field of unitary 4-frames {(Vi%(x), V,(x), V:(x), V.%(x)); x= S*}, i.e., a cross
section of the fibre bundle ZTHI(SY).
Now let K;= {0° 04% 04,%, 045*} be a cellular decomposition of S,;* such
that
0. =(0%0%, o.2={(x,x%); x=0%},
oa* ={(x, x); xE 0,1}, o0at = {(x,%); x=0,%}.
Then p~1(K,) gives a cellular decomposition of Int NS,% Denote by (0% ¢’)~
(0,06’ € K) the set oxo’—IntS;*. Then the collection of p~!(s,) (0, K,) and
suitable cellular subdivisions of (ox0¢’)~ (0,0’ € K) define an admissible cel-
lular decomposition K of StxS!. We can assume without loss of generality
that
| K4|—Int NSzt—(05* x 0% —(0° x 0,") C (St—0) x (St—0") . (3.2)
We denote the subcomplex of K which gives a cellular decompotion of NS,?
(resp. Stx S'—Int NS4 by yK (resp. [?0).
b® = {(V:°(x), Vi) (Vo(), Vora Ny (Vs¥(), V' Dws (Vi) VA ))w s
(x, ') € St x St}
is a continuous field of unitary 4-frames. Also
0, = {(g—aV:* (@), @ —DV:*UgMw> (g—aN V(@) (@ —D V' (@ ) »
(g—g")Y V@), (@' — V(@M (D), (@) € (S*—0") x (S*—0")—S4*}
is a continuous field of unitary 3-frames defined on (S*—0’) x (S'*—0’)—S4!,
where the left multiplication of g—¢’ means the transformation determined
by g—¢q’ in an obvious way. Both v° and 9,° are invariant under the operation
of dg. Hence 9° and p,° define a G-cross section fI of I (S*xSY) over
(S*—0") % (S*—0’)—S,%. We take the restriction of f1 on yK~K,* as the
standard cross section of I3 (S§'xS*).
Now we compute &(f). Obviously we have by
SIN@) =0 (G K1, 6+ (0,0 % 0, (0% x 0,)7™) . (3.3)
Furthermore f! defines the map f,1: 9((0,* x 6°)™)— U(7) such that

A @), (1/2) =74(Q0)
Q; € SO4), Qi(g")=(((1—llglDa/llglD—1/2))w)q »
where j,: SO(4)— U(7) is the composition of inclusion maps SO(4)— U(4) and
U4)— U(7). Hence we obtain (Tamura [2])

S T(ag* x ")) =&(f ) (0" x 0,)™) =—2. 3.4
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On the other hand, since f"? defines the map £,[?: 0p~(0,")— U(7) such that

2P Ug) = 7(Qy), Q€ SOM), Q:x(q")=4qq,
we have
SN eN=2. (3.5)
Therefore, by [(1.3), [3.3), [3.4) and [3.5), we have
TS %S = {2(F T} = 20,9 .
Next we consider the second P-class of S'*S% Let

by = {(1—llg: DA —llgl)(a1—g) Vilg) +/1—llg.' DA —llgo' N (a" —g.") Vi (@) »
A—=llg: NA—=llgsl)ga—a) Vilg) +/A—llg DA —llgs’ )ge’—a) Vi (@ D s
(@) =), (@) =(a")}

be a continuous field of complex vectors defined on S*XS*—(S;*V(0, o)V (0’, 0)).
As is easily verified, v° and v, define a continuous field of unitary 5-frames,
which is invariant under dg, i.e., a G-cross section f[%7 of I (S1xS?) over
Stx St—(Sy '\ (o, 0)\J(0’, 0)). We take the restriction of f% on Nf('ml%c as the
standard cross section.

Let us compute {c(fPN}. Let U(o,0’) be a sufficiently small ball con-
taining (0,0’) whose orientation agrees with that of S*xS. Let f,%:
0U(0, 0")—S™ be the map defined by

(g1, @) = (A—lg ). llg —T—lg." Dg:"), A—llg"DA—lg:lDg —llallg:Da -

Since, as is easily verified, £,/ has degree 1, we have

(PN (oyt x 0,)) =—1. (3.6)

By the way, we have
PN (0 X a))+E(f ) (05! x 0,4)7)
TE(fPNBD (00 ))FE(Sf ) (P (04") =0, 3.7)

because the Pontrjagin classes of S*x S* vanish.

[1.2), [3.6) and [3.7) enable us to compute {c(f*)}:
{c(f NS %S T =(fP) (0, X 05)7)+E(F ) (D7 (02:)) +E(F (D™ (042"))
=—C(fP)((0, Xa,)7)=1.
Hence we obtain the following theorem:

Tueorem 3.1.  P-classes of the 8-dimensional C>-M-space S*+S* are as fol-
lows :

P(8'%8)=2p,",
Py(S'%8%) = ug® .
In a similar way we obtain the following theorem, making use of the
Cayley numbers (Tamura [2]):
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TueoreM 3.2. P-classes of the 16-dimensional C~-M-space S®+S8® are as
follows:

Py(S?%S%) = 6u;® ,
PS8+ 8%) = p,6® .

University of Tokyo.

Bibliography

f1] S.D. Liao, On the topology of cyclic products of spheres, Trans. Amer. Math.
Soc., 7T (1954), 520-551.

{2] I Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math.
Soc. Japan, 8 (1957), 250-262.

[3] I. Tamura, Characteristic classes of M-spaces I, J. Math. Soc. Japan, 11 (1959),
312-342.

{4] I Tamura, Characteristic classes of M-spaces II (to appear).




	Characteristic classes ...
	1. Cohomology groups of ...
	2. C-classes of $S^{2}*S^{2}$ ...
	THEOREM 2.1. ...

	3. P-classes of $S^{4}*S^{4}$ ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...

	Bibliography


