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\S 0. Introduction.

The purpose of this paper is to show that the proofs of some main
representation theorems for moment sequences and Laplace-Stieltjes trans-
forms are obtained probabilisticallv by making use of the representation
theorems in the theory of Martin boundaries induced by Markov processes
[6].

We prepare, in \S 1, the following three topics: (a) the definition of
time discrete Markov processes over the denumerable space, (b) the definition
and some properties of process harmonic functions and (c) the summary of
the theory of Martin boundaries for the above processes. In \S 2 we shall
construct the Martin boundary for the space-time Markov process attached
to the Bernoulli sequence $B(1/2)$ . In \S 3, using the results of \S 2, we shall
derive the representation theory for moment sequences which is known as
Hausdorff moment problem.

In the last section we shall discuss the representation theory for Laplace-
Stieltjes transforms in connection with the space-time Markov process
attached to the standard Poisson process. This may be considered as a
continuous analogue of \S 1 through \S 3.

It may be interesting to apply the above method to the representation
theory for more general transforms with positive kernels. For example,
the convolution transforms [2] are expected to have a close relation with
the space-time Markov processes attached to additive processes.

The author wishes to express his hearty thanks to Professor K. It\^o for
his kind suggestions.

\S 1. The sketch of the theory of Martin boundaries induced by time
descrete Markov processes over the denumerable space.

All the results in this section are stated without proof: they shall be
discussed systematically in [6].

Let $E$ be the denumerable space $\{1, 2, 3, \cdots\}$ with the discrete topology
and an extra point $\infty$ be added to $E$ as an isolated point. We shall denote
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$ E\cup\infty$ by $E^{*}$ , the discrete time space $\{0,1,2,3, \cdots , +\infty\}$ by $T$, the topological
Borel field of $E^{*}$ by $\mathfrak{B}_{E^{*}}^{1)}$ and the Borel field of all subsets of $T$ by $\mathfrak{B}_{r}$ .
Any mapping from $(T, \mathfrak{B}_{T})$ into $(E^{*}, \mathfrak{B}_{E^{e}})$ will be denoted by $w$ and the n-th
coordinate of $w$ , by $w_{n}$ , or by $x_{n}(w)$ or simply by $x_{n}$ . For each $w$ the passage
time $\sigma(A;w)$ for any $A\in \mathfrak{B}_{E}*$ is defined by

(1.1) $\sigma(A;w)=\min\{n;x_{n}(w)\in A\}$ if $x_{n}(w)\in A$ for some $n\geqq 0$ ,

$=+\infty$ otherwise.

Now consider the set $W$ of all the $ujS$ which satisfy the two conditions
(W. 1) that $ x_{+\infty}(w)=\infty$ and (W. 2) that $ x_{n}(w)=\infty$ holds for every $n\geqq\sigma(\{\infty\}$ ;
w$)^{}$ A general element of $W$ is called a path function. Let $\mathfrak{B}$ denote the
Borel field generated by the sets $\{w;w_{k}\in A\}$ , where $A$ runs over $\mathfrak{B}_{E}*$ and $k$

over $T$. Any mapping $\sigma(w)$ from $(W, \mathfrak{B})$ into $(T, \mathfrak{B}_{T})$ is called a random time.
For a random time $\sigma$ , we shall now define the stopped path $w_{\sigma}^{-}$ and the shifted
path $w_{\sigma}^{+}$ as follows:
(1.2) $(w_{\sigma}^{-})_{k}=w_{\min(\sigma,\kappa)}$ for except $ k=+\infty$ and $(w_{\sigma}^{-})_{+\infty}=\infty$ ,

$(w_{\sigma}^{+})_{k}=w_{\sigma+k}$ for every $k\in T$ .
Since $\varphi_{\sigma}(w)\equiv w_{\sigma}^{-}$ is a measurable mapping from $(W, \mathfrak{B})$ into itself, $\mathfrak{B}_{\sigma}=(\varphi_{\sigma})^{-1}\mathfrak{B}$

becomes the Borel subfield of $\mathfrak{B}$ . It is clear that the $\mathfrak{B}_{n}$ for the constant
random time $n$ coincides with the Borel field generated by all the sets
$\{w;w_{k}\in A\}$ , where $k$ runs over $T_{n}=$ $\{$ 0,1,2, $\cdots$ $n\}$ . Especially, we have
$\mathfrak{B}_{+\infty}=\mathfrak{B}$.

A random time $\sigma$ is called a Markov time if $\{w;\sigma(w)\leqq n\}\in \mathfrak{B}_{n}$ for every
$n\in T$. It is easily shown that every passage time is a Markov time.

We shall say that the combination $(W, \mathfrak{B}, P_{x}, x\in E^{*})$ is a time discrete
Markov process over $E$ if $(P_{x}, x\in E^{*})$ satisfies the following conditions:

(P. 1) For any fixed $x,$ $P_{x}(\cdot)$ is a probability measure on $(W, \mathfrak{B})$ .
(P. 2) Each $x$ is not fictitious, that is,

(1.3) $P_{x}\{w;x_{0}(w)=x\}=1$ for every $x\in E^{*}$ .
(P. 3) (MARKOV PROPERTY) For every $x\in E^{*}$ , every $n\geqq 0$ and every $B\in \mathfrak{B}$,

(1.4) $P_{x}\{P_{x}(w;w_{n}^{+}\in B|\mathfrak{B}_{n})=P_{x_{n}}(B)\}=1.3)$

A simple calculation proves that (P. 3) implies the following property:
$(P. 3)^{\prime}$ (STRONG MARKOV PROPERTY) For every $x\in E^{*}$ , every Markov time

$\sigma\geqq 0$ and every $B\in \mathfrak{B}$,

1) In our case, $\mathfrak{V}_{E^{*}}$ coincides with the Borel field of all subsets of $E*$ .
2) $\{\infty\}$ means the set consisting of a single point $\infty$ .
3) $P_{x}(w;w_{n^{+}}\in B|\mathfrak{B}_{n})$ is the conditional probability of the set $\{w;w_{n^{+}}\in B\}$ relative to

$\mathfrak{V}_{n}$ under $P_{x}$ .
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(1.4) $P_{x}\{P(w;w_{\sigma}^{+}\in B|\mathfrak{B}_{d})=P_{x_{\sigma}}(B)\}=1$ .
In the sequel any Markov process $(W, \mathfrak{B}, P_{x}, x\in E^{*})$ will be denoted

simply by $x_{n}$ .
We shall now introduce several notations and definitions. First we

shall define the transition probabilities of the process $x_{n}$ as follows:
(1.5) $\Pi^{n}(x, y)=P_{x}\{w;x_{n}(w)=y\}$

for every $n\in T$ and every $x,y\in E^{*}$ . According to the Markov property
$\Pi^{n}(x, y)$ is the $(x, y)$ element of the n-th power $(\Pi^{*})^{n}$ of the matrix $\Pi^{*}=$

\langle $\Pi^{1}(x, y);x,$ $y\in E^{*}$ ) for except $ n=+\infty$ , where $(\Pi^{*})^{0}$ is defined as the identity
matrix over $E^{*}$ .

We shall next denote, by $\mathfrak{R}$ , the set of all the finite real valued func-
tions over $E^{*}$ vanishing at $\infty$ . Further we shall put

$E_{x}\{f(w)\}=\int_{W}f(w)P_{x}(dw)$ and $E_{x}\{f(w);B\}=\int_{B}f(w)P_{x}(dw)$

for any real valued measurable function $f(w)$ on $(W, \mathfrak{B})$ and any $B\in \mathfrak{B}$.
The Green measure of the process will be defined by

$G(x, y)=E_{x}\{\sum_{n\geqq 0}\chi_{\{y\}}(x_{n}(w))\},4)$

where $\chi_{\{y\}}$ is the indicator function of the one point set $\{y\}$ .
DEFINITION 1.1. The Markov process $x_{n}$ is conservative over $E$ if

(1.6) $P_{x}\{w;\sigma(\{\infty\};w)=+\infty\}=1$ for every $x\in E$ .
DEFINITION 1.2. The point $x\in E^{*}$ is a trap if

(1.7) $P_{x}\{w;\sigma(E^{*}-\{x\};w)<+\infty\}=0$ .
DEFINITION 1.3. The point $x\in E^{*}$ is recurrent if

$(l.8)$ $P_{x}\{w;\sigma(\{x\};w_{1}^{+})<+\infty\}=1$ .
The matrix $\Pi^{*}$ is a stochastic $mat\gamma ix^{6)}$ over $E^{*}$ which satisfies $\Pi^{1}(\infty, \infty)$

$=1$ . Conversely, we can see that such any stochastic matrix $\Pi^{*}$ over $E^{*}$

determines uniquely a time discrete Markov process over $E$ which satisfies
(1.5), using Kolmogorov extension theorem. On the other hand, $\Pi^{*}$ is uniquely
determined by the restriction $\Pi$ to $E$, which is in general a substochastic
matrix over $E^{6)}$ Thus we may identify a Markov process $x_{n}$ over $E$ with
the above substochastic matrix $\Pi$ . Further we have the proposition that
$\Pi$ is stochastic if and only if $x_{n}$ is conservative.

4) $G(x, y)$ may take $\infty$ .
5) $\sum_{y\in E^{*}}\Pi 1(x, y)=1$ for every $x\in E*$ .
6) $\sum_{y\in E}\Pi 1(x, y)\leqq 1$ for every $x\in E$.
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If the point $y$ is not recurrent, we have
(1.9) $ G(x, y)=P_{x}\{\sigma(\{y\};w)<+\infty\}G(y, y)<\infty$

for any point $x$. Conversely, if $G(y, y)$ is finite, $y$ is not recurrent (see [5]).

Next we shall give the definition of process harmonic functions and
two lemmas useful for later considerations.

DEFINITION 1.4. (a) Let $x\in E$ be not a trap for a given process $x_{n}$ . Then
the function $u\in \mathfrak{R}$ is harmonic with respect to $x_{n}$ (or simply, $x_{n}$-harmonic) at
$x$ if
(1.10) $u(x)=E_{x}\{u(x_{\sigma(E^{*}-\{x\};w)}(w))\}$ .

(b) If $x\in E$ is a trap, every $u\in \mathfrak{R}$ is $x_{n}$-harmonic at $x$.
(c) If $u\in \mathfrak{R}$ is $x_{n}$ -harmonic at every $x$ in $E$, the function is $x_{n}$ -harmonic

(over $E$).

Then we have
LEMMA 1.1. A nonnegative function $u\in \mathfrak{R}$ is $x_{n}$ -harmonic if and only if

(1.11) $u(x)=E_{x}\{u(x_{1}(w))\}=\sum_{y\in E}\Pi^{1}(x, y)u(y)$

for every $x$ in $E$.
LEMMA 1.2. (i) A function $u\in \mathfrak{R}$ can be represented as the difference of

two nonnegative $x_{n}$-harmonic functions if and only if $u$ is $x_{n}$-harmonic and the
function defined by
(1.12)

$u_{+\infty}(x)=\lim_{r\rightarrow+\infty}E_{x}\{|u(x_{n})|\}^{7)}$

belongs to $\mathfrak{R}$ .
(ii) If $y$ is accessible from $x$, that is, $P_{x}\{\sigma(\{y\} ;w)<+\infty\}>0,$ $ u_{+\infty}(x)<\infty$ .

implies that $ u_{+\infty}(y)<\infty$ .
In order to proceed to the theory of Martin boundaries, we shall here-

after assume that the $x_{n}$ satisfies the following three conditions:
(A. 1) All the points in $E$ are not recurrent.
(A. 2) There exists a point $c$ called the center of the process such that

(1.13) $P_{c}\{\sigma(\{y\};w)<+\infty\}>0$

holds for any point $y$ in $E$.
(A. 3) For each $x\in E$, there exists a finite set $F_{x}\subset E$ such that

(1.14) $P_{x}\{w;X_{\sigma}(E^{*}-\{x\};w)(w)\in F_{x}U\infty\}=1$ .
It is clear from (1.9) that, under the assumption (A. 1), (A. 2) is equiva-

lent to the condition
$ 0<G(c, y)<+\infty$ for every $y\in E$ .

7) If $u$ is $x_{n}$-harmonic, $E_{x}\{|u(x_{n})|\}$ increases with $n$ for every $x$ in $E$. Thus $u_{+\infty}$

is always well defined if we admit $\infty$ for its value.
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Hence the ratio

(1.15) $K(x, y)\equiv\frac{G(x,y)}{G(c,y)}=\frac{P_{x}\{\sigma(\{y\};w)<+\infty\}}{P_{c}\{\sigma(\{y\};w)<+\infty\}}$

is well defined and is finite for every $x,y\in E$. An infinite sequence { $y_{n}$ ;
$n=1,2,3,$ $\cdots$ } is called a fundamental sequence if $K\langle x,y_{n}$) tends to a nonnega-
tive $x_{n}$-harmonic function. Then, using (A. 1) and (A. 3), we can prove that
.every fundamental sequence has no limit points in $E$ and that any infinite
sequence having no limit points in $E$ contains at least one fundamental sequence.8)

We say that two fundemental sequences $y_{n},$ $z_{n}$ are equivalent if $K(x,y_{n})$ and
$K(x, z_{n})$ have the same limit function. Let $b$ denote an equivalence class of
sequences and $K(x, b)^{9)}$ denote the common limit function for the fundamental
esequences belonging to the class $b$ . We shall also denote the set of all $b’ s$

by $\mathfrak{M}$, and the set $E\cup \mathfrak{M}$ by $\overline{E}$.
Finally, we shall topologize $\overline{E}$, using the metric

$((1.16) \rho(\xi, \eta)=\sum_{x\in E}\frac{|K(x,\xi)-K(x,\eta)|}{1+|K(x,\xi)-K(x,\eta)|}m(x)$ for any $\xi,$ $\eta\in\overline{E}$ ,

in which $m(x)$ is an arbitrary totally finite measure on $E$ such that $m(x)>0$

for every $x$ in $E$. Then we have
THEOREM 1.1. (i) $\overline{E}$ is a compact metric space.
(ii) $E$ is open in $\overline{E}$ and its relative topology is the original discrete one.
(iii) $\mathfrak{M}$ is the boundary of $E$ in this p-topology.
(iv) $K(x, \xi)$ is continuous in $\xi$ for each $x$.
DEFINITION 1.5. The above $\mathfrak{M}$ is the Martin boundary induced by the

Markov process.
Apparently the above definition of $\mathfrak{M}$ depends on the choice of the

center $c$ and the measure $m$ , but we can see that it does not depend actually.
DEFINITION 1.6. A nonnegative $x_{n}$-harmonic function $u$ is minimal if any

$x_{n}$ -harmonic function $v$ such that $0\leqq v\leqq u$ is a constant multiple of $u$ .
Now denote by $M_{1}$ the set of all points of $\mathfrak{M}$ for which $K(\cdot, b)$ is minimal.

In order to state a condition that $K(\cdot, b)$ be minimal, we shall need several
preparations.

Consider any nonnegative $x_{n}$-harmonic function $u$ over $E$. Given an
arbitrary subset $A$ of $E$, put

(1.17) $u_{A}^{*}(x)=E_{x}\{u(x_{\sigma(A)})\}$ .
It will be shown that $u_{A}$ is well defined for every $x$ and that $u_{A}^{*}\leqq u$ . Next,

8) In case there exist recurrent points, these statements must be slightly
modified.

9) $K(x, b)$ is called the generalized Poisson kernel induced by the given Markov process.
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let $D$ be an arbitrary closed subset in $\mathfrak{M}$ and, $A_{1},$ $A_{2},$ $\cdots$ , $a$ decreasing se-
quence of open subsets in $\overline{E}$ such that $A_{n}\supset D$ and $\bigcap_{n\geqq 1}\overline{A}_{n}=D^{10)}$ . Then we

shall define $u_{D}$ as
(1.18) $u_{D}=\lim_{n\rightarrow\infty}u_{[A]}^{*}n$ ’

where $[A_{n}]=\overline{A}_{n}\cap E$. $u_{D}$ is well defined, independently of the choice of $A_{n}$ , and
is a nonnegative $x_{n}\cdot harmo\dot{m}c$ function which does not exceed $u$ .

Using the above notations, we have
THEOREM 1.2. (i) $\mathfrak{M}_{1}$ is Borel measurable in M.
(ii) A necessary and sufficient condition that a boundary point $b$ belongs to

$\mathfrak{M}_{1}$ is that
(1.19) $K_{\{b\}}(c, b)=1$

or equivalently that
(1.20) $K_{D}(c, b)=1$

for any closed subset $D$ in $\mathfrak{M}$ containing the point $b$ as an interior point.
We shall now give the representation theorems for $\chi_{n}$-harmonic functions.

Denoting by $\mathfrak{B}_{\mathfrak{M}_{1}}$ the Borel field consisting of all $\rho$-Borel subsets in $\mathfrak{M}_{1}$ , we
shall first have

THEOREM 1.3. $ffu$ is nonnegative and $x_{n}$-harmonic, there exists uniquely a
bounded measure $\mu^{11)}$ on $(\mathfrak{M}_{1}, \mathfrak{B}_{\mathfrak{M}_{1}})$ such that

(1.21) $u(x)=\int_{\mathfrak{M}_{1}}K(x, b)_{l^{t}}(db)$ for every $x\in E$ .

The total mass $\mu(\mathfrak{M}_{1})$ is equal to the value $u(c)$ . Conversely, given any bounded
measure $\mu$ on $(\mathfrak{M}_{1}, \mathfrak{B}_{\mathfrak{M}_{1}})$ , the function defined by the right side of (1.21) is a
nonnegative $x_{n}$-harmonic function.

For the $x_{n}$-harmonic functions which are not necessarily nonnegative,
combining the above theorem, Lemma 1.2 and Jordan decomposition theorem
for bounded signed measures, we have the following

THEOREM 1.4. (i) (Uniqueness of the representation). A function $u\in \mathfrak{R}$

can have at most one representation (1.21) if $\mu$ is a bounded signed measure on
$(\mathfrak{M}_{\iota}, \mathfrak{B}_{\mathfrak{M}_{1}})$ .

(ii) In order that a function $u\in \mathfrak{R}$ is expressible in the form of (1.21) by
means of a bounded signed measure on $(\mathfrak{M}_{J}, \mathfrak{B}_{\mathfrak{M}_{1}})$ , it is necessary and sufficient
that $u$ is $x_{n}$ -harmonic and that

$\lim_{n\rightarrow+\infty}E_{c}\{|u(x_{n})|\}<\infty$ .

10) $\overline{A}_{n}$ is the closure of $A_{n}$ in $\overline{E}$.
11) By a bounded measure, we shall understand a nonnegative and totally finite

regular measure.
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\S 2. The construction of the Martin boundary induced by the space-time
Markov process attached to the Bernoulli sequence $B(1/2)$ .

In this section we shall represent the denumerable space $E$ under
consideration by the set of all points $(n, i)$ such that $n\geqq i=0,1,2,$ $\cdots$ .
Now consider a time discrete Markov process conservative over $E$ which
corresponds to the stochastic matrix $\Pi$ defined by $\Pi^{1}((n, i),$ $(n+1, i))=$

$\Pi^{1}((n, i),$ $(n+1, i+1))=1/^{\prime}2$ . First we shall remark that this process can be
derived from the Bernoulli sequence through space-time consideration.

Let $(\Omega, \mathfrak{F}, P)$ be an abstract probability field. If $\{y_{n}(\tilde{\omega});n\geqq 1\}$ is a
sequence of random variables on (J2, $\mathfrak{F},$ $P$) which are mutually independent
and each of which satisfies

(2.1) $P\{y_{n}(\tilde{\omega})=1\}=p$ , $P\{y_{n}(\tilde{\omega})=0\}=1-p$ ,

it is called a Bernoulli sequence and denoted by $B(p)$ . In the sequel we shall
consider $B(1/2)$ . For convenience we shall introduce a trivial random vari-

able $y_{0}(\tilde{\omega})\equiv 0$ . Now put $s_{k}(\tilde{\omega})=\sum_{l=1}^{k}y_{l}(\tilde{\omega})$ and consider a collection of processes

defined by
(2.2) $e_{k}^{(x)}(0^{\sim_{))=x+(k,s_{k}(\tilde{\omega}))}}$

for every $x\in E^{*}$ and $k\in T$ ; if $ x=\infty$ or $ k=+\infty$ , we shall define $e_{k}^{(x)}\wedge(\tilde{\omega})=\infty$

conventionally. Since the set $\{\tilde{\omega};\S^{tx)}(\tilde{\omega})\in B\}$ belongs to $\mathfrak{F}$ for every $x$ and
$B\in \mathfrak{B}$,
(2.3) $P_{x}(B)\equiv P\{\tilde{\omega};@^{tx)}(\tilde{\omega})\in B\}$

is well defined. Then it is shown from the definition of $B(1/2)$ that the
combination $(W, \mathfrak{B}, P_{x}, x\in E^{*})$ gives the time discrete Markov process over
$E$ induced at the beginning of this section. Thus it will be natural to call
our process the space-time Markov process attached to $B(1/^{\prime}2)$ .

In order to get into the concrete construction of the Martin boundary
for the above process $x_{m}$ , we shall first check that our process satisfies the
assumptions of \S 1. In fact, noting that

(2.4) $P_{(n,t)}\{x_{k}=(m, j)\}=(\frac{1}{2})^{k}(jk-i)$ for $m=n+k,$ $j\geqq i$ ,

$=0$ otherwise,

where $k\geqq 0,$ $(n, i)\in E$ and $(m,j)\in E$, we have

(2.5) $P_{(n,i)}\{\sigma(\{n, i\};w_{1}^{+})<+\infty\}=0$ for any $(n, i)\in E$ ,

(2.6) $P_{(n,i)}\{x_{d(E-\{n,i\})}\in F_{(n.t)}\}=1$ for $F_{(n.i)}=\{(n+1, i);(n+1, i+1)b$

and

(2.7) $G((n, i),$ $(m,j))=P_{(n,i)}\{\sigma(\{m, j\})<+\infty\}=\frac{1}{2^{7\prime t-n}}(mj-n)$ ,
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where the right side is understood to be zero unless $m\geqq n,$ $j\geqq j$ and $m-n$
$\geqq j-i$ .

(2.7) implies that the point $(0,0)$ is the unique center of our process.
Hence we have

(2.8) $K((n, i),$ $(m,j))=\frac{P_{(n,t)}\{\sigma(\{m,j\})<+\infty\}}{P_{(0.0)}\{\sigma(\{m,j\})<+\infty\}}=2^{n}\frac{(m-n)!j!(m-J)!}{m!(m-n-j+i)!(j-i)!}$ .

Now consider an infinite sequence $(m_{k},j_{k})$ having no limit points in $E$

such that

(2.9) $\lim-=1-b\underline{j}_{k}$

$k\rightarrow\infty m_{k}$

for a suitable $0\leqq b\leqq 1$ . Then using Stirling formula, it is shown that such
a sequence is a fundamental sequence with the limit function 2 $n_{b^{n-i}(1-b)^{\iota}}$

and conversely that every fundamental sequence has the property (2.9) for
some $0\leqq b\leqq 1$ . Moreover it is also clear that, given any fixed $0\leqq b\leqq 1$ ,
there exists a fundamental sequence $(m_{k},j_{k})$ which satisfies (2.9). Thus we
may consider that the Martin boundary SWZ induced by the space-time process
$x_{n}$ coincides with the interval $[0,1]$ as a set. Hence we shall denote a
Martin boundary point by $b\in[0,1]$ and the generalized Poisson kernel
$2^{n}b^{n-i}(1-b)^{i}$ by $K((n, i),$ $b$). We shall now show that the relative $\rho$-topology
in $\mathfrak{M}$ defined by (1.16) coincides with the ordinary one in $[0,1]$ . In fact
this is easily proved, noting that $K((n, i),$ $b$) is continuous as a function of
$b$ with respect to the ordinary topology in $[0,1]$ for every $(n, i)$ and that

(2.10) $\rho(b, b^{\prime})>\lrcorner 21+2\frac{b-b^{\prime}|}{|b-b’|}m(\{1,0\})>\frac{2}{3}m(\{1, O\})|b-b^{\prime}|$ .

Next we shall prove that $\mathfrak{M}=\mathfrak{M}_{1}$ , namely, that $K((n, i),$ $b$) is minimal
$x_{n}$-harmonic for every $b\in[0,1]$ . For this purpose, according to Theorem 1.2,
it is enough to show that

(2.11) $K_{D}((0,0),$ $b$) $=1$

holds for any closed set $D=[b-\epsilon, b+\epsilon]\cap[0,1]$ , where $\epsilon$ is an arbitrary
positive number.

Now we shall denote by $A_{n}$ the set of all the boundary points $b^{\prime}$ in the

interval ( $b-\epsilon-\frac{1}{n}$ , $b+\epsilon+\frac{1}{n}$) and all the points $(m,j)$ in $E$ with $m\geqq n$ and

$1-b-\epsilon-\frac{1}{n}<\frac{j}{m}<1-b+\epsilon+\frac{1}{n}$ .
Then it is evident that $A_{n}\supset D$ and $\bigcap_{n\geqq 1}\overline{A}_{n}=D$ . Therefore using the results

in \S 1, we have
(2.12) $1=K((0,0),$ $b$) $\geqq K_{D}((0,0),$ $b$) $=\lim_{n\rightarrow\infty}K_{[An]}^{*}((0,0),$

$b$),
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and
(2.13) $K_{[A_{n}]}^{*}((0,0),$ $b$) $\geqq E_{(0,0)}\{K(x_{\sigma(A_{n})}, b);\sigma(A_{n})=n\}$

$\geqq\sum_{1-b-\text{\’{e}}\leqq i/n\leqq 1-b+\epsilon}b^{n-i}(1-b)^{i}\left(\begin{array}{l}n\\i\end{array}\right)$ .

Now applying the law of large numbers, we can see that the last term of
(2.13) tends to 1 as $n$ increases to infinity. This proves (2.11).

Finally, noting that for a function $u$ over $E$

$l(2.14)$ $E_{(0,0)}(|u(x_{n})|)=2^{-n}\sum_{i=0}^{n}|u(n, i)|(in)$ ,

and applying the theorems of \S 1 to our case, we can summarize our results
in the following

THEOREM 2.1. Let $x_{n}$ be the space-time Markov process attached to the
Bernoulli sequence $B(1/2)$ .

(i) The Martin boundary induced by $x_{n}$ is equivalent to the interval $[0,1]$

with the ordinary topology.
(ii) The generalized Poisson kernel $K((n, i),$ $b$ ) is the function $2^{n}b^{n-i}(1-b)^{i}$

and is minimal $x_{n}$-harmonic for any fixed $b\in[0,1]^{12)}$

(iii)i3) Every nonnegative $x_{n}$-harmonic function $u$ over $E$ can be written in
$Jhe$ form
\langle 2.15) $u(n, i)=2^{n}\int_{0}^{1}b^{n-i}(1-b)^{t}d\mu(b)$ for every $(n, i)\in E$ ,

where $l$ is a bounded measure on $([0,1], \mathfrak{B}_{[0,1]})$ which is uniquely determined by
$u$ and whose total mass $\mu([0,1])$ is equal to $u(O, 0)$ . Conversely, given any
bounded measure $\mu$ on $([0,1], \mathfrak{B}_{[0,1]})$ , th $e$ function defined by the right side of
(2.15) is nonnegative and $x_{n}$ -harmonic.

(iv) A function $u\in \mathfrak{R}$ can have at most one representation (2.15) if $\mu$ is a
bounded signed measure on $([0,1], \mathfrak{B}_{[0,1]})$ .

(v) A function $u\in \mathfrak{R}$ can be written in the form of (2.15) by means of a
bounded signed measure on $([0,1], \mathfrak{B}_{[0,1]})$ , if and only if $u$ is $x_{n}$-harmonic and
(2.14) is bounded in $n$ .

12) The assertions (i), (ii) implies that $\mathfrak{V}_{\mathfrak{M}_{1}}$ defined in \S 1 coincides with the
Borel field $\mathfrak{V}_{[0,1]}$ consisting of all the ordinary Borel subsets in $[0,1]$ .

13) Let $\mathfrak{F}_{n}$ be the Borel field generated by $s_{1}(\tilde{\omega}),$ $s_{2}(\tilde{\omega}),\cdots\cdots,$ $s_{n}(\tilde{\omega})$ and $u$ , a function
fbelonging to $\Re$ . Then according to (2.4) and the Markov property of the sequence
$\{s_{n}(\sim\omega);n\geqq 0\}$ , the condition that $u(n, i)$ is a nonnegative $x_{n}$ -harmonic function is
equivalent to the condition that $\{u(n, s_{n}), \mathfrak{F}_{n}, n\geqq 0\}$ is a nonnegative martingale.
Hence the assertion (iii) answers to the following problem: Under what condition is
$\{u(n, s_{n}), \mathfrak{F}_{n}, n\geqq 0\}$ a nonnegative martingale ?
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\S 3. The solution for Hausdorff moment problem.

Hausdorff moment problem is the representation theory for $moment^{\backslash }$

sequences. In this section we shall show that the solution for the problem
ls easily derived from Theorem 2.1.

First we shall give the statement of the problem following D. V. Widder
[7] except some change of notations.

DEFINITION 3.1. A sequence of (real) numbers, $\{f(n);n\geqq 0\}$ , is a moment
sequence if there exists a bounded signed measure $\mu$ on $([0,1], \mathfrak{B}_{[0,1]})$ such
that for every $n\geqq 0$

(3.1) $f(n)=\int_{0}^{1}b^{n}d\mu(b)$ .

We shall now denote by $\Delta$ the difference operator:

(3.2) $\Delta f(n)=f(n+1)-f(n)$ .
Then we have

$\underline{k}$

(3.3) $\Delta^{k}f(n)=\Delta\cdot\Delta\cdots\Delta f(n)=\sum_{m=0}^{k}(-1)^{m}\left(\begin{array}{l}k\\m\end{array}\right)f(n+k-m)$ for every $k\geqq 0$ ,

where $\Delta^{0}$ is the identity operator by definition.
DEFINITION 3.2. A sequence of numbers, $\{f(n);n\geqq 0\}$ is completely mono-

tonic if for every $n\geqq 0$ and every $k\geqq 0$

(3.4) $(-1)^{k}\Delta^{k}f(n)\geqq 0$ .
The main part of the representation theory for moment sequences

consists of the following
THEOREM 3.1 A sequence of numbers can have at most one representation

(3.1) if $\mu$ is a bounded signed measure on $([0,1], \mathfrak{B}_{[0,1]})$ .
THEOREM 3.2 A sequence of numbers is a moment sequence with a bounded

measure on $([0,1], \mathfrak{B}_{[0,1]})$ if and only if it is completely monotonic.
THEOREM 3.3 A sequence of numbers is a moment sequence if and only

if there exists a constant $L$ such that

$’(3.5)$ $\sum_{i=0}^{n}|\Delta^{i}f(n-i)|(_{i}^{n})<L$

for every $n\geqq 0$ .
We shall now show that Theorems 3.1, 3.2 and 3.3 are, respectively,

reduced to the statements (iv), (iii) and (v) of Theorem 2.1.
PROOF OF THEOREMS. Let $x_{n}$ be the Markov process of \S 2 and $u(n, i)$ an

14) D. V. Widder [7], p. 60, Theorem 6.1.
15) Ibid. p. 108, Theorem $4a$ .
16) $l$ bid. p. 103, Theorem $2b$ .
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$x_{n}$-harmonic function over $E=\{(n, i);n\geqq i=0,1,2, \cdots\}$ . Then, for the se-
quence of numbers defined by

(3.6) $f(n)=2^{-n}u(n, 0)$ for $n\geqq 0$ ,
we have
(3.7) $(-1)^{i}\Delta^{i}f(n-i)=2^{-n}u(n, i)$ for every $(n, i)\in E$ .

This shows that any $x_{n}$-harmonic function is uniquely determined by
those values on the n-axis. Conversely, given any sequence of numbers
$\{f(n);n\geqq 0\}$ , the function $u(n, i)$ over $E$ defined by the right side of (3.7)

is $x_{n}$-harmonic.
Now consider a moment sequence

(3.8) $f(n)=\int_{0}^{1}b^{n}d/1(b)$ for $n\geqq 0$ .

Then the $x_{n}$-harmonic function $u$ obtained by (3.7) is written in the form
(2.15) for the above $\mu$ . Therefore $u$ determines $\mu$ uniquely as a bounded
signed measure (Theorem 2.1. (iv)). This proves Theorem 3.1.

Moreover, for the above function $u,$ $(2.14)$ is bounded in $n$ (Theorem 2.1.
$(v))$ . Hence the moment sequence satisfies (3.5). Next, assume that a se-
quence $f(n)$ satisfies (3.5). Then, for the $x_{n}$-harmonic function $u$ defined by
(3.7), (2.14) does not exceed $L$ for every $n\geqq 0$ . Therefore $u$ has the represen-
tation (2.15) (use Theorem 2.1. (v) again). This shows that $f(n)$ is a moment
sequence. Thus Theorem 3.3 was proved.

Finally we shall prove Theorem 3.2. Let $f(n)$ be a moment sequence
with a bounded measure $\mu$ . Then the function $u$ given by (2.15) for the
same $\mu$ is a nonnegative $x_{n}$-harmonic function and satisfies (3.7). This proves,
that $f(n)$ is completely monotonic. Conversely, assume that $f(n)$ is completely
monotonic. Then the function $u$ obtained by (3.7) is nonnegative and $x_{n^{-}}$

harmonic. Hence $u$ can be written in the form (2.15) by means of a bounded
measure (Theorem 2.1. (iii)). Consequently the completely monotonic se-
quence is a moment sequence with a bounded measure. This completes the $\cdot$

proof of Theorem 3.2.

\S 4. A probabilistic approach to the representation theory for Laplace-
Stieltjes transforms.

The representation theorems for Laplace-Stieltjes transforms which are
the continuous analogues of the theorems in \S 3 are the following

THEOREM 4.1 A real valued function $f(t)$ over $[0, +\infty$) can have at $most^{\llcorner}$

one Laplace-Stieltjes transform representation

17) D. V. Widder [7], p. 63, Theorem 6.3.
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(4.1) $f(t)=\int_{0^{+\infty}}e^{-bt}d\mu(b)$

with a bounded signed measure $l$ on $([0, +\infty),$ $\mathfrak{B}_{r0,+\infty)}$ ), where $\mathfrak{B}_{r0,+\infty)}$ is tlte
topological Borel field of $[0, +\infty$).

THEOREM 4.2 A real valued function $f(t)$ over $[0, +\infty$) is a Laplace-
Stieltjes transform of a bounded measure on $([0, +\infty),$ $\mathfrak{B}_{\mathfrak{c}0,+\infty)}$ ), if and only if it
is completely monotonic in $[0, +\infty$), that is, it is $Contj_{nuous}$ in $[0, +\infty$) and
satisfies
(4.2) $(-1)^{i}(\frac{d}{dt})^{i}f(t)\geqq 0$

for every $t\in(O, +\infty)$ and every nonnegative integer $i$.
THEOREM 4.3 A real valued function $f(t)$ over $[0, +\infty$) is a Laplace-

Stieltjes transform of a bounded signed measure on $([0, +\infty),$ $\mathfrak{B}_{\mathfrak{c}0,+\infty)}$ ) if and
only if it is continuous in $[0, +\infty$ ) and there exists a constant $L$ such that

(4.3) $\tilde{\sum_{i=0}}|(\frac{d}{dt})^{i}f(t)|\frac{t^{i}}{i!}<L$

for every $t\in(O, +\infty)$ .
We shall here prove these theorems by the same probabilistic idea as

we did for the moment problem. For this purpose we shall first give a
simple remark concerning the theory of Martin boundaries for time con-
tinuous Markov processes and second we shall prove a theorem (Theorem

4.4) which is analogous to Theorem 2.1, constructing the Martin boundary
$4or$ the space-time Markov process attached to the standard Poisson process.
Finally we shall show that Theorem 4.4. implies Theorems 4.1, 4.2 and 4.3.

THE THEORY OF MARTIN BOUNDARIES FOR TIME CONTINUOUS MARKOV
$p_{ROCESSES}$ . The results in \S 1 are true with some modification for a time
continuous Markov process $x_{t}$ over a separable locally compact space $E^{20)}$

which satisfies some restricted conditions. For simplicity we shall only
state the definition of process harmonic functions.

DEFINITION 4.1. Let $\mathfrak{R}$ be the set of all the finite real valued continuous
functions vanishing at $\infty$ .

(a) In case $x\in E$ is not a trap, the function $u\in \mathfrak{R}$ is $x_{t}$-harmonic at $x$

if there exists an open set $U$ containing $x$ such that

(4.4) $u(x)=E_{x}\{u(x_{\sigma(V^{C};w)}(w))\}$

18) Ibid. p. 160, Theorem $12a$ .
19) Ibid. p. 308, Theorem 13.
20) See [5] for the definition of such process.
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for every open set $V(\overline{V}\subset U)$ .
(b) If $x\in E$ is a trap, every $u\in \mathfrak{R}$ is $x_{t}$-harmonic at $x$.
(c) If $u\in \mathfrak{R}$ is $x_{t}$-harmonic at every $x$ in $E$, the function is $x_{t}$-harmonic

(over $E$ ).

THE CONSTRUCT1ON OF THE MARTI $N$ BOUNDARY $FoR$ THE $S_{PA}cE- T_{IME}$ PROCESS.
ATTACHED To THE STANDARD POISSON PROCESS. Now consider as $E$ the set of
all the points $(t, i)$ , where $t$ runs over $[0, +\infty$) for $i=0$ and over $(0, +\infty)$

for $i=1,2,3,$ $\cdots$ . We shall determine the topology in $E$ by the neighborhoods
$U_{(t,i)}(\epsilon)=\{(t^{\prime}, i);|t-t^{\prime}|<\epsilon\}$ . Further consider a time continuous Markov
process conservative over $E$ whose transition probabilities are given by

(4.5) $P\{r, (t, i), (s,j)\}=e^{-r}\frac{r^{j-i}}{(j-i)!}$ if $s=t+r,$ $j\geqq i$ ,

$=0$ otherwise,

The existence of such process is proved by the same arguments as in
Hunt’s paper [3, II, pp. 354-355]. This process will be also constructed
from the standard Poisson process21) by the same space-time consideration.
as in \S 2. Thus we shall name our process the space-time Morkov process
attached to the standard Poisson process.

We shall now apply the theory of Martin boundaries to the above
$p_{T}ocess$ . Since a simple computation shows

(4.6) $P_{(t,i)}\{\sigma(\{s,j\};w)<+\infty\}=e^{-(s-t)}\frac{(s-t)^{f-i}}{(j-i)!}$ for $s\geqq t,$ $j\geqq i$ ,

the point $(0,0)$ is the unique center of our process and we have

(4.7) $K((t, i),$ $(s,j))=P_{(0,0)}^{(t,i)}\{\sigma(\{P\{\sigma(\{\frac{s,j)\}<+\infty\}}{s,j\})<+\infty\}}=e_{!^{\underline{!}}}^{c_{\frac{(s}{s}\frac{-t)^{j-i}j}{j(j-i)}}}$ .

Then using the same consideration as in \S 2, it is shown that the Martin
boundary for our process is equivalent to the half line $[0, +\infty]$ with the
ordinary topology and that the generalized Poisson kernel $K((t, i),$ $b$) is the
function $e^{t}e^{-bt}b^{i}$ which is understood to be identically zero except at $(0,0))$

for $ b=+\infty$ . Here we shall remark that the boundary point $b\in[0, +\infty]$

corresponds to a class of all the fundamental sequences $(s_{k},j_{k})$ in $E$ with

(4.8) $\lim_{k\rightarrow\infty}\frac{j_{k}}{s_{k}}=b$ .

Moreover $K((t, i),$ $b$) proves to be minimal $x_{t}$-harmonic as a function of $(t, i)$

except for $ b=+\infty$ . Since $K((O, 0),$ $+\infty$) $=1$ by definition, $K((t, i),$ $+\infty$) is not

21) By the standard Poisson process we shall understand a Poisson process whose
average holding time is equal to 1 and whose sample paths are (almost all) increas-
ing in isolated jumps of unit magnitude (see Doob [1]).
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$x_{t}$-harmonic at $(0,0)^{22)}$ Hence we have $SEJI_{1}=[0, +\infty$ ).

Now let $u$ denote any $x_{t}$-harmonic function and $\sigma(w)$ the passage time
for the complement of the $\xi$-neighborhood of the point $(t, i)\in E$. From the
definition of $x_{t}$-harmonic functions we have

(4.9) $u(t, i)=E_{(t.i)}\{u(x_{\sigma(w)}(w))\}$

$=\int_{t}^{t+\text{\’{e}}}u(s, i+1)e^{-(s-t)}ds+u(t+\epsilon, i)e^{\underline{-}}$

for every $(t, i)\in E$ and any $\epsilon>0$ . Hence it is clear that $u$ satisfies

(4.10) $\mathfrak{G}u(t, i)\equiv_{\partial^{\partial}t}-- u(t, i)+u(t, i+1)-u(t, i)=0^{2\mathfrak{Z})}$

for every $(t, i)\in E$ except for $(0,0)$ . Conversely, if $u$ is continuous in $E$ and
satisfies (4.10) in $E-\{0,0\}$ , a simple calculation shows that $u$ is $x_{t}$-harmonic.
In particular, (4.10) implies that any $x_{t}$-harmonic function is infinitely differ-
entiable as a function of $t$ in $(0, +\infty)$ .

We shall now sum up our results in
THEOREM 4.4. Let $x_{t}$ be the space-time Markov process attached to the

standard Poisson process.
(i) The Martin boundary induced by $x_{t}$ is equivalent to the half line $[0, +\infty]$

with the ordinary topology.
(ii) The generalized Poisson Kernel $K((t, i),$ $b$) is the function $e^{t}e^{-bt}b^{i}$ and is

minimal $x_{t}$-harmonic for any fixed $ b\in[0, +\infty$).

(iii) Every nonnegative $x_{t}$-harmonic function $u$ can be represented in the
form
(4.11) $u(t, i)=e^{t}\int_{0^{+\infty}}e^{-bt}b^{}d/\ell(u)$ for every $(t, i)\in E$ ,

where $\mu$ is a bounded measure on $([0, +\infty),$ $\mathfrak{B}_{[0,+\infty)}$ ) whose total mass $\mu([0, +\infty))$

is equal to $u(O, 0)$ . Such $\mu$ is determined by $u$ uniquely. Conversely, given any
bounded measure $\mu$ on $([0, +\infty),$ $\mathfrak{B}_{[0.+\infty)}$ ), the function given by the right side of
(4.11) is a nonnegative $x_{\iota}$-harmonic function.

(iv) A function $u\in \mathfrak{R}$ can have at most one representation (4.11) if $\mu$ is a
bounded signed measure on $([0, +\infty),$ $\mathfrak{B}_{[0,+\infty)}$ ).

(v) A function $u\in \mathfrak{R}$ is expressible in the form of (4.11) by means of $a$
.

bounded signed measure on $([0, +\infty),$ $\mathfrak{B}_{[c.+\infty)}$ ), if and only if $u$ is $x_{t}$-harmonic
and

22) In general some boundary points may correspond to limit functions which
are not $x_{t}$-harmonic, as $+\infty$ in this process, while this does not occur in the special
cases as in \S 2. See [6] as to details.

23) Roughly speaking, this operator $\mathfrak{G}$ is the generator of our process.
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(4.12) $E_{(0,0)}\{ |u(x_{t})|\}=e^{-t}\sum_{i=0}^{\infty}|u(t, i)|i^{i}\overline{!}t$

$Jis$ bounded in $t$.
(vi) A function $u$ is $x_{t}$-harmonic if and only if it is continuous in $E$ and

satisfies (4.10) for every point in $E$ except for $(0,0)$ .
PROOF OF THEOREMS 4.1, 4.2 AND 43. Let $x_{t}$ be the above Markov process

and $u(t, i)$ an $x_{t}$-harmonic function. Then if we define the function $f(t)$ by

(4.13) $f(t)=e^{-t}u(t, 0)$ for $ t\in[0, +\infty$),

we can see from Theorem 4.4, (vi) that

(4.14) $(-1)^{i}(\frac{d}{dt})^{i}f(t)=e^{-t}u(t, i)$

holds for every $t\in(O, +\infty)$ and $i=1,2,$ $\cdots$ . Hence the $x_{t}$-harmonic function
$u$ is uniquely determined by the values of $u(t, O)$ . Conversely, if $f(t)$ is
continuous in $[0, +\infty$) and has derivatives of all orders in $(0, +\infty)$ , the
function $u(t, i)$ over $E$ defined by (4.13) and (4.14) is $x_{\iota}$-harmonic (use Theorem
4.4, (vi) again).

From this remark it is easily shown that Theorems 4.1, 4.2 and 4.3 are,
respectively, reduced to the assertions (iv), (iii) and (v) of Theorem 4.4.
Since our arguments are quite similar to those in \S 3, the details will be
omitted.
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