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On the conformal mapping of nearly circular domains.
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1. Let us denote by C a closed Jordan curve on w-plane, contained in
1-e=|w|=1+4¢ for 0<e<1 and surrounding the origin, and denote by D
the interior of C. When ¢ is sufficiently small, D is a so-called nearly
circular domain. Let w=F(z) be the function mapping the interior of the
unit circle |z|<1 conformally onto D such that F(0)=0, FY(0) >0. The
estimates of various quantities related to D or F(z) in terms of ¢ have been
given by various authors, recently by S. E. Warschawski [8], E. Specht [5],
and Z. Nehari and V. Singh [4] In[8]and[5], darg F(e"’)/df is estimated
under some additional conditions for C. We treat, in this paper, the similar
problems under somewhat different conditions, where C is not necessarily
starlike with respect to the origin and there may be several angular points
on it. Further we derive the inequalities concerning |F’(¢%)], arg F(e'’)—@,
etc. We consider next about the expansion of F(z) by e. The results
obtained there are possibly helpful to the numerical computation of F(z).

2. We begin with several lemmas.

Lemma 1. Let 4 be the sum of two open circular discs (w| <1 and |w—a|
<r, where 0<r=1 and 1—r<a<l+r, and e e (0< a<x/2) the inter-
sections of those circumferences. Further we denote by w=f(z) the function
mapping |z| <1 conformally onto 4 such that f(0)=0, f(0)>0, and put f(ef)=
e, fle®)y=¢"" Then dargf(e®)/dd for —B <0< S attains its maximum at
6=0.

Proor. The function w =f(z) is represented explicitly by the composition
of the functions
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where 6 (0<0<wm, 2a¢+0=m) is the angle between two circular arcs (¢~*, 1,
) and (e~*, a+r, ), and f=a/(1-+8/z). The relations (1) and (2) show
that the arcs (¢7%, 1, ") on z-plane and (¢7*, a-+7, ¢*) on w-plane correspond
respectively to the segments —1<{ <1 and —1<w<1. Further we obtain
in virtue of (3) the inequality

“) I{1=]o|
on those segments. Now, with the notation
Y(0) =arg fe) (=<0,

we have
z dw

v(O)=Re(-)  (@=e w=F")

w dz

= Re %‘(1 -i-—i-)cot g— (tanaz_a—i—tanag_a)

1+C2tan2—g—

1— w?

1—=¢? (1—~iwtan~*><l +iw tan~rﬁ)

X

. 1 B l—w 9 9 B
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tan & tan a56
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w? tan? & 67 1+w?tan? a;b‘

&

Hence, by the relation f< « and (4), we get
1 0 I
()= *2*<1 +*7?) cot o

14+ w? tan? —62(— 1+ w? tan? %‘

X {tan a;—6 a+6 +tan£¥.¥ w5
1+ tan® —— 1+o? tan? =5
and so
’ A lp Jv 67* ,H Sll’l5/2 9
PO =y Oz 5 (1+ o )eot b S0l 0
a+to . a—o . )
[ 3) g e 2))
1—(1—w?) sin? ac_;{-i 1—(1—w?) sinQ—ala— o

since 0<a<n/2, 0<d<m and 2a¢+0=<=m. Thus we have
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©) V() =(0) = (1 + 0 ) sin «a cot /2

n ) cosa+cosd’

the desired result of Lemma 1.
Lemma 2. Let f(2) be the function defined in Lemma 1. Then |f' ()| for
—B << attains its maximum at § = 0.

Proor. With the same notations as in the proof of Lemma 1, the
relation

» B
7)) = <1 + ,@_)}inﬂrq cot /2 1—w? 1+{2tan 5
! 7w / 1+cos(ae+8) 1—C2 |+ o tan? g%ﬁ

holds. Hence we have, regarding (4) and the relation 8/2 < (a+0)/2 < /2,
Ui / d \ sin a cot §/2
FErml= (142 ) {REEES
Thus Lemma 2 is proved.
Fixing 7, the functions f(2) and () in Lemma 1 depend on ¢ for 1—» <
@ < 1+, and so we denote them again by f.(2) and y,(8) respectively. Then
we have

Lemma 3. yr,/(0) is a strictly increasing function of a.
Proor. For every ¢ <b the function

g@ =1 (G0 A(@)

is clearly holomorphic in |z| <1, besides in a neighbourhood of z=1, and
satisfies the conditions |g(z)| <1 and g(0)=0. Hence we have |g(2)|=|z| and
so, regarding g(1) =1,

atr %fb/(l)w
b+r fa'(1)

=g'H=1.
Thus we find

(6) Vo' (0) = 4,0,
where the equality occurs only for ¢ =5 [1].

It is also proved easily that, fixing a-+7, ¥/(0) is a strictly decreasing
function of 7.

Lemma 4. Let f(6) be a piecewise smooth function with period 2r, satisfying
the relations

@ (Troyas =0,
0
8 —qO) =1(0) =p),

wheve p(0) and q(0) are piecewise continuous and periodic functions with period
2z, Then, putting
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©) P©, =min[ [ g0 +sds, [ 20+ 53s],
(10) Q. ty=min[ | 50+ s5)ds, | a0+ s)ds],
the inequality

1 1
) — 5, Q. 0ar = 70) = 5[ "P6, tat
holds.

Proor. We have from (8)

FO+H2f0) ] a6 +9ds,

$0+0270) 50+ )ds

at the same time for 0<¢<2r. Hence
FO@+n=r0)—P6,0,
and it follows, noticing (7), that

22r(0)— [ PO, at =[O+t =0.

We have therefore

FO = 5 [P, tat,

and similarly

FO 2= 5[ "0, at.

Thus (11) is proved.
When we put g(f) = oo, the inequality (11) becomes

_ 31; { :"(zzz — 5 p0 + Dt = £(0)
1z)

1 (o
< o, J 1006+ 0t

3. We now consider a nearly circular domain D as defined in §1. Let
w=F() be the function mapping |z|<1 onto D conformally such that
F0)=0, F/(0) >0. We suppose that this domain satisfies the following
additional conditions.

(1) Boundary C is piecewise smooth and

13) w'(s) € H” O<as1)

on each divided closed arc, wheve w = w(s) is the representation of C by its aic
length.
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Expression [13) implies that w’(s) satisfies, as the function of s, Holder’s
condition of order «.

(1) Through each point w = F("®) on C there exists at least one circle of
radius p(0), contained in the closed domain D, where p(0) is a piecewise continu-
ous function and €< p(0)=1—e (0<e<1/2).

Hence there may be a finite number of angular points on C, but the
interior angles at them must be greater than m. Because of the condition
(i) F’(z) is continuous in |z|=1 [2], [6], and vanishes at the points on |z|=1
corresponding to such angular points.

Let w, be an arbitrary point on C, different from the angular points,
and I' the circle through w, such as mentioned in the condition (ii). Further
let 4 be the sum of |w|<1—¢ with the interior of I'. Next we denote by
{ =f(z) the function mapping |z|<1 onto 4 conformally such that f(0)=0,

F/(0) >0, and by w=g() the function mapping 4 onto D such that g(0)=0,
gwy) =w, Then the relation

F(z) = g(f(e"2))
holds for some real y. Hence we have
14) | F'(z0)| = 18" (wo) | - | f'(e"20)],
where F(z)) =w, Now the function
p()=F"(g™(F(2))

is holomorphic in |z| <1, besides in a neighbourhood of z=z, and satisfies
the conditions |p(2)| <1, p(0) =0 and p(z,) = z,, and so we have

(15) 1p'(z) | =18 (wy) | =1.
Hence it follows from and that

(16) | F'(z0) | = |f'(e720)]| -
Putting

@(0) =arg Fe’), ¥(0)=argf(e?), z,=¢"",
and regarding that C and I' touch each other at w,, it becomes
a7) PO =¥'(r + 60 .
On the other hand, using and 3, we find

a8) Vo) oarg £
#=0
where fy(z) (fo(0)=0, f,’(0) >0) is the function mapping |z|<1 onto 4, the

sum of |w|<l—eand |w—1—p+¢)|<p, 0= p(@,). Then, denoting the right-
hand side of by A(p), the relation
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_ 9 \sinacot §/2
19 Alo) = (1 + n")_c?)s a+cosd
holds in virtue of (5), with
(20) oS 6 = 2&%%‘42;9—5 ,
_ 1—p—pete
“ O = eI pte)
e

Fixing ¢, A(p) is strictly decreasing, as noticed after the proof of
We have thus from the inequality ¢’(0,) < A(o(6,)). It follows similarly
from and and 3 that |F'(z)| < 1+ A(0(6,)).

Considering furthermore the relations

27T 4 i
[Tte@)—6)d0 = [ "arg I if" ) 46 =2z arg F/(0) =0,
0 0

(p(6) — 6)" = A(o(6) — 1,
we obtain from (12) the estimate of ¢(6)—6#. Thus we have
TueoreM 1. If a nearly circular domain D satisfies the conditions (i) and
(1), F'(2) is continuous in |z| =1 and

7;% arg F(e'") = Ao(0)) ,

L F ()] < (1 +e)A(p(8)),
_ ;721; :"(27z —HLAQ@® + 1) — 17dt < arg F(e'®) — 6

1 r
< o | A@ +0) - 1dt,
where A(p) is given by (19), (20), 21) and (22).

When ¢ is sufficiently small and p(@) =const=1—ke for a fixed £ (1%
< (1—e¢)/e), D is necessarily starlike with respect to the origin and then we
can estimate A from above by the simple expression of ¢ and %, as follows.
Since

o 2VEke
<2tan-§ = “VEE __
(23) d=2tan o = 0 piDe
a < cos™! —zV%:Zcot‘l vVE,

we have
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B 24 a O0/n
28 cot ‘g =cot(G— 5 1 ¥57)
il 84 o4 5/7,; -1
scot 9 (1— g 14o77)
< VEI— D -[1=k+D(1+ 2 ot vE)e ] .

Inserting [20), and (24) in we obtain, after some computations
A=[1 -2 (VE+k+1D) cot™s VR)e =3+ 1y ],

where the coefficient of ¢ is best possible, but that of ¢ is somewhat rough.
We have further from

larg Fe?®) — 0| <n(1 —1/A4)
<2(WEk+(E+1)cot™ VE)e+3n(k +1)%?,

since —1=(arg F(¢!)—0)Y < A—1. However the inequality of the form
larg F(e'®y—0|< Ke for a suitable constant K is obtained under weaker
hypotheses of D [3], [8].

4. We can derive following lemmas like Lemma 1, 2 and 3.

Lemma 5. Let 4 be the intersection of two open circular discs |w| <1 and
lwtal <y, where v>1 and r—1<a<w, and e, e *® the intersections of two
circumferences. Let further w=f(2) be the function mapping |z| <1 onto 4 such
that £(0)=0, £/(0) >0, and put fle®)=c?, fleP)=e"®. Then dargfe?)/do
and |/ ()| (—B < 6 < B) attain theiv minima at 6 =0.

Lenma 6. As the function of a, darg f(€?)/df -, is strictly decreasing.

Now we consider, about the domain D, the following condition instead
of condition (ii).

(ii}) Through each point w= F(¥) on C there exists at least one circle of
vadius o(0), involving D, where o(8) is piecewise continuous and o(f) = 1+-e.

From 5 and 6 we obtain the following theorem by the similar
considerations as in [Theorem 1l

Tueorem 2. If a mnearly civcular domain D satisfies the conditions (1) and
(iii), [F'(2)]17! is continuwous in 12| <1 and we have

4 arg F(e'?) = B(a(6))
do = ’
| F/(e)| = (1 — &) B(a(6)),

_ 721; { z"z[l — Blo(f + )]t < arg F('®) — 0
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< 1 27T
< j 2z —1)[1— Blo(6 + 1)t

where
_(1_ 0 \sinacot /2
(25) B(o) = (1 - T) cos a-+cosd ’
_ 0+2e—oc¢
COoS (¢ = “olte)
oS 5 = c—1—ge—¢?

AFao—1+e)

st

Further, putting ¢(f) = const =1+4k’¢ (k' = 1), we have the estimates
B=1- 7‘% (VE 4 (B +1) cot ™t V& )e — 72; (B +1D)VE e,

larg F(e') — 6| <=(1 — B),

by the similar computations as of A.

If the domain satisfies the conditions (ii) and (iii) at the same time, it
necessarily satisfies the condition (i). In fact, then w/(s) exists at each point
on C and belongs to H,'. Hence we have

Turorem 3. When a nearly civcular domain satisfies the conditions (ii) and
(iii), it follows that

Bo@)= 1

=g F(e'y < A(o(6)) ,

1 m 6 1 27
— - j QU hdt =arg F@’) —0 =, - f P, 0t

wheve A(p) and B(o) are given by (19) and (25), and P(0,t) and Q,1t) are given
by (9) and (10) respectively, putiing p(0) = A(p(0))—1, q(0) =1— B(a(f)).
In this case we can estimate |F/(z)—1| by the method in [8]

5. Next let us consider about the expansion of F(z) by ¢. We suppose
hereafter that the boundary C is starlike with respect to the origin, and
we represent it by the equation

r=1-¢h(0)

in polar coordinates, where 0<e<1 and |[A(#)]=1. Following lemma is
proved by the inequality of Carathéodory, as shown in [7].
Lemma 7. If G(z) is holomorphic in |z| <1 and satisfies the conditions

|IRe G(@)|=79(< 1), G0)=real,
G(z) —G(z) | £ kl|z, —2,]" O<a=s1)
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for each z,, z,, then

2log 2 2 1
ImG@| = (k+=28 )0+ 7 nlog -

Using this lemma we can prove
Tueorem 4. When h(8) is n times differentiable and h™(0) € Hy® for 0<
a <1, we have the expansion

26) log Li_zl — éle(z)s" +0(e1(10g %) ") ,

where the first dervivative of the residual term is continuous in |z| <1, F,(2)
(v=1,2,--,mn) are holomorphic in |z| <1 and independent of ¢, and F,(0)=real.

Further F,(2), F,/(2), -, F,""*Y(2) are continuous in |z2|<1 and F,**0(c¥)
Eng.

Proor. It is clear that such expansion is uniquely determined, if it is
possible.

We first consider the case =1, and so
27 h(0) € Hy®.

Now the relation
[9()— 0| = ke

holds for some constant k,, where ¢(8) = arg F(¢®) [3], [8]. Hence

0
tog| 47|~ log[1 + eh((6)]
= log(1 + €h(6)) 4 O(e?)
=¢eh(0) + O(?) .
Therefore, putting
1 o etz
Fi2) =] hO) Gy db,
G(z) = log @ —el(2),

we have
[Re G(2)| =< kye?, G(0) =real.

Further we see in virtue of (27) that F'(z) and F\’(z) are continuous in
1z] <1 [6], [2], and so G'(2) also, and G’(z) is bounded with respect to e.
Hence we have by Lemma 7

|G(2)] = kye? log i -

Next let us suppose that
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(28) RT(0) = Hp®
and that the results of the theorem hold. Then putting

F " =u,0)+i,0) ©@=1,2-,n),
we have

29) u,"7(0) € Hp®, 0, "0 e H® (v=1,2,-,n).

Now, since

0
log P47 — log[1 +eh(g(O)1 + itg(6)— 6)

we have the relations

©0) log[1+ eh(g(O)] = £ w0)¢ +0(e+*(log 1)),
S 2(6)— 0= 5 0,00 +0(s+(log 1))

It follows from [(3I), noticing and that
log[[1 +eh(9(6))]

= log[1 - k(6 4 ?;11 v,(0)e")] + O<€n+2<10g %)")
— :%I u,*(0)e” + O<€n+2<10g *})n) )

where #,*(0) (v=1,2,---,n-+1) are such functions that

(32) wFErr e Hy* (v=1,2,-,n+1).
But, comparing with we find the relations
(33) w,(0)=u,*0) v=12,---,n).
We put further
1 2T 0
34 Foi(2) = ‘Z;E’J‘O U 11*(0) %w% do .
Then for the function
n+l
G(@) =log £ — S R

we see that

1 n
|Re G(z)| < ke (log »-e") . G(0) = real,

and that G’(z) is continuous in |z|<1, as before. Hence we have

1G@)| < ke3(log )",

and therefore

183
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log £ f) "i)lF(z)e +0(e+2(log ~~)"“)

where F,(0)=real v=1,2,---,n+1), F,(2), F,’(2), -+, F,"*2(2) are continuous
in |z] <1 and F,""+2(¢") « Hy* because of [32), [33) and [34). The conclusion

with respect to the residual term is now clear. Thus is proved.
gives immediately

Tueorem 5. If h(0) is indefinitely differentiable, the asymptotic expansion

log ﬂ%)_ ~ i:l F,(2)¢

holds, where the derivatives of F,(2) of each order are continuous in (2| <1 and
F,(0)=real.

6. Given the function %(0), we can compute the functions F,(z) (v =1,
2, --) practically as follows. We expand the right-hand side of

(35) é 1,(0)¢” = log[1 -+ eh(f -+ 21 2,(0)e*)]

formally by ¢ and compare the coefficients of both sides. It follows then
that

u,(0) = 1(0),

us(6) = W (O)0,(6) — - h(OY,
ws(0) = 1 OWo(6) + - h" (O, (0

— WO OY0,(6) + 5 hOY,

From these and the relations

2,(6) =— f (,(8) — 1,()) cot £

“dr v=1,2,-),

‘we obtain the desired functions

F2) = ,2; " ,(6) :f,ﬁz a9 w=1,2,-).

‘Therefore we find that the functions F,(z) become polynomials, when A4(f) is
a trigonometric polynomial. Putting for example 4(0) = cos 8, we have

F()=2 F@=-5 (-3+2),

Fie)=1y Bz +29,
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F2)= gy (—13+428 429,

Faculty of Engineering,
Kyushu University.
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Addendum

When the boundary C of the domain is represented by the equation

such as
r=n(,¢),

we obtain, with respect to the mapping function F(z), the following theorems
corresponding to and 5.
Tueorem 4/. Let 70, €) be expanded so that

10,0y =1+ £ h@+0(er (g - 1))

for sufficiently small €, where
h,VEN(0) & Hp® wv=12,--,n)

Sfor 0< a<1. Let further 0h/00 =0() and 0h/00 =< Hy®. Then we have the
expansion

log I%z_) = Vé F(2)¢" + O(e’” 1(log %«)ﬁ) )
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where the functions F,(2) v =1,2,--,n) and the residual term satisfy the same
properties as in

TueoreM 5'. Let (0, ¢) be expanded asymptotically so that
W, &)~ 1+ 3 h(60)e
y=1

for sufficiently small e, where h,(0) v=1,2,---) are indefinitely differentiable
Junctions. Let further 0h/00 =0(c) and 0h/00 € Hy® for 0< a<1. Then we
have the asymptotic expansion

log ,Eéz)' Y 21 FV(Z)G"V b

wheve F,(2) (v=1,2,---) satisfy the same properties as in Theorem 5.

The proofs of these theorems proceed similarly as of and 5.
The functions F,(z) (v=1,2,---) are obtained practically from the formula

> wl0) =log (0 + X 0,0, ),

instead of [35). Taking, for example, by C an ellipse
r=(1—¢e?cos? §)"1/2

with small eccentricity e, we can expand log(F'(z)/z) asymptotically by e
In this case also all the coefficients become polynomials of z. That is,

F@) = (1+2), F@)= gy (+42+329,

Fy(z)= 91—6 (— 143224 92¢ 529,

..............................
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