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Introduction.

We are mainly concerned with continuous parametric curves in the
m-dimensional Euclidean space $R^{m}$ , where $m\geqq 2$ , and intend to initiate a
differential-geometric theory of such curves under general conditions. In
principle, differentiability will not be imposed on the curves. We shall
accordingly be naturally led to betake ourselves to methods of real func-
tion theory. Especially, certain properties of length of parametric curves
will be indispensable for our purposes.

The most important quantities in classical differential geometry of
curves are obviously curvature and torsion (besides arc length). However,
these two are not capable of direct extension to our situation, inasmuch
as they are local quantities involving differentiation. We shall therefore
take another way and introduce a global quantity, called bend, certain of
whose properties will constitute the main subject matter of the present
paper. In fact, bend is closely related to curvature as we shall presently
see in the next paragraph, and its theory is expected to be preparative to
our further study. As regards torsion, it may fairly be said that we have
obtained virtually no results as yet.

We define a parametric curve in $R^{m}$ to be a mapping $\varphi$ of a nonvoid
set $E$ of real numbers into $R^{m}$ . We shall regard $R^{m}$ as a vector space
whenever convenient. In the rest of the introduction we shall restrict
ourselves for simplicity to curves defined on an interval. Let $I$ be a closed
interval. When $\varphi$ is a regular $C^{2}$ curve on $I$, classical theory applies, and
we can consider the integral of the curvature of $\varphi$ with respect to arc
length, along the whole curve. We shall call this quantity, integrated
curvature of $\varphi$ . As is easily seen, this coincides with the length of the
spheric representation of $\varphi$ .

Returning to the general case we define, for every continuous curve $\varphi$

on $I$, two quantities $\Theta(\varphi)$ and $\Omega(\varphi)$ as follows. We denote by $\Theta(\varphi)$ the lower
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limit of the integrated curvature of regular $C^{2}$ curves on $I$ tending uni-
formly to $\varphi$ , where existence of such curves will be an easy consequence
of the Weierstrass approximation theorem; while $\Omega(\varphi)$ means, roughly
speaking, the supremum of the sum of the exterior angles at the vertices,
of a variable broken line inscribed in the curve $\varphi$ . It will then turn out
that these definitions are equivalent, so that we have $\Theta(\varphi)=\Omega(\varphi)$ for any
continuous curve $\varphi$ whatsoever defined on a closed interval.

Plainly, the above definition of $\Omega(\varphi)$ will remain meaningful even when
$\varphi$ is any parametric curve on an interval $I_{0}$ , where $\varphi$ need not be continu-
ous and $I_{0}$ need not be a closed interval. We propose to call $\Omega(\varphi)$ , in this
wider sense, the bend of $\varphi$ on $I_{0}$ (or over $I_{0}$ ).

One will observe at once an analogy between surface area theory and
ours, if one compares $\Theta(\varphi)$ with the Lebesgue area, and $\Omega(\varphi)$ with the
Ge\"ocze area as given by Cesari in his book Surface Area. There are further
instances of analogy, but we shall content ourselves with quoting only a
few of them, as follows. Let $\varphi$ be a parametric curve defined on an interval
$I_{0}$ . The quantity $\Omega(\varphi)$ is then invariant under Fr\’echet equivalence of $\varphi$ ,
and lower semicontinuous with respect to $\varphi$ when the interval $I_{0}$ is fixed.
Also, if we fix $\varphi$ and denote by $\Omega(\varphi, J)$ the bend of the restriction of $\varphi$ to
a closed interval $J$ in $I_{0}$ , it will follow that the interval function $\Omega(\varphi, J)$ is
overadditive.

We shall now state the chief result of this paper, restricting ourselves
for simplicity to the case of a continuous curve $\varphi$ defined on an open
interval $K$. As usual, we shall call $\varphi$ to be light iff ( $=if$ and only if) it is
constant on no subintervals of $K$. Let then $\varphi$ be light and consider any
fixed point $c$ of $K$. We can clearly extract from $K$ a sequence of points
$\langle t_{n} ; n=1,2, \cdots\rangle$ such that $t_{n}>t_{n+1}>c$ and $p_{n}=\varphi(t_{n})-\varphi(c)\neq 0$ for every $n$

and that $t_{n}\rightarrow c$ as $ n\rightarrow\infty$ . Now write $q_{n}=|p_{n}|^{-1}p_{n}$ , so that $\langle q_{n}\rangle$ is a sequence
of unit vectors. A unit vector will be called right-hand derived direction of
$\varphi$ at $c$ iff it is the limit of a converging subsequence of one such sequence
$\langle q_{n}\rangle$ . Evidently, $\varphi$ possesses at least one right-hand derived direction at
each point $c$ of $K$.

This being so, let $\gamma$ be any parametric curve defined on $K$ and such
that $\gamma(t)$ is a right-hand derived direction of $\varphi$ at every $t$ of $K$. It should
be noted that $\gamma$ is not necessarily continuous. We define the spheric length
of $\gamma$ as the supremum of the length of a variable spheric broken line,
inscribed in the curve $\gamma$ and consisting of a finite number of minor arcs
of great circles on the unit sphere.

We now assert that the bend of $\varphi$ is then equal to the spheric length of $\gamma$ .
We shall prove this theorem in \S 95 in a slightly more general form,
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in allowing that the curve $\gamma$ may fail to be defined at the points of a
certain countable subset of $K$. And we shall conclude with an application
of this result to the well-known inequality of Fenchel concerning the
magnitude of the integrated curvature of closed space curves.

Chapter I. Properties of $\Theta(\varphi)$ .
1. We shall denote by $R$ and $N$, respectively, the set of the real num-

bers and that of the natural numbers. If not explicitly stated otherwise,
all the functions and functionals that we shall consider will be either
finite real or else nonnegative (inclusive $\infty$) and all the intervals considered
will be situated in $R$ .

The length of a (finite or infinite) interval $I$ will be denoted by $|I|$ ,
and $I^{o}$ will stand for the interior of $I$. Infinite intervals will not be ex-
cluded from our considerations unless the contrary is stated explicitly.
Also note that, as usual, we shall only apply the terms open and closed to
finite intervals.

We agree once for all that the letters $\delta$ and $\epsilon$, without or with suffix,
should mean positive finite numbers throughout the sequel, even when we
do not specify so.

2. An approximation theorem. Let $f_{1},$ $\cdots,f_{m}$ be $m$ continuous functions
on a closed interval $I$, where $m\geqq 2$ . Then, for any given $\epsilon$, there are $m$ poly-
nomials $P_{1},$ $\cdots$ , $P_{m}$ in $t$ such that

$|f_{i}(t)-P_{i}(t)|<\epsilon$ $(t\in I;i=1, \cdots, m)$

and that the derivatives $P_{1}^{\prime}(t),$
$\cdots,$

$P_{m^{\prime}}(t)$ never vanish simultaneously on $I$.
If the functions $f_{i}$ are further all $C^{2}$ on $I$, we may also require that

$|f_{i}$
‘ $(t)-P_{i}^{\prime}(t)|<\epsilon$, $|f_{i}^{\prime\prime}(t)-P_{i}^{\prime\prime}(t)|<\epsilon$ $(t\in I;i=1, \cdots , m)$ .

PROOF. By the Weierstrass approximation theorem, a continuous func-
tion on a closed interval can be approximated uniformly by real polynomials,
which may clearly be assumed to be nonconstant. Thus we can take $m$

nonconstant polynomials $Q_{1},$ $\cdots$ , $Q_{m}$ such that $|f_{i}(t)-Q_{i}(t)|<2^{-I}\epsilon(i=1, \cdots, m)$

on $I$. Consider now the points $\tau$ of $I$ at which $Q_{2}^{\prime}(\tau)=\cdots=Q_{m^{\prime}}(\tau)=0$ .
Plainly they are finite in number. Taking $\delta$ so small that $ 2\delta|I|<\epsilon$ and
defining afresh $m$ polynomials $P_{i}$ by

$P_{1}(t)=Q_{1}(t)+\delta(t-a)$ , $P_{i}(t)=Q_{i}(t)$ $(i=2, \cdots, m)$ ,

where $a$ is the left-hand extremity of $I$, we see that $|f_{1}(t)-P_{1}(t)|\leqq|f_{1}(t)-$

$ Q_{1}(t)|+\delta|I|<\epsilon$ on $I$. Moreover, $P_{1}^{\prime}(\tau)=Q_{1}^{\prime}(\tau)+\delta\neq 0$ for all $\tau$ as soon as $\delta$

is sufficiently small. This proves the first part of the assertion.
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To establish the second part, take $\delta$ so small that $ 2l^{2}\delta<\epsilon$ where $l=$

$||I|+1$ , find $m$ nonconstant polynomials $A_{i}(t)$ such that $|f_{i}^{\prime\prime}(t)-A_{i}(t)|<\delta$ on
$I$, and consider the polynomials $B_{i}$ and $Q_{i}$ $(i=1, \cdots , m)$ defined by

$B_{i}(t)=\int_{a^{t}}A_{i}(u)du+f_{i}^{\prime}(a)$ , $Q_{i}(t)=\int_{a^{t}}B_{i}(u)du+f_{i}(a)$ .

Then $Q_{i}^{\prime}(t)=B_{i}(t),$ $Q_{i^{\prime\prime}}(t)=A_{i}(t)$ for every real $t$ , so that the $Q_{i}$ are non-
constant polynomials. And we find for $t\in I$ successively that

$|f_{\dot{t}}^{\prime\prime}(t)-Q_{i^{\prime\prime}}(t)|<\delta<2^{-1_{\xi}}$ ,

$|f_{i}^{\prime}(t)-Q_{\iota^{\prime}}(t)|=|\int_{a^{t}}\{f_{t^{\prime\prime}}(u)-Q_{i^{\prime\prime}}(u)\}du|<l\delta<2^{-1}\epsilon$ ,

$|f_{i}(t)-Q_{i}(t)|=|\int_{a}^{t}\{f_{i}^{\prime}(u)-Q_{i}^{\prime}(u)\}du|<l^{2}\delta<2^{-1}\epsilon$ .

From now on we may proceed in the same way as in the first part of the
proof. To see that the additional inequalities hold good, we need only
notice that, for $t\in I$,

$|f_{1}^{\prime}(t)-P_{1}^{\prime}(t)|\leqq|f_{1}^{\prime}(t)-Q_{1}^{\prime}(t)|+\delta<2^{-1}\epsilon+\delta<\epsilon$ ,

$|f_{1}^{\prime\prime}(t)-P_{1}^{\prime\prime}(t)|=|f_{1}^{\prime\prime}(t)-Q_{1}^{\prime\prime}(t)|<2^{-1}\epsilon$ .
3. Parametric curves. We shall be concerned with a fixed Euclidean

space $R^{m}$ of dimension $m\geqq 2$ , which we interpret as the set of all m-tuples
of real numbers. Whenever convenient, we shall regard $R^{m}$ as a vector
space with the usual definitions for addition, subtraction, and the two
kinds of multiplication, scalar and inner. In conformity with this, the
elements of $R^{m}$ will be called points or vectors synonymously, according
to circumstances.

We define a parametric curve, or simply curve, in $R^{m}$ to be a mapping of
a nonvoid subset $E$ of $R$ into $R^{m}$ . We shall usually omit all reference to
the containing space $R^{m}$ in case there is no fear of ambiguity. A para-
metric curve will be called continuous or $C$ iff ( $=$ if and only if) the
mapping is continuous. The domain of definition $E$ will be an interval in
most cases. A curve defined on an interval $I$ will be said to be differentiable
iff its coordinate functions are differentiable on $I$, to be $C^{n}$ for an $n\in N$

iff they are $C^{n}$ functions on $I$, and to be a polynomial curve or $C^{P}$ iff they
are polynomials in $t\in I$. The symbols $C,$ $C^{n},$ $C^{P}$ will also be used to denote
the respective classes of the relevant curves. When precision is desired,
we may write $C(E),$ $C^{n}(I),$ $C^{P}(I)$ respectively. A differentiable curve $\varphi$ on
$I$ will be termed regular iff $\varphi^{\prime}(t)$ never vanishes on $I$, and then the curve
$\hat{\varphi}$ on $I$ determined by $\hat{\varphi}(t)=|\varphi^{\prime}(t)|^{-1}\varphi^{\prime}(t)$ will be called spheric represenlation
of $\varphi$ . Finally, the restriction of a curve $\varphi$ defined on a set $E\subset R$ to a
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nonvoid subset $E^{\prime}$ of $E$ will be called subcurve of $\varphi$ and denoted by $(\varphi, E^{\prime})$ .

4. Distance between two curves. We shall understand by the distance
$\rho(\varphi, \psi)$ between two curves $\varphi$ and $\psi$ defined on a set $E\subset R$ the supremum
of $|\varphi(t)-\psi(l)|$ for $t\in E$. Of course this need not be finite. A sequence
$\langle\varphi_{n} ; n\in N\rangle$ of curves defined on a common set of real numbers will as
usual be termed to converge uniformly to a curve $\varphi$ defined on the same set
iff $\rho(\varphi, \varphi_{n})\rightarrow 0$ as $ n\rightarrow\infty$ . We shall express this by writing $\varphi_{n}\rightarrow\rightarrow\varphi$ in con-
tradistinction to $\varphi_{n}\rightarrow\varphi$ , the latter meaning pointwise convergence.

5. Suppose that $I$ is a closed interval. The length of a parametric
curve $\varphi$ on $I$ will be denoted by $L(\varphi)$ . Every $C^{1}$ curve $\varphi$ on $I$ is rectifiable
and we have the length formula $L(\varphi)=\int_{t}|\varphi^{\prime}(t)|dt$ . If $\varphi$ is a regular $C^{2}$

curve on $I$, then $\hat{\varphi}$ is $C^{1}$ , and direct calculation will show that $|\hat{\varphi}^{\prime}(t)|=$

$|\varphi^{\prime}(t)\times\varphi^{\gamma\gamma}(t)|\cdot|\varphi^{\prime}(t)|^{-2}$ and hence that

$L(\hat{\varphi})=\int_{I}|\varphi^{\prime}(t)\times\varphi^{\prime\prime}(t)|\cdot|\varphi^{\prime}(t)|^{-2}dt$ ,

where we mean, for any pair $p,$ $q$ of vectors in $R^{m}$ , by the symbol $|p\times q|$

the nonnegative quantity $\sqrt{p^{2}q^{2}-(pq)^{2}}$ . Needless to say, we may, in case
$R^{m}$ is 3-dimensional, interpret $|p\times q|$ as the actual magnitude of the vector
product $p\times q$.

6. Definition of $\Theta(\varphi)$ . Let $\varphi$ be a continuous curve on a closed interval
$I$ and let us consider the sequences $\Gamma=\langle\varphi_{n} ; n\in N\rangle$ of regular $C^{2}$ curves
$\varphi_{n}$ defined on $I$ and converging uniformly to $\varphi$ , where existence of such
sequences is a direct consequence of the approximation theorem given in
\S 2. Let us now define

$\Theta(\varphi)=\inf_{\Gamma}\varliminf_{\underline{n}}L(\hat{\varphi}_{n})$ ,

so that we always have $ 0\leqq\Theta(\varphi)\leqq\infty$ .
For closed intervals $J$ in $I$ we shall denote by $\Theta(\varphi,J)$ the $\Theta$ of the

subcurve $(\varphi, J)$ . Thus, in particular, $\Theta(\varphi, I)=\Theta(\varphi)$ . Similarly, we shall
understand by $L(\varphi,J)$ the length of $(\varphi, J)$ , so that $L(\varphi, I)=L(\varphi)$ . We shall
sometimes use the symbols $\Theta(\varphi,J)$ and $L(\varphi,J)$ also in the more general
case in which the continuous curve $\varphi$ under consideration is defined on an
interval which is not a closed one.

7. Given a regular $C^{2}$ curve $\varphi$ on a closed interval I and $\dot{g}ven$ an arbitrary
$\epsilon,$ there always exists a regular polynomial curve $\Pi$ on I such that all of

$\rho(\varphi, \Pi)$ , $\rho(\varphi^{\prime}, \Pi^{\prime})$ , $\rho(\varphi^{\prime\prime}, \Pi^{\prime\prime})$ , $|L(\hat{\varphi})-L(\hat{\Pi})|$



134 K. ISEKI

are less tlzan $\epsilon$ .
PROOF. In virtue of the approximation theorem of \S 2 we can, for any

positive number $\eta<\epsilon$ , find a regular polynomial curve $\Pi$ on $I$ such that
all of $\rho(\varphi, \Pi),$ $\rho(\varphi^{\prime}, \Pi^{\prime}),$ $\rho(\varphi^{\prime\prime}, \Pi^{\prime\prime})$ are $<\eta$ . Inspection of the formula for
$L(\hat{\varphi})$ given in \S 5 then shows that $\Pi$ will satisfy $|L(\hat{\varphi})-L(\hat{\Pi})|<\epsilon$ as well,.
so soon as $\eta$ is sufficiently small.

8. In the definition of $\Theta(\varphi)$ we considered the sequences $\langle\varphi_{n}\rangle$ of re-
gular $C^{2}$ curves on $I$, such that $\varphi_{n}\rightarrow\rightarrow\varphi$ . Now let us replace there the class
$C^{2}(I)$ by $C^{k}(I)(k\in N)$ or $C^{P}(I)$ and let us denote, respectively by $\Theta_{k}(\varphi)$ or
$\Theta_{P}(\varphi)$ , the functionals that will then result in place of $\Theta(\varphi)$ . We shall then
have $\Theta_{k}(\varphi)=\Theta_{P}(\varphi)=\Theta(\varphi)$ , provided that $k\geqq 2$ .

REMARK. This will still hold for $k=1$ as we shall see later on (\S 20),

but then the proof will not be so simple as here below.
PROOF. From the obvious inclusions $C^{2}\supset C^{k}\supset C^{P}$ we derive at once

$\Theta(\varphi)\leqq\Theta_{k}(\varphi)\leqq\Theta_{P}(\varphi)$ . It therefore suffices to show that $\Theta(\varphi)\geqq\Theta_{P}(\varphi)$ , where
we may clearly suppose $\Theta(\varphi)$ finite. Given any real $A>\Theta(\varphi)$ we can, by
definition of $\Theta(\varphi)$ , take a sequence $\langle\varphi_{n} ; n\in N\rangle$ of regular $C^{2}$ curves on $I$

such that $\varphi_{n}\rightarrow\rightarrow\varphi$ and that $\varliminf_{n}L(\hat{\varphi}_{n})<A$ . It then follows from the preced-

ing \S that there exists a sequence $\langle\Pi_{n} ; n\in N\rangle$ of regular polynomial curves
on $I$ which fulfils both $\rho(\varphi_{n}, \Pi_{n})<n^{-1}$ and $|L(\hat{\varphi}_{n})-L(\hat{\Pi}_{n})|<n^{-1}$ for all $n$ .
Then $\Pi_{n}\rightarrow\rightarrow\varphi$ , and consequently

$\Theta_{P}(\varphi)\leqq\varliminf_{n^{-}}L(\hat{\Pi}_{n})=\varliminf_{\underline{n}}L(\hat{\varphi}_{n})<A$ .

This completes the proof.

9. Characterization of $\Theta(\varphi)$ . Given a continuous curve $\varphi$ on a closed
interval $I$, write for short $\Theta_{0}=\Theta(\varphi)$ and let $A$ be an arbitrary real number.
Then,

(i) If $A>\Theta_{0}$ , there exists for any $\delta$ a regular polynomial curve $\Pi$ on $I$

such that $\rho(\varphi, \Pi)<\delta$ and that $L(\hat{\Pi})<A$ ; and further,
(ii) If $A<\Theta_{0}$ , then there exists a $\delta_{0}$ such that we have $L(\hat{\psi})>A$ for every

regular $C^{2}$ curve $\psi$ on I for which $\rho(\varphi, \psi)<\delta_{0}$ .
Moreover, $\Theta_{0}$ is uniquely determined, in the interval $[0, \infty]$ , by these two

properties.
PROOF. We may begin with (ii), since (i) is an easy consequence of

the preceding \S . If (ii) were false, there would exist a sequence \langle $\psi_{n}$ ;
$ n\in N\rangle$ of regular $C^{2}$ curves on $I$ such that $\psi_{n}\rightarrow\rightarrow\varphi$ and that $L(\hat{\psi}_{n})\leqq A$ for
every $n$ . We should then have $\lim_{n}L(\hat{\psi}_{n})\leqq A<\Theta_{0}$ , which is evidently

incompatible with the definition of $\Theta_{0}$ . This proves (ii).
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Moreover, if each of two distinct values $\Theta_{1}$ and $\Theta_{2}$ belonging to $[0, \infty]$

possessed the same two properties as $\Theta_{0}$ does in (i) and (ii), there would at
once arise a contradiction on taking $A$ between $\Theta_{1}$ and $\Theta_{2}$ . This completes
the proof.

10. If $\varphi$ is a continuous curve on a closed interval $I$, there is a sequence
$\langle\Pi_{n} ; n\in N\rangle$ of regular polynomial curves on I such that $\Pi_{n}\rightarrow\rightarrow\varphi$ and $L(\hat{\Pi}_{n})\rightarrow$

$\Theta(\varphi)$ , as $ n\rightarrow\infty$ .
PROOF. On account of (i) of the preceding \S , there exists a sequence

$\langle\Pi_{n} ; n\in N\rangle$ of regular polynomial curves on $I$ such that $\Pi_{n}\rightarrow\rightarrow\varphi$ and that
$L(\hat{\Pi}_{n})<\Theta(\varphi)+n^{-1}$ for every $n$ , where possibility of $\Theta(\varphi)=\infty$ is not excluded
from consideration. We then see at once, by definition of $\Theta(\varphi)$ , that

$\Theta(\varphi)\leqq\underline{\varliminf_{n}}L(\hat{\Pi}_{n})\leqq\varlimsup_{n}L(\hat{\Pi}_{n})\leqq\Theta(\varphi)$ ,

and hence that $\Theta(\varphi)=\lim_{n}L(\hat{\Pi}_{n})$ . This completes the proof.

11. Lower semicontinuity of $\Theta(\varphi)$ , by which we mean the following.
If $\varphi_{n}(n\in N)$ and $\varphi$ are continuous curves on a closed interval I such that
$\varphi_{n}\rightarrow\rightarrow\varphi$ , then $\Theta(\varphi)\leqq\underline{\varliminf}\Theta(\varphi_{n})$ .

$n$

PROOF. Writing $A=\varliminf_{n}\Theta(\varphi_{n})$ for short, we may clearly suppose $A$

finite. There exists a subsequence $\langle\psi_{n} ; n\in N\rangle$ of the sequence $\langle\varphi_{n}\rangle$ such
that $\rho(\varphi, \psi_{n})<n^{-1}$ and $\Theta(\psi_{n})<A+n^{-1}$ for every $n$ . But then, with the help
of (i) of \S 9, we can make correspond to each $n\in N$ a regular polynomial
curve $\Pi_{n}$ on $I$ subject to the conditions $\rho(\psi_{n}, \Pi_{n})<n^{-1}$ and $L(\hat{\Pi}_{n})<A+n^{-1}$ .
So that $\rho(\varphi, \Pi_{n})\leqq\rho(\varphi, \psi_{n})+\rho(\psi_{n}, \Pi_{n})<2n^{-1}$ for every $n$ , and hence $\Pi_{n}\rightarrow\rightarrow\varphi$ .
Therefore $\Theta(\varphi)\leqq\varliminf_{n}L(\hat{\Pi}_{n})\leqq A$ , which clearly completes the proof.

12. Overadditivity of interval functions. Let $I$ be a given interval and
let us denote by $J$ a typical closed interval contained in $I$. Suppose that
$F(J)$ is a nonnegative interval function defined on the class of all $J$. Note
that $F$ need not be a finite function, and also that we do not assume $I$ a
closed interval.

We shall as usual call $F$ overadditive on $I$ iff we have $F(J_{1})+\cdots+F(J_{n})$

$\leqq F(J)$ for any $J$ whenever $J_{1},$ $\cdots$ , $J_{n}$ are a finite number of non-overlapping
closed intervals contained in $J$. It may be mentioned that if $F$ is over-
additive, then $F$ is nondecreasing, $i$ . $e$ . $F(J^{\prime})\leqq F(J)$ whenever $J^{\prime}$ and $J$ are
closed intervals in $I$ such that $J^{\prime}\subset I$.

13. Overadditivity of $\Theta(\varphi, J)$ . If $\varphi$ is a fixed continuous curve on an
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interval $I$, then $\Theta(\varphi,J)$ is an overadditive interval function for closed intervals $J$

in $I$.
PROOF. Given a finite number of non-overlapping closed intervals

$J_{1},$ $\cdots$ , $J_{n}$ in $J$, suppose that $\langle\varphi_{t}., ; k\in N\rangle$ is an arbitrary sequence of regular
$C^{2}$ curves defined on $J$, such that $\varphi_{k}\rightarrow\rightarrow(\varphi,J)$ . Then

$\sum_{i=1}^{n}\Theta(\varphi,J_{i})\leqq\sum_{i=1}^{n}\varliminf_{k}L(\hat{\varphi}_{k},J_{i})\leqq\varliminf_{\underline{k}}\sum_{t=1}^{n}L(\hat{\varphi}_{k},J_{i})\leqq_{\frac{1i\tau\eta}{k}}L(\hat{\varphi}_{k}, J)$ ,

the last step being easily effected by \S 5, and hence $\sum_{i=1}^{n}\Theta(\varphi,J_{\dot{t}})\leqq\Theta(\varphi,J)$ .

14. Supposing that $\Delta$ is a finite set of real numbers, we shall define
$\Vert\Delta\Vert$ as follows. If $\Delta$ is degenerate, $i$ . $e$ . consists of at most one point, we
set $\Vert\Delta\Vert=0$ . Otherwise we write $\Delta=\{t_{0}, \cdots , t_{n}\}$ , where $t_{0}<\cdots<t_{n}$ , and
.denote by $\Vert\Delta\Vert$ the maximum of the numbers $t_{i}$ – $t_{i-1}$ for $i=1,2,$ $\cdots$ , $n$ .
Further, in this latter case, the closed intervals $[t_{i-1}, t_{i}]$ are called to be
pertaining to $\Delta$ .

15. Quasilinear curves. Let $I$ be a closed interval. By a subdivision of
$I$ we shall mean any finite subset of $I$ containing the endpoints of $I$. Sup-
pose that $\Delta$ is a subdivision of $I$ and write $\Delta=\{t_{0}, t_{1}, \cdot.. , t_{n}\}$ , where $t_{0}<t_{1}<$

$...<t_{n}$ . A parametric curve $\varphi$ on $I$ will be termed quasilinear with reference
$ jto\Delta$ iff it is linear on every pertaining interval $J_{i}=[t_{i-1}, t_{i}]$ where $i=1,2$ ,
... , $n$ . In view of additivity of length, we then clearly have

$L(\varphi)=\sum_{i=1}^{n}L(\varphi, J_{i})=\sum_{i=1}^{n}|\varphi(t_{i})-\varphi(t_{i-1})|$ .

Further, $\varphi$ will simply be called quasilinear iff there exists a subdivision
$\Delta$ of $I$ with respect to which $\varphi$ is quasilinear. In this latter case we shall
call any such $\Delta$ typical subdivision of $I$ for the quasilinear curve $\varphi$ , or else
subdivision of quasilinearity of $\varphi$ .

16. Given a continuous curve $\psi$ on a closed interval $I$, there exists a se-
.quence $\langle\psi_{n} ; n\in N\rangle$ of $C^{1}$ curves on $I$, such that $\psi_{n}\rightarrow\rightarrow\psi$ and that $L(\psi_{n})\rightarrow L(\psi)$ .

PROOF. Write $I=[a, b]$ and consider any subdivision $\Delta=\{t_{0}, \cdots , t_{k}\}$ of
$I$ such that $a=t_{0}<t_{1}<\cdots<t_{k}=b$ , where $k\geqq 2$ . We construct a curve $\varphi$ on
$L$ which is quasilinear with respect to $\Delta$ , by setting $\varphi(t_{i})=\psi(t_{i})$ for each
$i=0,1,$ $\cdots,$

$k$ . Then $p_{i}=\varphi^{\prime}(t)$ is constant on each open interval $(t_{i-1}, t_{i})$ for
$i=1,2,$ $\cdots,$

$k$ . Furthermore, it follows easily from continuity of $\psi$ and the

equality $L(\varphi)=\sum_{i=1}^{k}|\varphi(t_{i})-\varphi(t_{i-1})|$ of the preceding \S that, for any given $\epsilon$ ,

we can choose the above subdivision $\Delta$ in such a manner that $\rho(\psi, \varphi)<\epsilon$

and that $|L(\varphi)-L(\psi)|<\epsilon$ or $L(\varphi)>\epsilon^{-1}$ according as $\psi$ is rectifiable or not.
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We consider now the subdivision of $I$ given by

$\Delta_{\delta}=\{a, t_{1}-\delta, t_{1}+\delta, \cdots, t_{k-1}-\delta, t_{k-1}+\delta, b\}$ ,

where $ 2\delta<\Vert\Delta\Vert$ , and construct a curve $\chi$ on $I$, which is quasilinear with
respect to $\Delta_{\delta}$, by setting

$\chi(a)=p_{1},$ $\chi(b)=p_{k},$ $\chi(t_{i}-\delta)=p_{i},$ $\chi(t_{i}+\delta)=p_{i+1}$ ,

where $i=1,2,$ $\cdots$ , $k-1$ . Putting $\omega(t)=\int_{a^{t}}\chi(\tau)d\tau+\varphi(a)$ for $t\in I$, we shall show

that we can make $\rho(\varphi, \omega)$ and $|L(\varphi)-L(\omega)|$ as small as we please by taking
$\delta$ small, provided that the subdivision $\Delta$ , and hence the curve $\varphi$ also, is
kept fixed. Clearly this will complete the proof.

Write $M={\rm Max}|p_{i}|(i=1,2, \cdots, k)$ , so that $|\chi(t)|\leqq M$ everywhere on $L$

Then, denoting by $\varphi^{\prime}(t)$ the derivative of $\varphi$ where it exists, and zero where
it does not, we see at once that $\varphi^{\prime}$ is a curve with measurable coordinate
functions, that $|\varphi^{\prime}(t)|\leqq M$ everywhere on $I$, and further that $\varphi^{\prime}(t)=\chi(t)$ on
$J$ except at the points of the intervals $[t_{i}-\delta, t_{i}+\delta],$ $i=1,2,$ $\cdots,$ $k-1$ . Hence
we find for $t\in I$ that, as required,

$|\varphi(t)-\omega(t)|=|\int_{a^{t}}[\varphi^{\gamma}(\tau)-\chi(\tau)]d\tau|\leqq 4j\psi k\delta$ ,

$|L(\varphi)-L(\omega)|=|\int_{t}[|\varphi^{\prime}(\tau)|-|\chi(\tau)|]d\tau|\leqq 4Mk\delta$ .

17. Given a nonvanishing curve $\psi$ on a closed interval $I$, denote by $\alpha$ the
infimum of $|\psi(t)|$ for $t\in I$. Then $L(\psi)\geqq\alpha L(\psi_{0})$ , where $\psi_{0}$ is a curve defined
on I by $\psi_{0}(t)=|\psi(t)|^{-1}\psi(t)$ .

PROOF. We shall begin by showing that if $p,$ $q$ are any pair of non-
vanishing points of $R^{m}$ such that $|p|\geqq\alpha$ and $|q|\geqq\alpha$ , then $|p-q|\geqq\alpha|p_{0}-q_{0}|$ ,
where we write $p_{0}=|p|^{-1}p$ and $q_{0}=|q|^{-1}q$. In fact,

$|p-q|^{2}=(|p|p_{0}-|q|q_{0})^{2}=|p|^{2}+|q|^{2}-2|p|\cdot|q|(p_{0}q_{0})$

$=(|p|-|q|)^{2}+|p|\cdot|q|(2-2p_{0}q_{0})\geqq\alpha^{2}|p_{0}-q_{0}|^{2}$ .
This being so, we shall show that $L(\psi)\geqq\alpha\eta$ whenever $\eta$ is a real

number $<L(\psi_{0})$. For this purpose, we may clearly assume that $\eta>0$ . There
then exists a subdivision $\{t_{0}, t_{1}, \cdots , t_{n}\}$ of $I$ such that $t_{0}<t_{1}<\cdots<t_{n}$ and

that $\sum_{i=1}^{n}|\psi_{0}(t_{i})-\psi_{0}(t_{i-1})|>\eta$ . But we have, by what has been said above,

$|\psi(t_{i})-\psi(t_{i-1})|\geqq\alpha|\psi_{0}(t_{i})-\psi_{0}(t_{i-1})|$ for $i=1,$ $\cdots$ , $n$ . Consequently, as an-
nounced above,

$L(\psi)\geqq\sum_{i=1}^{n}|\psi(t_{i})-\psi(t_{i-1})|\geqq\alpha\eta$ .

Since $\eta<L(\psi_{0})$ is arbitrary, this leads at once to $L(\psi)\geqq\alpha L(\psi_{0})$ , as required.
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REMARK. In case $L(\psi_{0})=\infty$ we follow the usual convention concerning
product. So that $\alpha\infty$ means $\infty$ or $0$ according as $\alpha>0$ or $\alpha=0$ respectively.

18. Spheric curves. We shall call a curve $\gamma$ on a set $E\subset R$ to be spheric
iff $|\gamma(t)|=1$ for every $t\in E$, or what comes to the same thing, iff the locus
$\gamma[E]$ of the curve $\gamma$ is a subset of the unit sphere.

Given a continuous spheric curve $\gamma$ on a closed interval $I$, there always exists
a sequence $\langle\gamma_{n} ; n\in N\rangle$ of spheric $C^{1}$ curves on I such that $\gamma.3r$ and that
$L(\gamma_{n})\rightarrow L(\gamma)$ .

PROOF. In accordance with \S 16 we can choose a sequence $\langle\psi_{n} ; n\in N\rangle$

of $C^{1}$ curves on $I$ such that $\rho(\gamma, \psi_{n})<n^{-1}$ for every $n$ and that $L(\psi_{n})\rightarrow L(\gamma)$ .
Then every $\psi_{n}$ is nonvanishing throughout $I$ and so we can associate with
each $n\in N$ a spheric curve $\gamma_{n}$ defined on $I$ by $\gamma_{n}(t)=|\psi_{n}(t)|^{-1}\psi_{n}(t)$ . Thus
defined, every $\gamma_{n}$ is obviously $C^{1}$ on $I$, and it is easy to see that $r_{n}\rightarrow\rightarrow r$ . It
follows at once from lower semicontinuity of length (cf. III. 3.6 of Rad\’o,
Length and Area) that $\varliminf_{n}L(\gamma_{n})\geqq L(\gamma)$ . But the foregoing section gives
$(1-n^{-1})L(\gamma_{n})\leqq L(\psi_{n})$ for every $n\in N$, whence we derive immediately
$\varlimsup_{n}L(\gamma_{n})\leqq\varlimsup_{n}L(\psi_{n})=L(\gamma)$ . We thus obtain $\lim_{n}L(\gamma_{n})=L(\gamma)$ , and this com-
pletes the proof.

19. Given a regular $C^{1}$ curve $\varphi$ on a closed interval $I$, there exists a sequence
$\langle\varphi_{n} ; n\in N\rangle$ of regular $C^{2}$ curves on I such that $\varphi_{n}\rightarrow\rightarrow\varphi,$

$L(\varphi_{n})\rightarrow L(\varphi),\hat{\varphi}_{n}\rightarrow\rightarrow\hat{\varphi}$ ,
$L(\hat{\varphi}_{n})\rightarrow L(\hat{\varphi})$ .

PROOF. Write $\gamma=\hat{\varphi}$ and let $\langle\gamma_{n}\rangle$ be the sequence attached to the
spheric continuous curve $\gamma$ by the preceding proposition. Since $|\varphi^{\prime}(t)|$ is
positive and continuous on $I$, there is a sequence $\langle r_{n} ; n\in N\rangle$ of positive
$C^{1}$ functions on $I$ such that $r_{n}(t)\rightarrow\rightarrow|\varphi^{\gamma}(t)|$ . We now associate with each
$n\in N$ a curve $\varphi_{n}$ defined on $I$ by

$\varphi_{n}(t)=\int_{a^{t}}r_{n}(\tau)\gamma_{n}(\tau)d\tau+\varphi(a)$ ,

where $a$ denotes the left-hand endpoint of $L$ We then see at once that
every $\varphi_{n}$ , thus defined, is a regular $C^{2}$ curve on $I$ fulfilling both $\varphi_{n^{\prime}}(t)=$

$r_{n}(t)\gamma_{n}(t)$ and $|\varphi_{n}^{\prime}(t)|=r_{n}(t)>0$ everywhere on $I$. It follows that $\hat{\varphi}_{n}$ coincides
with $\gamma_{n}$ for every $n$ , and hence that $\hat{\varphi}_{n}\rightarrow\sim\hat{\varphi}$ and $L(\hat{\varphi}_{n})\rightarrow L(\hat{\varphi})$ . Furthermore.

$L(\varphi_{n})=\int_{t}r_{n}(\tau)d\tau\rightarrow\int_{\lrcorner}\varphi^{\prime}(\tau)|d\tau=L(\varphi)$ .

Finally, for every $n$ and every $t\in L$

$\varphi_{n}(t)-\varphi(t)=\int_{a^{t}}\{r_{n}(\tau)\gamma_{n}(\tau)-|\varphi^{\prime}(\tau)|\gamma(\tau)\}d\tau$ ,
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where $r_{n}\rightarrow\rightarrow|\varphi^{\prime}|$ and $ r_{n}\rightarrow\rightarrow\gamma$ , and hence $ r_{n}\gamma_{n}\rightarrow\rightarrow|\varphi^{\prime}|\gamma$ . Therefore $\varphi_{n}\rightarrow\rightarrow\varphi$ , and
this completes the proof.

20. We end this chapter with a result which will be of importance
later on (\S 50 and \S 54).

THEOREM. Given a continuous curve $\varphi$ on a closed interval $I$, let $\Theta_{1}(\varphi)$ be
defined as in \S 8. Then $\Theta_{1}(\varphi)=\Theta(\varphi)$ .

PROOF. We need only show that $\Theta(\varphi)\leqq\Theta_{1}(\varphi)$ , the opposite inequality
being obvious. We may clearly assume $\Theta_{1}(\varphi)$ to be finite. By definition of
$\Theta_{1}(\varphi)$ there then exists a sequence $\langle\varphi_{n} ; n\in N\rangle$ of regular $C^{1}$ curves on $I$

such that $\varphi_{n}\rightarrow\rightarrow\varphi$ and that $L(\hat{\varphi}_{n})<\Theta_{1}(\varphi)+n^{-1}$ for every $n$ . But the preceding
\S gives for each $n$ a regular $C^{2}$ curve $\psi_{n}$ on $I$ satisfying both $\rho(\varphi_{n}, \psi_{n})<n^{-1}$

and $|L(\hat{\varphi}_{n})-L(\hat{\psi}_{n})|<n^{-1}$ . Thus $\psi_{n}\rightarrow\rightarrow\varphi$ , as well as $L(\hat{\psi}_{n})<\Theta_{1}(\varphi)+2n^{-1}$ for
every $n$ . Hence $\Theta(\varphi)\leqq\varliminf_{\underline{n}}L(\hat{\psi}_{n})\leqq\Theta_{1}(\varphi)$ , as required.

Chapter II. The identity $\Theta(\varphi)=\Omega(\varphi)$ .
21. Definition of angle. By the angle $xoy$ between two nonvanishing

vectors $x,$ $y$ of $R^{m}$ we shall as usual understand $Cos^{-1}(x_{0}y_{0})$ , where $x_{0}=|x|^{-1}x$,
$y_{0}=|y|^{-1}y$ and where $Cos^{-1}$ means the principal value of the inverse cosine
belonging to the interval $[0, \pi]$ .

Clearly $xoy=yox$, and $(\lambda x)\langle\rangle(\mu y)=xoy$ whenever $\lambda,$
$\mu$ are a pair of real

numbers with $\lambda\mu>0$ . Again, we have $(Ux)\langle\rangle(Uy)=x\langle\rangle y$ for any orthogonal
transformation $U$ of the vector space $R^{m}$, and further the angle $x\langle\rangle y$ is a
continuous function of the combined variable $\langle x, y\rangle$ , where $x\neq 0$ and $y\neq 0$ .

It should be borne in mind that, as mentioned already in \S 3, we always
suppose the Euclidean space $R^{m}$ with which we are concerned to be at
least 2-dimensional.

22. Triangular inequality. Although this, as well as the triangular
equality of the next \S , is well known and in fact rather trivial, we wish
to provide them with rigorous proofs, inasmuch as they will be fundamen-
tally important for the sequel.

We have $xoz+yoz\geqq xoy$ for any triple $x,$ $y,$ $z$ of nonvanishing vectors of
the space $R^{m}$ .

PROOF. Without loss of generality we may assume that $|x|=|y|=|z|=1$

and further, by applying a suitable orthogonal transformation if necessary,
that $ z=\langle 1,0, \cdot.. , 0\rangle$ . Writing $x=\langle x_{1}, x_{2}, \cdots , x_{m}\rangle,$ $y=\langle y_{1}, y_{2}, \cdots , y_{m}\rangle,$ $\alpha=xoz$ ,

and $\beta=yoz$ , we find at once that $\cos\alpha=x_{1},$ $\sin\alpha=\sqrt{x_{2^{2}}++x_{m}^{2}},$ $\cos\beta=y_{1}$ ,
$\sin\beta=\sqrt{y_{2^{2}}++y_{m^{2}}}$ , and further, on account of the Schwarz inequality,
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that
$\cos(\alpha+\beta)=x_{1}y_{1}-\sqrt{x_{2}^{2}++x_{m}^{2}}\sqrt{y_{2}^{2}++y_{m^{2}}}$

$\leqq x_{1}y_{1}+x_{2}y_{2}+\cdots+x_{m}y_{m}=\cos(xoy)$ .
Hence $\alpha+\beta\geqq x\langle\rangle y$ provided that $\alpha+\beta\leqq\pi$ . But if $\alpha+\beta>\pi$ , then trivially
$\alpha+\beta>xoy$, and this completes the proof.

23. Triangular equality. If $x+y=z$ in the above, then $xoz+y\langle\rangle z=xoy$ .
PROOF. We may assume that $x=\langle 1,0, \cdots , 0\rangle,$ $ y=\langle y_{1}, y_{2},0, \cdot , 0\rangle$ , and

$ z=\langle z_{1}, z_{2},0, \cdots , 0\rangle$ , so that $z_{1}=y_{1}+1$ and $z_{2}=y_{2}$ . For if not, we have only
to multiply in the first place $x,$ $y,$ $z$ by $|x|^{-1}$ and then to apply a suitable
orthogonal transformation of vectors. Writing $\alpha=x\langle\rangle z,$ $\beta=y\langle\rangle z$ , and $\gamma=xcy$

to shorten our notations, we find readily that $\cos\alpha=|z|^{-1}z_{1},$ $sin\alpha=|z|^{-1}|z_{2}|$ ,
$\cos\gamma=|y|^{-1}y_{1},$ $\sin\gamma=|y|^{-}$ $|y_{2}|$ . But we have here $\cos\alpha\geqq\cos\gamma$ , or equiva-
lently, $|y|z_{1}\geqq|z|y_{1}$ . In point of fact, this is evident when $y_{1}<0<z_{1}$ , and
otherwise it follows from the simple fact that

$z_{1}^{2}(y_{1^{2}}+y_{2^{2}})-y_{1^{2}}(z_{1^{2}}+z_{2}^{2})\{\leqq 0\geqq 0$

when $y_{1}\geqq 0$
’

when $z_{1}\leqq 0$ .
Thus $ 0\leqq\gamma-\alpha\leqq\pi$ , and this, combined with

$\cos(\gamma-\alpha)=|y|^{-1}|z|^{-1}(y_{1}z_{1}+|y_{2}|\cdot|z_{2}|)=|y|^{-1}|z|^{-1}(yz)=\cos\beta$ ,

leads at once to the desired equality.

24. Suppose given a pair $x,$ $y$ of vectors of $R^{m}$ .
(i) If $|x|=|y|=1$ , then

$X^{\langle\rangle}y-(xcy)^{2}\leqq|x-y|\leqq xoy\leqq 2|x-y|$ .
PROOF. Writing $ x\langle\nu y=2\theta$ for short, we get $|x-y|^{2}=2-2\cos 2\theta=4\sin^{2}\theta$,

whence it follows in view of $ 0\leqq\theta\leqq 2^{-1}\pi$ that $|x-y|=2\sin\theta\leqq 2\theta\leqq 4\sin\theta$ ,
or equivalently, that $|x-y|\leqq X^{\langle\rangle}y\leqq 2|x-y|$ . If $\theta<1$ here, we find further
that

$|x-y|=2\sin\theta\geqq 2(\theta-6^{-1}\theta^{3})\geqq 2\theta(1-2\theta)$ .
But if $\theta\geqq 1$ , then trivially $|x-y|>2\theta(1-2\theta)$ . We thus have always $|x-y|$

$\geqq X^{\langle\rangle}y-(X\langle\rangle y)^{2}$ .
(ii) If $|x|>|y|$ , then $ xc(x+y)<2^{-1}\pi$ . This follows at once from $x(x+y)$

$>|x|\cdot|y|+xy\geqq 0$ .
(iii) If $x,$ $y\neq 0$ and if $ xoy\leqq 2^{-1}\pi$ , then $x\langle\rangle y=Sin^{-1}(|x|^{-1}|y|^{-1}|x\times y|)$ , where

we use the symbol $|x\times y|$ in the sense explained already in \S 5 and where $Sin^{-1}$

represents the principal value of the inverse sine, contained in the interval
$[-2^{-1}\pi, 2^{-1}\pi]$ . This is evident since, by definition, $|x\times y|=\sqrt{x^{2}y^{2}-(xy)^{2}}$ .



On certain properties of parametric curves. 141

25. Given a sequence $\langle p_{0}, p_{1}, \cdots , p_{n}\rangle(n\in N)$ of $n+1$ nonvanishing vectors

of $R^{m}$, let us write $\omega=i\Rightarrow 1\lambda^{n_{\backslash }}p_{i-1^{\langle\rangle}}p_{i}$ . Replace now any one of the $p_{i}$ , say $p_{k}$ , by a
parr of nonvanishing vectors $p^{\prime},$ $p^{\prime\prime}$ such that $p_{k}=p^{\gamma}+p^{\gamma\gamma}$ , and denote by $\overline{\omega}$ the
sum constructed from the new sequence $\langle p_{0}, \cdots , p_{k-t}, p^{\prime}, p^{\prime\prime}, p_{k+1}, \cdots , p_{n}\rangle$ in pre-

cisely the same way as $\omega$ from the original sequence. Then $\overline{\omega}\geqq\omega$ .
PROOF. We may clearly assume that $n\leqq 2$ . Considering firstly the case

$n=1,$ $k=0$ , we find on account of \S \S 22-23 that

$\overline{\omega}=p^{\prime}op^{\prime\prime}+p^{\prime\prime}op_{1}=p^{\prime}\langle\rangle p_{0}+p^{\prime\prime}op_{0}+p^{\prime\prime}op_{\iota}$

$\geqq p^{\prime}op_{0}+p_{0}op_{1}\geqq p()op_{1}=\omega$ .
Next, the case $n=k=1$ is essentially the same as the first case. It remains
to discuss the case $n=2$ . Here we suppose that $k=1$ , as we plainly may,
and obtain, again by \S \S 22-23,

$\overline{\omega}=p_{0^{\theta}}p^{\prime}+p^{\gamma}cp^{\prime\prime}+p^{\prime\prime}\langle\rangle p_{2}=p_{0}op^{\prime}+p^{\gamma}\circ p|+p^{\prime\prime}\langle\rangle p_{1}+p^{\prime\prime}op_{2}$

$\geqq p_{0^{O}}p_{1}+p_{1}cp_{2}=\omega$ .

26. CON $r\Gamma INUATION$ . Supposing that $\langle q_{0}, q, \cdots, q_{s}\rangle(s\in N)$ is a subsequence of
the sequence $\langle p_{0}, p_{1}, \cdots p_{n}\rangle$ considered in the above, let us write $\omega^{\prime}=\sum_{j=1}^{\epsilon}q_{j-1}\langle\rangle q_{j\sim}$

Then $\omega^{\prime}\leqq\omega$ .
PROOF. We need only treat the case in which $n=2,$ $s=1,$ $q_{0}=p_{0},$ $q_{1}=p_{2}$ .

Then \S 22 gives at once
$\omega=p_{\cup}op_{1}+p_{1}cp_{2}\geqq p_{0}cp_{2}=\omega^{\prime}$

27. Definition of $\Omega(\varphi, \Delta)$ . Given a parametric curve $\varphi$ on a set $E\subset R$

and given a finite subset $\Delta$ of $E$, we define the quantity $\Omega(\varphi, \Delta)$ as follows.
If $\Delta$ is degenerate, that is, contains at most one point, we set simply
$\Omega(\varphi, \Delta)=0$ . Otherwise we write $\Delta=\{t_{0}, t_{1}, \cdots , t_{n}\}$ , where $t_{0}<t_{1}<\cdots<t_{n}$ , and
consider the vectors $p_{i}=\varphi(t_{i})-\varphi(t_{\iota-1})$ for $i=1,2,$ $\cdots,$ $n$ . If the nonvanishing
terms of the sequence $\langle p_{i}\rangle$ are at most one in number, we put $\Omega(\varphi, \Delta)=C|$

as before. If they are at least two, we arrange them in a subsequence $\cdot$

$\langle q_{0}, q_{1}, \cdot.. , q_{s}\rangle$ of $\langle p_{i}\rangle$ and define $\Omega(\varphi, \Delta)=\sum_{j=1}^{\epsilon}q_{j-1}cq_{j}$ .
We remark that, thus defined, $\Omega(\varphi, \Delta)$ is monotone nondecreasing $with_{!}$

respect to the set $\Delta$ , provided the curve $\varphi$ is kept fixed. Indeed $\Delta^{\prime}\subset\Delta$

implies that $\Omega(\varphi, \Delta^{\prime})\leqq\Omega(\varphi, \Delta))$ as we see easily by \S \S 25-26.

28. Definition of bend. Given a parametric curve $\varphi$ on a set $E\subset R$,
let $A$ be any subset of $E$. We shall call bend of $\varphi$ on $A$ and denote by
$\Omega(\varphi, A)$ , the supremum of $\Omega(\varphi, \Delta)$ where $\Delta$ represents the finite subsets of
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A. $\Omega(\varphi, E)$ will simply be termed bend of $\varphi$ and we shall usually write for
short $\Omega(\varphi)$ for it. Thus $\Omega(\varphi, A)$ is the bend of the subcurve $(\varphi, A)$ , when $A$

is nonvoid. It should be noted that we have neither assumed continuity
of $\varphi$ nor that the set $E$ is an interval, in the foregoing. The curve $\varphi$ will
be called of bounded bend iff $\Omega(\varphi)<\infty$ .

29. $CoNTINUATION$ . A few remarks are relevant here to the preceding
Adefinition of bend. Firstly, we clearly have $ 0\leqq\Omega(\varphi, A)\leqq\infty$ for every subset
$A$ of $E$. Secondly, the notation $\Omega(\varphi, A)$ is legitimate since, when $A$ is a
finite subset of $E$, the quantity $\Omega(\varphi, A)$ determined according to the preced-
ing definition coincides with $\Omega(\varphi, A)$ as defined in \S 27, in virtue of the
remark given there. Thirdly, $\Omega(\varphi, A)$ is nondecreasing with respect to the
set $A$ , provided the curve $\varphi$ is kept fixed. So that, fourthly and finally, if
$E$ is an interval, then $\Omega(\varphi, E)$ equals the supremum of $\Omega(\varphi, J)$ where $J$

represents the closed intervals contained in $E$.

30. Lower semicontinuity of bend, by which we mean the following.
If $\varphi_{n}(n\in N)$ and $\varphi$ are parametric curves defined on a set $E\subset R$ and such that
$\varphi_{n}\rightarrow\varphi,$

$i$. $e$ . that $\varphi_{n}(t)\rightarrow\varphi(t)$ for each $t\in E$, then $\Omega(\varphi)\leqq\varliminf_{u}\Omega(\varphi_{n})$ .
PROOF. Given an arbitrary real number $\eta<\Omega(\varphi)$ , we can find a finite

set $\Delta\subset E$ for which $\Omega(\varphi, \Delta)>\eta$ , and we easily see by continuity of angle
(\S 21) that

$\varliminf_{n^{-}}\Omega(\varphi_{n})\geqq\varliminf_{n}\Omega(\varphi_{n}, \Delta)>\eta$ ,

whence the required result follows at once.
REMARK. It should be noted that the convergence of the sequence

$\langle\varphi_{n}\rangle$ to $\varphi$ is assumed to be only pointwise, not necessarily uniform, on $E$.

31. Overadditivity of bend. Given a curve $\varphi$ defined on an interval $L$

suppose that $I_{1},$
$\cdots,$ $I_{n}(n\in N)$ are $n$ non-overlapping closed intervals in I. Then

$\Omega(\varphi, I_{1})+\cdots+\Omega(\varphi, I_{n})\leqq\Omega(\varphi)$ . This shows in particular that $\Omega(\varphi, J)$ is an over-
additive interval function for closed intervals $J$ in $I$ (cf. \S 12).

PROOF. We may assume $\Omega(\varphi)$ and consequently each $\Omega(\varphi, I_{i})$ also, to be
finite. Given an arbitrary $\epsilon$ we can choose a finite set $\Delta_{i}\subset I_{i}$ for each $i$ in
such a manner that $\Omega(\varphi, \Delta_{i})>\Omega(\varphi, I_{i})-n^{-1}\epsilon$ . It follows that

$\Omega(\varphi)\geqq\Omega(\varphi, \Delta_{1}U\cdots U\Delta_{n})\geqq\sum_{i=1}^{n}\Omega(\varphi, \Delta_{i})>\sum_{i=1}^{n}\Omega(\varphi, L)-\epsilon$ ,

which completes the proof.

32. If I is an interval with a left-hand or right-hand endpoint $c\in I$ and if
$\varphi$ is a parametric curve, defined on I and continuous at the point $c$ , then $\Omega(\varphi, I)$
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$=\Omega(\varphi, I-\{c\})$ . So that, if I is a closed interval and if $\varphi$ is $continuou_{S}$ at the
endpoints of $L$ then $\Omega(\varphi, I)=\Omega(\varphi, I^{ o})$ too, where $I^{0}$ denotes the interior of I as
mentioned in \S 1.

PROOF. By symmetry we need only deal with the case in which $c$ is
the left-hand endpoint of $I$. Given any real $\eta<\Omega(\varphi)$ , we can find a finite
nondegenerate set $\Delta\subset I$ containing the point $c$ and such that $\Omega(\varphi, \Delta)>\eta$ .
Write now $\Delta=\{c, t_{1}, \cdots, t_{n}\}$ , where $c<t_{1}<\cdots<t_{n}$ , and take a $\delta$ so that
$t_{0}=c+\delta<t_{1}$ . Then $\Delta^{\prime}=\{t_{0}, t_{1}, \cdots , t_{n}\}\subset I-\{c\}$ , and we find by continuity of
the curve $\varphi$ at $c$ that $\Omega(\varphi, \Delta^{\prime})>\eta$ as soon as $\delta$ is sufficiently small. We
thus get $\Omega(\varphi, I-\{c\})>\eta$ for such $\delta$ and this completes the proof.

REMARK. It follows at once from the above result that if $\varphi$ is a curve
defined and continuous on an interval $I$, then $\Omega(\varphi)=\Omega(\varphi, I^{ o})$ . Hence we
also see, in view of the fourth remark given in \S 29, that $\Omega(\varphi)$ equals the
supremum of $\Omega(\varphi,J)$ where $J$ represents the closed intervals contained in I.

33. Inside limit property of interval functions. Let $I$ be an interval
and let us write $J$ for a generic closed interval in $I$. Suppose that $F(J)$ is
a nonnegative interval function defined on the class of all $J$. We shall say
that $F$ has inside limit property iff for every $J$ and every neighbourhood $U$

of $F(J)$ we can find a closed interval $J_{0}$ contained in the interior $J^{o}$ of $J$,

in such a manner that $F(J^{\prime})\in U$ for any closed interval $J^{\prime}$ containing $J_{0}$

and contained in $J$. Here we understand by a neighbourhood of $\infty$ any
interval of the form $(c, \infty$] where $c$ is a positive finite number.

We may observe that if $F$ is nondecreasing, then inside limit property
of $F$ is equivalent to asserting that $F(J)$ is for each $J$ the supremum of
$F(K)$ where $K$ stands for a variable closed interval contained in $J^{o}$ . When
$F$ is a finite function we shall often use the expression inside continuity
instead of inside limit property.

34. Inside limit property of bend. Given a curve $\varphi$ defined and continuous
on an interval $I$, the interval function $\Omega(\varphi, J)$ , where $J$ represents the closed
intervals contained in $L$ possesses inside limit property.

PROOF. Let $J$ be an arbitrary closed interval contained in $I$. In accord-
ance with the equality $\Omega(\varphi,J)=\Omega(\varphi,J^{o})$ established in \S 32 we can choose
for any given real number $\eta<\Omega(\varphi,J)$ a finite subset $\Delta$ of $J^{o}$ such that
$\Omega(\varphi, \Delta)>\eta$ . Taking a closed interval $J_{0}$ contained in $J^{o}$ and containing $\Delta$ ,
we find at once, in view of the third remark given in \S 29 (monotonity of
bend), that

$\Omega(\varphi,J)\geqq\Omega(\varphi,J^{\prime})\geqq\Omega(\varphi,J_{0})\geqq\Omega(\varphi, \Delta)>\eta$ ,

where $J^{\prime}$ is an arbitrary closed interval containing $J_{0}$ and contained in $J$.
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Hence the result.

35. Suppose that $F$ is a finite nonnegative interval function defined for the
closed intervals $J$ contained in a given closed interval $I=[a, b]$ . If $F$ is over-
additive and iwside continuous, then we can find for any given $\epsilon$ a subdivision $\Delta$

of I in such a manner that $ F(J)<\epsilon$ for every interval $J$ pertaining to $\Delta$ (cf. \S 14).
PROOF. We may clearly assume that $F_{0}=F(I)>0$ . Now write $G(x)=$

$F([a, x])$ for each point $x$ of the open interval $(a, b)$ . Then $G(x)\leqq F_{0}-$

$F([x, b])$ by overadditivity of $F$, and hence $G(x)\rightarrow 0$ as $x\rightarrow a+by$ inside
continuity of $F$. Consequently $(a, b)$ contains points $x$ for which $G(x)\leqq 2^{-1}F_{0}$ .
Denoting by $c$ the supremum of such $x$, we find that $a<c<b$ , since $ G(x)\rightarrow$

$F_{0}(x\rightarrow b-)$ on account of inside continuity of $F$. From the definition of $c$

it follows that $G(x)\leqq 2^{-1}F_{0}$ whenever $a<x<c$ , and hence that $G(c)\leqq 2^{-1}F_{0}$ .
Again, if $c<x<b$ , we have $F([x, b])\leqq F_{0}-G(x)<2^{-1}F_{0}$ , whence $ F([c, b])\leqq$

$2^{-1}F_{0}$ . To complete the proof, we need now only repeat the above process
a certain finite number of times.

36. $CoROLLARY$ . If $\varphi$ is a continuous curve of bounded bend on a closed
interval $I$, then for any given $\epsilon$ there is a subdivision $\Delta$ of I such that $\Omega(\varphi, J)<\epsilon$

for every interval $J$ pertaining to $\Delta$ .
PROOF. This is an immediate consequence of the preceding section,

since $\Omega(\varphi, K)$ is an overadditive inside continuous interval function for
closed intervals $K\subset I$ as shown in \S 31 and \S 34.

REMARK. Continuity of $\varphi$ is essential for the validity of the corollary.
To see this, let us define a function $f(t)$ on the interval $[0,1]$ by setting
$f(O)=1$ and $f(t)=0$ whenever $0<t\leqq 1$ . Consider now the curve $\varphi_{0}$ in the
plane $R^{2}$ defined by $\varphi_{0}(t)=\langle t, f(t)\rangle$ on $[0,1]$ . It is then easy to see that
$\Omega(\varphi_{0}, J)=2^{-1}\pi$ whenever $J$ is a closed interval contained in $[0,1]$ and con-
taining the point $t=0$ , and hence that the corollary does not hold for the
curve $\varphi_{0}$ . The reason for this is of course the discontinuity of $\varphi_{0}$ at $t=0$ .

The same curve might have been attached to \S 32 as a counter-example
showing that continuity of $\varphi$ at the point $c$ is essential.

37. Definition of length for general curves. We have hitherto considered
length only for curves defined on closed intervals. We shall now deal with
the case of curves defined on general sets. Suppose that $\psi$ is a parametric
curve on a set $E\subset R$ and let $\Delta$ be any finite subset of $E$. Let us introduce
the symbol $L(\psi, \Delta)$ as follows. If $\Delta$ is degenerate, we set simply $L(\psi, \Delta)=0$ .
Otherwise we write $\Delta=\{t_{0}, t_{1}, \cdot.. t_{n}\}$ , where $t_{0}<t_{1}<\cdots<t_{n}$ , and set $L(\psi, \Delta)$

$=\sum_{i=1}^{n}|\psi(l_{l})-\psi(t_{i-1})|$ . We then define, for the subsets $A$ of $E$, the length of
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the curve $\psi$ on $A$ by $L(\psi, A)=\sup L(\psi, \Delta)$ , where $\Delta$ represents the finite
subsets of $A$ . Further, $L(\psi, E)$ will be called length of the curve $\psi$ and we
shall often write simply $L(\psi)$ for it. $L(\psi, A)$ is thus the length of the
subcurve $(\psi, A)$ , when $A$ is nonvoid.

In case $E$ is a closed interval, the present definition of length is
evidently equivalent to the usual one according to which the length of $\psi$

is the supremum of $L(\psi, \Delta)$ where $\Delta$ represents generically the subdivisions
of $E$ (cf. \S 15).

Remarks similar to those given in \S 29 in regard to the definition of
bend are also relevant here to the present definition of length of general
curves.

38. Rectifiability. We shall term a curve $\psi$ in $R^{m}$ to be rectifiable iff
$L(\psi)<\infty$ . In order that $\psi$ be rectifiable, it is necessary and sufficient that the
coordinate functions $x_{i}(t)(i=1,2, \cdots , m)$ of $\psi$ should be of bounded variation on
the set $E$ on which $\psi$ is defined.

PROOF. This follows directly from the obvious inequalities $V(x_{i}, \Delta)\leqq$

$L(\psi, \Delta)\leqq\sum_{i=1}^{m}V(x_{i}, \Delta)$ , where V denotes weak variation (see p. 221 of Saks,

Theory of the Integral) and $\Delta$ is any finite subset of $E$.

39. Spheric length. Suppose that $\gamma$ is a spheric curve on a set $E\subset R$

(cf. \S 18) and replace, in the definition of the symbol $L(\psi, \Delta)$ given in \S 37,

the letters $L$ and $\psi$ by $\Lambda$ and $\gamma$ respectively, and $|\psi(t_{i})-\psi(t_{i-1})|$ by $\gamma(t_{i-1}\rangle$

$\circ\gamma(t_{i})$ . We then get the definition of the symbol $\Lambda(\gamma, \Delta)$ . Further, by
replacing $L$ and $\psi$ in the definition of $L(\psi, A)$ by A and $\gamma$ respectively, we
obtain the definition of $\Lambda(\gamma, A)$ , which will be termed spheric lenglh of the
curve $\gamma$ on A. $\Lambda(r, E)$ will simply be called spheric length of $r$ and often
denoted by $\Lambda(\gamma)$ , so that $\Lambda(\gamma, A)$ is the spheric length of the subcurve ( $\gamma,$

$ A\rangle$

for nonvoid subsets $A$ of $E$.
Remarks analogous to those made in \S 29 for the definition of bend will

also hold good in regard to the present definition of spheric length.

40. Spheric rectifiability. We shall call a spheric curve $r$ defined on a
set $E\subset R$ to be spherically rectifiable iff $\Lambda(\gamma)<\infty$ . In order that this be the
case, it is necessary and $su\prod i$cient that $\gamma$ should be rectifiable. In point of fact,
we always have $L(\gamma)\leqq\Lambda(\gamma)\leqq 2L(\gamma)$ for any spheric curve $\gamma$ whatsoever.

PROOF. On account of (i) of \S 24 we have $L(\gamma, \Delta)\leqq\Lambda(\gamma, \Delta)\leqq 2L(\gamma, \Delta)$ for
every finite subset $\Delta$ of $E$. Hence the inequalities $L(\gamma)\leqq\Lambda(\gamma)\leqq 2L(\gamma)$ .

41. The properties of length and spheric length are to a certain extent
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similar to those of bend. Indeed, the assertions and proofs of \S \S 30-32, 34,
36 will be valid with little alterations on replacing the letters $\Omega,$

$\varphi$ by $L,$ $\psi$

respectively or by $\Lambda,$
$\gamma$ respectively.

There is, however, one simple property of ordinary and spheric length,
namely additivity, which is not shared by bend. This amounts of course to
asserting that

$L(\psi, J_{1}UJ_{2})=L(\psi, J_{1})+L(\psi,J_{2})$ ,

$\Lambda(\gamma, J_{1}UJ_{2})=\Lambda(\gamma,J_{1})+\Lambda(\gamma,J_{2})$ ,

for any pair of abutting closed intervals $J_{1}$ and $J_{2}$ contained in the interval
$I$ on which the curve $\psi$ and the spheric curve $r$ are defined arbitrarily.
The proof is trivial in each case and well known in the case of ordinary
length.

Furthermore, if the same curves $\psi$ and $\gamma$ are continuous at some point
of the interval $I$ and if $\psi$ is rectifiable and $\gamma$ spherically rectifiable, then
the interval functions $L(\psi,J)$ and $\Lambda(\gamma,J)$ , defined and additive for the closed
intervals $J$ in $L$ are both continuous at that particular point. This will
follow at once from the analogues of \S 32 for ordinary and spheric length,
in view of additivity and monotonity of both $L(\psi, J)$ and $\Lambda(\gamma,J)$ .

Certain of the simpler properties of ordinary length have already been
made use of without proofs in the preceding chapter (\S \S 5, 15, 16, 18).

42. Tangent directions and derived directions. Suppose that $\varphi$ is a
parametric curve in $R^{m}$ defined on an interval $I$ and that a point $c$ of $I$ is
fixed. We shall call a unit vector $p$ of $R^{m}$ tangent direction of the curve $\varphi$

at the point $c$ iff for any given $\epsilon$ we can find a $\delta$ such that we hav $e$ both
$\varphi(a)\neq\varphi(b)$ and $\{\varphi(b)-\varphi(a)\}op<\epsilon$ whenever $c\in[a, b]\subset I$ and $ b-a<\delta$ . Here
$p$ is plainly uniquely determined.

Again, a unit vector $q\in R^{m}$ will be termed a derived direction of the
curve $\varphi$ at $c$ iff for any given $\epsilon$ we can find a closed interval $[a, b]\subset I$

such that $c\in[a, b],$ $b-a<\epsilon,$ $\varphi(a)\neq\varphi(b)$ , and that $\{\varphi(b)-\varphi(a)\}cq<\epsilon$ . Clearly
$q$ need not be uniquely determined in this case, so that the curve $\varphi$ may
have more than one derived directions at $c$ .

43. Spherically representable curves and $C^{*}$ curves. Given a curve $\varphi$

and a spheric curve $\gamma$ , both of them defined on an interval $I$ and situated
in the space $R^{m}$, we shall call $r$ spheric representation of $\varphi$ iff $\gamma(t)$ is the
tangent direction of $\varphi$ at every $t\in I$. Here $\gamma$ is plainly uniquely determined
by $\varphi$ , and we write $\gamma=\hat{\varphi}$ . By a spherically representable curve we shall
understand one possessing spheric representation. When $\varphi$ is a regular
differentiable curve, the present definition of $\hat{\varphi}$ evidently reduces to that
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given $\ln$ \S 3.
A parametric curve $\varphi$ on an interval $I$ will be termed to be $C^{*}$ on $I$ iff

it is continuous and spherically representable. The symbol $C^{*}$ will also be
used to denote the class of the relevant curves. We may write $C^{*}(I)$ when
precision is desired.

44. Direction curves. Let $\varphi$ be a curve defined on an interval $L$ A
spheric curve $\gamma$ defined on a set $E\subset I$ will be termed direction curve of $\varphi$ on
$E$ iff $\gamma(t)$ is a derived direction of $\varphi$ at every point $t$ of $E$. Needless to say,
a curve may possess more than one direction curves on a given set. In case
$\varphi$ is spherically representable on $L$ the spheric representation $\hat{\varphi}$ is evidently
the unique direction curve of $\varphi$ on $I$.

45. Suppose that $\varphi$ is a curve defined on an interval I and further that $\gamma$ ,

a spheric curve on a set $E\subset I$, is a direction curve of $\varphi$ . Then $\Omega(\varphi)\geqq\Lambda(\gamma)\geqq L(\gamma)$ .
PROOF. In view of \S 40 it is enough to show that $\Omega(\varphi)>\eta$ for every

real number $\eta$ less than $\Lambda(\gamma)$ . We may plainly assume that $\eta\geqq 0$ . According
to the definition of $\Lambda(\gamma)$ there then exists a finite nondegenerate set $\Delta$ in $E$

subject to the condition $\Lambda(\gamma, \Delta)>\eta$ . Let us write $\Delta=\{t_{0}, t_{1}, \cdots, t_{n}\}$ , where
$t_{0}<t_{1}<\cdots<t_{n}$ . Given an arbitrary $\delta$ , we can associate with each $t_{i}$ a closed
interval $J_{i}=[a_{i}, b_{i}]\subset I$ in such a manner that $t_{i}\in J_{i},$ $|J_{i}|=b_{i}-a_{i}<\delta,$ $\varphi(a_{i})\neq$

$\varphi(b_{i})$ , and that $\{\varphi(b_{i})-\varphi(a_{i})\}0\gamma(t_{i})<\delta$ . When $\delta$ is small, the intervals $J_{0},$ $J_{1}$ ,
... , $J_{n}$ are evidently disjoint. And it is easy to see that, taking $\delta$ still
smaller if necessary, we can ensure that $\Omega(\varphi, \Delta^{\prime})>\eta$ where $\Delta^{\prime}=\{a_{0},$ $b_{0},$ $\cdots$ ,
$a_{n},$ $b_{n}$ }. We thus get $\Omega(\varphi)>\eta$ , which completes the proof.

46. If $\varphi$ is a continuous curve defined on a closed interval I and if we
denote, for each $n\in N$, by $\Delta_{n}$ the subdivision of I consisting of $n+1$ equidistant
points of $I$, then, for every finite subset $\Delta$ of $I$,

$\Omega(\varphi, \Delta)\leqq\varliminf_{\underline{n}}\Omega(\varphi, \Delta_{n})$ .

PROOF. We replace each point $p$ of $\Delta$ by that point $q$ of $\Delta_{n}$ which is
nearest $p$ and denote the resulting set by $\Delta_{n^{\prime}}$ (if there are two nearest
points for a $p$, then $q$ may be either one). It follows at once by continuity
of $\varphi$ that $\Omega(\varphi, \Delta)\leqq\varliminf_{n}\Omega(\varphi, \Delta_{n}^{\prime})$ . But since $\Delta_{n}‘\subset\Delta_{n}$ we have $\Omega(\varphi, \Delta_{n^{\prime}})\leqq\Omega(\varphi,$ $\Delta_{n}\rangle$

for every $n$ , which in conjunction with the foregoing inequality gives the
desired result.

47. If $\varphi$ is a regular $C^{2}$ curve defined on a closed interval I and if we
denote for every $n\in N$ by $\Delta_{n}$ the same subdivision of I as in the preceding
section, then $\Omega(\varphi, \Delta_{n})\rightarrow L(\hat{\varphi})$ as $ n\rightarrow\infty$ .
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PROOF. Suppose $n$ large and write $\Delta=\{t_{0}, t_{1}, \cdots, t_{n}\}$ , where $t_{0}<t_{1}<\cdots<t_{n}$ .
We shall understand by the letters $i,$ $j,$ $k$ variable integers subject to the
conditions $0\leqq i\leqq n,$ $1\leqq j\leqq n,$ $1\leqq k\leqq n-1$ respectively, and by $\theta$ and $\theta$

indiscriminately certain vectors and numbers, respectively, that tend uni-
formly to $0$ as $ n\rightarrow\infty$ . Writing for short $\varphi_{i}=\varphi(t_{i}),$ $\varphi_{i}^{\prime}=\varphi^{\prime}(t_{i}),$ $\varphi_{i^{\prime\prime}}=\varphi^{\prime\prime}(t_{i})$,
$h=n^{-1}|I|,$ $\delta_{j}=\varphi_{j}-\varphi_{j-1},$ $\sigma_{j}=h^{-1}\delta_{j}$ , we easily find successively that

$\delta_{j}=h\varphi_{j^{\prime}}-2=1h^{2}\varphi_{j^{\prime\prime}}+h^{2}\theta\neq 0$ , $\sigma_{j}=\varphi_{j^{\prime}}-2^{-1}h\varphi_{j^{\prime\prime}}+h\theta\neq 0$ ,

$|\sigma_{j}|=|\varphi_{j^{\prime}}|+\theta,$ $|\sigma_{j}|^{-1}=|\varphi_{j^{\prime}}|^{-1}+\theta,$ $|\sigma_{k+1}|=|\varphi_{k^{\prime}}|+\theta,$ $|\sigma_{k+1}|^{-1}=|\varphi_{k^{\prime}}|^{-1}+\theta$ ,

$\sigma_{k+1}-\sigma_{k}=(\varphi_{k+1}^{J}-\varphi_{k^{\prime}})-2^{-1}h(\varphi_{k+1^{\prime\gamma}}-\varphi_{k^{\prime/}})+h\theta=h\varphi_{k^{\prime\prime}}+h\theta$ ,

$|\sigma_{k+1}-\sigma_{k}|=\theta<|\varphi_{k^{\prime}}|+\theta=|\sigma_{k}|$ .
On account of (ii) and (iii) of \S 24 it follows that

$\delta_{k}0\delta_{k+1}=\sigma_{k}0\sigma_{k+1}=Sin^{-1}(|\sigma_{k}|^{-1}\cdot]\sigma_{k+1}|^{-1}\cdot|\sigma_{k}\times\sigma_{k+1}|)$ .
In order to transform the last expression, we utilize the identity $|p\times q|$

$=|p\times(q-p)|$ , which holds for any pair of vectors $p,$ $q$ of $R^{m}$ . This may be
verified by direct computation as follows:

$|p\times(q-p)|^{2}=p^{2}(q-p)^{2}-tp(q-p)\}^{2}=p^{2}q^{2}-(pq)^{2}=|p\times q|^{2}$ .
We thus find that

$|\sigma_{k}\times\sigma_{k+1}|=|\sigma_{k}\times(\sigma_{k+1}-\sigma_{k})|=|(\varphi_{k}^{\prime}+\theta)\times(h\varphi_{k^{\prime\prime}}+h\theta)|$

$=h|(\varphi_{k^{\prime}}+\theta)\times(\varphi_{k^{\prime\prime}}+\theta)|=h|\varphi_{k^{\prime}}\times\varphi_{k^{\prime\prime}}|+h\theta$ ,

where the last step is effected with the help of the simple inequality
$|\Gamma u-\sqrt{v}|\leqq\sqrt{|u-v|}$ which holds for any pair $u,$ $v$ of nonnegative real
numbers. In view of

$|\sigma_{k}|^{-1}\cdot|\sigma_{k+1}|^{-1}=(|\varphi_{k^{\prime}}|^{-1}+\theta)(|\varphi_{k}^{\prime}|^{-1}+\theta)=|\varphi_{k^{\prime}}|^{-2}+\theta$ ,

it:follows now successively that
$\delta_{k}\circ\delta_{k+1}=Sin^{-1}(h|\varphi_{k^{\prime}}|^{-2}\cdot|\varphi_{k}^{\prime}\times\varphi_{k^{\prime\prime}}|+h\theta)$

$=h|\varphi_{k}^{\prime}|^{-2}\cdot|\varphi_{k^{\prime}}\times\varphi_{k^{\prime/}}|+h\theta$ ,

$\Omega(\varphi, \Delta_{n})=\sum_{k}\delta_{\hslash}0\delta_{k+I}=yh|\varphi_{k^{\prime}}|^{-2}\cdot|\varphi_{k^{\prime}}\times\varphi_{k^{\prime\prime}}|+hn\theta k^{\lrcorner}$

$=\int_{1}|\varphi^{\prime}(t)|^{-2}\cdot|\varphi^{\prime}(t)\times\varphi^{\prime\prime}(t)|dt+\theta=L(\hat{\varphi})+\theta$ .
This completes the proof.

REMARK. The above equality $|p\times q|=|p\times(q-p)|$ may be extended to the
form $|p\times q|=|p\times(\lambda p+q)|$ , which is valid for any $p,$ $q$ of $R^{m}$ and any real $\lambda$ .
This will be used later on (\S 53).

48. $CoROLLARY$ . If $\varphi$ is a regular $C^{2}$ curve on a closed interval $I$, then



On certain properties of parametric curves. 149

$\Omega(\varphi)\leqq L(\hat{\varphi})$ . This follows directly from the preceding two sections.

49. If $\varphi$ is a continuous curve on a closed interval $I$, then $\Omega(\varphi)\leqq\Theta(\varphi)$ .
PROOF. Consider the sequences $\langle\varphi_{n} ; n\in N\rangle$ of regular $C^{2}$ curves on $I$

such that $\varphi_{n}\rightarrow\rightarrow\varphi$ . Then, by \S 48 and \S 30 (lower semicontinuity of $\Omega$),

$\Theta(\varphi)=\inf\frac{1^{j}m}{n}L(\hat{\varphi}_{n})\geqq\inf\varliminf_{n}\Omega(\varphi_{n})\geqq\Omega(\varphi)$ ,

which completes the proof.

50. If $\varphi$ is a regular $C^{1}$ curve on a closed interval $I$, then $\Theta(\varphi)=\Omega(\varphi)=$

$L(\varphi’)=\Lambda(\hat{\varphi})$ .
PROOF. On writing $\varphi_{n}=\varphi(n\in N)$ it follows at once from \S 20 and \S 45

that
$\Theta(\varphi)=\Theta_{1}(\varphi)\leqq\varliminf_{n}L(\hat{\varphi}_{n})=L(\hat{\varphi})\leqq\Lambda(\hat{\varphi})\leqq\Omega(\varphi)$ ,

which conjointly with the foregoing section gives the asserted result.

51. Light curves. We shall term a curve $\varphi$ on an interval $I$ to be light
$on$ a subinterval $J$ of $I$ iff it is constant on no subintervals of $J$. When this
is the case for $J=I$, we shall simply say that $\varphi$ is light. By a light sub-
interval of $I$ we shall understand one on which $\varphi$ is light. If $I_{1},$ $\cdots$ , $I_{n}$ are a
finite number of intervals in $I$ that together cover $I$, then clearly a curve
$\varphi$ on $I$ is light iff it is light on every $I_{t}$ . We may observe that we have
considered general, not necessarily closed, intervals throughout this \S .

52. Let $\varphi$ be a quasilinear curve (\S 15) on a closed interval I. If $\Delta$ is any
typical subdivision of I for $\varphi$ , then $\Omega(\varphi, \Delta)=\Omega(\varphi)$ . Moreover we can uniformly
approximate over I the curve $\varphi$ to any degree of precision by a light quasilinear
curve $\psi$ on I such that $\Omega(\psi)=\Omega(\varphi)$ .

PROOF. The first part of the assertion is obvious since we have $\Omega(\varphi, \Delta)$

$=\Omega(\varphi, \Delta U\Delta^{\prime})=\Omega(\varphi, \Delta^{\prime})$ for any pair $\Delta,$
$\Delta^{\prime}$ of subdivisions of quasilinearity

of $\varphi$ . To prove the second part, let us fix a typical subdivision $\Delta$ . We may
clearly assume that $\varphi$ is nonconstant on $I$ and that there are no two abut-
ting intervals pertaining to $\Delta$ (see \S 14) on both of which $\varphi$ is constant
simultaneously.

Taking a $\delta$ such that $ 2\delta<\Vert\Delta\Vert$ , we shall define a curve $\psi$ on $I=[a, b]$

as follows. Suppose that $J=[\alpha, \beta]$ is an interval pertaining to $\Delta$ such that
$\varphi$ is constant on $J$. If $\beta<b$ , then the interval, pertaining to $\Delta$ and abutting
$J$ on the right of $J$, must be light. We then determine the restriction of $\psi$

to $J^{\prime}=[\alpha, \beta+\delta]$ so as to be linear on $J^{\prime}$ with $\psi(\alpha)=\varphi(\alpha)$ and $\psi(\beta+\delta)=$

$\varphi(\beta+\delta)$ . If $\beta=b$ , then there exists on the left of $J$ a light interval per-
taining to $\Delta$ and abutting $J$, and we determine the restriction of $\psi$ to
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$J^{\prime}=[\alpha-\delta, \beta]$ in a similar way. Finally, we put simply $\psi(t)=\varphi(l)$ for each
point $t$ of $I$ that belongs to no $J^{\prime}$ of the aforesaid two types.

Thus constructed the curve $\psi$ is evidently quasilinear and light, and
it is easy to see that $\Omega(\psi)=\Omega(\varphi)$ . Moreover, this curve will clearly ap-
proximate over $I$ the given curve $\varphi$ to any extent of precision as soon as $\delta$.
is sufficiently small.

53. If $\varphi$ is a quasilinear curve defined on a closed interval $L$ then there
exists for any given $\epsilon$ a regular $C^{1}$ curve $\chi$ on I of bounded bend such that
$\rho(\varphi, \chi)<\epsilon$ and $|\Omega(\varphi)-L(\hat{\chi})|<\epsilon$ .

PROOF. In view of the preceding section we may assume that $\varphi$ is light.
Let $\Delta=\{t_{0}, t_{1}, \cdots, t_{n}\}$ be a subdivision of $I=[a, b]$ of quasilinearity for $\varphi$ ,
where $n\geqq 2$ and $a=t_{0}<t_{1}<$ $<t_{n}=b$ . Then $\varphi^{\prime}(t)$ is constant on each open
interval $(t_{i\rightarrow}, t_{i})(i=1,2, \cdots, n)$ , and we denote by $p_{i}$ this constant value. We $\cdot$

may assume here that $p_{i}$ and $p_{i+1}$ are linearly independent for each $i=1,2$ ,
, $n-1$ . For otherwise we need only take suitably, instead of $\varphi$ , another

curve sufficiently near $\varphi$ and quasilinear with respect to the subdivision $\Delta$ .
Consider now the subdivision $\Delta_{\delta}$ of $I$ given by

$\Delta_{\delta}=\{a, t_{1}-\delta, t_{1}+\delta, \cdots, t_{n-1}-\delta, t_{n-1}+\delta, b\}$ ,

where $ 2\delta<\Vert\Delta\Vert$ . We define a nonvanishing curve $\psi$ on $I$, which is quasi-
linear with reference to $\Delta_{\delta}$, by putting

$\psi(a)=p_{1},$ $\psi(b)=p_{n},$ $\psi(t_{i}-\delta)=p_{i},$ $\psi(t_{i}+\delta)=p_{i+1}$ ,

where $i=1,2,$ $\cdots,$ $n-1$ . Then, writing

$\chi(t)=\int_{a^{t}}\psi(\tau)d\tau+\varphi(a)$ for $t\in I$ ,

we shall show that this curve $\chi$ , which is clearly regular $C^{1}$ on $L$ satisfies
the required conditions as soon as $\delta$ is sufficiently small.

Write $M={\rm Max}|p_{i}|(1\leqq i\leqq n)$ , so that $|\psi(t)|\leqq M$ on $L$ Let us denote
by $\varphi^{\prime}(t)$ the derivative of $\varphi$ where it exists, and $z$ero where it does not.
Then $\varphi^{\prime}(t)$ is evidently a measurable function on $I$ with $|\varphi^{\prime}(t)|\leqq M$, and the
points $t\in I$ at which $\psi(t)\neq\varphi^{\prime}(t)$ constitute a set of measure $<2n\delta$ . Given
any $\epsilon$ , we therefore have on $L$ for small $\delta$ ,

$|\chi(t)-\varphi(t)|=|\int_{a^{t}}\{\psi(\tau)-\varphi^{\gamma}(\tau)\}d\tau|\leqq 4Mn\delta<\epsilon$ ,

and the condition $\rho(\chi, \varphi)<\epsilon$ is satisfied.
Furthermore, writing $ t=(t_{i}-\delta)+2\grave{0}\lambda$ on each $J_{i}=[t_{i}-\delta, t_{i}+\delta]$ for

$i=1,2,$ $\cdots$ , $n-1$ , so that
$\psi(t)=p_{i}+\lambda q_{i}$ $(q_{i}=p_{i+1}-p_{i})$ ,
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we easily find, noting the remark of \S 47, that

$L(\hat{\chi}, J^{\tau_{i}})=\int_{J_{i}}\frac{|\chi^{\prime}(t)\times\chi^{\prime\prime}(t)|}{|\chi(t)|^{2}}dt=\int_{0^{1}}\frac{|\psi(t)\times\psi^{\prime}(t)|dt}{|\psi(t)|^{2}d\lambda}d\lambda$

$=\int_{0}^{1}\mapsto_{\lambda^{i}}p_{(p_{q_{i})+^{1}\lambda^{2}q_{i^{2}}}}\times_{i}p_{r\neq 1}p_{i^{2}}+2d\lambda=Cos^{-1}\frac{i+l}{p_{i+1}1}\overline{|p_{i}}^{p_{\ulcorner^{i}}p_{1}}=p_{i^{\langle\rangle}}p_{i+1}$ ,

and therefore, by the first part of \S 52, that

$L(\hat{\chi})=\sum_{i=1}^{n-1}L(\hat{\chi},J_{i})=\Omega(\varphi, \Delta)=\Omega(\varphi)$ .

54. We have $\Theta(\varphi)=\Omega(\varphi)$ for any quasilinear curve $\varphi$ on a closed interval $\Gamma$.
PROOF. Since $\Theta(\varphi)\geqq\Omega(\varphi)$ by \S 49, it is enough to show that $\Theta(\varphi)\leqq\Omega(\varphi)$ .

The preceding section enables us to choose a sequence $\langle\varphi_{n} ; n\in N\rangle$ of regular
$C^{1}$ curves on $I$ of bounded bend, such that $\varphi_{n}\rightarrow\rightarrow\varphi$ and $L(\hat{\varphi}_{n})\rightarrow\Omega(\varphi)$ . Then
\S 20 gives $\Theta(\varphi)\leqq\frac{1i}{n}\underline{m}L(\hat{\varphi}_{n})=\Omega(\varphi)$ .

55. We shall now establish the following theorem, which is the aim
of the present chapter.

THEOREM. We have $\Theta(\varphi)=\Omega(\varphi)$ for any continuous curve $\varphi$ on a closed
interval $I$.

PROOF. In view of \S 49 it suffices to show that $\Theta(\varphi)\leqq\Omega(\varphi)$ . We take a
sequence $\langle\Delta_{n} ; n\in N\rangle$ of subdivisions of $I$ such that $\Vert\Delta_{n}\Vert\rightarrow 0$ and $\Omega(\varphi, \Delta_{n})\rightarrow$

$\Omega(\varphi)$ . Let us denote for each $n$ by $\varphi_{n}$ the curve which is quasilinear with
respect to $\Delta_{n}$ and coincides with $\varphi$ at all points of $\Delta_{n}$ . Then clearly $\varphi_{n}\rightarrow\rightarrow\varphi$

by continuity of $\varphi$ , and moreover, it follows from the preceding \S and the
first part of \S 52 that $\Theta(\varphi_{n})=\Omega(\varphi_{n})=\Omega(\varphi_{n}, \Delta_{n})=\Omega(\varphi, \Delta_{n})$ for every $n$ . Hence.
by lower semicontinuity of $0,$

$\Theta(\varphi)\leqq\varliminf_{n^{-}}\Theta(\varphi_{n})=\Omega(\varphi)$ .

Chapter III. Further properties of bend.

56. Suppose that $A$ is a nonvoid set of real numbers. By a $\delta$-net in $A_{r}$

where $\delta$ is a given positive number, we mean as usual a nonvoid finite
subset $M$ of $A$ such that the distance of every point of $A$ from $M$ is less
than $\delta$ .

Now let $\varphi$ be a continuous curve on a finite interval I and $\eta$ any real
number $<\Omega(\varphi)$ . There then exists a $\delta$ such that $\Omega(\varphi, \Delta)>\eta$ for any $\delta$-net $\Delta$ in $I$.

REMARK. Continuity of $\varphi$ is essential for the validity of the result as
is shown by the example given in the remark of \S 36.

PROOF. If this were false, we could find a real number $\eta_{0}<\Omega(\varphi)$ and a
sequence $\langle\Delta_{n} ; n\in N\rangle$ of finite subsets of $I$ such that, for each $n$ , the set $\Delta_{n}$

is an $n^{-1}$ -net in $I$ satisfying $\Omega(\varphi, \Delta_{n})\leqq\eta_{0}$ . We shall show that $\Omega(\varphi,J)\leqq\eta_{0}$
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for any given closed interval $J$ in I. For this purpose, we may clearly
assume that every $\Delta_{n}$ is nondegenerate and that $J$ is contained for every $n$

in the sum $S_{n}$ of the intervals pertaining to $\Delta_{n}$ . Now let us construct, for
each $n$ , a curve $\varphi_{n}$ on $S_{n}$ which is quasilinear with respect to $\Delta_{n}$ and which
coincides with the given curve $\varphi$ on $\Delta_{n}$ . It would then follow at once from
continuity of $\varphi$ that $(\varphi_{n}, J)\rightarrow\rightarrow(\varphi,J)$ . We should therefore obtain $\Omega(\varphi, J)\leqq$

$\varliminf_{n}\Omega(\varphi_{n}, J)$ . On the other hand we have, for every $n$ ,

$\Omega(\varphi_{n}, J)\leqq\Omega(\varphi_{n})=\Omega(\varphi_{n}, \Delta_{n})=\Omega(\varphi, \Delta_{n})\leqq\eta_{0}$ ,

which conjointly with the foregoing inequality would yield $\Omega(\varphi,J)\leqq\eta_{0}$ for
every $-\Gamma$, as announced. Hence we should get $\Omega(\varphi)=\sup\Omega(\varphi, J)\leqq\eta_{0}$ by virtue
of the remark of \S 32. But this would contradict $\eta_{0}<\Omega(\varphi)$ , and the proof
is complete.

57. Lebesgue and Fr\’echet equivalences. Let $\varphi$ and $\psi$ be two curves on
the intervals $I$ and $J$ respectively. We shall term $\varphi$ and $\psi$ as usual to be
Lebesgue equivalent (or L-equivalent) iff there exists a homeomorphic mapping
$h$ of $I$ onto $J$ such that $\psi(h(t))=\varphi(t)$ for every point $t\in I$. Again, the curves
will be said as usual Fr\’echet equivalent (or F-equivalent) iff, given any $\epsilon$ , we
can find a homeomorphic mapping $h_{e}$ of $I$ onto $J$ in such a manner that
$|\psi(h_{\epsilon}(t))-\varphi(t)|<\epsilon$ for every $t\in I$.

Lebesgue and Fr\’echet equivalences are clearly $re$flexive, symmetric, and
transitive, so that they are equivalence relations in the usual sense. Also,
Lebesgue equivalence implies Fr\’echet equivalence. It is further easily seen
that if $\varphi$ and $\psi$ are F-equivalent as above, we can find a sequence \langle $\varphi_{n}$ ;
$ n\in N\rangle$ of curves on $I$ that are L-equivalent to $\psi$ , such that $\varphi_{n}\rightarrow\rightarrow\varphi$ . If $\varphi$

and $\psi$ are both of them continuous or spheric in addition, then the curves
$\varphi_{n}$ may evidently be supposed all of them respectively continuous or spheric,
too.

58. If $\varphi$ and $\psi$ are F-equivalent as in the above, then $\Omega(\varphi)=\Omega(\psi)$ and
$L(\varphi)=L(\psi)$ . If moreover the two curves are spheric, then $\Lambda(\varphi)=\Lambda(\psi)$ .

PROOF. We shall only deal with the first inequality, the others admit-
ting similar treatments. We not $e$ first that if $\varphi$ and $\psi$ are L-equivalent,
then $\Omega(\varphi)=\Omega(\psi)$ is an immediate consequence of the definition of bend,
since every homeomorphic mapping of an interval onto another is necessarily
a strictly monotone function.

This being so, suppose $\varphi$ and $\psi$ Fr\’echet equivalent and take the sequence
$\langle\varphi_{n}\rangle$ of the preceding section. Then $\Omega(\varphi_{n})=\Omega(\psi)$ by what has just been
said, and we find, by lower semicontinuity of bend, that $\Omega(\varphi)\leqq\varliminf_{\underline{n}}\Omega(\varphi_{n})=$

$\Omega(\psi)$ . By symmetry we get $\Omega(\psi)\leqq\Omega(\varphi)$ , which completes the proof.
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59. Fr\’echet distance. Given two curves $\varphi$ and $\psi$ defined on homeomor-
phic intervals $I$ and $J$ respectively, we shall call $Fr\mathfrak{X}het$ distance (or F-distance)

between $\varphi,$
$\psi$ and denote by $d_{F}(\varphi, \psi)$ , the infimum of the distance $\rho(\varphi, \chi)$

where the curve $\chi$ is defined on $I$ by $\chi(t)=\psi(h(t)),$ $h$ representing the homeo-
morphic mappings of $I$ onto $J$. Clearly $\varphi$ is Fr\’echet equivalent to $\psi$ iff
$d_{F}(\varphi, \psi)=0$ .

If $\varphi,$ $\varphi_{1},$ $\varphi_{2},$ $\cdots$ are paramefric curves defined respectively on the homeomorphic
intervals L $I_{1},$ $I_{2}$ , and such that $d_{F}(\varphi. \varphi_{n})\rightarrow 0$ as $ n\rightarrow\infty$ , then $\Omega(\varphi)\leqq\varliminf_{-}\Omega(\varphi_{n})$

$n$

and $L(\varphi)\leqq\lim_{n^{-}}L(\varphi_{n})$ . If moreover all the curves are spheric, then $\Lambda(\varphi)\leqq$

$\varliminf_{n}\Lambda(\varphi_{n})$ .
PROOF. We may restrict ourselves to the case of bend. There are

homeomorphic mappings $h_{n}$ of $I$ onto $I_{n}$ such that $\rho(\varphi, \chi_{n})\rightarrow 0$ , or in other
words, that $\chi_{n}\rightarrow\rightarrow\varphi$ , where the curves $\chi_{n}$ are defined on $I$ by $\chi_{n}(t)=\varphi_{n}(h_{n}(t))$ .
Then $\chi_{n}$ and $\varphi_{n}$ are L-equivalent for every $n$ , so that $\Omega(\chi_{n})=\Omega(\varphi_{n})$ . Hence

$\Omega(\varphi)\leqq\varliminf_{n}\Omega(\chi_{n})=\varliminf_{n}\Omega(\varphi_{n})$ .

60. If $\varphi$ is a nonconstant curve on a closed interval $[a, b]$ and if $\varphi(a)=\varphi(b)$ ,
then $\Omega(\varphi)\geqq\pi$.

PROOF. Take a point $c$ such that $a<c<b$ and that $\varphi(c)\neq\varphi(a)$ . Writing
$\Delta=\{a, c, b\}$ and $p=\varphi(c)-\varphi(a)$ , we see at once that $\Omega(\varphi)\geqq\Omega(\varphi, \Delta)=p\langle\rangle(-p)$

$=\pi$ .

61. If $\varphi$ is a light curve defined and periodic on the straight line $R$ with a
period $\omega>0$ , then $\Omega(\varphi, J)\geqq 2\pi$ for every interval $J$ such that $|J|>\omega$ .

PROOF. We may plainly assume that $J$ is a closed interval $[a, b]$ . Take
a $\delta$ such that $\delta<\omega<b-a-\delta$ and that $\varphi(a+\delta)\neq\varphi(a)$ . This is possible,
since $\varphi$ is light and since $|J|=b-a>\omega$ . Then, writing $\Delta=\{a,$ $a+\delta,$ $ a+\omega$,
$a+\omega+\delta\}$ and $p=\varphi(a+\delta)-\varphi(a)$ , we immediately obtain

$\Omega(\varphi,J)\geqq\Omega(\varphi, \Delta)=p<\rangle(-p)+(-p)op=2\pi$ .

62. If $\varphi$ is a spherically representable curve (see \S 43) defined on a closed
interval $[a, b]$ and such that $\varphi(a)=\varphi(b)$ , then $\Omega(\varphi)\geqq 2\pi-\hat{\varphi}(a)0\hat{\varphi}(b)$ .

PROOF. Given an arbitrary $\epsilon$ , we can find a $\delta$ in such a manner that
$a^{\prime}=a+\delta<b-\delta=b^{\prime},$ $p=\varphi(a^{\prime})-\varphi(a)\neq 0,$ $q=\varphi(b)-\varphi(b^{\prime})\neq 0$ , and that $p\langle\rangle q<$

$\hat{\varphi}(a)0\hat{\varphi}(b)+\epsilon$ . Writing $\Delta=\{a, a^{\prime}, b^{\prime}, b\}$ and $\gamma=\varphi(b^{\prime})-\varphi(a^{\prime})$ , so that $p+q+r$
$=0$ , we distinguish two cases: If $r=0$ , then $q=-p$ , and hence $\Omega(\varphi, \Delta)=$

$poq=2\pi-p\langle\rangle q$. But if $\gamma\neq 0$ , then it follows from \S 25 that
$\Omega(\varphi, \Delta)+pcq=p\langle\nu r+r\circ q+q\langle\rangle p$

$\geqq p\circ(r+q)+(r+q)\langle\rangle p=2\pi$ .
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We thus get, in both cases, $\Omega(\varphi, \Delta)\geqq 2\pi-poq$, whence we find $\Omega(\varphi)>2\pi-$

$\hat{\varphi}(a)\langle\rangle\hat{\varphi}(b)-\epsilon$ . This completes the proof since $\epsilon$ is arbitrary.

63. Given a parametric curve $\varphi$ on a closed interval $I=[a, b]$ , suppose that
$p=\varphi(b)-\varphi(a)\neq 0$ and that $\Omega(\varphi)<\epsilon<2^{-1}\pi$ . Then $L(\varphi)\cos\epsilon<|p|$ . Further, if
$a\leqq\alpha<\beta\leqq b$ and $q=\varphi(\beta)-\varphi(\alpha)\neq 0$ , then $ p_{C\rangle}q<\epsilon$ .

PROOF. Let $\Delta=\{t_{0}, t_{1}, \cdots, t_{n}\}$ be any subdivision of $I$ where $a=t_{0}<t_{1}<$

. $<t_{n}=b$ , and write $\varphi_{i}=\varphi(t_{i})-\varphi(t_{i-1})$ for $i=1,2,$ $\cdots$ , $n$ . Since $p=\varphi_{1}+\cdots+$

$\varphi_{n}\neq 0$, the sequence $\langle\varphi_{1}, \cdots , \varphi_{n}\rangle$ contains nonvanishing terms. Let us arrange
all of them in a subsequence $\langle p_{1}$ , $\cdot$ .. , $ p_{k}\rangle$ of $\langle\varphi_{i}\rangle$ . We then find by \S 26, for
every pair of indices $i,$ $j$ not exceeding $k$ , that $ p_{i}op_{j}\leqq\Omega(\varphi)<\epsilon$, and hence
that $ p_{i}p_{j}>|p_{i}|\cdot|p_{j}|\cos\epsilon$ . By summing the last inequality over $i$ and $j,$ we $\cdot$

get $ p^{2}>(|p_{1}|+\cdots+|p_{k}|)^{2}\cos\epsilon$, and this implies that
$|p|>(|\varphi_{1}|+\cdots+|\varphi_{n}|)\sqrt{\cos\epsilon}=L(\varphi, \Delta)\sqrt{\cos\epsilon}$ .

The first inequality of the assertion now follows immediately.
To derive the second inequality, take the above $\Delta$ so as to contain $\alpha$

and $\beta$ . Then $q$ is the sum of a certain subsequence $\langle q_{1}$ , $\cdot$ .. , $ q_{l}\rangle$ of $\langle p_{i}\rangle$ . By
summing the inequality $ p_{i}q_{j}>|p_{i}|\cdot|q_{;}|\cos\epsilon$ over $1\leqq i\leqq k$ and $1\leqq j\leqq l$, we
obtain

$ pq>(\sum_{i}|p_{i}|)(\sum_{j}|q_{j}|)\cos\epsilon\geqq|p|\cdot|q|\cos\epsilon$ .

This implies that $poq<e$ and so completes the proof.

64. Every continuous curve $\varphi$ on a closed interval I is rectifiable whenever
it is of bounded bend.

PROOF. By \S 36 there exists a subdivision $\Delta$ of $I$ such that $\Omega(\varphi,J)<3^{-1}\pi$

for every interval $J=[a, b]$ pertaining to $\Delta$ . It follows from \S 60 for each $\mathcal{F}$

that either $\varphi(a)\neq\varphi(b)$ , or else that $\varphi$ is constant throughout $J$. In the former
case we find by the preceding section that $L(\varphi, J)<2|\varphi(b)-\varphi(a)|$ , while in
the latter case we have $L(\varphi,J)=0$ . So that $L(\varphi)=\sum L(\varphi, J)<\infty$ (see \S 41),
and this completes the proof.

REMARK. We shall show by an example that the assertion will cease to
hold if we drop continuity of $\varphi$ . We define a finite function $f$ on $[0,1]$ by
setting $f(O)=0$ and $f(t)=t^{-1}$ for $0<t\leqq 1$ . It is then easy to see that the $\cdot$

curve $\varphi_{0}$ in $R^{2}$ , defined on $[0,1]$ by $\varphi_{0}(t)=\langle t,f(t)\rangle$ , is nonrectifiable, though
$\Omega(\varphi_{0})$ is finite.

65. Given a curve $\varphi$ on an interval $I$, we shall frequently use the
notation $\varphi(J)$ to mean $\varphi(\beta)-\varphi(\alpha)$ , where $J=[\alpha, \beta]$ is any closed interval in
I. Thus defined, $\varphi(J)$ is an additive vector-valued function of the interval $J$,

that is, we have $\varphi(J_{1}UJ_{2})=\varphi(J_{1})+\varphi(J_{2})$ whenever $J_{1}$ and $J_{2}$ are a pair of
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abutting closed intervals contained in $I$. We shall say that the point func-
tion $\varphi(t)$ and the interval function $\varphi(J)$ correspond to each other. The
$4unction\varphi(J)$ is not to be confused with the locus of the curve $\varphi,$

$i$ . $e$ . the
set of the points $\varphi(t)$ . After Saks, Theory of the Integral, we shall write
$\varphi[J]$ for the latter. We shall adopt similar notations and terminology for
real functions defined on an interval.

66. Suppose that $\varphi$ is a spherically representable curve in $R^{m}$ (\S 43) on an
interval $I$, and let there be given a unit vector $p$ of $R^{m}$ and an $ e<2^{-1}\pi$ in such
a manner that $\hat{\varphi}(t)cp<\epsilon$ at every point $t$ of I. Then the curve $\varphi$ is biunique on
$L$ and we have $\varphi(J)\langle\rangle p<\epsilon$ and $L(\varphi,J)\cos\epsilon\leqq\varphi(I)p$, where $J$ stands for a generic
closed interval in $L$

REMARK. It is not clear whether or not the sharper inequality $L(\varphi,J)$

$\times\cos\epsilon<\varphi(I)p$ holds for every $J$.
PROOF. Take any point $c$ of $I$ and consider the intervals $J$ that contain

$c$ and are so short as to ensure $\varphi(J)\neq 0$ as well as $\varphi(J)0\hat{\varphi}(c)+\hat{\varphi}(c)ap<\epsilon$ .
The last inequality implies, by triangular inequality, that $\varphi(J)op<\epsilon$, and
hence it follows that

$\varphi(J)p=|\varphi(J)|\cos(\varphi(J)\langle\rangle p)>|\varphi(J)|\cos\epsilon$ . (1)

We shall now show that $\varphi(J)p>|\varphi(J)|\cos e$ holds for every closed
interval $J$ in $I$. Suppose, if possible, that this were not the case for some

$J$, say $J^{\prime}$ . We could then determine, by the method of successive bisection,
a descending sequence $\langle J_{n} ; n\in N\rangle$ of closed intervals in $J^{\prime}$ , such that $J_{n}|=$

$2^{-n}|J^{\prime}|$ and $\varphi(J_{n})p\leqq|\varphi(J_{n})|\cos e$ for every $n$ . There would then exist a point
common to all $J_{n}$ . But this would clearly contradict (1), since $J_{n}|\rightarrow 0$ .

We thus have $\varphi(J)p>|\varphi(J)|\cos e$ for every $J$, and this shows in particular
that $\varphi(J)$ never vanishes. The curve $\varphi$ is therefore biunique over $I$, and
thus (1) is meaningful and valid for every $J$, so that we always have
$\cos(\varphi(J)op)>\cos\epsilon$, or what amounts to the same, $\varphi(I)\langle\rangle p<\epsilon$ .

Moreover, if $\overline{J}$ is a fixed closed interval in $I$ and if $\Delta$ is any subdivision
of $\overline{J,}$ then, summing $|\varphi(J)|\cos\epsilon<\varphi(I)p$ over the intervals $J$ pertaining to $\Delta$ ,

we get $L(\varphi, \Delta)\cos e<\varphi(\overline{J})p$ . It follows at once that $L(\varphi,\overline{J})\cos\epsilon\leqq\varphi(\overline{J})p$, and
this completes the proof.

67. Given a $C^{*}$ curve $\varphi$ on an interval $I$ (\S 43), suppose that $\hat{\varphi}$ is rectifiable.
Then $\hat{\varphi}$ is necessarily continuous on $I$.

PROOF. Take a fixed closed interval $J_{0}=[\alpha, \beta]$ in $I$. Since $\hat{\varphi}$ is rectifiable,
there exists a right-hand limit $p$ of $\hat{\varphi}(t)$ at $\alpha$ (cf. \S 38), and $p$ is clearly a
unit vector. We then can find, for any given $\epsilon<2^{-1}\pi$ , a closed interval $J_{\epsilon}$

$\backslash Containing\alpha$ and contained in $J_{0}$ , and such that $\hat{\varphi}(t)$ p<\’e as well as $\varphi(t)\neq$
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$\varphi(\alpha)$ , for every $t\in J_{e}-\{\alpha\}$ . In virtue of continuity of $\varphi$ it follows at onc$e$

from the preceding section that $\varphi$ is biunique on $J_{e}$ and that $\varphi(J)ap\leqq\epsilon$ for
every closed interval $J$ in $J_{\epsilon}$ . But if such a $J$ contains $\alpha$ and is sufficiently
short, then $\hat{\varphi}(\alpha)0\varphi(J)<\epsilon$, and hence $\hat{\varphi}(\alpha)\langle p\leqq\hat{\varphi}(\alpha)c\varphi(J)+\varphi(J)c\rangle p<2\epsilon$ . This
implies that $\hat{\varphi}(\alpha)(\nu p=0$ , or in other words, that $p=\hat{\varphi}(\alpha)$ . Recalling how we
have taken $J_{e}$ in the above, we find that the curve $\hat{\varphi}$ is right-hand continuous
at $\alpha$ . Similarly we show that it is left-hand continuous at $\beta$ , and this
completes the proof since $J_{0}=[\alpha, \beta]$ is arbitrary.

REMARK. The $C^{*}$ condition cannot be replaced by spheric representability,
as we see at once from the example given in the remark of \S 64.

68. THEOREM. We have $\Omega(\varphi)=\Lambda(\hat{\varphi})=L(\hat{\varphi})$ for every $C^{*}$ curve $\varphi$ on an
intewal $I$.

REMARK. This is an essential $g$eneralization of part of \S 50.
PROOF. In view of \S 45 it is enough to show that $\Omega(\varphi)\leqq L(\hat{\varphi})$ . Further,.

the final remark of \S 29 and its analogue for length enable us to restrict
ourselves to the case in which $I$ is a closed interval.

We may plainly suppose $\hat{\varphi}$ rectifiable, so that $\hat{\varphi}$ is a continuous curve $\cdot$

by the foregoing section. Given an $\epsilon<2^{=1}\pi$ we can therefore find a $\delta$ such
that $\hat{\varphi}(t_{1})0\hat{\varphi}(t_{2})<\epsilon$ for any two points $t_{I}$ and $t_{2}$ of $I$ satisfying $|t_{1}-t_{2}|<\delta$ .
Now let $J$ denote a generic closed interval in $I$, in the sequel. If $|J|<\delta$ , it
follows from \S 66 that the subcurve $(\varphi, J)$ is biunique and has nonvanishing
finite length $L(\varphi,J)$ satisfying $L(\varphi, J)\cos\epsilon\leqq|\varphi(J)|\leqq L(\varphi,J)$ , and further
that $\varphi(J)0\hat{\varphi}(t)<\epsilon$ for every $t\in J$. Hence we also see that $L(\varphi)<\infty$ .

Let us now take a point function $S(t)$ defind on $I$ and corresponding to,

the additive interval function $L(\varphi, J)$ (see \S 65). Then $S$ is clearly continu-
ous, and we see by the above that it is strictly increasing on $I$. Hence
$s=S(t)$ is a homeomorphic mapping of the interval $I$ onto the closed interval
$I_{0}=S[I]$ .

This being so, we define a curve $\psi$ on $I_{0}$ by $\psi(s)=\varphi(t)$ where $s=S(t)$ ,
$t\in I$. From what has been said above concerning $(\varphi, J)$ , we then infer easily
that $\psi$ is a regular $C^{1}$ curve on $I_{0}$ with $\psi^{\prime}(s)=\hat{\varphi}(t)$ . But this implies that
$\hat{\psi}(s)=\hat{\varphi}(t)$ , whence we see that $\hat{\varphi}$ and $\hat{\psi}$ are Lebesgue equivalent. On the $\cdot$

other hand $\varphi$ and $\psi$ are evidently so, too. We thus have, by \S 58, $\Omega(\varphi)=$

$\Omega(\psi),$ $L(\hat{\varphi})=L(\hat{\psi})$ , and $\Lambda(\hat{\varphi})=\Lambda(\hat{\psi})$ . This completes the proof on account
of \S 50.

69. Fenchel [2] proved in 1929 the following inequality on the integrated
curvature of closed space curves. Suppose that $\varphi(s)$ is a $C^{2}$ curve in $R^{n}6$

defined and periodic on $R$ with a period $\omega>0$ , and further that $s$ is the length
pammeler for $\varphi$ , so that we have $|\varphi^{\prime}(s)|=1$ and $\hat{\varphi}(s)=\varphi^{\prime}(s)$ at every point $s\in R_{0}$.
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Then the integrated curvalure of $\varphi$ over $J$, given by $\int_{J}|\varphi^{\prime\prime}(s)|ds=L(\hat{\varphi},J)$ , $ is\geqq 2\pi$

for any closed interval $J$ of length $\omega$ .
He also observed marginally that the $C^{2}$ condition may be replaced by

a weaker one that the curve $\varphi$ be twice differentiable, with the second derivative
$\varphi^{\prime\prime}$ summable over any finite interval. Here again $\int_{J}|\varphi^{\prime\prime}(s)|ds=L(\hat{\varphi}, J)$ , by the
Lebesgue theory of curve length, as Fenchel remarked further.

We shall now give a far-reaching extension of the Fenchel inequality.
THEOREM. If $\varphi$ is a $C^{*}$ curve in $R^{m}$ defined on a closed interval $[a, b]$ and

such that $\varphi(a)=\varphi(b)$ , then
$L(\hat{\varphi})\geqq 2\pi-\hat{\varphi}(a)c\hat{\varphi}(b)$ .

PROOF. This is an immediate consequence of \S 62 and \S 68.
REMARK. We do not know if the $C^{*}$ condition can be replaced by spheric

representability. A similar remark applies also to \S 68.

70. Given a real continuous function $f(t)$ on an interval $I$, suppose that $M$

is a nonvoid subset of I such that $f[I-M]$ is a countable set and that if
$[a, b]\subset I$ and $a\in M$, then there $exi\backslash \backslash \cdot ts$ a point $c\in R$ satisfying both $a<c<b$
and $f(a)<f(c)$ . Then the function $f$ is nondecreasing on $I$.

Moreover, $f$ increases strictly on I if $I-M$ is countable.
PROOF. We shall begin by showing that $f(\alpha)\leqq f(\beta)$ for every $[\alpha, \beta]$ in

I. Suppose if possible that we had $f(\alpha)>f(\beta)$ for some $[\alpha, \beta]$ , and take an
$x_{0}\in R$ not belonging to $f[I-M]$ and such that $f(\alpha)>x_{0}>f(\beta)$ . Denoting
by $t_{0}$ the greatest value of $t$ of $[\alpha, \beta]$ for which $f(t)=x_{0}$ , we see at once
that $t_{0}\in M$ and that $ t_{0}<\beta$ . By hypothesis there then exists a $t_{1}\in R$ satis-
fying both $ t_{0}<t_{1}<\beta$ and $f(t_{1})>f(t_{0})$ . But $f(t_{0})=x_{0}>f(\beta)$ , and hence we can
find a $t_{2}\in R$ such that $ t_{1}<t_{2}<\beta$ and that $f(t_{2})=x_{0}$ . This contradicts the
definition of $t_{0}$ . The function $f$ is thus nondecreasing on $I$.

We shall now show that it increases strictly on $I$, when $I-M$ is count-
able. Suppose, on the contrary, that $f$ were constant on some $[\alpha, \beta]$ in $L$

and take a point $t_{3}$ of $M$ satisfying $\alpha<t_{3}<\beta$ . By hypothesis we could then
choose a $t_{4}\in R$ such that $ t_{3}<t_{1}<\beta$ and that $f(t_{3})<f(t_{4})$ . This contradicts
constancy of $f$ on $[\alpha, \beta]$ and thus completes the proof.

REMARK. Continuity of $\varphi$ cannot be removed without destroying the $\cdot$

validity of the assertion, even in the case in which $M=I$. This is shown
by considering the function $f_{0}$ defined on the open interval $(0,1)$ by setting
$f_{0}(t)=0$ for rational $t$ and $f_{0}(t)=t$ for irrational $t$ .

71. Given a continuous curve $\varphi$ on an interval I and a positive finite $con-$

stant $A$ , suppose that $M$ is a subset of 1 such that $I-M$ is countable and such
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that if $[a, b]\subset I$ and $a\in M$, then there exists a point $c\in R$ satisfying both
$a<c<b$ and $|\varphi(c)-\varphi(a)|<A(c-a)$ . Then $|\varphi(\beta)-\varphi(\alpha)|<A(\beta-\alpha)$ for every
interval $[\alpha, \beta]$ in $I$.

PROOF. This proof is very similar to that given in the preceding section.
We shall begin by showing the weaker inequality $|\varphi(\beta)-\varphi(\alpha)|\leqq A(\beta-\alpha)$ .
Suppose, if possible, that we had the contrary for some $[\alpha, \beta]$ . Writing
$F(t)=|\varphi(t)-\varphi(\alpha)|-A(t-\alpha)$ for $t\in I$, so that $F(\alpha)=0<F(\beta)$ , we then can
find a positive number $\epsilon$ smaller than $F(\beta)$ and not belonging to the count-
.able set $F[I-M]$ . On account of continuity of the function $F$, there exist
points $t$ of $[\alpha, \beta]$ at which $ F(t)=\epsilon$ . Denoting by $t_{0}$ the largest of such $t$,
we see at once that $ t_{0}<\beta$ and that $t_{0}\in M$. So that, by hypothesis, we can
take a $t_{1}\in R$ satisfying both $ t_{0}<t_{1}<\beta$ and $|\varphi(t_{1})-\varphi(t_{0})|<A(t_{1}-t_{0})$ , and it
follows that

$ F(t_{1})\leqq F(t_{0})+|\varphi(t_{1})-\varphi(t_{0})|-A(t_{1}-t_{0})<\epsilon$ .
But there is then a $t_{2}\in R$ such that $ t_{1}<t_{2}<\beta$ and that $ F(t_{2})=\epsilon$ . This
contradicts the definition of $t_{0}$ , and the weaker inequality is thus established.

To obtain $|\varphi(\beta)-\varphi(\alpha)|<A(\beta-\alpha)$ for every $[\alpha, \beta]$ in $I$, let us suppose
on the contrary that we had $|\varphi(\beta)-\varphi(\alpha)|=A(\beta-\alpha)$ for some $[\alpha, \beta]$ . It
then follows that $|\varphi(\beta^{\prime})-\varphi(\alpha^{\prime})|=A(\beta^{\prime}-\alpha^{\prime})$ for any $[\alpha^{\prime}, \beta^{\prime}]$ in $[\alpha, \beta]$ , for
indeed

$|\varphi(\beta)-\varphi(\alpha)|\leqq|\varphi(\beta)-\varphi(\beta^{\prime})|+|\varphi(\beta^{\prime})-\varphi(\alpha^{\prime})|+|\varphi(\alpha^{\prime})-\varphi(\alpha)|$

$\leqq A(\beta-\beta^{\prime})+A(\beta^{\prime}-\alpha^{\prime})+A(\alpha^{\prime}-\alpha)=A(\beta-\alpha)$ .
“Take now a point $t_{3}$ of $M$ for which $\alpha<t_{3}<\beta$ . By hypothesis we then can
choose a $t_{4}\in R$ such that $ t_{3}<t_{4}<\beta$ and that $|\varphi(t_{4})-\varphi(t_{3})|<A(t_{4}-t_{3})$ . This
is clearly incompatible with what has just been said above, and thus the
$I)roof$ is complete.

REMARK. Continuity of $\varphi$ is essential for the validity of the assertion
even when $M=I$. This is seen at once by considering the curve $\varphi_{0}$ in $R^{2}$

$\nu defined$ on $R$ by $\varphi_{0}(t)=\langle t,f_{0}(t)\rangle$ , where $f_{0}(t)=0$ for rational $t$ and $f_{0}(t)=1$

for irrational $t$. In fact, there exists for any $[a, b]$ a point $c$ such that
$a<c<b$ and that $|\varphi_{0}(c)-\varphi_{0}(a)|<2(c-a)$ , since we need only take $c$ rational
or irrational according as $a$ is respectively rational or irrational. Never-
theless, the conclusion of the assertion is clearly false.

72. Intervals endless on the right or left. An interval without a largest
element [smallest element] will be termed right-hand endless or endless on
$Jhe$ right [left-hand endless or endless on the left]. By an endless interval we
shall understand one which is endless on both sides, or what amounts to
the same, one which is an open set in $R$ . Open intervals are evidently
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endless but not vice versa, for we do not count infinite intervals as open
ones even when they are open sets in $R$ $(see \S 1)$ .

73. Right-hand [or left-hand] derived directions and direction curves.
Given a curve $\varphi$ in $R^{m}$ on an interval $I$ endless on the right, we shall say
that a unit vector $p$ in $R^{m}$ is a right-hand derived direction of the curve $\varphi$ at
a point $c$ of $L$ iff we can find, for any $\delta$ , a closed interval $J\subset I$ with the
left-hand extremity $c$ and such that $|J|<\delta,$ $\varphi(J)\neq 0$ , and that $\varphi(I)\langle\rangle p<\delta$ .
Furthermore, a spheric curve $\gamma$ in $R^{m}$ defined on a set $E\subset I$ will be called
a right-hand direclion curve on $E$ of the curve $\varphi$ iff the vector $\gamma(t)$ is a right-
hand derived direction of $\varphi$ at every $t\in E$.

It goes without saying that $\gamma$ need not be uniquely determined when $\varphi$

and $E$ are given. So that the curve $\varphi$ might have more than one right-hand
direction curves on the set $E$. Evidently a similar remark applies to right-
hand derived directions at a given point $c$ .

We define the concepts of left-hand derived direction and left-hand direction
curve in an analogous way. Indeed we have only to replace the words right
and left respectively by left and right in the above.

74. We shall now prove a proposition which has a strong resemblance
to that of \S 66 and will be needed later on (\S 83). We may, however, observe
that neither of the two propositions includes the other. In point of fact,
we assumed the curve under consideration in \S 66 to be spherically repre-
sentable, while we are concerned with a continuous curve in the following
result.

Given a continuous curve $\varphi$ in $R^{m}$ on an interval I endless on the right and
a right-hand direction curve $\gamma$ of $\varphi$ on a set $M\subset I$, suppose that $I-M$ is couut-
able and that there exist an $\epsilon<2^{-1}\pi$ and a unit vector $p$ of $R^{m}$ in such a manner
that $\gamma(t)op<\epsilon$ for every $t\in M$. Then $\varphi$ is biunique on $I$, and we have $\varphi(J)op<\epsilon$

and $L(\varphi,J)\cos\epsilon\leqq\varphi(J)p$ , where $J$ denotes a generic closed interval in $I$.
PROOF. Let us consider the continuous function $f(t)=\varphi(t)p$ on $I$. For

any $[a, b]\subset I$ with $a\in M$, there exists, by hypothesis, an interval $K=[a, c]$

such that $a<c<b,$ $\varphi(K)\neq 0$ and that

$\varphi(K)\langle\rangle p\leqq\varphi(K)0\gamma(c)+\gamma(c)op<\epsilon$ .
Consequently we find that

$f(K)=\varphi(K)p=|\varphi(K)|\cos(\varphi(K)\circ p)>|\varphi(K)|\cos\epsilon>0$ . (1)

Therefore, by \S 70, the function $f$ increases strictly on $I$, and so its range
$I_{0}=f[I]$ must be an interval. It follows also that $\varphi$ is biunique over $I$.

We no wdefine a curve $\psi$ on $I_{0}$ by setting $\psi(\tau)=\varphi(t)$ for $\tau=f(t)(t\in I)$ .
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For any $[a_{0}, b_{0}]\subset I_{0}$ with $a_{0}\in f[M]$ there then exists, by (1), an interval
$K_{0}=[a_{0}, c_{0}]$ such that $a_{0}<c_{0}<b_{0}$ and that $|\psi(K_{0})|cos\epsilon<|K_{0}|$ . Also, the set
$I_{0}-f[M]$ is countable since it coincides with the countable set $f[I-M]$ .
It follows immediately from \S 71 that $|\psi(J_{0})|\cos\epsilon<|J_{0}|$ for every closed
interval $J_{0}$ in $I_{0}$ . In other words, we have $|\varphi(J)|\cos\epsilon<f(J)=\varphi(I)p$ for
every closed interval $J$ in $I$. We thus have $\varphi(J)\theta p<\epsilon$ for every $J$.

From now on we may proceed precisely as in the final paragraph of
\S 66, and the proof is thus complete.

REMARK. We cannot remove continuity of $\varphi$ even in the special case
$M=I$. This is shown by considering the same curve $\varphi_{0}$ as given in the
$re$mark of \S 71. In fact, defining the spheric curve $\gamma_{0}$ on $R$ by setting
$\gamma_{0}(t)=p_{0}=\langle 1,0\rangle$ for every $t$ , we see at once that $\gamma_{0}$ is a right-hand direction
curve of $\varphi_{0}$ and that $\gamma_{\cup}(t)cp_{0}=0$ for every $t$ . However, the asserted inequali-
ties are clearly false.

75. We shall conclude this chapter with a result which completes the
preceding proposition in some minor point, though we shall have no occasion
to use it in the sequel. Our interest lies chiefiy in the method of proof, as
we shall make essential use of the Lebesgue theory.

We have, in the preceding proposition, the sharper inequality $L(\varphi, J)\cos\epsilon<$

$\varphi(J)p$ for every $J$ .
PROOF. In virtue of the change of parameter $\tau=f(t)$ utilized above, we

may suppose from the first that $|\varphi(J)|\cos\epsilon<\varphi(J)p=|J|$ for every $J$. Thus
$\varphi$ is absolutely continuous on every $J$ and so is derivable almost everywhere
on $I$. Note that, if $c$ is an endpoint of the interval $I$, then we understand
by derivability of $\varphi$ at $c$ onesided derivability. We shall denote by $\varphi^{\gamma}(t)_{r}$

the derivative of $\varphi$ where it is derivable, and zero where it is not. In view
of the hypothesis $\varphi(J)p=|J|$ we then find successively that, almost every-
where on $I$,

$\varphi^{\gamma}(t)p=1$ , $\varphi^{\prime}(t)=|\varphi^{\gamma}(t)|\gamma(t)$ , $|\varphi^{\prime}(t)|\cos\epsilon<|\varphi^{\prime}(t)|t^{\prime}(t)p=1$ .

Now, for every $J,$ $L(\varphi, J)=\int_{J}|\varphi^{\gamma}(t)|dt$ by a theorem due to Tonelli (see p. 123
of Saks, Theory of the Integral). Therefore

$L(\varphi,J)\cos\epsilon=\int_{I}|\varphi^{\gamma}(t)|\cos 6dt<\int_{J}dt=|J|=\varphi(J)p$ ,

which completes the proof.

Chapter IV. Representation of bend as spheric length.

76. We have $L(7^{\prime})=\Lambda(\gamma)$ for every continuous spheric curve $r$ defined on an
interval $I$.
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FIRST PROOF. In view of \S 40 we need only show that $\Lambda(\gamma)\leqq L(\gamma)$ . The
analogues of the final remark of \S 29 for ordinary and spheric length allows
us to assume that $I$ is a closed interval. So that $r$ is uniformly continu-
ous over $I$. Given any $\epsilon<1$ we can therefore find a $\delta$ such that if $t_{1}$ and $t_{2}$

are any points of $I$ satisfying $|t_{1}-t_{2}|<\delta$ and if we write for short $\gamma_{1}=\gamma(t_{1})|$

and $\gamma_{2}=\gamma(t_{2})$ , then $|\gamma_{1}-\gamma_{2}|<2^{=1_{\xi}}$ . On account of (i) of \S 24 we then get
successively $\gamma_{1}0\gamma_{2}<e$ and $|r_{1}-r_{2}|\geqq(1-\epsilon)(\gamma_{1}0\gamma_{2})$ . It follows that $L(\gamma, \Delta)\geqq$

$(1-\epsilon)\Lambda(\gamma, \Delta)$ for any finite subset $\Delta$ of $I$ such that $\Vert\Delta\Vert<\delta$ . We find at
once that $L(\gamma)\geqq(1-\epsilon)\Lambda(\gamma)$ , whence $L(\gamma)\geqq\Lambda(\gamma)$ , as required.

SECOND PROOF. Fixing a point $c$ of $I$ and writing $\varphi(t)=\int_{c^{t}}\gamma(\tau)d\tau$ for
$t\in I$, we have $\varphi^{\prime}(t)=\gamma(t)$ everywhere on $I$. Thus $\varphi$ is regular and $C^{1}$ on $I$ and
$\hat{\varphi}=\gamma$ . Hence the result by \S 50, since we may assume $I$ a closed interval.

77. Right-hand [or left-hand] tangent directions and spheric representa-
tions. Given a parametric curve $\varphi$ in $R^{m}$ on an interval $I$ endless on the
right, we shall say that a unit vector $p$ of $R^{m}$ is the right-hand tangent
direction of the curve $\varphi$ at a point $c$ of $I$, iff for any given $\epsilon$ there exists a
$\delta$ such that we have both $\varphi(J)\neq 0$ and $\varphi(J)\langle\rangle p<6$ whenever $J$ is a closed
interval in $I$ whose left-hand endpoint is $c$ and whose length is less than $\delta$ .
When this is the case, obviously $p$ is uniquely determined and is at the
same time the unique right-hand derived direction of $\varphi$ at $c$ (see \S 73).

Again, a spheric curve $\gamma$ in $R^{m}$ defined on $I$ will be termed right-hand
spheric representation of $\varphi$ and denoted by the symbol $\varphi^{R}$ , iff the unit vector
$\gamma(t)$ is the right-hand tangent direction of the curve $\varphi$ at every point $t$ of
I. Further, by a right-hand spherically representable curve we shall understand
one possessing right-hand spheric representation.

By interchanging the words right and left with left and right respec-
tively in the above, we obtain the corresponding definitions for the left-hand
concepts and for the notation $\varphi^{L}$ .

It is worth while to observe that, even when a curve $\varphi$ possesses a
uniquely determined right-hand derived direction $q$ at a point $c$ , we cannot
on that account infer that $q$ is the right-hand tangent direction of $\varphi$ at $c$ .
This may be seen by simple examples.

78. If a curve $\varphi$ , defined on an endless interval $I$, is spherically representable
on both sides and if $\varphi^{R}=\varphi^{L}$, then $\varphi$ is spherically representable (see \S 43) and
we have $\hat{\varphi}=\varphi^{R}=\varphi^{L}$ .

PROOF. Let us write $\psi=\varphi^{R}=\varphi^{L}$ for short. Given a point $c$ of $I$ and
an arbitrary $\epsilon<2^{=1}\pi$ we can find a $\delta$ for which we have both $\varphi(J)\neq 0$ and
$\varphi(J)c\psi(c)<\epsilon$ whenever $J$ is a closed interval in $I$ with $|J|<\delta$ and such
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that $c$ is one of the extremities of $J$.
Now let $K=[a, b]$ be any closed interval with length $<\delta$ , contained in

$I$ and containing the point $c$ . We shall show that $\varphi(K)\neq 0$ and that $\varphi(K)0$

$\psi(c)<3\epsilon$ . For this purpose we may plainly assume that $a<c<b$ . Writing
$J_{1}=[a, c]$ and $J_{2}=[c, b]$ , we see that $\varphi(J_{1})$ and $\varphi(J_{2})$ are nonvanishing vectors
such that $\varphi(J_{i})0\psi(c)<\epsilon(i=1,2)$ . So that $\varphi(J_{1})0\varphi(J_{2})\leqq\varphi(J_{1})0\psi(c)+\varphi(J_{2})0$

$\psi(c)<2\epsilon<\pi$ and consequently $\varphi(K)=\varphi(J_{1})+\varphi(J_{2})\neq 0$ . It therefore follows
in virtue of \S 23 that

$\varphi(K)0\varphi(J_{1})=\varphi(J_{1})0\varphi(J_{2})-\varphi(K)\langle\rangle\varphi(J_{2})\leqq\varphi(J_{1})\langle\rangle\varphi(J_{2})<2_{6}$ ,

whence we get $\varphi(K)0\psi(c)\leqq\varphi(K)\langle\rangle\varphi(J_{1})+\varphi(J_{1})0\psi(c)<3\epsilon$. Thus $\psi$ is the
spheric representation of $\varphi$ .

79. $C^{R},$ $C^{L}$ and $C^{RL}$ curves. A parametric curve $\varphi$ defined on an interval
$T$ endless on the right [or on the left] will be called to be $C^{R}$ [or $C^{L}$] on $I$

iff it is both continuous and right-hand [or left-hand] spherically represent-
able on $I$. We shall further term a curve defined on an endless interval $I$

to be $C^{RL}$ on $I$ iff it is both $C^{R}$ and $C^{L}$ on $I$.
The symbols $C^{R},$ $C^{L}$ and $C^{RL}$ will also be used to denote the respective

classes of the reIevant curves. Thus $C^{RL}(I)$ is the intersection of $C^{R}(I)$ and
$C^{L}(I)$ for every endless interval $I$.

80. Every light continuous curve $\varphi$ defined and of bounded bend on an
interval I endless on the right is $C^{R}$ on $L$

PROOF. Take a fixed point $c$ of $I$. Given an arbitrary $\epsilon<2^{-1}\pi$ we can,
in virtue of \S 36, find a closed interval $J=[c, c+\delta]$ in $I$ for which $\Omega(\varphi,J)<\epsilon$.
Since $\varphi$ is light, it follows from \S 60 that $\varphi$ is biunique on $J$. Consequently
we infer from \S 63 that $\varphi(K)\langle>\varphi(J)<\epsilon$ for every closed interval $K$ in $J$, and
the result follows easily.

REMARK. It is probable that continuity of $\varphi$ can be dropped simulta-
neously from hypothesis and conclusion of the above proposition, so that $\varphi$

is now only asserted to be right-hand spherically representable. But then
the proof will become considerably longer.

81. Every finite real function $f$ defined and of bounded variation on a set
$E\subset R$ has a finite right-hand [left-hand] limit at every right-hand [left-hand]

accumulation point of $E$.
Again, every curve $\varphi$ defined and rectifiable on a set $E\subset R$ has a finite

right-hand [left-hand] limit at every right-hand [left-had] accumulation point of
$E$.

PROOF. By the lemma on p. 221 of Saks, Theory of the Integral, the



On certazn properties $0\int$ parametric curves. 163

function $f$ coincides on $E$ with a function which is of bounded variation on
the whole $R$ . Henc $e$ the first result. The second result is an immediate
consequence of the first and \S 38.

82. If $\psi$ is a parametric curve on a set $E\subset R$ and if we write $F(I)=$

$L(\psi, I^{o}E)$ for each closed interval $I\subset R$ , then $F$ is a nonnegative overadditive
interval function on $R$ possessing inside limit property.

The same result holds for $G(I)=\Lambda(\gamma, I^{o}E)$ in case $r$ is a spheric curve on $E$.
So that it follows at once from \S 35 that if $\psi$ is rectifiable, then given any

closed interval I and any $\epsilon$ we can find a subdivision $\Delta$ of I in such a manner
that $ F(J)<\epsilon$ for every interval $J$ pertaining to $\Delta$ . Similarly for the function $G$ ,

if $\gamma$ is spherically rectifiable.
REMARK. Note that, by \S 40, spheric rectifiability of a spheric curve is

equivalent to its rectifiability.
PROOF. Let $I_{1},$

$\cdots,$ $I_{n}(n\in N)$ be $n$ non-overlapping closed intervals in
$I$ and take a finite set $\Delta_{i}$ in each $I_{i}^{o}E$. Then $ F(I)\geqq L(\psi, \Delta_{1}U\cdots U\Delta_{n})\geqq$

$\sum_{i\Rightarrow 1}^{n}L(\psi, \Delta_{i})$ , and hence, taking the supremum of the sum, we get $F(I)\geqq F(I_{1})$

$+\cdots+F(I_{n})$ . Thus $F$ is overadditive.
Next let $\eta$ be any real number $<F(I)$ . We shall show that there is a

closed interval $J$ in $I^{0}$ for which $ F(J)>\eta$ . We may clearly assume that
$\eta\geqq 0$ . There then exists a nondegenerate finite set $\Delta=\{t_{0}, \cdots , t_{k}\}$ in $I^{o}E$

such that $t_{0}<\cdots<t_{k}$ and that $L(\psi, \Delta)>\eta$ . Taking $\delta$ so small that $ J=[t_{0}-\delta$,
$t_{k}+\delta]\subset I^{o}$ we find that $\Delta\subset J^{O}E$ and hence that $ F(J)\geqq L(\psi, \Delta)>\eta$ , as an-
nounced. Thus $F(I)$ is the supremum of $F(K)$ where $K$ is a generic closed
interval in $I^{o},$ $i$ . $e$ . $F$ has inside limit property.

The assertion for $G$ is proved in an entirely similar way.

83. Given a continuous curve $\varphi$ on an endless interval I and a subset $M$ of
I such that $I-M$ is countable, suppose that there is a rectifiable curve $\gamma$ defined
on $M$ and which is a right-hand direction curve (\S 73) on $M$ of $\varphi$ . Then $\varphi$ is
$C^{RL}$ on $I$.

If, furlher, $\theta$ is any direction curve (\S 44) on I of $\varphi$ , then $\theta(t+)=\varphi^{R}(t)$ and
$\theta(t-)=\varphi^{L}(t)$ at each $t\in I$. So that, in particular, the curves $\varphi^{R}$ and $\varphi^{L}$ are
continuous, respectively on the right and on the left, on $I$.

PROOF. Noting that every point of $I$ is a left-hand accumulation point
of $M$, we see that the curve $\gamma$ has by \S 81 a finite left-hand limit $\gamma(t-)$ at
every $t\in I$. Let now $c$ be a fixed point of $I$. Given an arbitrary $ e<2^{=1}\pi$,
we can, by the preceding section, find a $\delta$ such that $J=(c-\delta, c)\subset I$ and that
$\Lambda(\gamma,JM)<2^{-I}\epsilon$ . Thus $\gamma(t^{\prime})0\gamma(t^{\prime\prime})<2^{-1}\epsilon$ for any pair $t^{\prime},$ $t^{\prime\prime}$ of points of $JM$,
and so $\gamma(t)\langle\rangle\gamma(c-)\leqq 2^{-1}\epsilon$ for every $t\in JM$. Further, the set $J-JM$ is count-
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able and the subcurve $(\gamma, JM)$ of $\gamma$ is a right-hand direction curve on $J_{4}t,I$ of
$(\varphi, J)$ . Hence, by \S 74, the curve $\varphi$ is biunique on $J$ and we have $\varphi(K)0\varphi(c-)$

$<\epsilon$ for every closed interval $K\subset J$.
We shall now show that $\varphi(t)\neq\varphi(c)$ for every $t\in J$. Suppose on the

contrary that we had $\varphi(t_{1})=\varphi(c)$ for some $t_{1}\in J$. Fixing a point $t_{2}$ of $(t_{1}, c)$

and writing $J_{1}=[t_{1}, t_{2}],$ $J_{2}=[t_{2}, c]$ , and $J^{\prime}=[t_{2}, t]$ where $t_{2}<t<c$ , we get

$\varphi(J_{1})\langle\rangle\varphi(J^{\prime})\leqq\varphi(J_{1})\circ\gamma(c-)+\varphi(J^{\prime})0\gamma(c-)<2\epsilon$ .
By making $t\rightarrow c$ here, we find successively that $\varphi(J^{\prime})\rightarrow\varphi(J_{2})=-\varphi(J_{1}),$ $\varphi(J_{1})\langle\rangle$

$\varphi(J^{\prime})\rightarrow\varphi(J_{1})0\varphi(J_{2})=\pi$ , and finally that $\pi\leqq 2\epsilon$ , which contradicts the assump-
tion $\epsilon<2^{-1}\pi$ .

The curve $\varphi$ is thus biunique on $(c-\delta, c$] and we have $\varphi(K)0\gamma(c-)\leqq\epsilon$

for any closed interval $K$ in $(c-\delta, c$]. This shows firstly that $\gamma(c-)$ is the
left-hand tangent direction of the curve $\varphi$ at $c$ , so that $\varphi$ is $C^{L}$ on $I$ since
the point $c$ was taken arbitrarily. Secondly, if $\theta$ is anv direction curve on
$I$ of $\varphi$ , we deduce at once that $\theta(t)\Leftrightarrow\gamma(c-)\leqq e$ for every $t\in J$ and hence that
$\theta(c-)=\gamma(c-)=\varphi^{L}(c)$ . We thus have $\theta(t-)=\varphi^{L}(t)$ everywhere on $I$.

It can be shown in a similar way that $\varphi$ is a $C^{R}$ curve on $I$, that $\varphi^{R}(t)$

$=\gamma(t+)$ for every $t\in I$, and that $\theta(t+)=\varphi^{R}(t)(t\in I)$ whenever $\theta$ is a direc-
tion curve on $I$ of $\varphi$ . But the proof will be shorter since we can dispense
with the verification of $\varphi(t)\neq\varphi(c)$ for every $t\in J$. Indeed \S 74 will be
directly applicable to an interval of the form $[c, c+\delta$).

REMARK. One might suspect that dropping continuity hypothesis of $\varphi$

would only result in corresponding deletion of continuity from the conclu-
sion, so that we could at least assert that $\varphi$ is spherically representable on
both sides on $I$. However, the example given in the remark of \S 71 shows
that this is not true.

84. Suppose that $\psi$ is a right-hand continuous curve on a finite interval $I$

which is endless on the right. Given any real number $\eta<L(\psi)$ , there then exists
a $\delta$ such that $L(\psi, \Delta)>\eta$ for every $\delta$-net $\Delta$ in $I$ (cf. \S 56).

Moreover, if $\psi$ is spheric in addiiion, then a similar result holds for spheric
length, too.

PROOF. Take an $\epsilon$ such that $\eta+\epsilon<L(\psi)$ . We can find a nondegenerate
finite set $\Delta_{0}\subset I$ such that $L(\psi, \Delta_{0})>\eta+\epsilon$ . Here we may clearly suppose
that $\Delta_{0}\subset I^{o}$ , since $\psi$ is right-hand continuous. For the same reason there
is a $\delta$ such that if $\Delta$ is any $\delta$-net in $I$, then to each point $c$ of $\Delta_{0}$ there
corresponds biuniquely an interval $J=[a, b]$ pertaining to $\Delta$ such that $a\leqq c$

$<b$ and that

$|\psi(a)-\psi(c)|+|\psi(c)-\psi(b)|<|\psi(J)|+n^{-1}e$ ,
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where $n$ denotes the number of the points of the set $\Delta_{0}$ . It follows that

$\eta+\epsilon<L(\psi, \Delta_{0})\leqq L(\psi, \Delta U\Delta_{0})<\sum_{K}|\psi(K)|+\epsilon=L(\psi, \Delta)+\epsilon$ ,

where $K$ represents the intervals pertaining to $\Delta$ . Hence $L(\psi, \Delta)>\eta$ , as
required.

We can establish similarly the result for spheric length.

85. If $\psi$ is a right-hand continuous curve on an interval I endless on the
right and if $M$ is a dense subset of $I$, then $L(\psi, M)=L(\psi)$ . Moreover, if $\psi$ is
spheric in addition, then $\Lambda(\psi, M)=\Lambda(\psi)$ .

PROOF. In virtue of a change of variable $\tau=f(t)$ , where $f$ is a real
function which is continuous, bounded, and strictly increasing on $I$, we may
suppose from the first that $I$ is a finite interval endless on the right. Then
the results follow immediately from the preceding section, since we can, for
any $\delta$ , take $\delta$-nets $\Delta$ in $I$ such that $\Delta\subset M$.

86. $Vec\not\in or$-valued interval functions. Let $J$ denote a generic closed
interval contained in a given interval $I$. By a vector-valued interval function
on $I$ we shall understand a mapping of the class $\{J\}$ into $R^{tn}$ . Such a func-
tion $\mu$ will be termed additive iff we have $\mu(J_{1}UJ_{2})=\mu(J_{1})+l\ell(J_{2})$ whenever

$J_{1}$ and $J_{2}$ are two abutting closed intervals in $I$. Again, we shall call $\mu$

continuous on $J$ iff given any $\epsilon$ there is a $\delta=\delta(\epsilon)$ such that $|\mu(J^{\prime})|<\epsilon$ for
any closed interval $J^{\prime}$ in $J$ with length $|J^{\prime}|<\delta$ . We shall further say that
$\mu$ is continuous on $I$ iff it is continuous on every $J$ in $I$.

If $\varphi$ is a curve on the interval $I$, then the interval function $\varphi(J)$ as
defined in \S 65 is clearly a vector-valued additive interval function in the
above sense, and the curve $\varphi(t)$ is continuous on $I$ iff $\varphi(J)$ is continuous on
$I$ in the above sense.

On the other hand, given any vector-valued additive interval function $\mu$

on $I$, there exist infinitely many curves $\varphi$ on $I$ that correspond to $\mu$ in the
sense of \S 65, $i$ . $e$ . $\mu(J)=\varphi(J)$ for every $J$. Any two of such curves $\varphi$ obvi-
ously differ only by a constant, and hence $\Omega(\varphi)$ and $L(\varphi)$ are uniquely
determined by $/J$ .

87. Given a curve $\varphi$ on an interval $I$ we shall agree, whenever con-
venient, to understand the zero vector by $\varphi(E)$ for every degenerate set $E$

of $I$. In case $E=\{c\}$ is one-pointic, we have accordingly to distinguish
strictly between $\varphi(\{c\})$ and $\varphi(c)$ .

Given two intervals I and $I_{0}$ , suppose that $\varphi$ is a continuous curve defined
on $I_{0}$ , and that $f$ is a continuous nondecreasing mapping of I into $I_{0}$ . Then the
vector-valued interval function $\xi$ defined on I by $\xi(J)=\varphi(f[J])$ , where $J$ is a
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generic closed interval in $I$, is continuous and additive on $I$.
PROOF. This is evident since $\xi$ corresponds to the point function $\varphi(f(t))$ .

88. Suppose that $\mathfrak{M}$ is a nonvoid countable class of closed intervals contained
in a given interval $I$, and further that to each interval $K$ of $\mathfrak{M}$ there is attached
a continuous curve $\nu_{K}$ on $K$ in such a manner that $ A=\sum_{K}O(\nu_{K})<\infty$ , where

summation is extended over $\mathfrak{M}$ and where $O(\nu_{K})$ denoles the oscillation of $\nu_{K}$ over
$K,$ $i$ . $e$ . the diameter of the set $\nu_{K}[K]$ . We define a vector-valued interval func-
tion $\nu$ on I by $\nu(J)=\sum_{K}\nu_{K}(JK)$ , where $J$ is a generic closed interval in I. Then
$\nu$ is additive and continuous on $I$.

PROOF. If $J_{1}$ and $J_{2}$ are a pair of adjacent closed intervals in $I$, then
$J_{1}K$ and $J_{2}K$ are so too for each $K$ provided neither of them is degenerate.
Hence

$\nu(J_{1}UJ_{2})=\sum_{K}\nu_{K}(J_{J}KUJ_{2}K)=\sum_{K}\nu_{K}(J_{1}K)+\sum_{K}\nu_{K}(J_{2}K)=\nu(J_{1})+\nu(J_{2})$ ,

and so $\nu$ is additive.
To show the continuity of $\nu$ , let us take, for anv given $\epsilon$ , a nonvoid

finite subclass $\mathfrak{R}$ of $\mathfrak{M}$ such that $\sum_{K}^{\prime}O(\nu_{K})>A-\epsilon$ , where the dash means
that the summation is extended over $\mathfrak{R}$ . Denoting by $n$ the power of $\mathfrak{R}$ , we
see at once that there exists a $\delta$ such that $|\nu_{K}(L)|<n^{-1}\epsilon$ whenever $L$ is a
closed interval contained in some $K\in \mathfrak{R}$ and having length $|K|<\delta$ . It fol-
lows that, for every closed interval $J\subset I$ with length $|J|<\delta$ ,

$|\nu(J)|\leqq\nearrow\nabla^{\gamma},|\nu_{K}(JK)|+\epsilon<KK^{\lrcorner}X^{\prime}n^{-1}\epsilon+\epsilon=2\epsilon$ .

This complet $es$ the proof.

89. Given two endless intervals I and $I_{0}$ , suppose that $\varphi$ is a $C^{R}$ curve
defined on $I_{0}$ , lhat $\varphi^{R}$ is rectifiable (so that $\varphi$ is also $C^{L}$ on $I_{0}$ by \S 83), and
further that $f$ is a continuous nondecreasing nonbiunique mapping of I onto $I_{0}$ .
Assume furthermore that $\varphi^{R}(u)=\varphi^{L}(u)$ for $u\in I_{0}$ whenever $f^{-1}(u)$ , the inverse
image of the point $u$ under the mapping $f$, is one-pointic. By hypothesis there
are points $u$ of $I_{0}$ whose inverse images $K=f^{-1}(u)$ are not one-pointic and are
therefore closed intervals in I. Denote by $\mathfrak{M}$ the class of all such $K$ and suppose
that there is given for each $K=[\alpha, \beta]$ a curve $\nu_{K}$ belonging to $C^{*}(K)$ and such
that we have, writing $f[K]=\{u\}$ ,

$\hat{\nu}_{K}(\alpha)=\varphi^{L}(u),\hat{\nu}_{K}(\beta)=\varphi^{R}(u),$ $\Lambda(\hat{\nu}_{K})=\hat{\nu}_{K}(\alpha)\theta\hat{\nu}_{K}(\beta)$ .
Moreover, let $\sum_{K}O(\nu_{K})$ be convergent, where (and subsequently) summation is $ex-$

tended over $\mathfrak{M}$, which is clearly a countable class.
Under these conditions, let us define, for each closed interval $J$ in $L$
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$\nu(J)=\sum_{K}\nu_{K}(JK)$ , $\mu(J)=\varphi(f[J])+\nu(J)$ ,

so that $\mu$ is, by \S \S 87-88, a vector-valued additive continuous interval function on
I. Now, if we denote by $\psi$ any curve defined on I and corresponding to $\mu$ (cf.
\S 86), then $\psi$ is a $C^{*}(I)$ curve and so we get, by \S 68,

$\Omega(\psi)=L(\tau\hat{r})=\Lambda(\hat{\Psi})$ .
PROOF. We remark first that $\hat{\nu}_{K}$ is, for each $K$ of $\mathfrak{M}$ , a continuous curve

on $K$ by \S 67. This being so, we shall begin by constructing a spheric
curve $\tilde{\mu}$ on $I$ as follows. Let $t$ be any point of $I$ and write $\Phi(t)=f^{-1}(u\rangle$

where $u=f(t)$ . If $\Phi(t)=\{t\}$ , we define $\tilde{\mu}(t)$ to be the common value $\varphi^{R}(u)=$

$\varphi^{L}(u)$ . Otherwise $\Phi(t)\in \mathfrak{M}$ , and we put $\tilde{\mu}(t)=\hat{\nu}_{K}(t)$ where $K=\Phi(t)$ .
We shall show in the sequel that $\tilde{\mu}(c)$ is the right-hand tangent direction

of the curve $\psi$ at each $c\in I$. This being evident if $c$ differs from the largest
element of $\Phi(c)$ , we may suppose the contrary to be the case. Then the
function $f$ is not constant on any interval $[c, c+\delta]$ contained in $I$. Conse-
quently, denoting by $t_{1}$ and $t_{2}$ respectively the smallest and the largest element
of $\Phi(t)$ wherec $<t\in I$, we see at once that $c<t_{1}\leqq t$. It follows that for any
$[c, c_{1}]\subset I$ there exists a subinterval $[c, c_{2}]\subset[c, c_{1}]$ such that $c<t_{1}\leqq t_{2}<c_{1}$

whenever $c<t<c_{2}$ .
Now, by \S 83 and by rectifiability of $\varphi^{R}$, we can associate with any given

$\xi<2^{-1}\pi$ an interval $[c, c_{1}]\subset I$ such that every point $t$ of the open interval
$(c, c_{1})$ satisfies both $\varphi^{R}(u)\langle\varphi^{R}(d)<4^{-1}\epsilon$ and $\varphi^{L}(u)\langle\nu\varphi^{R}(d)<4^{-1}\epsilon$, where (and
subsequently) we write $u=f(t)$ and $d=f(c)$ . Let us take, for this point $c_{1}$ ,
the point $c_{2}$ whose existence we showed just now. Suppose now that $K=$

$\Phi(t)=[t_{1}, t_{2}]\in \mathfrak{M}$ for a point $t$ such that $c<t<c_{2}$ . Noting that $\tilde{\mu}(c)=\varphi^{R}(d)$ ,
$\hat{\nu}_{K}(t_{1})=\varphi^{L}(u)$ , and that $\hat{\nu}_{K}(t_{2})=\varphi^{R}(u)$ , we then find successively, for every
$\tau\in K$, that

$\hat{\nu}_{K}(\tau)\circ\hat{\nu}_{K}(t_{1})\leqq\Lambda(\hat{\nu}_{K})=\hat{\nu}_{K}(t_{1})\langle\rangle\hat{\nu}_{K}(t_{2})<2^{-1}\epsilon$ ,

$\hat{\nu}_{K}(\tau)\langle\rangle\tilde{\mu}(c)\leqq\hat{\nu}_{K}(\tau)\langle\rangle\hat{\nu}_{K}(t_{1})+\hat{\nu}_{K}(t_{1})\langle\rangle\tilde{\mu}(c)<\epsilon$ . (1)

We may suppose that the point $c_{2}$ , considered above and corresponding
to the given $\epsilon$ , is so near the point $c$ that, if $J=[c, c_{3}]$ is any closed interval
such that $c<c_{3}<c_{2}$ and if we write $Q=f[J]$ for brevity, then $\varphi(Q)\neq 0$ and
$\varphi(Q)0\varphi^{R}(d)<\epsilon$ . Since $\varphi^{R}(d)=\tilde{\mu}(c)$ , the last inequality implies that

$\varphi(Q)\tilde{\mu}(c)>|\varphi(Q)|\cos\epsilon$ . (2)

Now let us fix such an interval $J$. The definition of $\mu$ gives $\rho_{l}(J)=\varphi(Q\rangle$

$+\nu(J)$ , where $\nu(J)=\sum_{K}\nu_{K}(JK)$ . For each $K\in \mathfrak{M}$ we have two cases to distin-
guish: If $JK$ is nondegenerate, then $JK$ is clearly a closed interval in $(c, c_{2})$ ,
and $K=\Phi(t)$ for each $t\in JK$. Hence we deduce at once from (1) and \S 66
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that $\nu_{K}(JK)\neq 0$ and that $\nu_{K}(JK)\langle\rangle\tilde{\mu}(c)<\epsilon$ , whence
$\nu_{K}(JK)\tilde{\mu}(c)\geqq|\nu_{K}(JK)|\cos e$ . (3)

On the other hand, if $JK$ is degenerate, then $\nu_{K}(JK)=0$ and hence (3) still
holds good.

On summing (3) over all $K\in \mathfrak{M}$ it follows that

$\nu(J)\tilde{\mu}(c)\geqq(\cos\epsilon)\sum_{K}|\nu_{K}(JK)|\geqq(\cos\epsilon)|\gamma\nu_{K}(JK)|=|\nu(J)|\cos\epsilon K^{\lrcorner}$

and this in combination with (2) gives

$\mu(J)\tilde{\mu}(c)=\varphi(Q)\tilde{\mu}(c)+\nu(J)\tilde{\mu}(c)>(|\varphi(Q)|+|\nu(J)|)\cos\epsilon\geqq|/\ell(J)|cos\epsilon$ .
We therefore find in the first place that $l^{l}(J)\neq 0$ and then that $\mu(J)a\tilde{\mu}(c)<\epsilon$ .
Thus $\tilde{\mu}(c)$ is the right-hand tangent direction of the curve $\psi$ at the point
$c\in I$.

By symmetry we see that $\tilde{\mu}(c)$ is the left-hand tangent direction of $\psi$

at $c$ . Moreover, $\mu$ is continuous on $I$. Hence $\psi$ is $C^{*}$ on $I$ by \S 78, and we
have $\hat{\psi}=\tilde{\mu}$ . This complet $es$ the proof.

90. $CoNTINUATION$ . Under the same hypotheses, we have further $\Lambda(\hat{\psi})=$

$\Lambda(\varphi^{R})=\Lambda(\varphi^{L})$ .
PROOF. Let $U$ and $V$ be any given neighbourhoods of $\Lambda(\hat{\psi})$ and $\Lambda(\varphi^{R})$

respectively, where we understand by a neighbourhood of $\infty$ any interval
of the form $(c, \infty$], $c$ being a finite positive number. There then exists
finite sets $\Delta\subset I$ and $\Delta_{0}\subset\Gamma_{0}$ such that $\Lambda(\hat{\psi}, \Delta)\in U$ and that $\Lambda(\varphi^{R}, \Delta_{0})\in V$.
We may suppose here that $\Delta_{0}\subset f[\Delta]$ and hence that $\Lambda(\varphi^{R}, f[\Delta])\in V$, for
otherwise we have only to enlarge $\Delta$ in a suitable manner. For the same
reason we may suppose further that if $K$ is an interval of the class SWZ and
if $\Delta$ contains one at least of the extremities of $K$, then $\Delta$ does both of them.
Moreover, we may delete from $\Delta$ all the points that lie in the interior of
some such $K=[a, b]$ . In point of fact, this causes no influence on $f[\Delta]$ and
we have, on the other hand, for any subdivision $\Delta^{\prime}$ of $K$,

$\Lambda(\hat{\psi}, \Delta^{\prime})\leqq\Lambda(\hat{\psi}, K)=\Lambda(\hat{\nu}_{K})=\hat{\nu}_{K}(a)\circ\hat{\nu}_{K}(b)=\hat{\psi}(a)0\hat{\psi}(b)\leqq\Lambda(\hat{\psi}, \Delta^{\prime})$ ,

so that $\Lambda(\hat{\psi}, \Delta^{\prime})=\Lambda(\hat{\psi}, \{a, b\})$ . Finally, it is also evident that we may assume
$f[\Delta]$ nondegenerate.

This being so, let $u$ be a generic point of $f[\Delta]$ . If $f^{-1}(u)=\{t\}$ is one-
pointic, then $\hat{\psi}(t)=\varphi^{R}(u)=\varphi^{L}(u)$ by hypothesis. While if $f^{-1}(u)=[t_{1}, t_{2}]$ is
an interval of the class $\mathfrak{M}$ , then $\hat{\psi}(t_{1})=\varphi^{L}(u)$ and $\hat{\psi}(t_{2})=\varphi^{R}(u)$ . Denoting by
$J=[\alpha, \beta]$ a typical interval pertaining to $f[\Delta]$ , we consequently obtain

$\Lambda(\hat{\psi}, \Delta)=\sum_{J}\varphi^{R}(\alpha)0\varphi^{L}(\beta)+\sum_{u}\varphi^{L}(u)\langle\rangle\varphi^{R}(u)$ .
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Now we know by \S 83 that $\varphi^{L}(u)=\varphi^{R}(u-)$ for every $u\in f[\Delta]$ . Hence, by
making $\delta\rightarrow 0$ in the obvious inequalities

$\Lambda(\varphi^{R}, f[\Delta])\leqq\sum_{J}\varphi^{R}(\alpha)0\varphi^{R}(\beta-\delta)+\sum_{u}\varphi^{R}(u-\delta)0\varphi^{R}(u)\leqq\Lambda(\varphi^{R})$ ,

where $\delta<\Vert f[\Delta]\Vert$ is so small as to ensure $u-\delta\in I_{0}$ for every $u\in f[\Delta]$ , we
derive at once $\Lambda(\varphi^{R}, f[\Delta])\leqq\Lambda(\hat{\psi}, \Delta)\leqq\Lambda(\varphi^{R})$ . It follows that $\Lambda(\hat{\psi}, \Delta)\in V$ and
hence that the neighbourhoods $U$ and $V$ intersect. Since these intervals
have been chosen arbitrarily at the beginning, we must find that $\Lambda(\hat{\psi})=$

$\Lambda(\varphi^{R})$ , and this, in conjunction with $\Lambda(\hat{\psi})=\Lambda(\varphi^{R})$ , which follows by symmetry,
completes the proof.

91. Every finite nondecreasing function $f$, defined on a set $E\subset R$ and such
that $f[E]$ is an interval, is continuous on $E$.

PROOF. Fixing a point $c$ of $E$, we show that, given any $\epsilon$, there exists
a $\delta$ such that $f(t)<f(c)+e$ whenever $t$ is a point of $E$ fulfilling $ t<c+\delta$ .
Indeed, this is evident when $f(c)$ is the largest element of $f[E]$ . When this
is not the case, then we can, by hypothesis, find a $\delta$ fulfilling both $c+\delta\in E$

and $ f(c+\delta)<f(c)+\epsilon$, and this $\delta$ clearly has the required propertly. The
function $f$ is thus right-hand continuous on $E$. In the same way we see
that it is left-hand continuous on $E$, and this completes the proof.

92. Suppose that to each point $u$ of a given interval $I_{0}$ there is attached a
linear continuum $\Psi(u)\subset R$ in such a manner that $\Psi(u_{1})<\Psi(u_{A}\circ)$ whenever $u_{1}$ and
$u_{2}$ are a pair of poinls of $I_{0}$ such that $u_{1}<u_{2}$ . Here we understand by $\Psi(u_{1})<$

$\Psi(u_{2})$ that $t_{1}<t_{2}$ for any $t_{1}\in\Psi(u_{1})$ and any $t_{2}\in\Psi(u_{2})$ . Let us denote by $P$ the
sum of all the sets $\Psi(u)$ . For each point $t$ of $P$ there plainly exists one and
only one point $u\in l_{0}$ for which $t\in\Psi(u)$ , and we write $f$ for the function that
associates with $t$ this uniquely determined point $u$ . $T/\iota enf$ is a continuous
nondecreasing function on $P$.

PROOF. Write $u_{1}=f(t_{1})$ and $u_{2}=f(t_{2})$ for any pair $t_{1},$ $t_{2}$ of points of $P$

such that $t_{1}<t_{2}$ . Then $t_{1}\in\Psi(u_{1}),$ $t_{2}\in\Psi(u_{2})$ , and hence $u_{1}\leqq u_{2}$ , since otherwise
we should have $\Psi(u_{2})<\Psi(u_{\iota})$ and in particular $t_{2}<t_{1}$ . Thus $f$ is nondecreas-
ing on $P$. Since $f[P]=I_{0}$ is an interval, continuity of $f$ is an immediate
consequence of the preceding \S .

93. Given a finite strictly increasing function $g$ on an endless interval $I_{0}$ ,
let us attach to each point $u$ of $I_{0}$ a linear continuum $\Psi(u)$ by setting $\Psi(u)=$

$\{g(u)\}$ or $\Psi(u)=[g(u-), g(u+)]_{\backslash }$ according as $g$ is $rec$pectively continuous or
discontinuous at the point $u$ . Then $\Psi(u)$ increases together with $u$ , and the sum
$P$ of all the sets $\Psi(u)$ is an endless interval.

PROOF. We first remark that $\Psi(u)$ is, by definition, the set of the point $s$
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$t$ satisfying $g(u-)\leqq t\leqq g(u+)$ and that, in particular, $g(u)\in\Psi(u)$ . Now, given
any pair of points $u_{1},$ $u_{2}$ of $I_{0}$ fulfilling $u_{1}<u_{2}$ , take a $u_{0}$ such that $u_{1}<u_{0}<$

$u_{2}$ . Then $g(u_{1}+)<g(u_{0})<g(u_{2}-)$ , and hence $\Psi(u_{1})<\Psi(u_{2})$ . This proves the
first half of the assertion.

The second half will be established if we show that the set $P$ is convex,
for then $P$, being a nondegenerate set, must be an interval and clearly an
endless one. For this purpose suppose that $t_{1}\in\Psi(u_{1}),$ $t_{2}\in\Psi(u_{2})$ , and that
$t_{1}<t_{2}$ . We have to show that $J=[t_{1}, t_{2}]\subset P$. But this is evident when
$u_{1}=u_{2}$ , since then $J\subset\Psi(u_{1})\subset P$. Hence we assume that $u_{1}\neq u_{2}$ , so that we
must have $u_{1}<u_{2}$ and $\Psi(u_{1})<\Psi(u_{2})$ .

Suppose now, if possible, that there were a point $t_{0}\in J$ that did not
belong to $P$. Then $\Psi(u_{1})$ and $\Psi(u_{2})$ will lie respectively on the left and on
the right of $t_{0}$ , and so in particular $g(u_{1})<t_{0}<g(u_{2})$ . We define two disjoint
subsets $G_{1}$ and $G_{2}$ of $I_{0}$ as follows. $G_{1}$ is the set of the points $u\in I_{0}$ for
which $g(u)<t_{0}$ . $G_{2}$ is defined similarly, only that we require $g(u)>t_{0}$ instead.
These sets are then nonvoid, since $u_{1}\in G_{1}$ and $u_{2}\in G_{2}$ . Further, they cover
together the interval $I_{0}$ , and moreover, if $u$ is any point of $G_{1}$ , then all the
elements of $I_{0}$ that are smaller than $u$ plainly belong to $G_{1}$ . $G_{I}$ and $G_{2}$ thus
constitute a Dedekind cut for $I_{0}$ , and so we have the alternatives: either
$G_{1}$ possesses a largest element $u_{0}$ or else $G_{2}$ possesses a smallest element $u_{0}$ .
We may plainly restrict ourselves to the former cas $e$ and then find that
$g(u_{0}-)\leqq g(u_{0})<t_{0}\leqq g(u_{0}+)$ , since all points of $I_{0}$ that are situated on the
right of $u_{0}$ belong to $G_{2}$ . We thus arrive at the contradiction $t_{0}\in\Psi(u_{0})\subset P$.
This completes the proof.

94. If $E$ is a countable set contained in a given endless interval $I_{0}$ , then
there exists a continuous nondecreasing function $f$, defined on an endless interval
I and mapping I onto $I_{0}$ , and such that the inverse image $f^{-1}(u)$ of a point $u$ of
$I_{0}$ is nondegenerate, and hence a closed interval, when and only when $u\in E$.

PROOF. We may clearly suppose $E$ nonvoid. It is enough to construct
a finite strictly increasing function $g$ defined on $I_{0}$ and such that $E$ coincides
with the set of the points of discontinuity of $g$. In fact, applying the
preceding two sections to $g$, we get immediately the required function $f$.

For this purpose we choose in the first place a finite positive function
$h$ defined on $E$ and with the property that $\sum_{v}h(v)$ is convergent, where (and

subsequently) $v$ stands for a generic point of $E$. Let us now define $g(u)=$

$u+\sum_{v<u}h(v)$ for each $u\in I_{0}$ , on the usual understanding that a void sum $\Sigma$

means zero. It follows at once that, if $c$ is any fixed point of $I_{0}$ and if $\delta$ is
so small that $ c\pm\delta$ both belong to $I_{0}$ , then

$g_{\backslash }^{\prime}c+\delta)-g(c-\delta)=2\delta+\sum_{c-\delta\leqq v<c+\delta}h(v)>0$ .
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Hence $g$ is strictly increasing on $I$, and further, by making $\delta\rightarrow 0$ , we find
that $g(c+)-g(c-)=h(c)>0$ when $c\in E$ and that $g(c+)-g(c-)=0$ when
$c\in I_{0}-E$. This completes the proof.

95. We are now in a position to prove the principal result of the pre-
sent paper, which has already been announced, though in a somewhat
simplified form, in the introduction.

THEOREM. Given an interval $I_{0}$ endless on the right and a subset $M$ of $I_{0}$

such $t/ultI_{0}-M$ is countable, suppose that $\varphi$ is a continuous curve on $I_{0}$ and
that $\gamma$ , a spheric curve defined on $M$, is a right-hand direction curve of $\varphi$ . Then
$\Omega(\varphi)=\Lambda(\gamma)$ , or in other words, the bend of $\varphi$ is equal to the spheric length of $\gamma$ .

PROOF. Since $\Omega(\varphi)\geqq\Lambda(\gamma)$ by \S 45, we need only show that $\Omega(\varphi)\leqq\Lambda(\gamma)$ ,

where we may clearly suppose the curve $r$ rectifiable. We may assume
further that $I_{0}$ is an endless interval. For if not, we should merely have
to replace $I_{0}$ by its interior, in view of the remark given in \S 32 and also
of monotonity of spheric length. It follows from \S 83 that $\varphi$ is $C^{RL}$ on $I_{0}$ ,

and from \S 85 that $\Lambda(\gamma)=\Lambda(\varphi^{R})$ , since we must have $\gamma(u)=\varphi^{R}(u)$ for every
$u\in M$ and since $\varphi^{R}$ is continuous on the right by \S 83.

Thus our task comes to proving $\Omega(\varphi)\leqq\Lambda(\varphi^{R})$ under the hypotheses that
$\varphi$ is a $C^{RL}$ curve on an endless interval $I_{0}$ and that $\varphi^{R}$ is rectifiable. But
if $\varphi^{R}$ is in addition continuous on $I_{0}$ , then $\varphi$ is $C^{*}$ on $I_{0}$ bv \S 78 and \S 83,
and hence $\Omega(\varphi)=\Lambda(\hat{\varphi})=\Lambda(\varphi^{R})$ by \S 68. We may therefore suppose in the
sequel that the set $E$ of the points of discontinuity of $\varphi^{R}$ is nonvoid. On
the other hand $E$ is plainly countable. Moreover, it follows from \S 83 that
$\varphi^{R}(u)=\varphi^{L}(u)$ whenever $u\in I_{0}-E$.

This being so, let us construct, in conformity with the preceding section,
a continuous nondecreasing mapping $f$ of an endless interval $I$ onto $I_{0}$ such
that $f^{-1}(u)(u\in I_{0})$ is a closed interval iff $u\in E$, and let us denote such a
closed interval by $K$ generically. Now, given any real number $\eta<\Omega(\varphi)$ , we
can choose a finite subset $\Delta_{0}$ of $I_{0}$ in such a manner that $\Omega(\varphi, \Delta_{0})>\eta$ . Taking
a finite subset $\Delta$ of $I$ such that $f[\Delta]\supset\Delta_{0}$ and defining a curve $\xi$ on $I$ by
$\xi(t)=\varphi(f(t))$ for $t\in I$, we see at once that $\Omega(\xi, \Delta)\geqq\Omega(\varphi, \Delta_{0})>\eta$ .

We now attach to each interval $K$ a curve $\nu_{K}$ of the class $C^{*}(K)$ in such
a manner that

$\hat{\nu}_{K}(\alpha)=\varphi^{L}(d),\hat{\nu}_{K}(\beta)=\varphi^{R}(\phi, \Lambda(\hat{\nu}_{K})=\hat{\nu}_{K}(\alpha)\langle\rangle\hat{\nu}_{K}(\beta)$ ,

where we write $K=[\alpha, \beta]$ and $f[K]=\{d\}$ . For this purpose we have two
cases to distinguish, according as $\varphi^{L}(d)+\varphi^{R}(d)$ vanishes or not. When it
vanishes, we choose a unit vector $p$ which is perpendicular to $\varphi^{L}(d)$ and we
define, for $t\in K$,



172 K. ISEKI

$\nu_{K}(t)=\rho_{K}\int_{c^{t}}[\varphi^{L}(d)\cos\frac{\pi(\tau-\alpha)}{\beta-\alpha}+p\sin\frac{\pi(--\alpha)}{\beta-\alpha}]d\tau$ ,

where $\rho_{K}$ is a positive constant and $c$ is a fixed point of $K$ Then $\nu_{K}$ is
clearly $C^{*}$ on $K$ and we find, by \S 76 and \S 5, that

$\Lambda(\hat{\nu}_{\tau}\rangle=L(\hat{\nu}_{K})=\int_{K}|\nu_{K^{\prime}}(\tau)|^{-2}\cdot|^{1}\nu_{K^{\prime}}(\tau)\times\nu_{K^{\prime\prime}}(\tau)|d\tau=\pi=\varphi^{L}(d)\circ\varphi^{R}(d)$ .

Hence $\nu_{K}$ fulfils the required conditions. On the other hand, when $\varphi^{L}(d)+$

$\varphi^{R}(d)\neq 0$ , we define, for $t\in K$,

$\nu_{K}(t)=\rho_{K}\int_{c^{t}}[\varphi^{L}(d)\frac{\beta-\tau}{\beta-\alpha}+\varphi^{R}(d)\frac{\tau-\alpha}{\beta-\alpha}]d\tau$ ,

with the same meanings of $\rho_{K}$ and $c$ as above. Here again, $\nu_{K}$ is $C^{*}$ on $K$,
and $\Lambda(\hat{\nu}_{K})=L(\hat{\nu}_{K})$ by \S 76. But direct computation gives $L(\hat{\nu}_{K})=\varphi^{L}(d)0\varphi^{R}(d)$ ,
the details being exactly the same as at the end of \S 53. Thus $\nu_{K}$ has the
required properties in both cases.

Adjusting the positive constants $\rho_{K}$ , involved in the definition of $\nu_{K}$ , so
as to make $\sum_{K}O(\nu_{K})<\delta$ where $\delta$ is any given positive number, we now apply

the results of \S \S 89-90 to our present situation. We thus obtain a $C^{*}(I)$

curve $\psi$ such that $\psi(J)=\xi(J)+\nu(J)$ , where $J$ is any closed interval in $I$,
while the curve $\xi$ has been defined above and $\nu$ is a vector-valued interval
function on 1 given by $\nu(J)=\sum_{K}\nu_{K}(JK)$ , so that $|\nu(J)|\leqq\sum_{K}O(\nu_{K})<\delta$ . Recal-

ling how we have fixed the finite set $\Delta\subset I$ in the above, we easily see that,

if $\delta$ is sufficiently small, then we must have $\Omega(\psi, \Delta)>\eta$ . But $\Lambda(\hat{\psi})=\Omega(\psi)$

$\geqq\Omega(\psi, \Delta)$ by \S 89, while \S 90 gives $\Lambda(\hat{\psi})=\Lambda(\varphi^{R})$ . We have thus shown that
$\Lambda(\varphi^{R})>\eta$ for any real number $\eta<\Omega(\varphi)$ , and hence that $\Omega(\varphi)\leqq\Lambda(\varphi^{R})$ . This
completes the proof.

REMARK. Continuity of $\varphi$ is essential for the validity of the theorem,
as is shown by the example given in the remark of \S 71. We may also
observe that, under the hypotheses of the theorem, the curve $\varphi$ must be
light on $I_{0}$ . For if $\varphi$ were constant on an open subinterval $I^{\prime}$ of $I_{0}$ , then $\varphi$

could possess a right-hand derived direction at $r_{\Delta}o$ points of the interval $I^{\prime}$ ,
which is clearly a contradiction.

96. THEOREM. Let $I_{0}$ be an interr$al$ which is endless on the right. In order
that a light continuous curve $\varphi$ defined on $I_{0}$ (cf. \S 51) be of bounded bend, it is
necessary and sufficient that $\varphi$ should be a $C^{R}(I_{0})$ curve for uhich $\varphi^{R}$ is rectifiable.
If this condition is satisfied, then $\Omega(\varphi)=\Lambda(\varphi^{R})$ .

PROOF. This follows directly from \S 80 and the preceding section.
REMARK. If we only assume that $\varphi$ is a light curve on $I_{0}$ possessing

rectifiable right-hand spheric representation, then we cannot infer that $\varphi$ is



On certain properties of parametric curves. 173

of bounded bend. To see this, we have merely to consider the curve $\varphi_{0}$ in
the plane $R^{2}$ defined on the real line $R$ by $\varphi_{0}(t)=\langle t, [t]\rangle$ , where $[t]$ means
as usual the notation of Gauss.

97. We shall conclude the present research with a theorem which,
together with the one proved at the end of \S 69, constitutes an essential
extension of the Fenchel inequality (cf. [2]).

THEOREM. Let $\varphi$ be a light continuous curve defined on $R$ , periodic with a
period $\omega>0$ . Then clearly $\varphi$ possesses at least one right-hand direction curve $\gamma$

on $R$ which is periodic with period $\omega$ . For any such $r$ , we assert that $\Lambda(\gamma, I)\geqq$

$ 2\pi$ , where I is an arbitrary closed interval of length $\omega$ .
PROOF. We shall begin by showing that $\Lambda(\gamma, I)$ is independ $e$nt of the

choice of $I$. For this purpose, let $I=[a, b]$ and $1i=[a^{\prime}, b^{\prime}]$ , where $b-a=$

$ b^{\prime}-a^{\prime}=\omega$ . In view of periodicity of $r$ , we may suppose without loss of
generality that $a<a^{\prime}<b$ . Then $\Lambda(r, [a, a^{\prime}])=\Lambda(\gamma, [b, b^{\prime}])$ , and so it follows
from additivity of spheric length that

$\Lambda(\gamma, I^{\prime})=\Lambda(\gamma, [a^{\prime}, b])+\Lambda(r, [b, b^{\prime}])$

$=\Lambda(\gamma, [a^{\prime}, b])+\Lambda(\gamma, [a, a^{\prime}])=\Lambda(\gamma, I)$ .
To establish $\Lambda(\gamma, I)\geqq 2\pi$ , we may plainly suppose that $\Lambda(\gamma, I)<\infty$ . By

additivity of $\Lambda$ , the curve $\gamma$ is then rectifiable on every finite interval. Hence
$\gamma$ is continuous except at most at the point $s$ of a countable set. We may
thus assume that the extremities $a,$

$b$ of $I$ are points of continuity of $\gamma$ .
Now write, for the real numbers $t>a,$ $F(t)=\Lambda(\gamma, J)$ , where $J=[a, t]$ . We
then see from the last paragraph of \S 41 that $F$ is continuous at $b$ and hence
that $\Lambda(\gamma, I)=F(b)=F(b+)$ . But it follows from \S 95 and \S 61 that $ F(t)\geqq$

$\Lambda(\gamma, J^{o})=\Omega(\varphi, J^{o})\geqq 2\pi$ , whenever $t>b$ . Consequently $ F(b+)\geqq 2\pi$ , and this
completes the proof.

REMARK. Continuity of $\varphi$ cannot be removed as is seen at once by
considering the example given in the remark of \S 71.
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