
Journal of the Mathematical Society of Japan Vol. 12, No. 3, July, 1960

On vector differential forms attached
to automorphic forms.

Dedicated to Professor Z. Suetuna.

By Michio KUGA and Goro SHIMURA

(Received Sept. 18, 1959)

In recent works [2], [3], it was found that the integral of certain vector
differential forms, attached to automorphic forms with respect to a Fuchsian
group $G$ , is important in the arithmetic theory of modular correspondences.
Those vector differential forms to are defined on the upper half plane and
satisfy the transformation formula

(1) $\omega\circ\sigma=1\psi(\sigma)\omega$

for every element $\sigma$ of the group $G$ , where $M(\sigma)$ is a tensor representation
of $G$. The object of the present paper is to determine all holomorphic forms
satisfying this relation (1). $M$ being of degree $2m-1$ , we can attach to every
cusp form of degree $\leqq 2m$ a holomorphic form $\omega$ with the representation llf
(Theorem 1). Conversely, any holomorphic form satisfying (1) is expressed
as a sum of the forms thus obtained from cusp forms of degree $\leqq 2m$ ; and
this expression gives a direct decomposition of the vector space $\mathfrak{F}$ of such
holomorphic forms (Theorem 2). Hence the dimension of the vector space $\mathfrak{F}$

is easily obtained if we know the dimension of the linear space of cusp forms
for each degree. We note that the integral of the form attached to a cusp
form of degree $<2m$ has a period cohomologous to $0$ , in the sense described
in [3]. This fact distinguishes among such forms the forms attached to cusp
forms of degree $2m$ , which were the object of the investigation in [3].

\S 1. Cusp forms with respect to a Fuchsian group.

Let $\ovalbox{\tt\small REJECT}$ denote the upper half plane, the set of all complex numbers with
positive imaginary parts. Every element $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ of $SL(2, R)$ operates on
yt as usual:

$\sigma(z)=\frac{az+b}{cz_{\backslash }+d}$ ;

we put
$J(\sigma, z)=(c_{\wedge}+d)^{-1}$ .
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For every differential form $\omega$ on yt we shall denote by $\omega 0\sigma$ the transform of
$\omega$ by $\sigma$ ; so if $\omega$ is expressed in the form $\omega=f(z)dz$ for a function $f(z)$ on yl

we have $\omega\circ\sigma=f(\sigma(z))J(\sigma,z)^{2}dz$ .
Let $G$ be a discrete subgroup of $SL(2, R)$ such that $SL(2, R)/G$ has a finite

total volume, measured by an invariant volume element. Then, $G$ , as group
of transformations on $\mathscr{X}$ is a Fuchsian group; namely, $G$ operates discon-
tinuously on $\ovalbox{\tt\small REJECT}$ and $\ovalbox{\tt\small REJECT}/G$ has a fundamental domain 9 with a finite Poincar\’e
area. If we denote by $\mathscr{X}^{*}$ the join of $\ovalbox{\tt\small REJECT}$ and the “ cusps “ of $G$ , the quotient
space $\ovalbox{\tt\small REJECT}*/G$ , with a suitable analytic structure, can be regarded as a compact
Riemann surface.

A cusp of $G$ is the fixed point of a parabolic element of $G$ , which is a
real number or the point at infinity $\infty$ . Let $s$ be a cusp of $G$ . Put

$\rho=\left(\begin{array}{ll}-s & 1\\-1 & 0\end{array}\right)$ or $\rho=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$

according as $s$ is a real number or $\infty$ . Then the set of all elements of $G$

having $s$ as fixed point is the free cyclic group generated by an element $\tau$

of $G$ , which is of the form
$\tau=\rho\left(\begin{array}{l}1 /\iota\\ 0 1\end{array}\right)\rho^{-1}$ ,

where $h$ is a positive real number.
Let $\nu$ be an integer. We shall understand, by an automorphic form of

degree $\nu$ with respect to $G$ , a function $f(z)$ on $\mathscr{X}$ satisfying the following con-
ditions (A 1-3).

(A 1) $f(z)$ is meromorphic on $\mathscr{X}$.
(A 2) For every $\sigma\in G$ , we have $f(\sigma(z))J(\sigma, z)^{\nu}=f(z)$ .

Consider a cusp $s$ of $G$ ; the transformation $\rho$ and the positive number $h$ be-
ing defined for $s$ as above, we see that, if $f$ satisfies (A 1-2), the function
$f(\rho(z))J(\rho, z)^{\nu}$ is invariant under the translation $z\rightarrow z+h$ . Hence, if we put

$q=\exp(2\pi ih^{-1}z)$ ,

there exists a function $g(q)$ meromcrphic in the domain $0<|q|<1$ such that
$f(\rho(z))J(\rho, z)^{\nu}=g(q)$ .

The condition (A 3) is now stated as follows.
(A 3) For every cusp $s$ of $G$ , the function $g(q)$ , defined as above, is mero-

morphic at $q=0$ .
An automorphic form $f(z)$ with respect to $G$ is called a cusp form with

respect to $G$ , if the following conditions are $sati_{S1e}^{\prime}Ad$ .
(A $1^{\prime}$ ) $f(z)$ is holomorphic on $\ovalbox{\tt\small REJECT}$.
(A 3’) For every cusp $s$ of $G$ , the function $g(q)$ , defined as above, is $ holomor\rightarrow$

phic and takes the value $0$ at $q=0$ .
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We denote by $S_{\nu}(G)$ the set of all cusp forms of degree $\nu$ with respect
to $G$ . In this paper we shall only deal with the forms of even degree.

\S 2. $M_{n}$-forms and $M_{n}$-vectors.

Let
$GL(2, C)\ni\sigma\rightarrow M_{n}(\sigma)\in GL(n+1, C)$

be the representation of $GL(2, C)$ by symmetric contravariant tensors of order
$n$ , so that the equality

$\sigma\left(\begin{array}{l}u\\v\end{array}\right)=\left(\begin{array}{l}z\\w\end{array}\right)$

is led to

$M_{n}(\sigma)\left\{\begin{array}{l}u^{\eta}\\u^{n-1}v\\\vdots\\ uv^{n-1}\\v^{n}\end{array}\right\}=[_{zu}n^{1}-\eta)$ .

For instance, we have

(2) $M_{n}(\left(\begin{array}{ll}1 & z\\0 & 1\end{array}\right))=\left\{\begin{array}{lllll}1 & nz & \frac{n(n-1)}{2}z^{2} & \cdots & z^{n}\\0 & 1 (n & -1)z & \cdots & z^{n-1}\\0 & \cdots & \cdots & \cdots & \cdots 1\end{array}\right\}$ .

As this matrix $j\psi_{n}(\left(\begin{array}{ll}1 & z\\0 & 1\end{array}\right))$ will be often used in our investigation, we de-

note it briefly by $L_{n}(z)$ :
$L_{n}(z)=M_{n}(\left(\begin{array}{ll}1 & z\\0 & 1\end{array}\right))$ .

We have then, for every $\tau\in SL(2, R)$ ,

(3) $L_{n}(\tau(z))^{-1}M_{n}(\tau)L_{n}(z)=1\psi_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))$ ,

where $J=J(\tau, z)=(cz+d)^{-1}$ . In particular, if $r$ is a real number and $\tau=\left(\begin{array}{ll}1 & r\\0 & 1\end{array}\right)$ ,

we have
(4) $L_{n}(\tau(z))=1\psi_{n}(\tau)L_{n}(z)$ .

Let $f$ be an automorphic form of degree $n+2$ with respect to $G$ . In [3]

we have studied the vector differential form

(5) $\omega=L_{n}(z)\left\{\begin{array}{l}0\\\vdots\\ 0\\f\end{array}\right\}dz=\left\{\begin{array}{l}fz^{n}dz\\fz^{n-1}dz\\\vdots\\ fdz\end{array}\right\}$
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which satisfies, for every $\sigma\in G$ ,
$\omega\circ\sigma=M_{n}(\sigma)\omega$ .

This is an example of $M_{n}$-form, whose definition is given as follows. A column
vector of dimension $n+1$

$\omega=\left\{\begin{array}{l}\omega_{\{)}\\\omega_{1}\\\vdots\\\omega_{n}\end{array}\right\}$

is called an $M_{n}$ -form with respect to $G$ , if it satisfies the following conditions
(M1-3).

(M1) Each component $\omega_{k}$ is a meromorphic differential form on $\ovalbox{\tt\small REJECT}$.
(M2) For every $\sigma\in G$ , we have $\omega\circ\sigma=M_{n}(\sigma)\omega$ .

Let $s$ be a cusp of $G$ ; and let $\rho$ and $h$ be as in \S 1. Then, if $\omega$ satisfies $(M$

$1-2)$ , we can easily verify, using (4), that the form
$ L_{n}(z)^{-1}M_{n}(\rho)^{-1}\omega\circ\rho$

is invariant under the translation $z\rightarrow z+h$ . Therefore, if we put $q=\exp(2\pi ih^{-1}z)$ ,
there exist $n+1$ functions $f_{0}(q),$ $\cdots,f_{n}(q)$ , meromorphic in $0<|q|<1$ , such that

(6) $L_{n}(z)^{-1}M_{n}(\rho)^{-1}\omega\circ\rho=\left\{\begin{array}{l}f_{0}(q)dq\\\vdots\\ f_{n}(q)dq\end{array}\right\}$ .

Now the condition $(M3)$ is stated as follows.
(M3) For every cusp $s$ of $G$ , the functions $f_{k}(q)$ defined by (6) are mero-

morphic at $q=0$ .
An $M_{n}$-form $\omega$ with respect to $G$ is called a cusp $M_{n}$-form with respect to

$G$ if the following conditions $(M1^{\prime})$ and $(M3^{\prime})$ are satisfied.
$(M1^{\prime})$ Every component of $\omega$ is holomorphic on YC
$(M$ 3 $)$ For every cusp $s$ of $G$ , the functions $f_{k}(q)$ defined by (6) are holo-

morphic at $q=0$ .
We can prove that the form $\omega$ defined by (5) is an $M_{n}$-form with respect

to $G$ ; it is a cusp $M_{n}$-form if and only if $f(z)$ is a cusp form. This fact is a
special case of the following Theorem 1. We shall denote by $\mathfrak{F}_{n}(G)$ the set
of all cusp $M_{n}$-forms with respect to $G$ .

Considering functions in place of differential forms, we get the follow-
ing definition. A column vector of dimension $n+1$

$\mathfrak{g}=\left\{\begin{array}{l}g_{0}\\\vdots\\ g_{n}\end{array}\right\}$

is called an $M_{n}$-vector with respect to $G$ , if it satisfies the following conditions



262 M. KUGA and G. $S$ }$aiMURA$

(V 1-3).

(V 1) Every component $g_{k}$ is a meromorphic function on $\mathscr{X}$.
(V 2) For every $\sigma\in G$ , we have $\mathfrak{g}\circ\sigma=M_{n}(\sigma)\mathfrak{g}$ .

The notations $s,$ $\rho,$
$h$ being as above, if $\mathfrak{g}$ satisfies (V 1-2), there exist $n+1$

functions $F_{0}(q),$
$\cdots,$

$F_{n}(q)$ , meromorphic in $0<|q|<1$ , such that

(7) $L_{n}(z)^{-1}M_{n}(\rho)^{-1}\mathfrak{g}\circ\rho=\left\{\begin{array}{l}F_{0}(q)\\\vdots\\ F_{n}(q)\end{array}\right\}$ .

(V 3) For every cusp $s$ of $G$ , the functions $F_{k}(q)$ defined by (7) are mero-
morphic at $q=0$ .

An $M_{n}$-vector $\mathfrak{g}$ with respect to $G$ is called a cusp $M_{n}$-vector uith respect to
$G$ if the following conditions (V 1’) and (V 3’) are satisfied.

(V 1’) Every component of $\mathfrak{g}$ is holomorphic on $\ovalbox{\tt\small REJECT}$.
(V 3’) For every cusp $s$ of $G$ , the functions $F_{k}(q)$ defined by (7) are holo-

morphic and take the value $0$ at $q=0$ .
We shall denote by $\mathfrak{B}_{7}(G)$ the set of all cusp $M_{n}$-vectors with respect to $G$ .

\S 3. Main results.

We shall now state our results in the following theorems, for which the
proofs will be given in \S 4. We first introduce some notations. For every
integer $k$ and a non-negative integer $j$ , we shall write

$\left(\begin{array}{l}k\\j\end{array}\right)=(_{\frac{k(k-1)}{j}}!(k-j+1)1$
$forfor\dot{j}^{=0}j>C$

.

Consider a triplet $(n, \nu, k)$ of integers such that
i) $n$ is even and non-negative;
ii) $\nu$ is even and $-(n-2)\leqq\nu\leqq n+2$ ;

iii) $0\leqq k\leqq n-\frac{\nu+n-2}{2}$ .
For such a triplet $(n, \nu, k)$ , we put

$\alpha_{n,\nu,k}=|\underline{n-2}$
$forfor\nu+k-1\geqq 0\nu+k-1<0$

.

and
( $0$ for $\nu+k-1<0$ ,

$\gamma_{n,\nu.k}=(\frac{(k+\frac{\nu+7l}{2})!}{k!(\nu+k-1)!}$ $f$ or $\nu+k-1\geqq 0$ .
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For fixed $n$ and $\nu$ , we denote $\alpha_{n,\nu.k}$ and $\gamma_{n,\nu.k}$ simply by $\alpha_{k}$ and $\gamma_{k}$ .
LEMMA 1. Let $t$ be an integer such that $0\leqq t\leqq n$ and $f_{t},f_{t+1},$ $\cdots,f_{n}$ be $n-t+1$

meromorphic functions on $\ovalbox{\tt\small REJECT}$. If

$\omega=L_{n}(z)[f_{n}^{0}f^{0_{t}}\ovalbox{\tt\small REJECT}^{dz}$

is an $M_{n}$-form with respect to $G$ , then $f_{t}$ is an automorphic form of degree $2t+2-n$

with respect to G. Moreover, if $\omega$ is a cusp $M_{n}$-form, $f_{t}$ is a cusp form.
THEOREM 1. Let $n$ and $\nu$ be $tu’ 0$ even integers such that $n>0$ and $-(n-2)\leqq$

$\nu\leqq n+2$ ; put $/1=\underline{n+}_{2^{2\underline{-\mathcal{V}}}}$ . Then, for every automorphic form $f$ of degree $\nu$ with
respect to $G$ , the vector differential form

(8) $\omega=L_{n}(z)\ovalbox{\tt\small REJECT}\alpha_{\mu^{0}}^{\alpha_{1}^{0_{f_{(,{}^{t}t)}}}}\alpha_{f}^{0_{f,\ovalbox{\tt\small REJECT} dz}}$

is an $M_{n}$ -form with respect to $G$ , where $\alpha_{0}=\alpha_{n,\nu.0},$ $\cdots,$ $\alpha_{k}=\alpha_{n,\nu.k}$ ; $f^{\prime},$ $\cdots,f^{(\mu)}$ de-
note the derivatives $df/dz,$ $\cdots$ . $d^{\prime 4}f/dz^{\mu}$ ; and the number of $0$ in the column is
$n-\chi_{4}$ . Moreover, in order that $\omega$ is a cusp $M_{n}$-form, it is necessary and sufficient
that $f$ is a cusp form.

Remark that, if $\nu\leqq 0$ , we have $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{-\nu}=0$ . We denote by $\mathfrak{S}^{n_{\nu}}(G)$

the set of all $M_{n}$-forms $\omega$ of the form (8), where $f$ is a cusp form of degree
$\nu$ . If $\nu\leqq 0$ , the set $\mathfrak{S}^{n_{\mathcal{V}}}(G)$ consists only of the zero element. If $\nu>0$ , we
have $\alpha_{0}\neq 0$ , so that the vector space $\mathfrak{S}_{\nu}^{n}(G)$ is canonically isomorphic to the
vector space $S_{\nu}(G)$ by the mapping $ f\rightarrow\omega$ .

THEOREM 2. The vector space $\mathfrak{F}_{n}(G)$ of all cusp $M_{n}- fo\prime ms$ is the direct sum
of the vector spaces $\mathfrak{S}^{n_{\nu}}(G)$ for even $\nu$ such that $2\leqq\nu\leqq n+2$ :

$\mathfrak{F}_{n}(G)=C^{n_{2}}\propto(G)+\cdots+\mathfrak{S}_{n}^{n}(G)+\mathfrak{S}^{n_{n+2}}(G)$ .
Hence, if we denote by $d_{\nu}(G)$ the dimension of the vector space $S_{\nu}(G)$ , the

dimension of the vector space $\mathfrak{F}_{n}(G)$ is equal to

$d_{2}(G)+\cdots+d_{n}(G)+d_{n+2}(G)$ .
The number $d_{\nu}(G)$ is easily obtained by means of Riemann-Roch Theorem.
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We note that from Lemma 1 and Theorem 1 follows a result of Bol [1],

which asserts the $(n-1)$-th derivative of an automorphic form of degree
$-(n-2)$ to be an automorphic form of degree $n$ . In fact, consider the case
$\nu=-(n-2)$ in Theorem 1; we have then

$\alpha_{0}=\alpha_{1}=\cdots\alpha_{n-2}=0,$ $\alpha_{n-1}\neq 0$ ;
so the vector

$L_{n}(z)\left\{\begin{array}{l}0\\\vdots\\ 0\\\alpha_{n-1}f^{(n-1)}\\\alpha_{n}f^{(n)}\end{array}\right\}dz$

is an $M_{n}$-form for every automorphic form $f$ of degree $-(n-2)$ . Hence, by
Lemma 1, $f^{(n-1)}$ is an automorphic form of degree $n$ .

THEOREM 3. Let the integers $n,$ $\nu,$ $\mu$ be the same as in Theorem 1. Then, for
every automorphic form $f$ of degree $\nu$ with respect to $G$ , the vector function

(9) $f=L_{n}(z)\ovalbox{\tt\small REJECT}\gamma_{\mu-I}f^{f,}\gamma^{0_{0}}\gamma_{J}^{0_{f_{(\mu-1)}}}\}$

is an $M_{n}$-vector with respect to $G$ , where $\gamma_{k}=\gamma_{n,\nu,k}$ ; and the number of $0$ in the
column is $n-\mu+1$ . Moreover, in order that $f$ is a cusp $M_{n}$-vector, it is necessary
and sufficient that $f$ is a cusp form.

Denote by $\mathfrak{T}_{\nu}^{n}(G)$ the set of all $M_{n}$-vectors $f$ of the form (9), where $f$ is
a cusp form of degree $\nu$ . We see easily $\mathfrak{T}_{\nu}^{n}(G)=\{0\}$ for $\nu\leqq 0$ and $\nu=n+2$ .
If $0<\nu\leqq n$ , we have $\gamma_{0}\neq 0$ , so that the vector space $\mathfrak{T}_{\nu}^{n}(G)$ is canonically
isomorphic to the vector space $S_{\nu}(G)$ by the mapping $f\rightarrow f$ .

THEOREM 4. The vector space $\mathfrak{V}^{n}(G)$ of all cusp $M_{n}$-vectors is the direct sum
of the vector spaces $\mathfrak{T}^{n_{\nu}}(G)$ for even $\nu$ such that $2\leqq\nu\leqq n$ :

$\mathfrak{V}^{n}(G)=\mathfrak{T}^{n_{2}}(G)+\cdots+\mathfrak{T}^{n_{n}}(G)$ .
Now we consider the differential $df$ of an $M_{n}$-vector $f$ . If $f$ is an $M_{n^{-}}$

vector with respect to $G$ , then we can easily prove that $dt$ is an $M_{n}$-form
with respect to $G$ ; if $f$ is a cusp $M_{n}$-vector, then $df$ is a cusp $\underline{l}\psi_{n}$-form. More
precisely, we have

THEOREM 5. The integers $n,$ $\nu,$ $\mu$ being as in Theorem 1, let $f$ be an auto-
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morphic form of degree $\nu$ with respect to G. Define an $M_{n}$-form $\omega$ and an $M_{n^{-}}$

vector $f$ by (8) and (9). Then we have

$ df=\mu(n-\mu+1)\omega$ .
Remark that $\mu(n-\mu+1)\neq 0if\mu\geqq 1$ . Hence, ifO $<\nu\leqq n,$ $themappingf\rightarrow df$

gives an isomorphism of $\mathfrak{T}_{\nu}^{n}(G)$ onto $\mathfrak{S}_{\nu}^{n}(G)$ .
From the last theorem, we can conclude that, if $0<\nu<n+2$ and if $\omega\in$

$\mathfrak{S}_{\nu}^{n}(G)$ , the period of the integral $\int^{z}\omega$ is cohomologous to $0$ in the sense of

[3]. On the other hand, Theorem 1 of [3] claims that the period of $\int^{z}\omega$ is

not cohomologous to $0$ for every element $\omega\neq 0$ of $\mathfrak{S}^{n_{n+2}}(G)$ . Therefore, we
obtain the following result.

THEOREM 6. Let $\mathfrak{R}_{n}(G)$ denote the set of all cusp $M_{n}$-forms with respect to
$G$ , whose integrals have the periods cohomologous to $0$ . Then, the factor space
$\mathfrak{F}_{n}(G)/\mathfrak{R}_{n}(G)$ is canonically isomorphic to $S_{n+2}(G)$ .

Put, similarly as in [3], for $\omega,$ $\eta\in \mathfrak{F}_{n}(G)$ ,

$(\omega, \eta)=i\int_{9}^{c}\omega P_{n}\overline{\eta}$ ,

where $P_{n}$ is the symmetric matrix introduced in \S 1 of [3] and $\mathscr{D}$ is a funda-
mental domain of $G$ . Then $(\omega, \eta)$ is a Hermitian form on $\mathfrak{F}_{n}(G)$ . By the above
considerations, we see that two subspaces $\mathfrak{S}_{n+2}^{n}(G)$ and $\mathfrak{S}^{n_{2}}(G)+\cdots+\mathfrak{S}^{n_{n}}(G)$

of $\mathfrak{F}_{n}(G)$ are transversal to each other with respect to this form $(\omega, \eta)$ , and
$(\omega, \eta)$ is a zero form on the latter space, while it. is a definite form on the
former space (\S 2 of [3]).

\S 4. Proofs of Theorems.

$L_{E\searrow IMA}2$ . Let $f_{0},$ $\cdots,f_{n}$ be $n+1$ meromorphic functions on $\ovalbox{\tt\small REJECT}$ ; put

$f=\left\{\begin{array}{l}f_{0}\\\vdots\\ f_{n}\end{array}\right\},$ $\omega=L_{n}(z)fdz$ .

Then, $\omega$ satisfies the condition $(M2)$ if and only if

$(f\circ\sigma)J^{2}=M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))f$

holds for every $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in G$ , where $J=J(\sigma, z)=(cz+d)^{-1}$ .
This follows from the relation (3) of \S 2.

Let $\tau=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ be an element of $SL(2, R)$ and $J=(cz+d)^{-1}$ ; we have then
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(10) $M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))=J^{n}\left\{\begin{array}{lll}1 & & \\cJ^{-I} & J^{-2} & \\c^{n}J^{-n} & \cdots nc^{n-1}J^{-n-1} & \cdots J^{-2n}\end{array}\right\}$ .

In the matrix (10), the elements above the diagonal are all $0$ ; the $(\tau+1)- \mathfrak{t}h$

diagonal element is $J^{n-2^{\gamma}}$ ; and the $(r+1)$ -th row is

(10) $(c^{7}J^{n-r},$ $\left(\begin{array}{l}r\\1\end{array}\right)c^{r-1}J^{n-r-1},$ $\left(\begin{array}{l}\gamma\\ 2\end{array}\right)c^{r-2}J^{n-r-2},$ $\cdots,J^{n-2^{\gamma}},$ $0,$
$\cdots,$ $0)$ .

We shall now prove Lemma 1. Suppose that $f_{0}=\cdots=f_{t-1}=0$ in Lemma
2 and $\omega=L_{n}(z)f_{1}dz$ is an $M_{n}$-form with respect to $G$ . Then, by Lemma 2 and
by (10), we have, for every $\sigma\in G$ ,

$(f_{t}\circ\sigma)J(\sigma, z)^{2i+2-n}=f_{t}$ ;

so $f_{t}$ satisfies the condition (A2) for $\nu=2t+2-n$ . Let $s$ be a cusp of $G;\rho,$ $h$

and $q$ being defined for $s$ as in \S 2, there exist $n+1$ meromorphic functions
$g_{0}(q),$

$\cdots,$
$g_{n}(q)$ in $|q|<1$ , such that

$L_{n}(z)^{-1}M_{n}(\rho)^{-\rfloor}L_{n}(\rho(z))(T\circ\rho)J(\rho, z)^{2}dz=\left\{\begin{array}{l}g_{0}(q)dq\\\vdots\\ g_{n}(q)dq\end{array}\right\}$ .

By the relation (3), putting $J=J(\rho, z)=(cz+d)^{-1}$ , we have

$M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))^{-1}(\mathfrak{s}\circ\rho)J^{2}=2\pi ih^{-1}q(g^{0}(q)g_{n}(q)]$ ,

so that by (10),

(11) $(f_{t}\circ\rho)J^{2t+2-n}=2_{\overline{L}}ih^{-l}qg_{t}(q)$ .
This shows that $f_{t}$ satisfies (A 3). Hence $f_{t}$ is an automorphic form of degree
$2t+2-n$ with respect to $G$ . Furthermore, if $\omega$ is a cusp $M_{n}$-form, $f_{t}$ must be
holomorphic on $\mathscr{X}$ since $f_{t}$ is the $(t+1)$ -th component of $L_{n}(-z)\omega/dz$ ; and as
$g_{t}(q)$ is holomorphic at $q=0$ by virtue of $(M3^{\prime})$ , the relation (11) shows $tha_{t}^{\wedge}$

$f_{t}$ satisfies (A 3’). This completes the proof of Lemma 1.
LEMMA 3. If $f$ is an automorphic form of degree $\nu$ with respect to $G,$ $\iota f\cdot e$

have, for every $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in G$ ,

$(f^{(k)}\circ\sigma)J\sim^{)}=2^{\eta}\left(\begin{array}{l}k\\j\end{array}\right)\left(\begin{array}{ll}\nu+k & -1\\j & \end{array}\right)j$ !$c^{j}J^{j+2-2k-\nu}f^{(k-j)}j=0k$

where $J=J(\sigma, z)=(cz+d)^{-1}$ .
This is easily obtained by the induction on $k$ .
Now we shall prove Theorem 1. Notations being as in that theorem, by
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Lemma 2, $\omega$ satisfies the condition (M2) if we have, for every $\sigma\in G$ ,

(12) $ J^{\underline{\rangle}}\ovalbox{\tt\small REJECT}^{0_{\mu)}}\alpha\alpha_{\rho}\alpha_{1^{0}}f^{0}f_{(}^{\gamma}\circ\sigma$

where $J=J(\sigma, z)=(cz+\phi^{-1}$ . Put $ t=n-\angle\ell$ . By (10), we see that the first $t$ com-
ponents of the vectors in both sides are equal to $0$ ; and by (10), if $r\geqq t$, the
$(r+1)$ -th component of the $vector_{A}^{-}on$ the right hand side of (12) is equal to

(13)
$u=t2^{\uparrow}\left(\begin{array}{l}r\\u\end{array}\right)c^{r-u}J^{n-r-u}\alpha_{u-t}f^{(u-t)}$ ;

$r$

hence the equality (12) is proved if we show that (13) is equal to $]^{2}\alpha_{r-t}f^{(r-t)_{C}}\sigma_{-}$

By Lemma 3, we have

$J^{2}\alpha_{r-t}f^{(\gamma-t)}\circ\sigma=\alpha_{r-t}\sum_{j=0}^{r-t}\left(\begin{array}{ll}r & -t\\ & j\end{array}\right)\left(\begin{array}{l}\nu+r-f-1\\j\end{array}\right)j$ ! $c^{j}J^{j+2-2(?-t)-\nu}f^{(r-t-j)}$

$=\alpha_{r-t}2^{r_{\urcorner}}\left(\begin{array}{l}r-t\\r-u\end{array}\right)\left(\begin{array}{l}\nu+r-t-1\\r-u\end{array}\right)(r-u)$ !$c^{r-u}J^{e(u)}f^{(u-t)}u--t$

where $ e(u)=r-u+2-2(r-t)-\nu$ . Since $\backslash ’=2t-(n-2)$ , we have $e(u)=n-r-\ell t_{-}$

On the other hand, we can easily verify

$\alpha_{r-t}\left(\begin{array}{l}r-t\\r-u\end{array}\right)\left(\begin{array}{l}\nu+r-t-1\\r-u\end{array}\right)(r-u)!=\alpha_{u-t}\left(\begin{array}{l}r\\u\end{array}\right)$ .

This proves the equality (10). Hence $\omega$ satisfies (M2). The condition (M.1)
is of course satisfied. Now consider a cusp $s$ of $G$ . Since $\omega$ satisfies $(M1-2)$ ,

$\rho$ and $q$ being as in \S 1, there exist $n+1$ meromorphic functions $f_{0}(q),$ $\cdots,f_{n}(q)$

in $0<|q|<1$ such that

$L_{n}(z)_{1}^{-1}V_{n}(\rho)^{-1}\omega\circ\rho=\left\{\begin{array}{l}f_{0}(q)dq\\\vdots\\ f_{n}(q)dq\end{array}\right\}$ .

By (A 3), there exists a meromorphic function $g(q)$ in $|q|<1$ such that

(14) $f(\rho(z))=g(q)J(\rho, z)^{-\nu}$

Differentiating this successively, we get, for every $k$ ,

(15) $f^{(k)}(\rho(z))=J^{a(k)}\sum_{u}F_{ku}(q)z^{u}$ ,
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where $a(k)$ is an integer and the $F_{ku}(q)$ are meromorphic functions in $|q|<1$ .
Comparing both sides of the equality

(16) $\left\{\begin{array}{l}f_{0}(q)dq\\\vdots\\ f_{n}(q)dq\end{array}\right\}=L_{n}(z)^{-1}M_{n}(\rho)^{-1}L_{n}(\rho(z))\ovalbox{\tt\small REJECT}^{0_{(/1)_{O}}}\alpha_{\mu}f^{0_{:}}\alpha_{0}f\circ\rho_{\beta}]J^{2}\frac{h}{2\pi i}\frac{dq}{q}$ ,

we observe that $f_{k}(q)$ is written in the form

(17) $f_{k}(q)=J^{b(k)}\sum_{u}H_{ku}(q)z^{u}$ .

where $b(k)$ is an integer and the $H_{ku}(q)$ are meromorphic functions in $|q|<1$ .
Hence there exists an integer $m$ such that

$\lim_{q\rightarrow 0}q^{m}f_{k}(q)=0$

for every $k$ . This shows that the $f_{k}(q)$ are meromorphic at $q=0$ . Thus we
have proved that $\omega$ is an $M_{n}$-form. Furthermore, suppose that $f$ is a cusp
form. Then the function $g(q)$ of (14) takes the value $0$ at $q=0$ ; so, in the
expression (15), we may assume that the $F_{ku}(q)$ take the value $0$ at $q=0$ .
Comparing again both sides of (16), we see that the functions $H_{ku}(q)$ in the
expression (17) are holomorphic at $q=0$ , so that we have

$\lim_{q\rightarrow 0}qf_{k}(q)=0$

for every $k$ . This shows that the $f_{k}(q)$ are holomorphic at $q=0$ . Hence $\omega$ is
a cusp $M_{n}$-form. We can similarly show that if $\omega$ is a cusp $M_{n}$-form, $f$ satis-
fies (A 3’). Theorem 1 is then completely proved.

We can prove Theorem 3 in a quite similar way. We shall now prove
Theorem 5. Differentiating both sides of

$L_{n}(z+w)=L_{n}(z)L_{n}(w)$

with respect to $w$ , and then putting $w=0$ , we obtain

(18) $L_{n^{\prime}}(z)=L_{n}(z)L_{n^{\prime}}(0)$ .
From (2) we see that

(19) $L_{n^{\prime}}(0)=\ovalbox{\tt\small REJECT}_{0}^{0}000$ $0n.\cdot..n-10$ $0001200\ldots 000\ovalbox{\tt\small REJECT}$ .
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Notations being as in Theorem 5, we have, using (18) and (19),

$df=d[L_{n}(z)\left\{\begin{array}{l}0\\\vdots\\ 0\\\gamma_{0}f\\\vdots\\\gamma_{\mu- 1}f^{(\mu-1)}\end{array}\right\}]=[L_{n}^{\prime}(z)\left\{\begin{array}{l}0\\\vdots\\ 0\\\gamma_{0}f\\\vdots\\\gamma_{f^{\prime 1}}-pf^{\mathfrak{c}_{}^{\prime_{t-1)}}}\end{array}\right\}+L_{n}(z)[r_{\mu-1}\gamma_{0}0_{f^{\prime}}0_{f^{(\mu)}}\ovalbox{\tt\small REJECT}]dz$

$=L_{n}(z)\left\{\begin{array}{l}0\\\vdots\\ 0\\\alpha_{0}^{\prime}f\\\alpha_{1^{/}}f^{/}\\\vdots\\ f^{(/J)}\alpha_{fl}’\end{array}\right\}dz$ ,

where $\alpha_{0}^{\prime}=\mu\gamma_{0},$ $\alpha_{1^{\prime}}=(\mu-1)\gamma_{1}+\gamma_{0},$
$\cdots,$ $\alpha_{\mu-1^{\prime}}=\gamma_{\mu-1}+\gamma_{\mu-2},$ $\alpha_{\mu^{\prime}}=\gamma ^{J-1},$ . We can

easily verify $\alpha_{k}^{\prime}=l^{4}(n-\mu+1)\alpha_{k}$ for $ 0\leqq k\leqq\mu$ . This proves Theorem 5.
It remains to prove Theorem 2 and Theorem 4. We need for that

purpose
LEMMA 4. Suppose lhat the Fuchsian group $G$ has no cusp. Let $n$ be a

positive even inleger and $r=\frac{n}{2}$ . Then there is no cusp $M_{n}$-form $\omega$ with respect

to $G$ of the type

$\omega=L_{n}(z)\ovalbox{\tt\small REJECT} f_{n}^{1}f_{r}^{0}0]dz$ ,

where $f_{r},$ $\cdots,f_{n}$ are meromorphic functions on $\ovalbox{\tt\small REJECT}$.
PROOF. First we remark that $f_{r}$ must be everywhere holomorphic on .sit;

By lemma 2 and by (10), we have, for every $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in G$ ,

$f_{r}(\sigma(z))J(\sigma, z)^{2}=f_{\gamma}(z)+rcJ(\sigma, z)$ .
Put $\eta=f_{7}(z)dz$ . Then $\eta$ is a holomorphic differential form on $\ovalbox{\tt\small REJECT}$ satisfying

(20) $\eta\circ\sigma=\eta-rd(\log J(\sigma, z))$

for every $\sigma\in G$ . Consider the integral of $\eta$ along the boundary 9 of a funda-
mental domain of $G$ ; then we find, taking account of the relation (20),
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(21)
$\frac{2}{r}\int_{\mathscr{Q}}\eta=2g-2+V\Delta_{\lambda}(1-\frac{1}{m_{\lambda}})$ ,

where $g$ is the genus of the Riemann surface $\ovalbox{\tt\small REJECT}/G$ and the $m_{\lambda}$ denote the
{)$rders$ of ramification at the elliptic points of $G$ . It is well known that the
number on the right hand side of (21) is positive. On the other hand, as $\eta$

is holomorphic, we must have $\int_{\mathscr{D}}\eta=0$ ; thus we are led to contradiction if we

assume the existence of a cusp $M_{n}$-form of the type described in our lemma.
Now we are ready to prove Theorem 2. First we remark that $S_{\nu}(G)=\{0\}$

for $\nu<0$ and $S_{0}(G)=\{0\}$ or $=C$ according as $G$ has a cusp or not. Let $\omega$ be
a cusp $M_{n}$-form with respect to $G$ ; put

$L_{n}(z)^{-1}\omega=\left\{\begin{array}{l}f_{0}(z)\\\vdots\\ f_{n}(z)\end{array}\right\}dz$ .

Let $t$ be the first integer such that $f_{t}\neq 0$ . Then, by Lemma 1, $f_{t}$ is a cusp
form with respect to $G$ of degree $2t-n+2$ . By the above remark, we must

have $t\geqq\frac{n-2}{2}$ . If $t=\underline{n}-\underline{2}2f_{t}$ is a cusp form of degree $0$ ; then, $G$ has no
cusp and $f_{t}$ is a constant. This is impossible, however, in view of Lemma 4.
Hence we have $2t-n+2>0$ . Put $\nu=2t-n+2$ . Then we have $\alpha_{n,\nu.0}\neq 0$ ; put

$f=\alpha_{n,\nu.0^{-1}}f_{t}$ . Let $\eta_{\nu}$ be the cusp $M_{n}$-form defined for the cusp form $f$ by (8).

Then we see that the first $t+1$ components of $L_{n}(z)^{-1}(\omega-\eta_{\nu})$ are all $0$ . Apply-
ing the same argument to the form $\omega-\eta_{\nu}$ , we can find an element $\eta_{\nu+2}$ of
$\mathfrak{S}_{\nu+2}^{n}(G)$ such that the first $t+2$ components of $L_{n}(z)^{-1}(\omega-\eta_{\nu}-\eta_{\nu+2})$ are all $0$.
Repeating this procedure, we get the expression

$\omega=\sum_{\lambda=\nu}^{n+2}\eta_{\lambda}$

where $\eta_{\lambda}$ is an element of $\mathfrak{S}^{n_{A}}(G)$ for every $\lambda$ . It is easy to see that this ex-
pression gives a decomposition of the vector space $\mathfrak{F}_{n}(G)$ as the direct sum
of the vector spaces $\mathfrak{S}_{\lambda}^{n}(G)$ for $2\leqq\lambda\leqq n+2$ . Thus we have proved Theorem
2. Theorem 4 can be $\mathfrak{S}_{\lambda}^{n}$ proved in a quite similar way.

University of Tokyo.
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