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In recent works [2], [3], it was found that the integral of certain vector
differential forms, attached to automorphic forms with respect to a Fuchsian
group G, is important in the arithmetic theory of modular correspondences.
Those vector differential forms o are defined on the upper half plane and
satisfy the transformation formula

@O woo = M(o)w

for every element o of the group G, where M(o) is a tensor representation
of G. The object of the present paper is to determine all holomorphic forms
satisfying this relation (1). M being of degree 2m—1, we can attach to every
cusp form of degree <2m a holomorphic form w with the representation M
(Cheorem 1). Conversely, any holomorphic form satisfying (1) is expressed
as a sum of the forms thus obtained from cusp forms of degree <2m; and
this expression gives a direct decomposition of the vector space § of such
holomorphic forms (Theorem 2). Hence the dimension of the vector space
is easily obtained if we know the dimension of the linear space of cusp forms
for each degree. We note that the integral of the form attached to a cusp
form of degree <2m has a period cohomologous to 0, in the sense described
in[3] This fact distinguishes among such forms the forms attached to cusp
forms of degree 2m, which were the object of the investigation in [3].

§1. Cusp forms with respect to a Fuchsian group.

Let % denote the upper half plans, the set of all complex numbers with
positive imaginary parts. Every element ¢= (Z 2,) of SL(2, R) operates on
M, as usual:

az+b

0(z) = xtd

we put
J(o,2) = (cz+d)".
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For every differential form » on % we shall denote by woo the transform of
® by o; so if w is expressed in the form o =f(2)dz for a function f(z) on .%,
we have weo=f(0(2))](0,2)%dz.

Let G be a discrete subgroup of SL(2, R) such that SL(2, R)/G has a finite
total volume, measured by an invariant volume element. Then, G, as group
of transformations on 4 is a Fuchsian group; namely, G operates discon-
tinuously on 4 and .%/G has a fundamental domain @ with a finite Poincaré
area. If we denote by .9* the join of % and the “cusps” of G, the quotient
space 4*/G, with a suitable analytic structure, can be regarded as a compact
Riemann surface.

A cusp of G is the fixed point of a parabolic element of G, which is a
real number or the point at infinity co. Let s be a cusp of G. Put

o=(C1g) o o=(5 1)

according as s is a real number or co. Then the set of all elements of G
having s as fixed point is the free cyclic group generated by an element
of G, which is of the form
1 A\ _
r=n(p 1)o7

where £ is a positive real number.

Let v be an integer. We shall understand, by an automorphic form of
degree v with respect to G, a function f(z) on 4 satisfying the following con-
ditions (A 1-3).

(A1) f(2) is mevomorphic on 4.

(A2) For every o< G, we have f(0(2))](0, 2)’ = f(2).

Consider a cusp s of G; the transformation p and the positive number 7 be-
ing defined for s as above, we see that, if f satisfies (A 1-2), the function
F(o@)](p,2)" is invariant under the translation z—z+44. Hence, if we put

q = exp(2rih~1z),
there exists a function g(g) meromorphic in the domain 0<|¢|<1 such that

S @), 2)" =2 .

The condition (A 3) is now stated as follows.

(A3) For every cusp s of G, the function g(q), defined as above, is mero-
morphic at q=0.

An automorphic form f(z) with respect to G is called a cusp form with
respect to G, if the following conditions are satisied.

(A1) f(2) is holomorphic on I

(A3 For every cusp s of G, the function g(q), defined as above, is holomor-
phic and takes the value 0 at g=70.
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We denote by S,(G) the set of all cusp forms of degree v with respect
to G. In this paper we shall only deal with the forms of even degree.

§2. M, forms and M, -vectors.

Let
GL2,C)20—-M,(0)eGL(n+1,0)

be the representation of GL(2, C) by symmetric contravariant tensors of order
n, so that the equality
U z
U( v ) o ( w >

is led to

u" 2"

u 2" 1w

uy" ! 2"

" w”
For instance, we have

1 nz ﬁ(_”éi_l)zz i

L z2\WW_|l0o 1 st—1Dz - 2zt

@ m(( 7))= Dz -z

0 - e 1

As this matrix Mn<<(1) i ) will be often used in our investigation, we de-

note it briefly by L.(2):
L=m((} 1))-

We have then, for every r<= SL(2, R),

®) L ML =M((1 1)),

where J = J(r, 2) = (cz+d)"t. In particular, if 7 is a real number and = <(1) ’i),
we have

“4) L (7(2)) = M, (7) L, (2) .

Let 7 be an automorphic form of degree n-+2 with respect to G. In
we have studied the vector differential form
0 fztdz
M n—ld
) 0=Li)| | |dz= Jar

S fc;’z
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which satisfies, for every o G,
weo = M,(0)w .
This is an example of M, -form, whose definition is given as follows. A column
vector of dimension n-+41
Wy

@y

Wy,
is called an M,-form with respect to G, if it satisfies the following conditions
M1-3).
(M1) Each component wy, is a mevomorphic diffevential form on I
M2) For every o € G, we have woo = M, (o).
Let s be a cusp of G; and let p and % be as in §1. Then, if w satisfies (M
1-2), we can easily verify, using (4), that the form

L, (2)" M, (0)'wep

is invariant under the translation z— z+#4. Therefore, if we put ¢ = exp(2ris~'z),
there exist #+1 functions f,(g), -+, f(q), meromorphic in 0 < lg| <1, such that
Sol@dq
(6) L, ()7 M, (0) ' wep =
fo(@dg
Now the condition (M 3) is stated as follows.
M 3) For every cusp s of G, the functions fi,(q) defined by (6) are mero-
movphic at q=0.
An M,-form w with respect to G is called a cusp M,-form with respect to
G if the following conditions (M1’) and (M 3’) are satisfied.
M1 FEvery component of w is holomorphic on 4.
(M3’) For every cusp s of G, the functions fi(q) defined by (6) are holo-
morphic at q=0.
We can prove that the form  defined by (5) is an M,-form with respect
to G; it is a cusp M,-form if and only if f(2) is a cusp form. This fact is a

special case of the following [Theorem 1. We shall denote by §.(G) the set
of all cusp M,-forms with respect to G.

Considering functions in place of differential forms, we get the follow-
ing definition. A column vector of dimension n-+1
&o
a=|
&n
is called an M,-vector with respect to G, if it satisfies the following conditions
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(V1-3).

(V1) Every component g, is a meromorphic function on 9.

(V2) For every o =G, we have goc = M,(0)g.
The notations s, p, 2 being as above, if ¢ satisfies (V1-2), there exist n+1
functions Fy(g), ---, F,(g), meromorphic in 0 <[q|< 1, such that

Fyg
% L, (2 "My(0) 'gop = .
F.

(V3) For every cusp s of G, the functions Fi(q) defined by (7) are wmero-
morphic at q=0.

An M,-vector g with respect to G is called a cusp M,-vector with respect to
G if the following conditions (V'1’) and (V 3’) are satisfied.

(V1) Every component of g is holomorphic on 4.

(V3 For every cusp s of G, the functions Fy(q) defined by (7) are holo-
morphic and take the value 0 at ¢=0.

We shall denote by B,(G) the set of all cusp M,-vectors with respect to G.

§3. Main results.

We shall now state our results in the following theorems, for which the
proofs will be given in §4. We first introduce some notations. For every
integer £ and a non-negative integer j, we shall write

f 1 for 7=0,

<§>: k(e —1) - (b —j-+1) .

l T for j>0.

Consider a triplet (»,v, k) of integers such that
i) = is even and non-negative;

ii) vis even and —(n—2) v <n+2;

i) 0<k= n_‘itgj:z.
For such a triplet (x,v, k), we put
0 for v +k—1<0,
An,v, &= vt n—2
s 2
gkfr oz ) for v+k—1=0
Elv+E—1D!
and
0 for v+ k—1<0,

Tn,v, 6= Y+ n
[<k+ 2 ’)! fer v+k—1=0.
klwv+k—1)!
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For fixed » and v, we denote «,,,,; and 7,,,,% simply by «; and 7,.
Lemmva 1. Let t be an integer such that 0 =t <n and f, fis, s fn be n—t+1
mevomorbhic functions on 9. If

0
w=L,2) dz
Ji

I

is an M,-form with respect to G, then f, is an automorphic form of degree 2f+2—n

with respect to G. Moreover, if @ is a cusp M,-form, f, is a cusp form.
Tueorem 1. Let n and v be two even integers such that n>0 and —(n—2) <

y=n+2; put u= 9 —~. Then, for every automorphic form f of degree v with

respect to G, the vector differential form

0
® o=L,2)| a,f |dz
a, f’

a,fe
is an M,-form with vespect to G, where Qg =y, o Q= Qp,y 15 J'y s 9 de-
note the dervivatwes df/dz,---,d”f/dz"; and the number of O in the column is
n—up.  Moveover, in order that » is a cusp M,-form, it is necessary and sufficient
that f is a cusp form.

Remark that, if y <0, we have qy=«a, = =«a_, =0. We denote by &"(G)
the set of all M,-forms » of the form (8), where f is a cusp form of degree
v. If v<0, the set &,(G) consists only of the zero element. If v>0, we
have «,=0, so that the vector space &",(G) is canonically isomorphic to the
vector space S,(G) by the mapping f— .

Tueorem 2. The vector space F.(G) of all cusp M,-forms is the direct sum
of the vector spaces &",(G) for even v such that 2=v =n-2:

Ta(G) = €%(G) + -+ + &"u(G) + E"nss(G) .

Hence, if we denote by d,(G) the dimension of the vector space S,(G), the
dimension of the vector space F.(G) is equal to

dy(G) + -+ +dn(G) + dnss(G) .

The number 4,(G) is easily obtained by means of Riemann-Roch Theorem.
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We note that from [Cemma 1 and [Theorem 1 follows a result of Bol [1],
which asserts the (#—1)-th derivative of an automorphic form of degree
—(n—2) to be an automorphic form of degree xn. In fact, consider the case

v=—(n—2) in [Theorem 1I; we have then
Q== Uy =0,, 1 #0;
so the vector
0

L.(2) 0 dz
an—lf(n-l)
A, f™
is an M,-form for every automorphic form f of degree —(n—2). Hence, by
Lemma 1, f®? is an automorphic form of degree .
Tueorem 3. Let the integers n,v, u be the same as in Theovem 1. Then, for
every automorphic form f of degree v with vespect to G, the vector function

0

0
©)) f=Lu(2) Tof
7S

Ty-1f(ﬂ_1)

is an M,-vector with respect to G, where 1y =7n,v,1; and the number of 0 in the
column is n—up-+1. Moveover, in order that | is a cusp M,-vector, it is necessary
and sufficient that f is a cusp form.

Denote by %*,(G) the set of all M,-vectors | of the form (9), where f is
a cusp form of degree v. We see easily $",(G)= {0} for v <0 and v =n-|2.
If 0<v=u, we have r,#0, so that the vector space ¥",(G) is canonically
isomorphic to the vector space S,(G) by the mapping f—1.

Tueorem 4. The vector space BG) of all cusp M,-vectors is the direct sum
of the vector spaces I",(G) for even v such that 2=v=n:

BYG) =T"(G) + -+ +T"(G) -

Now we consider the differential df of an M,-vector {. If f is an M,-
vector with respect to G, then we can easily prove that df is an M,-form
with respect to G; if §isa cusp M,-vector, then df is a cusp M,-form. More
precisely, we have

Tueorem 5. The integers n,v, 1 being as in Theorem 1, let f be an auto-
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morphic form of degree v with vespect to G. Define an My-form o and an M-
vector 1 by (8) and (9). Then we have
di=un—r+o.

Remark that u(r—p-+1)#0if £ =1. Hence, if 0 <v <, the mapping {— df
gives an isomorphism of ¥",(G) onto &*,(G).
From the last theorem, we can conclude that, if 0 <y < %42 and if we

&",(G), the period of the integral jzco is cohomologous to 0 in the sense of

[3] On the other hand, of [3] claims that the period of fa) is
not cohomologous to 0 for every element w +0 of &",.,(G). Therefore, we
obtain the following result.

Tueorem 6. Let M, (G) denote the set of all cusp M,-forms with respect to
G, whose integrals have the periods cohomologous to 0. Then, the factor space
Bn(G)/N(G) is canonically isomorphic 10 S,.o(G).

Put, similarly as in [3], for o, 7 < %.(G),

@ =if tord,

where P, is the symmetric matrix introduced in §1 of [3] and 9 is a funda-
mental domain of G. Then (w,7) is a Hermitian form on &,(G). By the above
considerations, we see that two subspaces ©~,.,(G) and &",(G)+ -+ &",(G)
of $.(G) are transversal to each other with respect to this form (w,7), and
(w,7) is a zero form on the latter space, while it- is a definite form on the
former space (§2 of [3).

§4. Proofs of Theorems.

LemMa 2. Let fo, -, fu be n+1 mervomorphic functions on I, put

Jo
i=| |, o=L,(2)dz.
Jn
Then, w satisfies the condition (M 2) if and only if

Goorr=24,((7 2))i

holds for every o = (Z Z) e G, where ] =J(o,2) = (cz+d)™.
This follows from the relation (3) of §2.

Let 7= ((g Z) be an element of SL(2, R) and J= (cz+d)~!; we have then



266 M. KuGa and G. SHIMURA

1
o™ I
10) Mn(({ ]91))=f"
Cn]—n ncn—-jj—n—l s ]’—271
In the matrix [10), the elements above the diagonal are all 0; the (r+1)-th
diagonal element is /*%"; and the (r+1)-th row is

10 (C"f"‘r, < 71' )CT—IJ"H—-T—-I, ( g )Cr~z]7z—r—2, e, JP2 0, ...,Q> .

We shall now prove [Lemma 1. Suppose that f;=-=f,-,=0 in Lemma
2 and o= L,(2){dz is an M,-form with respect to G. Then, by Lemma 2 and
by [10), we have, for every o <G,

(f100)J(0, 2)** " = fy;

so f; satisfies the condition (A 2) for v =2¢t+2—n. Let s be a cusp of G; p, /%
and g being defined for s as in § 2, there exist n-+1 meromorphic functions
£0(@, -+, &(@) in |g| <1, such that

&g(@dq

L(2)7 M, (0) ™' La(0(2))(To 0)] (0, 2)°dz =

&a@dq

By the relation (3), putting J=/(p, 2) = (cz+-d)~!, we have

70 » £o(q)
() ]_1)) Gop)? = 27ik=q] |,
2:()
so that by [10),
1n (froo)J*+27" = 2mih ™ qg(q) -

This shows that f, satisfies (A 3). Hence f, is an automorphic form of degree
2t+2—n with respect to G. Furthermore, if @ is a cusp M,-form, f, must be
holomorphic on 4%, since f, is the (#++1)-th component of L.,(—z2)w/dz; and as
£{q) is holomorphic at ¢=0 by virtue of (M 3%), the relation shows that
f; satisfies (A 3’). This completes the proof of [Lemma 1.

Lemma 3. If £ is an automorphic form of degree v with respect to G, we

have, for every ¢ = <Z Z) e G,

k
B T2 — N\ k Vhk—1Y\ -y riva-skvee-p
(f®00)] *ZO(])( L )iter :
=
where | =J(0,2) = (cz+d)
This is easily obtained by the induction on &.
Now we shall prove [Theorem 1. Notations being as in that theorem, by
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Lemma 2, w satisfies the condition (M2) if we have, for every o< G,

0 0
0 0

12 7 afeo =Mn<({ ]91)) af |
afloo af

a,f®oq o f

where J=J(g,2) = (cz-+d)~'. Put ¢t=n—u. By[10), we see that the first ¢ com-
ponents of the vectors in both sides are equal to 0; and by (10"), if »=¢, the
(r+1)-th component of the vector[on the right hand side of is equal to

u=t

hence the equality is proved if we show that is equal to J2a,_,f" 9«0
By Lemma 3, we have

r—t

e, fT o0 =a,_, \! ( r— ¢ >< v+ ¥— t—1 >]y a2 =D~V fr—t=1)
J J
3=0
i vt r—i—1
7 — vtr—it— - -
— — ) | T £u—t)
af"‘)i(r—u)( r—u )(r W1 Fee,
u=t

where e(u) =r—u+2—20r—¢—v. Since yv=2{—(n—2), we have e(u)=n—r—u.
On the other hand, we can easily verify

a2 )T e mi a1

This proves the equality [10). Hence o satisfies (M2). The condition (M1)
is of course satisfied. Now consider a cusp s of G. Since w satisfies M 1-2),
o and ¢ being as in §1, there exist z+1 meromorphic functions 74(q), -, fx(@)
in 0 <{g] <1 such that

Sfolg)dq
L.(2)7'M,(0) " wop = :
Sul@)dq
By (A 3), there exists a meromorphic function g(g) in |g| <1 such that
(19 So(2)) = g(@J (0, 2)™" .

Differentiating this successively, we get, for every &,

15) FP(o(2)) =J*® 2 Ful@z*,
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where (k) is an integer and the Fy,(g) are meromorphic functions in |g|<1.
Comparing both sides of the equality '

0
Fi@)dg :
0
(16) L |F L@ MO L@ AL,
fal@)dg |
afluf(/l%/o

we observe that fi(g) is written in the form
17) Fil@) =7J"® %3 Hy(@z" .

where b(k) is an integer and the H.(q) are meromorphic functions in [g]| <1.
Hence there exists an integer m such that

lim g"fi(g) =0
q—0

for every k. This shows that the f.(g) are meromorphic at ¢g=0. Thus we
have proved that w is an M,-form. Furthermore, suppose that f is a cusp
form. Then the function g(g) of takes the value 0 at ¢g=0; so, in the
expression [15), we may assume that the Fy,(¢) take the value 0 at ¢=0.
Comparing again both sides of [16), we see that the functions H(g) in the
expression are holomorphic at ¢=0, so that we have

lim gf3(g) =0

q-0
for every k. 'This shows that the f.(g) are holomorphic at ¢g=0. Hence w is
a cusp M,-form. We can similarly show that if w is a cusp M,-form, f satis-
fies (A 3). is then completely proved.

We can prove [Theorem 3 in a quite similar way. We shall now prove

[Theorem 5. Differentiating both sides of
with respect to w, and then putting w=0, we obtain

(18) L, (z) = Ly(2)L,/(0) .
From (2) we see that

0 0O - 00
0 0 -1 - 0 0

19) Ly (0) =

()
an
Sy
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Notations being as in [Theorem 5, we have, using and [19),
0 0 0

df=d[ L.(2) T?f 1=[r@ r(o) o |TL@ T(;, Jaz
0

r,u—lf([u_l) .T‘u—]f(uﬂl) r;z-nlf(ﬂ)
0
0
=L, a)ff |dz,
af

a.u/ o

where ay = ury, o =(@—=Dri+70 5 Qpot/ =7 pet + 7Tpeer &) =7, We can
easily verify «;’ = u(n—un-+1a; for 0 <k <u. This proves [Theorem 3.

It remains to prove [Theorem 2 and [Theorem 4. We need for that
purpose

Lemma 4. Suppose that the Fuchsian group G has no cusp. Let n be a

positive even wnteger and v = —5-. Then there is no cusp M,-form o with respect

to G of the type

0
w=L,(2) 1 |dz,
Sr

S
where fr, -+, fn ave meromorphic functions on I
Proor. First we remark that £, must be everywhere holomorphic on 4.

e

By lemma 2 and by (10'), we have, for every ¢ = (Z

f(0(2)) (0, 2)? = f,(2) + 7/ (0, 2) .
Put n =f,(2)dz. Then 7 is a holomorphic differential form on .4 satisfying
(20) n°0 =n—rd(log J(o, 2))

for every o = G. Consider the integral of » along the boundary & of a funda-
mental domain of G; then we find, taking account of the relation (20),
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my

21) = =2+ 2 (1-- 1,

where g is the genus of the Riemann surface .4/G and the m; denote the
orders of ramification at the elliptic points of G. It is well known that the
number on the right hand side of is positive. On the other hand, as 7

is holomorphic, we must havef 7 =0; thus we are led to contradiction if we
B

assume the existence of a cusp M,-form of the type described in our lemma.

Now we are ready to prove [Theorem 2. First we remark that S,(G)= {0}
for vy <0 and S,(G) = {0} or =C according as G has a cusp or not. Let » be
a cusp M,-form with respect to G; put

So(2)
L.(2)w= P |dz.
Sa(2)
Let ¢ be the first integer such that f,+# 0. Then, by [Lemma 1, f, is a cusp

form with respect to G of degree 2f—n+2. By the above remark, we must

n—2 _ n—2
have 1= 5 If t= o

cusp and f, is a constant. This is impossible, however, in view of
Hence we have 2{—n-+2>0. Putv=2{—n-+2. Then we have «,,,,,#0; put
JS=d,,,, " Let 7, be the cusp M,-form defined for the cusp form s by (8).
Then we see that the first #4-1 components of L,(2)"'(w—7,) are all 0. Apply-
ing the same argument to the form w—7,, we can find an element 7,,, of
©",.4,(G) such that the first #4+2 components of L,(z)"(w—2,—7,.,) are all 0.
Repeating this procedure, we get the expression

, f+ is a cusp form of degree 0; then, G has no

n+2

0= 2
A=y
‘where 7; is an element of &"(G) for every A. It is easy to see that this ex-
pression gives a decomposition of the vector space F.(G) as the direct sum

of the vector spaces €%(G) for 2=21=#n+2. Thus we have proved Theorem
2, can be &% proved in a quite similar way.

University of Tokyo.
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