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\S 1. Introduction.

In Part I of the present work1) we proved that the absolutely continuous
part of the spectrum of a self-adjoint (abbr. $s.a.$ ) operator is stable under the
addition of a not necessarily bounded symmetric perturbation (see Theorem
1 of (I)). The main purpose of this Part II is to prove a similar theorem
for perturbations of different kind which are not necessarily expressed as
the addition of some symmetric operator. The formulation and the proof of
the results are based on the theory of closed Hermitian forms in a Hilbert
space.

Let $\mathfrak{H}$ be a Hilbert space with the inner product and the norm denoted
by $(, )$ and $\Vert\Vert$ . We follow mostly the terminology and notations of (I); for
the notations $B,$ $S,$ $T$ etc., see \S 1 of (I). The deviation from the usage in (I)

is that the Schmidt and the trace norm of $A\in B$ are now denoted by $s(A)$

and $t(A)^{2)}$ , respectively, for typographical reasons. We also use the follow-
ing new notations: $A$ is the set of all $s$ . $a$ . operators in $\mathfrak{H}$, and $A_{sb}\subset A$ the
set of all $H\in A$ which is bounded below; $\gamma_{H},$ $H\in A_{sb}$ , is the lower bound of
$H$, that is, the maximum of the number $\gamma$ such that $(Hu, u)\geqq\gamma\Vert u\Vert^{2}$ for every
$u\in \mathfrak{D}(H)$ ; $F$ is the set of all operators $A\in T\subset B$ of finite rank. Further-
more, we use $\mathfrak{M}_{0},$ $\mathfrak{M},$ $P_{0}$ and $P$ in the same sense as in (I) (see footnote 2) of
(I)).

We are mainly concerned with the $asympto^{1_{\llcorner}}ic$ properties of the family
of unitary operators defined by
(1.1) $U_{t}(H, H_{0})=\exp(itH)\exp(-itH_{0}),$ $-\infty<t<+\infty$ ,

where $H_{0},$ $H\in A$ . As is stated in \S 1 of (I), th $ee_{-}X_{-}^{\dot{\eta}}S^{\tau}$ ence of the generalized

wave operators

(1.2) $TV_{\pm}(H, H_{0})=s-\lim_{t\rightarrow\pm\infty}U_{t}(H, H_{0})P_{0}$ and $lV_{\pm}(H_{0}, H)$

1) Kuroda [4]. This will be quoted as (I). The $refere\bigcap_{-}ce$ given in (I) will be
quoted as $e$ . $g$ . von Neu mann [15] of (I).

2) These are denoted In (I) by $\Vert A\Vert_{2}$ and $\Vert A\Vert_{1},$ $respectiv_{\vee}^{2}1y$ .
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implies the unitary equivalence of the absolutely continuous parts of $H_{0}$ and
$H$. In this Part II we consider the case in which $H_{0},$ $H\in A_{sb}$ . If one is only
concerned with this unitary equivalence, it may be simpler to examine the
existence of $W_{\pm}((H-\gamma)^{-1}, (H_{0}-\gamma)^{-1})$ and $W_{\pm}((H_{0}-\gamma)^{-1}, (H-\gamma)^{-1})$ . (In fact,
Putnam [5] treated some problems of the ordinary differential equation from
this point of view.) In connection with the scattering theory in quantum
mechanics, however, it seems worthwhile to examine the existence of $ W_{\pm}(H, H_{0})\downarrow$

themselves and we shall treat the problem by considering the existence of
$W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$

Before formulating the results, we shall examine some properties of
Hermitian forms in \S 2.

\S 2. Trace class of closed forms.

Let $J[u, v]$ be a Hermitian bilinear form (linear in $u$ and conjugate linear
in v) with the domain $\mathfrak{D}(J)$ which is a linear manifold dense in $\mathfrak{H}^{3}$ ‘ $J$ is
bounded below if there exists a real number $\gamma$ such that $J[u]\geqq\gamma\Vert u\Vert^{2}$ for
every $u\in \mathfrak{D}(J)$ . The maximum of such $\gamma$ is called the lower bound of $J$ and
denoted by $\gamma_{J}$ . $J$ is closed if $u_{n}\in \mathfrak{D}(J),$ $u_{n}\rightarrow u$ and $J[u_{n}-u_{m}]\rightarrow 0,$ $n,$ $m\rightarrow\infty,$.
imply $u\in \mathfrak{D}(J)$ and $J[u_{n}-u]\rightarrow 0$ . We denote by 3 the set of all forms in $\mathfrak{H}$

and by $s_{sb}^{\alpha}\subset s^{\alpha}$ the set of all closed forms bounded below. For any linear
manifold $\mathfrak{D}$ dense in $\mathfrak{H}$ , we denote by $s_{sb}^{\alpha}[\mathfrak{D}]\subset s_{sb}^{\alpha}$ the set of all $J\in s_{sb}^{\alpha}$ with
the domain $\mathfrak{D}^{4)}$ . In particular, $s_{b}^{\alpha}\equiv s_{sb}^{\alpha}[\mathfrak{H}]$ is the set of all bounded forms on
$\mathfrak{H}$ A linear subset $\mathfrak{D}$ of the domain of a closed form $J$ is called a core of $J$

if the closure of the restriction of $J$ to $\mathfrak{D}$ coincides with $J$, that is, if for
any $u\in \mathfrak{D}(J)$ there exists a sequence $\{u_{n}\},$ $u_{n}\in \mathfrak{D}$ , such that $u_{n}\rightarrow u$ and
$J[u_{n}-u]\rightarrow 0,$ $ n\rightarrow\infty$ .

According to a theorem of Friedrichs3), there exists a uniquely deter-
mined one-to-one mapping $J\rightarrow\phi(J)=H$ from $s_{sb}^{\alpha}$ onto $A_{sb}$ such that 1) $\mathfrak{D}(H)$

$\subset \mathfrak{D}(J)$ and $J[u, v]=(Hu, v)$ for every $u\in \mathfrak{D}(H)$ and $v\in \mathfrak{D}(J)$ ; 2) $\mathfrak{D}(H)$ is a
core of $I$ ; and 3) $\gamma_{H}=\gamma_{J}$ . $H$ is called the $s$ . $a$ . operator associated with $J$. We
denote by $\psi$ the inverse mapping of $\phi:\psi(H)=J$. $J$ is determined by the
relations

3) For Hermitian bilinear forms, see Friendrichs [1]. More detailed exposition
of the theory of closed forms and its connection with the perturbation theory of
eigenvalues are given in Kato [3]. Throughout the present work we agree for
brevity that 1) “ form ” means ” Hermitian bilinear form with a dense domain ‘

and 2) $J[u]=J[u, u]$ .
4) $s^{\alpha_{sb}}[\mathfrak{D}]$ may be empty. If not empty, however, it consists of an infinite number

of elements. We agree throughout the present paper that, when we write $s_{sb}^{\circ}[\mathfrak{D}]$

without any comment on the nature of $\mathfrak{D},$ $s^{\triangleright_{sb}}[\mathfrak{D}]$ is assumed not to be empty.
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(2.1) $\left\{\begin{array}{l}\mathfrak{D}(J)=\mathfrak{D}((H-\gamma)^{1/2}),\\J[u,v]=((H-\gamma)^{1/2}u,(H-\gamma)^{1/2}v)+\gamma(u,v)_{\gamma}\end{array}\right.$

where $\gamma$ is an arbitrary number such that $\gamma\leqq\gamma_{J}^{6)}$

The set of all $J\in s_{sb}^{\alpha}$ such that $\phi(J)\in T$ is called the trace class of closed
forms and denoted by $\mathfrak{T}$ . The trace norm $t(J)$ of $J\in \mathfrak{T}$ is defined by $t(J)=$

$t(\phi(J))$ . If in particular $\phi(J)\in F,$ $J$ is said to be of finite rank. $t(J)$ is given
by
$\oint(2.2)$

$t(J)=t(\phi(J))=\max_{1\varphi_{\nu}\}}\sum_{\nu}|(\phi(J)\varphi_{\nu}, \varphi_{\nu})|$

$=\max_{\iota_{\varphi_{\nu}I}}\sum_{\nu}|J[\varphi_{\nu}]|$
,

where $\{\varphi_{\nu}\}$ ranges over all complete orthonormal sets (abbr. $c$ . $0$ . $n$ . $s.$ ) of $\mathfrak{H}$

(cf. (1.7), (1.8) and (1.10) of (I)). The maximum is attained for a c. o. $n.s$ .
consisting of the eigenvectors of $\phi(J)$ . Since 1 $\emptyset(J)\Vert\leqq t(\phi(J))$ , we obtain

(2.3) $|J[u]|=|(\phi(J)u, u)|\leqq t(J)\Vert u\Vert^{2}$ .
So far we have been considering various classes of operators and forms

in a fixed Hilbert space $\mathfrak{H}$ . For later use, however, it is necessary to inves-
tigate the relations between these classes in different Hilbert spaces which
are identical with each other as vector spaces. Let $\backslash \mathfrak{X}$ be a vector space and
let $(, )_{1}$ and $(, )_{2}$ denote two inner products (strictly positive definite bilinear
forms) on $\mathfrak{X}$ . We assume that $(, )_{1}$ and $(, )_{2}$ are equivalent to each other,
that is, there exist positive constants $M_{1}$ and $IvI_{2}$ such that

(2.4) $\Vert u\Vert_{1}\leqq M_{1}\Vert u\Vert_{2}$ , $\Vert u\Vert_{2}\leqq M_{2}\Vert u\Vert_{1}$ ,

where $\Vert u\Vert_{i}=(u, u)_{i^{1/7}}ri=1,2$

for every $u\in \mathfrak{X}$ . Then, the topologies generated in $\backslash t$ by $\Vert I_{1}$ and $\Vert\Vert_{2}$ are
identical with each other. We further assume that $\backslash \mathfrak{X}$ becomes a (complete)

Hilbert space with the inner product $(, )_{1}$ (by (2.4) this is equivalent to
assuming the same fact with $(, )_{2})$ . When we consider $\chi$ as a Hilbert space
with the inner product $(, )_{i},$ $i=1,2$ , we write $\mathfrak{H}_{i}$ instead of $\mathfrak{X}$ . Furthermore,
the notations $B,$ $\mathfrak{T},$ $s_{b}\circ,$ $t(J),$ $\phi$ etc. introduced above are used with index $i$,

that is, $B_{i},$ $\mathfrak{T}_{i},\circ s_{bi},$ $t_{i}(J),$ $\phi_{i}$ etc., when they refer to the Hilbert space $\mathfrak{H}_{i}$

(2.4) implies that the form $J_{0}[u, v]=(u, v)_{2}$ on $\mathfrak{H}_{1}$ belongs to $s_{b1}^{\alpha}$ . More-
over, on putting $A=\phi_{1}(J_{0})$ , we have $M_{2^{2}}\geqq A\geqq M_{1}^{-2}>0$ . Let now $\{\varphi_{\nu}\}$ range
over all $c$ . $0$ . $n$ . $s$ . of $\mathfrak{H}_{1}$ Then $\{\psi_{\nu}\}$ with $\psi_{\nu}=A^{-1/2}\varphi_{\nu}$ ranges over all $c$ . $0$ . $n$ . $s$ .
of $\mathfrak{H}_{2}$ . Hence, we have for any $J\in \mathfrak{T}_{1}$ ,

(2.5) $t_{2}(])=\max_{t\psi_{\nu}\}}\sum_{\nu}|J[\psi_{\nu}]|=\max_{\iota_{\varphi\nu}\}}\sum_{\nu}|J[A^{-i/3}\varphi_{\nu}]|$

5) Kato [3, Theorem 4.2].
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$=\max_{\{\varphi\nu 1}\sum_{\nu}|(A^{-1/2}\phi_{1}(J)A^{-\underline{\uparrow}/2}\varphi_{\nu}, \varphi_{\nu})_{1}|$

$=t_{1}(A^{-1/2}\phi_{1}(J)A^{-1/2})<\infty$ ,

because $\phi_{1}(J)\in T_{1}$ and $A^{-1/2}\in B_{1}$ imply $A^{-1/2}\phi_{1}(J)A^{-1/2}\in T_{1}$ . This shows that
$\mathfrak{T}_{1}\subset \mathfrak{T}_{2}$ . Hence, we obtain $\mathfrak{T}_{1}=\mathfrak{T}_{2}$ by symmetry. Moreover, it follows from-
(2.5) that

(2.6) $t_{2}(J)\leqq\Vert A^{-1/2}\Vert_{1^{2}}t_{1}(J)\leqq M_{1}^{2}t_{1}(J)$ , $t_{1}(J)\leqq M_{2}^{2}t_{2}(J)$ .

It is also easily seen that $S_{1}=S_{2}$ and $T_{1}=T_{2}$ . Thus we have the following
LEMMA 2.1. The classes of operators $B,$ $S$ and $T$ and the classes of forms

$s_{sb}^{\alpha}$ and $\mathfrak{T}$ do not depend on the particular inner products in X so far as they

are equivalent to each other.
Next let $\mathfrak{D}$ be a dense linear manifold for which $s_{sb}^{\alpha}[\mathfrak{D}]$ is not empty

and let $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ . Then the form $(J-\gamma)[u, v],$ $\gamma<\gamma_{J}$ , defines an inner product
in $\mathfrak{D}$ with which $\mathfrak{D}$ becomes a (complete) Hilbert space.

LEMMA 2.2. Let $J_{1},$ $J_{2}\in s_{sb}^{\alpha}[\mathfrak{D}],$ $\gamma_{1}<\gamma_{J_{1}}$ and $\gamma_{2}<\gamma_{J_{2}}$ . Then the two inner
products $(J_{1}-\gamma_{1})[ , ]$ and $(J_{2}-\gamma_{2})[ , ]$ in $\mathfrak{D}$ are equivalent to each other.

PROOF. Let $H_{1}=\phi(J_{1})$ and $H_{2}=\phi(J_{2})$ . The first relation of (2.1) implies
$\mathfrak{D}((H_{1}-\gamma_{1})^{1/2})=\mathfrak{D}((H_{2}-\gamma_{2})^{1/2})=\mathfrak{D}$ . Hence, we have $B=(H_{1}-\gamma_{J})^{1/2}(H_{2}-\gamma_{2})^{-1/2}\in B^{\cdot}$

by the same argument as in the proof of Proposition 2.1 of (I). Using the
second relation of (2.1), we then have $(J_{1}-\gamma_{1})[u]=\Vert(H_{1}-\gamma_{1})^{1/2}u\Vert^{2}\leqq\Vert B\Vert^{2}\Vert(H_{2}$

$-\gamma_{2})j/2u\Vert^{2}=\Vert B\Vert^{2}(J_{2}-\gamma_{2})[u],$ $\Vert B\Vert>0$ . Hence, considering symmetry, we see
that $(J_{1}-\gamma_{1})[ , ]$ and $(J_{-})-\gamma_{2})[ , ]$ are equivalent to each other. $q$ . $e$ . $d$ .

$\mathfrak{D}$ will be denoted by $\mathfrak{H}(I-r)$ when it is considered as a Hilbert space
with the inner product $(J-\gamma)[ , ]$ . By the preceeding lemma the set of all
bounded operators on $\mathfrak{H}(J-\gamma)$ does not depend on the choice of $J$ and $\gamma$ . We
denote this set by $B(\mathfrak{D})$ . $S(\mathfrak{D}),$ $T(\mathfrak{D}),$ $s_{sb}^{\alpha}(\mathfrak{D})$ etc. are defined similarly. $(s_{sb}\infty(\mathfrak{D})$

should not be confused with $s_{sb}^{\alpha}[\mathfrak{D}].$ ) In particular, $\mathfrak{T}(\mathfrak{D})$ is the set of all
$\Gamma_{1}\in s_{sb}^{\alpha}(\mathfrak{D})$ which belongs to the trace class of closed forms on $\mathfrak{H}(I-\gamma)$ for
some (or equivalently, for each) $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $\gamma<\gamma_{J}$ . The ordinary, the
Schmidt and the trace norm of $A\in B(\mathfrak{D})$ in $\mathfrak{H}(I-r)$ are denoted by $\Vert A\Vert_{J-T}$ ,
$\backslash s(A;J-\gamma)$ and $t(A;J-\gamma)$ , respectively; the trace norm of $J_{1}\in \mathfrak{T}(\mathfrak{D})$ as a form
on $\mathfrak{H}(I-r)$ by $t(J_{1} ; J-\gamma)$ ; and the $s$ . $a$ . operator associated with $I^{\prime}\in s_{sb}^{\alpha}(\mathfrak{D})$ in
$\mathfrak{H}(I-r)$ by $H=\phi(J^{f} ; J-\gamma)$ . We also write $J^{\prime}=\psi(H;J-\gamma)$ .

In dealing with the continuity properties of $W_{\pm}$ , we further need the
following notions. Let $J,$ $J^{\prime}\in s_{sb}^{\alpha}[\mathfrak{D}]$ . If in addition $J-J^{\prime}\in \mathfrak{T}(\mathfrak{D})$ , we write

$I\sim I^{\prime}$ . The relation $\sim$ is an equivalence relation on $s_{sb}^{\alpha}[\mathfrak{D}]$ . Let 3 be one of
the equivalence classes of $s_{sb}^{\alpha}[\mathfrak{D}]$ with respect to the relation $\sim$ . On fixing

a $J_{0}\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $\gamma<\gamma_{J_{0}}$ , we introduce a metric in 3 in which the distance
$cd(J, J^{\prime})$ is equal to $t(I-J^{\prime};J_{0}-\gamma)$ . By virtue of (2.6), however, we $\backslash \supset\epsilon^{\iota}e$ that
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the topology generated in $\tilde{s^{\alpha}}$ by this metric does not depend on the choice
of $J_{0}$ and $\gamma$ . From now on we regard 3 as a topological space with the $\cdot$

topology thus defined.
With this we stated all necessary tools for the formulation of our theo-

rems.

\S 3. Theorems and their applications.

THEOREM 1. Let $J_{0}\in s_{sb}^{\alpha}$ and $\mathfrak{D}=\mathfrak{D}(J_{0})$ . Let $J_{1}\in 3$ be a form such that
$\mathfrak{D}(J_{1})\supset \mathfrak{D}$ and $J_{1}|_{\mathfrak{D}}\in \mathfrak{T}(\mathfrak{D})$ , where $J_{1}|_{\mathfrak{D}}$ is the restriction of $J_{1}$ to $\mathfrak{D}$ , Then: i)
$I=I_{0}+I_{1}\in s_{sb}^{\alpha}[\mathfrak{D}]$ ; ii) if we put $H_{0}=\phi(J_{0})$ and $H=\phi(J),$ $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$

exist.
For applications of Theorem 1 it is sometimes convenient to state the

assumptions in a somewhat stronger form. We first note that each densely
defined, closed linear operator $V$ in $\mathfrak{H}$ admits a unique decomposition $V=$

$W|V|$ , where $|V|=(V^{*}V)^{1/2}$ and $W$ is a partially isometric operator such
that its initial set is identical with the closure of the range of $|V|$ (von

Neumann [15] of (I)). If in particular $V$ is symmetric, $i$ . $e$ . $V^{*}\supset V$, we have

(31) $\{$ $\mathfrak{D}(|V^{*}\backslash |)\supset_{\leqq^{\mathfrak{D}(|V|^{1/2}}}\Vert|V^{*}|^{1/2^{1/}}u^{2}\Vert\Vert|V|^{1/2}u^{)}\Vert$ $andfor$

each $u\in \mathfrak{D}(|V|^{1/2})$

(see the proof of Proposition 4.1 of (I)).
$CoROLLARY$ . Let $J_{0},$ $\mathfrak{D}$ and $H_{0}$ be as in Theorem 1. Let $V$ be a closed

symmetric operator such that $\mathfrak{D}(|V|^{1/2})\supset \mathfrak{D}$ and

(3.2) $A=|V|^{1/2}(H_{0}-\gamma)^{-1/2}\in S$ ( $=Schmidt$ class)

for some $\gamma<\gamma_{J^{_{0}}}$ . Let $J_{1}$ be a form defined by

(3.3) $\left\{\begin{array}{l}\mathfrak{D}(J_{1})=\mathfrak{D}(|V|^{1/2})\supset \mathfrak{D},\\J_{1}[u,v]=(W|V|^{1/2}u,|V^{*}|^{1/2}v),u,v\in \mathfrak{D}(J_{1})\end{array}\right.$

( $W$ being defined as above). Then $J_{1}|_{\mathfrak{D}}\in \mathfrak{T}(\mathfrak{D})$ and hence all the assertions $of^{-}$

Theorem 1 hold.
REMARI$<$ . When $V\in T_{s},$ $V$ satisfies the assumptions of Corollary for any

s. a. operator $H_{0}$ which is bounded below. Thus Theorem 1 is a partial
generalization of a theorem of Kato referred to in \S 1 of (I) (Kato [5] of (I))..

If we confine ourselves to the case treated in this Corollary, the condition
(3.2) seems to be stronger than the corresponding one in Theorem 1 of (I).

In the present theorem, however, no relations between the domains of $H_{\mathfrak{a}}$ ,

and $V$ are required. Thus the above theorem neither implies nor $is$ implied
by Theorem 1 of (I).
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The next theorem concerns the continuity properties of the mappings
$(J, J^{\prime})\rightarrow W_{\pm}(\phi(]^{\prime}), \phi(J))$ .

THEOREM 2. Let 3 be one of the equivalence classes of $s_{sb}^{\alpha}[\mathfrak{D}]$ with respect

to the relation $\sim with$ the topology introduced above (see \S 2) and let $J,$
$J^{\prime}\in\tilde{s^{\alpha}}$,

$H=\phi(J)$ and $H^{\prime}=\phi(J^{\prime})$ . Then the mappings $(J, J^{\prime})\rightarrow W_{\pm}(H^{\prime}, H)$ from $s\times s\tilde{\infty}\tilde{\circ}$ into
the set $U$ of all partially isometric operators are strongly continuous in $J^{\prime}$ for
fixed $J$ and weakly continuous in $J$ for fixed $I^{\prime}$ . For a fixed $J\in\overline{\delta^{\alpha}}$ , the mapping

$J^{\prime}\rightarrow S(H^{\prime})=W_{\pm}(H^{\prime}, H)^{*}W_{-}(H^{\prime}, H)^{6)}$ from $\tilde{s}^{\alpha}$ into $U$ is strongly continuous.
Applications. EXAMPLE 1. Consider an ordinary differential operator

given formally by

$Hu=-d^{2}u/dx^{2}+q(x)u$ , $-\infty<x<+\infty$ ,

where $q(x)$ , a real-valued measurable function, is only assumed to belong to
$L^{1}(-\infty, +\infty)$ . To define $H$ properly in $\mathfrak{H}=L^{2}(-\infty, +\infty)$ we shall use Theorem
1 and Corollary to it. Let $H_{0}$ and $V$ be $s$ . $a$ . operators defined as follows.
$\mathfrak{D}(H_{0})$ comprises all functions $u\in L^{2}(-\infty, +\infty)$ such that $u^{\prime}=du/dx$ exists
and is absolutely continuous in $(-\infty, +\infty)$ and that $u^{\prime\prime}\in L^{2}$ ; $H_{0}u=-u^{\prime/}$ for
each $u\in \mathfrak{D}(H_{0})$ . $V$ is a multiplicative operator $(Vu)(x)=q(x)u(x)$ with the
maximal domain. Then $H_{0}\geqq 0$ . We shall prove (3.2) for $\gamma=-1^{7)}$ . A simple
calculation using Fourier transforms gives

$((H_{0}+1)^{-1/2}u)(x)=\int_{-}^{\infty}\infty k(x-y)u(y)dy$ ,

where

$k(z)=(2\pi)^{-1}\int_{-\infty}^{\infty}\exp(ipz)(p^{2}+1)^{-j/2}dp$ .

This shows that $|q(x)|^{1/)}\lrcorner k(x-y)$ is a kernel of Hilbert-Schmidt type, from
which (3.2) follows immediately. Hence we can define $H$ according to Theo-
rem 1 and Corollary to it.8‘ Theorem 1 and Lemma 1.1 of (I) then imply
that the absolutely continuous parts of $H$ and $H_{0}=-d^{2}/dx^{2}$ are unitarily
equivalent.

Note that Theorem 1 of (I) can not be applied to the present problem in
general. It is even impossible in general to define $H$ as the sum $H_{0}+V$

under the only assumption that $q\in L^{1}$ . In fact, there is an example in which
$\mathfrak{D}(H_{0})_{\cap}\mathfrak{D}(V)=\{0\}$ holds: put $q(x)=\sum_{k-\leftarrow 1}^{\infty}a_{k}(x-x_{k})^{-1/2}\eta(x-x_{k})$ , where $\{x_{k}\}$ is the

sequence of all rational numbers in an arbitrary order, $\{a_{k}\}$ is a sequence

6) $S(H^{\prime})$ is the scattering operator defined in \S 1 of (I).
7) The proof is analogous to that of Theorem 5.1 of Kuroda [10] of (I).
8) Another way to define $H$ is given in Stone [14] of (I), Chapt. X. on the basis

of the theory of differential equations.
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of real numbers with $\sum_{k=1}^{\infty}|a_{k}|<\infty$ and $\eta(x),$ $-\infty<x<+\infty$ , is equal to 1 for

$|x|<1$ and vanishes elsewhere.
EXAMPLE 2. Let $\mathfrak{H}=L-$

)

$(1, +\infty)$ and $H_{0}$ be a multiplicative operator
$(H_{0}u)(x)=xu(x)$ with the maximal domain. Let $J_{0}=\psi(H_{0})$ and $J_{\epsilon},$ $\epsilon>0$ , a form
defined by

(3.4)
$\left\{J_{\epsilon}[u,v]=2\epsilon\int_{1^{\infty^{2}}}^{1/}u(x)xdx\int_{1^{\infty}}v(x)x^{-=}dx\mathfrak{D}(J_{\epsilon})=\mathfrak{D}(H_{0})\equiv \mathfrak{D}_{-\theta},u,v\in \mathfrak{D}.\right.$

(These integrals are convergent because $x/- u$
)

$\in L^{2}(1, +\infty)$ for each $u\in \mathfrak{D}.$ )

Then $J_{\epsilon}$ is expressible in the form

$J_{\epsilon}[u, v]=J_{0}[u, \varphi_{\epsilon}]J_{0}[\varphi_{\epsilon}, v]$ ,

where we put $\varphi_{\epsilon}(x)=(2\epsilon)^{1/3}x^{-(1+\epsilon)}(J_{0}[\varphi_{\epsilon}]=1)$ . Hence, $J_{\epsilon}\in \mathfrak{T}(\mathfrak{D})$ and $\phi(J_{\epsilon};J_{0})$ is
of rank 1. Theorem 1 then shows that $J_{0}+J_{\epsilon}\in s_{sb}^{\alpha}[\mathfrak{D}]$ , and $W_{\pm}(H_{\epsilon}, H_{0})$ and
$W_{\pm}(H_{0}, H_{\epsilon})$ exist, where $H.=\phi(J_{0}+J_{\epsilon})$ . Since $\varphi_{\epsilon}$ depends continuously on $\epsilon$ in
the strong topology of $\mathfrak{H}(I_{0}),$ $I_{\epsilon}$ depends continuously on $\epsilon$ in the sense of
$t($ ; $J_{0})$ . Hence, Theorem 2 can be applied, too.

If $\epsilon>1/2$ , we have $\varphi_{\epsilon}\in \mathfrak{D}(H_{0})$ . Then J. can be expressed as $J_{\epsilon}[u, v]=$

$c_{e}(u, \psi_{\epsilon})(\psi_{\epsilon}, v)$ , where $\psi_{\epsilon}(x)=(2_{\overline{c}}-1)|/\underline{)}^{\wedge}x^{--}$ and $c_{=}=2--(2\epsilon-1)^{-1}(\Vert\psi_{\epsilon}\Vert=1)$ . Hence
$H.=H_{0}+c_{\epsilon}(\cdot, \psi_{e})\psi_{\epsilon}$ and the problem is reduced to that of one-dimensional
perturbation (cf. also Lemma 4.2). If $0<e\leqq 1/2$ , however, we can find no
such simple expression for $H_{\rightarrow}-$ and the use of the theory of closed forms is
essential. In fact, simple consideration gives $\mathfrak{D}(H_{0})\cap \mathfrak{D}(H_{\epsilon})=\{0\}$ , if $0<\epsilon\leqq 1/2$ .

\S 4. Lemmas on trace class of closed forms.

In this section we prove three lemmas for later use.
LEMMA 4.1. Let $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $J_{1}\in \mathfrak{T}(\Phi\sim)$ . Then

(4.1)
$\lim_{\gamma\rightarrow-\infty}t(J_{1};I-\gamma)=0$ .

PROOF. Let $\beta<\gamma_{J}$ be fixed and $\gamma\leqq\beta$ . Put $H=\phi(J)$ and $A=(H-\gamma)^{-1/2}$

$(H-\beta)^{1/2}$ . $A$ is an operator on $\mathfrak{D}$ to $\mathfrak{D}$ and we have $(J-\beta)[Au]\leqq\Vert(H-\beta)^{1/2}$

. $(H-\gamma)^{-1/2}\Vert^{2}(J-\beta)[u]\leqq(J-\beta)[u]$ . Hence $A\in B(\mathfrak{D})$ and $\Vert A\Vert_{J-\beta}\leqq 1$ . Further-
more, simple calculation shows $At=A$ , where $ A\uparrow$ is the adjoint of $A$ in
$\mathfrak{H}(I-\beta)$ . Since $V_{\beta}\equiv\phi(J_{1} ;J-\beta)\in T(\mathfrak{D})$ , we have $|V_{\beta}|^{1/2}A\in S(\mathfrak{D})^{9)}$ Let now
$\{\varphi_{\nu}\}$ range over all $c$ . $0$ . $n$ . $s$ . of $\mathfrak{H}(I-r)$ . Then $\{\psi_{\nu}\}$ with $\psi_{\nu}=A^{-l}\varphi_{\nu}$ ranges

9) $|V\rho$ I and $|V_{\beta}|^{1/2}$ are the absolute value and its positive square root of $V_{\beta}\in B(\mathfrak{D})$

as an operator in $\mathfrak{H}(I-\beta)$ . When no misunderstanding occur, we shall use these
notations without any comment.
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$0\backslash er$ all $c$ . $0$ . $n$ . $s$ . of $\mathfrak{H}(J-\beta)$ . Hence, using (2.2), we have the estimate:
(4.2)

$t(J_{1};J-\gamma)=\max_{t\varphi\nu 1}\sum_{\nu}|J_{1}[\varphi_{\nu}]|=\max_{\varphi\{\nu\}}\sum_{\nu}|(J-\beta)[V_{\theta}\varphi_{\nu}, \varphi_{\nu}]|$

$\leqq\max_{\{\psi_{\nu}\}}\sum_{\nu}(J-\beta)[|V_{\beta}|^{1/2}\varphi_{\nu}]=\max_{\{\psi_{\nu}\}}\sum_{\nu}(J-\beta)[|V_{\beta}|^{1/2}A\psi_{\nu}]$

$=s(|V_{\beta}|^{1/2}A;1-\beta)^{2}=s(A|V_{\beta}|^{1/2} ;I-\beta)^{2}$

$\leqq\sum_{k=1}^{N}(J-\beta)[A|V_{\beta}|^{1/)}\lrcorner\psi_{k}]+\sum_{k=N+1}^{\infty}(J-\beta)[|V_{\beta}|^{1/2}\psi_{k}]$ ,

where $\{\psi_{k}\}$ is a countable subset of a fixed $\{\psi_{\nu}\}$ and $N$ is an arbitrary
positive integer. Let $e>0$ be fixed arbitrarily. By choosing sufficiently
large $N$, we can make the second term on the right-hand side of (4.2) smaller
than $\epsilon$, irrespective of $\gamma$ . On fixing such an $N$, let $\gamma$ tend to $-\infty$ . Since
$(J-\beta)[Au]\rightarrow 0,$ $\gamma\rightarrow-\infty$ , for any $u\in \mathfrak{D}$ , the first term becomes smaller than
$\epsilon$ if $\gamma$ is sufficiently small. This proves (4.1). $q$ . $e$ . $d$ .

A form $J_{1}\in \mathfrak{T}(\mathfrak{D})$ is not necessarily bounded as a form in $\mathfrak{H}$, even if
$\phi(J_{I} ; J-r)$ is of rank 1. Nevertheless, we have the following

LEMMA 4.2. Let $J_{1}\in \mathfrak{T}(\mathfrak{D})$ and for some $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $\gamma<\gamma_{J}$ let $\hat{V}\equiv$

$\phi(J_{1} ; J-\gamma)$ be of finite rank and hence be expressible in the form $\hat{V}=\sum_{k=1}^{r}c_{k}(J-\gamma)$

$[\cdot, \varphi_{k}]\varphi_{k}$ with $\{\varphi_{k}\}$ having the property $(J-\gamma)[\varphi_{j}, \varphi_{k}]=\delta_{jk}$ and with real num-
bers $c_{k}$ . Put $H=\phi(J)$ . Then, if $\varphi_{k}\in \mathfrak{D}(H),$ $k=1,2$ , $\cdot$ .. , $r,$ $J_{1}$ is uniquely extended
to a bounded form $J_{1}^{\prime}$ on $\mathfrak{H}$ and $J_{1}^{\prime}$ is of finite rank. If in particular $J_{1}\geqq 0_{r}$

then $V\equiv\phi(J_{1}^{\prime})\geqq 0$ and we have

(4.3) $t(J_{1} ; J-\gamma)=s(V^{1/2}(H-\gamma)^{-1/2})^{210)}$

PROOF. Without loss of generality we may assume that $I\geqq c>0$ and
$\gamma=0$ . Since $\varphi_{k}\in \mathfrak{D}(H)$ , we have for any $u,$

$v\in \mathfrak{D}$

$J_{1}[u, v]=J[\hat{V}u, v]=\sum_{k=1}^{r}c_{k}(u, H\varphi_{k})(H\varphi_{k}, v)=(Vu, v)$ ,

where we put $V=\sum_{k=1}^{r}c_{k}(\cdot, H\varphi_{k})H\varphi_{k}\in F_{\cap}A$ . This proves the first statement,

if we put $J_{1}^{\prime}=\psi(V)$ . $J_{1}\geqq 0$ implies $c_{k}\geqq 0,$ $k=1,2$ , $\cdot$ .. , $r$, from which $V\geqq 0$

follows. Let $\{\varphi_{\nu}\}$ be a $c$ . $0.n$ . $s$ . of $\mathfrak{H}(J)$ containing all $\varphi_{k}$ . Then $\{\psi_{\nu}\}$ with
$\psi_{\nu}=H^{\iota/2}\varphi_{\nu}$ is a $c$ . $0$ . $n$ . $s$ . of $\mathfrak{H}$ and we have

$s(V^{1/2}H^{-1/2})^{2}=\sum_{\nu}\Vert V^{1/2}H^{-1/2}\psi_{\nu}\Vert^{2}=\sum_{\nu}(VH^{-1/}\wedge^{\wedge}\psi_{\nu}, H^{-1/2}\psi_{\nu})$

$=\sum_{\nu}J_{1}[\varphi_{\nu}]=t(J_{1};J)$ . q. e. d.

LEMMA 4.3. Let $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $H=\phi(J)=\int\lambda dE(\lambda)$ . Let $\hat{V}_{t}$ be the restric-

10) It can be shown that the validity of the assumptions on $V$ and $\varphi_{k}$ does not
depend on the choice of $J$ and $\gamma$ , but this fact is not needed in the sequel.
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tion of $V_{t}=\exp(itH),$ $-\infty<t<+\infty$ , to $\mathfrak{D}$ . Then $\hat{V}_{t}$ is a unitary operator in
$\mathfrak{H}(I-r),$ $\gamma<r_{J}$ , and there exists a uniquely determined $s$ . $a$ . operator $\hat{H}=\int\lambda d\hat{E}(\lambda))$

in $\mathfrak{H}(I-\gamma)$ such that $\hat{V}_{t}=\exp(it\hat{H})$ . Furthermore, for any $u,$ $v\in \mathfrak{D}$ we have

(4.4) $(E(\lambda)(H-\gamma)^{1/2}u, (H-\gamma)^{1/2}v)=(J-\gamma)[\hat{E}(\lambda)u, v]$ .
PROOF. Without loss of generality we may assume that $J\geqq c>0$ and

$\gamma=0$ . After a simple consideration using the relation $ J[\hat{V}_{t}u]=\Vert H^{1/2}\exp(itH)u\Vert$

$=\Vert H^{1/2}u\Vert=J[u]$ we see that $\{\hat{V}_{t}\}$ forms a strongly continuous one-parameter
group of unitary operators in $\mathfrak{H}(J)$ . Hence, $\hat{H}$ mentioned in the lemma exists
by virtue of Stone’s theorem. Since $(\exp(itH)H^{1/2}u, H^{1/2}v)=J[\exp(it\hat{H})u, v]_{r}$

$u,$
$v\in \mathfrak{D}$ , we get

$\int_{-\infty}^{\infty}\exp(it\lambda)d(E(\lambda)H^{1/2}u, H^{1/2}v)=\int_{-\infty}^{\infty}\exp(it\lambda)dJ[\hat{E}(\lambda)u, v]$ .

By the uniqueness of the Fourier-Stieltjes transforms, we therefore obtain
(4.4).

\S 5. Proof of Theorems.

1. We first show that Theorem 1 can be reduced to the following
PROPOSITION 5.1. Let $J_{0},$ $\mathfrak{D},$ $H_{0}$ and $J_{1}$ be as in Theorem 1 and let $J_{0}\geqq c>0$

for some positive $c$ . Furthermore, let

(5.1) $K=t(J_{1}|_{\mathfrak{D}};\int_{0})<1$ .

Then: i) $I=I_{0}+I_{1}\in s_{sb}^{\alpha}[\mathfrak{D}]$ ; ii) if $H=\phi(J),$ $W_{\pm}(H, H_{0})$ exist.
Assume that Proposition 5.1 holds true and let $J_{0},$ $J_{1},$ $J,$ $H_{0}$ and $H$ be as in

Theorem 1. By virtue of Lemma 4.1, there exists $\gamma<\gamma_{J_{0}}$ such that $t(J_{1}|_{\mathfrak{D}}$ ;
$J_{0}-\gamma)<1$ . Hence, it follows from i) of Proposition 5.1 that $I_{0}-r+I_{1}=I-r$

$\in s_{sb}^{q}[\mathfrak{D}]$ . This implies $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ . Noting the relations $\emptyset(J_{0}-\gamma)=H_{0}-\gamma$

and $\phi(J-\gamma)=H-\gamma$ , we then see by ii) of Proposition 5.1 that $W_{\pm}(H, H_{0})=$

$W_{=}(H-\gamma, H_{0}-\gamma)$ exist. The relations $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $J_{1}|_{\mathfrak{D}}\in \mathfrak{T}(\mathfrak{D})$ imply that
the assumptions of Theorem 1 are satisfied also for $J$ and $J_{1}$ in place of $J_{0}$

and $J_{1}$ . Accordingly, the existence of $W_{\pm}(H_{0}, H)$ follows in the same way as
above.

2. We now prove Proposition 5.1 in several steps. To simplify the
description we assume that $J_{0},$ $\mathfrak{D},$ $H_{0},$ $J_{1}$ , and $J$ are as in Proposition 5.1, unless
otherwise explicitly stated. Furthermore, we put for brevity $\hat{\mathfrak{H}}=\mathfrak{H}(I_{0})$ ,
$\hat{B}=B(\mathfrak{D}),\hat{\mathfrak{T}}=\mathfrak{T}(\mathfrak{D}),$ $[u, v]=J_{0}[u, v],$ $\Vert|u\Vert|=[u, u]^{1/2},$ $\Vert|A\Vert|=\Vert A\Vert_{J_{0}}$ for $A\in\hat{B}$,
$\hat{t}(J^{\prime})=t(J^{\prime} ; J_{0})$ for $I^{\prime}\in\hat{\mathfrak{T}}$ etc. and $\hat{V}=\phi(J_{1}|_{\mathfrak{D}} ; I_{0})$ . Then $\hat{V}\in\hat{T}$ and $t^{\wedge}(\hat{V})=K$.

PROPOSITION 5.2. i) $J\in s_{sb}^{\alpha}[\mathfrak{D}]$ . ii) If $H=\phi(J)$ , then
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(5.2) $H\geqq c(1-K)>0$ and $\Vert H_{0^{1/2}}H^{-1/2}\Vert^{2}\leqq(1-K)^{-1}$ .
PROOF. For any $u\in \mathfrak{D}$ we have by (2.3) and (5.1) $|J_{1}[u]|\leqq t(\hat{V})\wedge\Vert|u\Vert|^{2}=$

$KJ_{0}[u]$ . Hence,

(5.3) $(1+K)J_{0}[u]\geqq J[u]\geqq(1-K)J_{0}[u]\geqq c(1-K)\Vert u\Vert^{2}$ .
Since $J_{0}\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $\mathfrak{D}(J)=\mathfrak{D}$ , it follows easily from (5.3) and $0\leqq K<1$ that

$J\in s_{\$}^{\alpha}b[\mathfrak{D}]$ (cf. Theorem 3.4 of Kato [3]). (5.2) is a consequence of (5.3) : the
first inequality is clear and the second is proved as $\Vert H_{0^{1/2}}H^{-1/2}u\Vert^{2}=J_{0}[H^{-1h;}u]$

$\leqq(1-K)^{-1}J[H^{-1/2}u]=(1-K)^{-1}\Vert u\Vert^{2}$ . q. e. d.
We next determine the explicit form of $H^{-J}$ , when $\hat{V}$ is of finite rank.1i)

$\hat{V}$ is then expressible in the form

(5.4) $\hat{V}=\sum_{k=1}^{r}c_{k}[\cdot, \varphi_{k}]\varphi_{k}$ ,

where $c_{k}$ are real and $\{\varphi_{k}\}$ has the property $[\varphi_{j}, \varphi_{k}]=\delta_{jk}$ . By (5.1) we have
$|c_{k}|\leqq\Sigma|c_{k}|<1$ .

PROPOSITION 5.3. Let $\hat{V}$ be of finite rank and hence be expressible in the
form (5.4). Then we have for any $u\in \mathfrak{H}$

(5.5) $H^{-1}u=H_{0^{-1}}u-\sum_{k=1}^{r}c_{k}[H_{1}\frac{0^{-1}u,\varphi_{k}]}{+c_{k}}\varphi_{k}$ .

PROOF. Let $w\in \mathfrak{H},$ $w^{\prime}=H_{0^{-1}}w$ and $v=H^{-1}u$ (note that $H^{-1},$ $H_{0^{-1}}\in B$).

Then we have

$(H_{0^{-1}}u, w)=(u, w^{\prime})=(Hv, w^{\prime})=J[v, w^{\prime}]=(J_{0}+J_{1})[v, w^{\prime}]$

$=(H_{0^{l/2}}v, H_{0^{1/2}}w^{\prime})+\sum_{k=1}^{r}c_{k}[v, \varphi_{k}][\varphi_{k}, w^{\prime}]$

$=(v, w)+\sum_{k=1}^{r}c_{k}[v, \varphi_{k}](\varphi_{k}, w)$ .

Since $w\in \mathfrak{H}$ is arbitrary, we obtain

(5.6) $H^{-l}u=v=H_{0^{-1}}u-\sum_{k=1}^{r}c_{k}[v, \varphi_{k}]\varphi_{k}$ .

Taking the inner product with $\varphi_{k}$ in $\hat{\mathfrak{H}}$ , we get $[v, \varphi_{k}]=[H_{0^{-1}}u, \varphi_{k}]-c_{k}[v, \varphi_{k}]$ .
Whence $[v, \varphi_{k}]=[H_{0^{-1}}u, \varphi_{k}](1+c_{k})^{-1}$ . Inserting this into (5.6) we get (5.5).
$q.e.d$ .

3. We now prove Proposition 5.1 under the additional assumption that
$J_{1}\geqq 0$ or $J_{1}\leqq 0$ . We first observe that by Lemma 4.3 there exists a $s.a$ .
operator $\hat{H}_{0}=\int\lambda d\hat{E}_{0}(\lambda)$ in $\hat{\mathfrak{H}}$ such that

11) Similar result was given in Friedrichs [2] for one-dimensional perturbation.
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(5.7) $\exp(itH_{0})u=\exp(it\hat{H}_{0})u$ , and $\Vert E_{0}(\lambda)H_{0^{1/2}}u\Vert=\Vert|\hat{E}_{0}(\lambda)u\Vert|$

for every $u\in\hat{\overline{\mathfrak{H}}}$ . Let $\mathfrak{M}_{0}$ and $\hat{\mathfrak{M}}_{0}$ be absolutely continuous subspaces of $\mathfrak{H}$

and $\hat{\mathfrak{H}}$ with respect to $H_{0}$ and $\hat{H}_{0}$ , respectively, and $\mathfrak{L}$ the set of all $u\in \mathfrak{M}_{0}$

$\cap \mathfrak{D}(H_{0^{1/2}})$ such that

(5.8) $d\Vert E_{0}(\lambda)H_{0^{1/2}}u\Vert^{2}/d\lambda\leqq m^{2},$ $a$ . $e.$ ,

for some positive $m$ (depending on $u$). By (5.7) and (5.8) we then obtain
$\hat{\mathfrak{M}}_{0}=\mathfrak{M}_{0}\cap \mathfrak{D}$ and

(5.9) $d\Vert|\hat{E}_{0}(\lambda)u\Vert|^{2}/d\lambda\leqq m^{2},$
$a$ . $e.$ ,

for each $u\in \mathfrak{L}$ .
PROPOSI $\prime r$ ION 5.4. Let $J_{1}\geqq 0$ or $J_{1}\leqq 0$ . Then we have for any $u\in \mathfrak{L}$ and for

any real $s$ and $t$ the inequality

(5.10) $\Vert(U_{t}-U_{s})u\Vert\leqq C\{\eta(t;u)+\eta(s;u)\}$ ,

where $U_{t}=U_{t}(H, H_{0})$ ,

(5.11) $C=\{8\pi m^{2}K(1-K)^{-1}\}^{1/4}$

and

(5.12) $\eta(t;u)=(\int_{t}^{\infty}|_{1}\Vert|\hat{V}|^{1/2}\exp(-it\hat{H}_{0})u\Vert|^{2}dt)^{1/4}$

(Note that $\eta(t;u)$ is finite by virlue of Lemma. 2.1 of (I) and (5.9).) (5.10) alsa

holds if $\int_{t^{\infty}}$ in (5.12) is replaced by $\int_{-\infty}^{t}$ . Furthermore, $W_{\pm}(H, H_{0})$ exisl.

PROOF. For brevity we assume $J_{1}\geqq 0$ . The other case can be dealt with
similarly. For the moment we further assume that $\hat{V}$ is of finite rank and
hence is expressible in the form (5.4) with $0\leqq c_{k}<1$ . Since $\mathfrak{D}(H_{0})$ is a core
of $J_{0},$ $\mathfrak{D}(H_{0})$ is dense in $\hat{\mathfrak{H}}$ Hence, there exists a sequence {{ $\varphi_{k^{(n)}}|k=1,2,$ $\cdots$ ,

$r\}|n=1,2,$ $\cdots$ } of orthonormal set in $\hat{\mathfrak{H}}$ such that $\varphi_{k}^{(n)}\in \mathfrak{D}(H_{0})$ for each $k$ and
$n$ , and $\Vert|\varphi_{k^{(n)}}-\varphi_{k}\Vert|\rightarrow 0$ , as $ n\rightarrow\infty$ . Put $V_{n}=\sum_{l^{\wedge}=1}^{r}c_{k}[\cdot, \varphi_{k^{(n)}}]\varphi_{k^{(n)}}$ and $J_{1}^{(n)}[u, v]$

$=[\hat{V}_{n}u, v],$
$u,$

$v\in \mathfrak{D}$ . Then $J_{1}^{(n)}\in\hat{\mathfrak{T}},$ $J_{1}^{(n)}\geqq 0$ and $t(J_{\iota^{(n)}})\wedge=\sum_{k=1}^{\gamma}c_{k}=t(\hat{V})\wedge=K$. Since
$\varphi_{k^{(n)}}\in \mathfrak{D}(H_{0})$ , we see by Lemma 4.2 that there exists a $V_{n}\in F_{\cap}A$ such
that $J_{1}^{(n)}[u, v]=(V_{n}u, v)$ . This implies that $H_{n}\equiv\emptyset(I_{0}+I_{1^{(n)}})=H_{0}+V_{n}$ . In such
a case the existence of $W_{\pm}^{(n)}=W_{\pm}(H_{n}, H_{0})$ was proved by Kato (see [4] of (I)

or Corollary to Lemma 3.1 of (I)). Moreover, we have for any $u\in \mathfrak{L}$ and for
any real $s$ and $t$ an inequality similar to (5.10) with $U_{t},$ $U_{s},$ $C$ and $\eta$ replaced
by $U_{t^{(n)}},$ $U_{s^{(n)}},$ $C_{n}$ and $\eta_{n}$ , where $U_{t^{(n)}}=\exp(itH_{7l})\exp(-itH_{0})$ ,

(5.11) $C_{n}=\{8\pi m^{2}s(V_{n}^{1/2}H_{0^{-1/2}})^{2}\Vert H_{0^{1/2}}H_{n^{-1/2}}\Vert^{2}\}^{1/4}$

and $\eta_{n}$ is defined by (5.12) with $\hat{V}$ replaced by $\hat{V}_{n}$ . The proof of this ine-
quality is similar to that of (2.6) of (I) and we shall only sketch its outline.
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We start from the inequality (2.11) of (I) with $W_{+}$ etc. replaced by $\dagger V_{+^{(l)}}$

etc. $(W_{+}^{(n)}=s-\lim U^{(n)}P_{0})$ . Considering the relation $V_{n^{1/2}}W_{+}^{(n)}\exp(-itH_{0})u=$

$V_{n^{1/2}}H_{0^{-1/2}}H_{0^{1/\lrcorner}}H_{n}^{-1/\underline{)}}W_{+}^{(n)}\exp(-itH_{0})H_{0^{1/2}}u$ , we obtain as in (I) the inequality
similar to (2.12) of (I). Since its right-hand side is equal to

$C_{n}\int_{s^{\infty}}\Vert V_{n}^{1/2}\exp(-itH_{0})u\Vert^{2}dt=C_{n}\int_{s^{\infty}}J_{1}^{(n)}[\exp(-it\hat{H}_{0})u]dt=C_{n}\eta_{t}(s;u)$ ,

we obtain the desired inequality.
As in the proof of Proposition 5.2, we see from $\hat{t}(\hat{V}_{n})=K$ that $\Vert H_{0^{1/2}}H_{n^{-1/2}}||^{\prime}$

)

$\leqq(1-K)^{-1}$ . Hence, by considering (4.3), we can replace $C_{n}$ in the above
inequality by $C$ as given in (5.11). Now let $n$ tend to infinity. We first show
that $\eta_{n}(t;u)\rightarrow\eta(t;u),$ $ n\rightarrow\infty$ . By virtue of Lemma 2.2 of (I) it suffices to
prove that $\hat{s\cdot}(\hat{V}_{n}^{1/2}-\hat{V}^{1^{\prime}2})\rightarrow 0$ . As is shown in the proof of (3.3) of (I), $\Vert|\varphi_{k}^{(n)}$

$-\varphi_{k}\Vert|\rightarrow 0$ implies that $\hat{s}(c_{k^{1/2}}[\cdot, \varphi_{k}^{(n)}]\varphi_{k^{(n)}}-c_{k^{1/2}}[\cdot, \varphi_{k}]\varphi_{k})\rightarrow 0$ . Hence, noting

the expression $\hat{V}^{1/2}=\sum_{k=1}^{\gamma}c_{k^{1/2}}[\cdot, \varphi_{k}]\varphi_{k}$ and similar one for $\hat{V}_{n^{1/2}}$ and making

use of the triangle inequalities, we obtain $\hat{s}(\hat{V}_{n}^{1/2}-\hat{V}^{1/2})\rightarrow 0$ . Next we show
that s- $\lim U_{t^{(n)}}=U_{t}$ . Since $p_{n}\equiv\Vert|\varphi_{k}^{(n)}-\varphi_{k}\Vert|\rightarrow 0$ implies $\Vert\varphi_{k}^{(n)}-\varphi_{k}\Vert\leqq p_{n}\Vert H_{0}^{-1/-)}$ I
$\rightarrow 0,$ $(5.5)$ implies that s- $\lim H_{n}^{-1}=H^{-}$ . From this, we have $s-\lim(H_{n}-\zeta)^{-1}=$

$(H-\zeta)^{-1}$ for each non-real $\zeta$ (cf. Theorem 12.2 of Kato [3]). According to
the general theory of semi-groups of operators referred to in the proof of
Proposition 4.3 of $(I)^{12)}$ , the last relation implies s-$\lim\exp(itH_{n})=\exp(itH)$ .
s-$\lim U_{t^{(n)}}=U_{t}$ follows directly from this. By taking the limit $ n\rightarrow\infty$ , we
thus obtain (5.10) if $\hat{V}$ is of finite rank.

We next consider the general case. Since $\hat{V}\in\hat{T},\hat{V}$ is expressible in
the form (5.4) with $r$ replaced by $\infty$ . Put

(5.13) $\hat{V}_{n}=\sum_{k=1}^{n}c_{k}[\cdot, \varphi_{k}]\varphi_{k}$ , $n=1,2,$ $\cdots$ ,

and, using this $\hat{V}_{n}$ , define $J_{1}^{(n)},$ $H_{n}$ and $U_{t^{(n)}}$ as above. Then, by the part of
the proposition already proved we have the inequality similar to (5.10) with
$U_{t}$ etc. replaced by $U_{t^{(n)}},$ $U_{s^{(n)}},$ $C_{n}$ and $\eta_{n}$ , where $C_{n}$ and $\eta_{n}$ are defined by
(5.11) and (5.12) with $K$ and $V$ replaced by $K_{n}=\hat{t}(\hat{V}_{n})$ and $\hat{V}_{n}$ , respectively.
Since (5.13) implies $K_{n}\leqq K$ and $\Vert|\hat{V}_{n^{1/2}}u\Vert|\leqq\Vert|\hat{V}^{1/2}u\Vert|$ , we can again replace $K_{n}$

and $\hat{V}_{n}$ by $K$ and $\hat{V}$, respectively. Hence, if we prove s- $\lim U_{\iota^{(n)}}=U_{t}$ , then
taking the limit $ n\rightarrow\infty$ will give the inequality (5.10) itself. It is easily
verified that $J$ and $J^{(n)}=I_{0}+I_{1}^{(n)},$ $n=1,2,$ $\cdots$ , have the properties: 1) $\mathfrak{D}(J^{(n)})=$

$\mathfrak{D}(])=\mathfrak{D};2)J_{0}[u]\leqq]^{(m)}[u]\leqq]^{(n)}[u]\leqq J[u],$ $u\in \mathfrak{D},$ $m\leqq n;3$) $\lim J^{(n)}[u]=J[u]$ ,
$n\rightarrow\infty,$ $u\in \mathfrak{D}$ . According to the theory of closed forms13), 1), 2) and 3)

12) See also Theorem 5.1 of Trotter’s work added at the end of (I).

13) Theorem 10.1 or 10.2 of Kato [3], according to $\hat{V}\geqq 0$ or $\hat{V}\leq 0$ .
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imply $s-\lim(H_{n}-\zeta)^{-1}=(H-\zeta)^{-}‘$ for every non-real $\zeta$ , whence we get s- $\lim U_{t}^{(n)}$

$=U_{t}$ as required.
Since $\eta(t;u)$ and $\eta(s;u)$ are convergent, the right-hand side of (5.10)

tends to zero as $s,$ $ t\rightarrow\infty$ . This implies that $U_{t}u$ has a limit as $ t\rightarrow\infty$ , if
$u\in \mathfrak{L}$ . The existence of $W_{+}(H, H_{0})$ follows from this by a standard argument.

The inequality (5.10) with $\int_{t^{\infty}}replaced$ by $\int_{-\infty}^{t}$ and the existence of $W_{-}(H, H_{0})$

can be proved similarly. $q$ . $e$ . $d$ .

4. Completion of the proof of Proposition 5.1. Let $\{F(\lambda)\}$ be the resolu-

tion of the identity corresponding to $\hat{V}$ and put $\hat{V}_{\pm}=\int_{0^{\pm\infty}}\lambda dF(\lambda)$ and $J_{1}^{(\pm)}=$

$\hat{\psi}(\hat{V}_{\pm})$ . Then, $J_{1}|_{\mathfrak{D}}=J_{1}^{(+)}-J_{1}^{(-)},$ $J_{1}^{(\pm)}\geqq 0$ and $\hat{t}(J_{1}^{(\pm)})<t^{\wedge}(J_{1}|_{\mathfrak{D}})<1$ . Hence, Pro-
positions 5.2 and 5.4 show that $I^{\prime}=I_{0}+I_{1}^{(+)}\in s_{sb}^{\alpha}[\mathfrak{D}]$ and $W_{\pm}(H^{\prime}, H_{0})$ exist,
where $H^{\prime}=\phi(J^{f})$ . On the other hand, by taking sufficiently small real number
$\gamma$ and applying Proposition 5.4 to $J^{\prime}-\gamma\in J_{sb}[\mathfrak{D}]$ and $J_{1}^{(-)}\in \mathfrak{T}(\mathfrak{D})$ , we can
conclude as in \S 5.1 that $W_{\pm}(H, H^{\prime})=W_{\pm}(H-\gamma, H^{\prime}-\gamma)$ exist. Since the exist-
ence of $W_{\pm}(H^{\prime}, H_{0})$ and $W_{\pm}(H, H^{\prime})$ have been proved, that of $W_{\pm}(H, H_{0})$ follows
directly from (1.6) of (I). $q$ . $e$ . $d$ .

This completes the proof of Theorem 1.

5. Proof of Corollary to Theorem 1. To show that $J_{1}[u, v]$ is a Hermitian
form we have only to prove $J[u, v]=\overline{J_{j}[v,u]}$ . Since $V=W|V|=|V^{*}|W$ and
$W|V|^{1/2}=|V^{*}|^{1/2}W$ (see von Neumann $[15_{\lrcorner}^{-}$ and Kato [8] of (I)), we have
$V=|V^{*}|^{1/2}W|V|^{1/2}$ . Hence, if $u,$ $v\in \mathfrak{D}(V)$ , it follows from (3.3) that $J_{1}[u, v]$

$=(Vu, v)=(u, Vv)=\overline{J_{1}[v,u]}$ . For every $u\in \mathfrak{D}(J_{1})=\mathfrak{D}(|V|^{1/2})$ , however, there
exists a sequence $\{u_{n}\}S^{1_{-L}^{\tau}}ch$ that $u_{n}\in \mathfrak{D}(|V|)=\mathfrak{D}(V)$ and $\Vert|V|^{1/2}(u_{n}-u)\Vert\rightarrow 0$ ,
$ n\rightarrow$ oo. We therefore obtain $J_{1}[u, v]=\overline{J_{1}[v,u]},$ $u,$ $v\in \mathfrak{D}(J_{1})$ , by a limiting pro-
cedure. Let now $\{\varphi,\}$ range over all c. o. $n$ . $s$ . of $\mathfrak{H}(J_{0}-\gamma)$ and $\psi_{\nu}=(H_{0}-\gamma)^{1/2}\varphi_{\nu}$ .
Then $\{\psi_{\nu}\}$ ranges over all c. o. $n$ . $s$ . of $\mathfrak{H}$ and we have by (3.3) and (3.1)

$t(I_{1} ; J_{0}-\gamma)=\max_{t\varphi\nu^{1}}\sum_{\nu}J_{J}[\varphi_{\nu}]\leqq\sum_{\nu}\Vert|V|^{1/2}(H_{0}-\gamma)^{-1/2}\psi_{\nu}\Vert^{2}=s(A)^{2}$ , which shows that
$J_{1}\in \mathfrak{T}(\mathfrak{D})$ . q. e. d.

6. Proof of Theorem 2. Since 3 can be regarded as a metric space,
the topology in 3 satisfies the first countability axiom. Hence it suffices to
prove the continuity by considering a sequence $\{J_{n}\}$ converging to $J$. In
view of relations (1.5) and (1.6) of (I), however, it suffices for this purpose
to show that, if $J_{n}\rightarrow J_{0}$ in 3 and $H_{n}=\phi(J_{n})$ , we have
(5.14) s-$\lim W^{(n)}=P_{0}$ , where $W_{\pm}^{(n)}=W_{\pm}(H_{n}, H_{0})$

(for details, see the proof of Theorem 2 of (I)).
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PROPOSITION 5.5. Let $J_{0},$ $J_{1},$ $K$ etc. be as in Proposition 5.1 and let $K<1/2$ .
Then we have for any $u\in \mathfrak{L}$

(5.15) $\Vert W_{\pm}(H, H_{0})u-u\Vert\leqq mK^{1/2}f(K)$ ,

where $m$ is given by (5.8) and $f(K)$ is a continuous function of $K$ defined in the
interval $[0,1/2$).

PROOF. Let $\hat{V}_{\pm},J_{1}^{(\pm)},$ $J^{\prime}$ and $H^{\prime}=\int_{-\infty}^{\infty}\lambda dE^{\prime}(\lambda)$ be as in \S 5.4 and the nota-

tions such as $\Vert|\Vert|,\hat{\mathfrak{T}}$ etc. have the same meaning as above. Put $K_{\pm}=t^{\wedge}(J_{1}^{(\pm)})$ .
Then $0\leqq K_{\pm}\leqq K$ and $K=K_{+}+K_{-}$ . Using (1.6) of (I), we have for any $u\in \mathfrak{H}$

(5.16) $\Vert W_{\pm}(H, H_{0})u-u\Vert\leqq\Vert W_{\pm}(H^{\prime}, H_{0})u-u\Vert$

$+\Vert\{W_{\pm}(H, H^{\prime})-1\}W_{\pm}(H^{\prime}, H_{0})u\Vert$ .
In order to estimate the first term on the right-hand side, we note that the
inequality (5.10) with $\hat{V},$ $K$ etc. replaced respectively by $\hat{V}_{+},$

$K_{+}$ etc. holds
true. On putting $s=0$ and letting $ t\rightarrow\infty$ in this inequality, we obtain for
any $u\in \mathfrak{L}$

(5.17) $\Vert W_{\pm}(H^{\prime}, H_{0})u-u\Vert$

$\leqq\{8\pi m^{2}K_{+}(1-K_{+})^{-1}\}^{1/4}(\int_{0}^{\infty}\Vert|\hat{V}_{+}^{1/2}\exp(-it\hat{H}_{0})u\Vert|^{2}dt)^{1/1}$

$\leqq(4\pi m^{\nu}K_{+})^{1/2}(1-K_{+})^{-1/4}$ ,

where we use Lemma 2.1 of (I) for the estimation of the integral in the
second member of (5.17). To deal with the second term on the right-hand
side of (5.16) we note that $H^{\prime}\geqq c(1-K_{+})>0$ and $\Vert B\Vert^{2}\leqq(1-K_{+})^{-J}$ , where
$B=H_{0^{1/2}}H^{\prime-1/2}$ . Since $B^{*}$ ( $=the$ adjoint of $B$ in $\mathfrak{H}$) transforms each c. o. $n$ . $s$ .
of $\hat{\mathfrak{H}}$ into a $c$ . $0$ . $n$ . $s$ . of $\mathfrak{H}(J^{\prime})$ , we obtain the inequality

$t(J_{1}^{(-)} ; I^{\prime})\leqq\Vert B^{*}\Vert^{2}t(J_{1}^{(-)})\wedge\leqq K_{-}(1-K_{+})^{-1}\equiv L$

in the same way as we got (2.6). Since $K_{\pm}\leqq K<1/2$ , we have $L<1$ . On
the other hand, it follows from Lemma 1.1 of (I) and (5.8) that, if $u\in \mathfrak{L}$ ,
$v=W_{\pm}(H^{\prime}, H_{0})u\in \mathfrak{R}l^{\prime}\cap \mathfrak{D}(H^{\prime 1/2})$ and $d\Vert E^{\prime}(\lambda)H^{\prime 1/2}v\Vert^{2}/d\lambda=d\Vert E_{0}(\lambda)H_{0^{1/2}}u\Vert^{2}/d\lambda\leqq m^{2}$ .
Hence, we have for any $u\in \mathfrak{L}$

(5.18) $\Vert\{W_{\pm}(H, H^{\prime})-1\}W_{\pm}(H^{\prime}, H_{0})u\Vert\leqq(4\pi m^{2}L)^{1/2}(1-L)^{-1/4}$

similarly as above. Substitute (5.17) and (5.18) into (5.16). On putting $L^{\prime}=$

$K(1-K)^{-1}$ and noting $0\leqq K_{+}\leqq K\leqq L^{\prime}<1$ and $L\leqq L^{\prime}$ , we then obtain
$\Vert W_{\pm}(H, H_{0})u-u\Vert$

$\leqq(4\pi m^{2})^{J/2}\{K_{+}^{1/2}(1-K_{+})^{-1/4}+K_{-}^{1/-}\circ(1-K_{+})^{-1/\underline{9}}(1-L)^{-1/4}\}$

$\leqq(4\pi m^{2})^{1/2}(1-K)^{-1/\underline{)}}(1-L^{\prime})^{-1/4}(K_{+}^{1/2}+K_{-}^{1/2})$

$\leqq mK^{1/2}f(K)$ ,
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where we put $f(K)=2(2\pi)^{1/2}(1-K)^{-1/2}(1-L^{\prime})^{-1/4}$ . $q$ . $e$ . $d$ .
Proof of (5.14). Without loss of generality we may assume that $J_{0}\geqq c>0$

and $J_{n}\geqq c>0$ for some positive $c$ . Put $J_{1}^{(n)}=I_{n}-I_{0}$ Then $J_{n}\rightarrow J_{0},$ $ n\rightarrow\infty$ , in
$\overline{\delta^{\alpha}}$ implies $K_{n}=\hat{t}(J_{1}^{(n)})\rightarrow 0$ . Hence, if $n$ is sufficiently large, we have

$\Vert W_{\pm}^{(n)}u-u\Vert\leqq mK_{n^{1/2}}f(K_{n})$ , $u\in \mathfrak{L}$ .
Since $K_{n}\rightarrow 0$ and consequently $f(K_{n})$ is bounded in $n$ , the right-hand side
tends to zero as $ n\rightarrow\infty$ . Hence $W_{\pm}^{(n)}u\rightarrow u$ if $u\in \mathfrak{L}$ , (5.14) follows from this
by a standard argument.

Finally, the writer wishes to express his cordial thanks $t_{Q}$ Prof. T. Kato
for his encouragement and valuable discussions throughout the course of
the present work.

College of General Education,
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Added in proof. Corrections to Part I ([4]).

In Theorems 1 and 2 of [4, p. 249], for “ symmetric “, read “ closed sym-
metric “.

In Theorem 2 of [4, pp. 249-250], for “ $V_{n}^{\prime}=V-V_{n}$ “, read “
$V_{n^{\prime}}$ be the

closure of $V-V_{n}$ “.
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