Note on the Kummer-Hilbert reciprocity law.

By Katsumi SHIRATANI

(Received Feb. 21, 1960) (Revised April 28, 1960)

1. Introduction.

Let p be an odd prime number, Q the field of rational p-adic numbers, ζ a fixed primitive p-th root of unity, and $k = Q(\zeta)$.

The classical Kummer-Hilbert reciprocity law was purely locally proved by K. Yamamoto [8] in the following form.¹⁾

Let \mathfrak{p} be the prime ideal, and π an arbitrary prime element in k. By making use of the polynomial

$$Log (1+x) = \sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i} x^{i},$$

we define differential quotients $l_{\pi}^{(i)}(\nu)$, which are determined modulo p, for a principal unit ν in k as follows:

$$\operatorname{Log} \nu \equiv \sum_{i=1}^{p-1} \frac{1}{i!} l_{\pi}^{(i)}(\nu) \pi^{i} \qquad (\mathfrak{p}^{p}).$$

Then it is necessary and sufficient for ν to be a norm of an element of $K = k(\sqrt[p]{\mu})$, where μ is a principal unit in k, that we have

$$\sum_{n=1}^{p-1} (-1)^{n-1} l_{\pi}^{(n)}(\nu) l_{\pi}^{(p-n)}(\mu) \equiv 0 \quad (p).$$

Since the Lemmas 5, 5' in [8], which are of importance in the local proof, contain an error, we shall make an attempt to obtain explicit formulas of general forms correcting [8], and therefrom we shall show that we may derive the above reciprocity law naturally. In the last section of this note we also obtain a formal generalization of the classical differential quotients of Kummer.

We exclude the case that μ is primary, i.e., K/k does not ramify, in which case we have $l_{\pi}^{(i)}(\mu) \equiv 0$ (p) for all i and the above proposition is evidently true.

¹⁾ Cf. also Hilbert [4], Takagi [7], Artin and Hasse [1], Šafarevič [6], Kneser [5], Dwork [2].

Let v be the ramification constant of K/k and suppose $\mu = 1 - \beta$, $\operatorname{Ord}_{\mathfrak{p}}(\beta) = s$, then we have p = s + v ([3]). Now choose the least non negative integers c,d such that cs - pd = 1 and fix a prime element $\Pi = (1 - M)^c \tau^{-d}$ in K for an arbitrary prime element τ in k and a p-th root M of μ . The element Π is indeed a prime element since K/k is totally ramified and so the exponent of 1 - M with respect to the prime ideal of K is s. Then our explicit formulas of norms read:

$$\begin{split} N_{K/k}(1-\Pi^m) &\equiv (1-\gamma^m)(1-\gamma^v)^{e(m)} \qquad (\mathfrak{p}^{v+1}) \;, \\ e(m) &\equiv Am \; \sum_{m|n} \; \frac{1}{(p-n)!} \, l_{\, r}^{\, (p-n)}(\mu) \quad (p), \quad m=1,2,\cdots,v \;. \end{split}$$

Herein $N_{K/k}$ denotes of course the norm from K to k, A a certain constant depending only on τ , v and we put $\gamma = N_{K/k}\Pi$.

2. Several lemmas.

The following lemmas are as a matter of fact due to Yamamoto [8]. Lemma 1. If we define $\sigma_t = S_{K/k}(\Pi^t)$, $\sigma = \sigma_1$ and make use of the above

Lemma 1. If we define $\sigma_t = S_{K/k}(\Pi^t)$, $\sigma = \sigma_1$ and make use of the above notations, then

$$\sigma_t \equiv p au^{-dt} eta^{\left[rac{-ct}{p}
ight]} \quad (\mathfrak{p}^{v+1})$$
 .

Herein t means an arbitrary positive integer, $S_{K/k}$ the trace from K to k, and [x] Gauss' symbol indicating the greatest integer $\leq x$.

As a proof has been given in [8], we shall omit one. This lemma will be used only for $1 \le t \le v$.

LEMMA 2.

$$egin{align} rac{1}{p}\,\sigma_{tp}-\gamma^t &\equiv rac{1}{p}\,\sigma_t{}^p &\equiv 0 & (\mathfrak{p}^{v+1})\,, \ rac{1}{p}\,\sigma_p{}^p &\equiv rac{1}{p^2}\,\sigma^{p^s} &\equiv 0 & (\mathfrak{p}^{v+1})\,. \end{split}$$

The upper congruence is valid for any positive integer t if $v \neq 1$ but for $t \geq 2$ if v = 1. The lower one has no restriction.

This lemma will be readily verified by the fact that $S_{K/k}(\mathfrak{P}^i) = \mathfrak{p}^j$, $j = \left[\frac{i+(p-1)(v+1)}{p}\right]$ for the prime ideal \mathfrak{P} in K.

Now the polynomial Log(1+x) and the inverse polynomial $\text{Exp } x = \sum_{i=0}^{p-1} \frac{1}{i!} x^i$ have the following properties.

If ε_1 , ε_2 denote two principal units and α_1 , α_2 non-unit integers in k respectively, then

$$\operatorname{Log} \varepsilon_1 + \operatorname{Log} \varepsilon_2 \equiv \operatorname{Log} \varepsilon_1 \varepsilon_2, \quad \operatorname{Exp} \alpha_1 \operatorname{Exp} \alpha_2 \equiv \operatorname{Exp}(\alpha_1 + \alpha_2) \quad (\mathfrak{p}^p),$$

$$\operatorname{Log} \operatorname{Exp} \alpha_1 \equiv \alpha_1, \quad \operatorname{Exp} \operatorname{Log} \varepsilon_1 \equiv \varepsilon_1 \quad (\mathfrak{p}^p).$$

Furthermore we have

Lemma 3. If
$$\mu \equiv 1+a\lambda$$
 (\mathfrak{p}^2), $\lambda = 1-\zeta$, then

$$\log \mu \equiv \operatorname{Log} \mu + a \operatorname{Log} \zeta \quad (\mathfrak{p}^p).$$

PROOF. Because $\operatorname{Ord}_p(\nu-1) > \frac{1}{p-1}$ implies that $\log \nu \equiv \operatorname{Log} \nu$ (\mathfrak{p}^p), we have $\log \zeta^a \mu \equiv \operatorname{Log} \zeta^a \mu$ (\mathfrak{p}^p), that is,

$$\log \mu \equiv \log \mu + a \log \zeta$$
 (\mathfrak{p}^p).

The following lemma is of special interest and our proof is slightly different from [8].

Lemma 4. Log $\zeta \equiv \frac{1}{p} \lambda^p (\mathfrak{p}^p)$. In particular by using $\tilde{\omega} = \sqrt[p-p]{-p}$ such that $\zeta \equiv 1 + \tilde{\omega} (\mathfrak{p}^p)$, we have $\tilde{\omega} \equiv \text{Log } \zeta$, $\zeta \equiv \text{Exp } \tilde{\omega} (\mathfrak{p}^p)$.

PROOF. We make use of the polynomial $F(x) = \sum_{i=0}^{p-1} (1-x)^i = \sum_{j=0}^{p-1} (-1)^j {p \choose j} x^j$. The fact $F(\lambda) = 0$ implies that $\frac{1}{p} \lambda^p = \sum_{i=0}^{p-1} (-1)^i \frac{1}{p} {p \choose i} \lambda^i$, from which we have $\frac{1}{p} \lambda^p \equiv \text{Log } \zeta$ (\mathfrak{p}^p). Here we have $\widetilde{\omega} \equiv \frac{1}{p} \lambda^p$ (\mathfrak{p}^p) for the element $\widetilde{\omega}$ in the proposition. We have therefore $\widetilde{\omega} \equiv \text{Log } \zeta$ (\mathfrak{p}^p) and $\zeta \equiv \text{Exp } \widetilde{\omega}$ (\mathfrak{p}^p).

3. Computation of norms.

Our problem consists in calculating explicitly the norms in terms of the differential quotients defined in Introduction. We transform σ_t further as follows.

Determine a (p-1)-th root of unity ξ , by $\xi\beta \equiv \tau^s$ (* \mathfrak{p}). Then we have for $t=1,2,\cdots,p-1$,

(*)
$$\sigma_t \equiv -\xi^{-d} \frac{t}{s} \frac{1}{(p-t)!} l_r^{(p-t)}(\mu) \gamma^v \qquad (\mathfrak{p}^{v+1}).$$

For, on one hand from Lemma 1 follows

$$\sigma_t \equiv 0$$
 (\mathfrak{p}^{v+1}) for $t \equiv p$ (s) , $\sigma_{p-si} \equiv -\xi^{(i-1)d} \gamma^v \ (\mathfrak{p}^{v+1})$.

On the other hand we have, by $\gamma^s \equiv \beta \xi^{-d}$ (\mathfrak{p}^p),

$$\operatorname{Log} \mu \equiv -\sum_{i=1}^{p-1} \frac{1}{i} \xi^{di} \gamma^{si} \qquad (\mathfrak{p}^p),$$

so that

$$l_T^{(t)}(\mu) \equiv \begin{cases} 0 & (p) & \text{for } s \nmid t, \\ -s(t-1)! \, \xi^{\frac{d}{s}} & (p) & \text{for } s \mid t. \end{cases}$$

Therefore (*) follows immediately from these two congruences.

Now by solving an inequality $\left[\frac{mi+(p-1)(v+1)}{p}\right]-(p-1)\operatorname{Ord}_p(i) \leq v$ for i, which is equivalent to $\frac{1}{i}\sigma_{mi} \equiv 0$ (\mathfrak{p}^{v+1}), we obtain

$$\begin{split} &\log N_{K/k}(1-H^m) = -\sum_{i=1}^{\infty} \frac{1}{i} \sigma_{mi} \\ &\equiv -\sum_{i=1}^{p-1} \frac{1}{i} \sigma_{mi} - \sum_{i=1}^{p-1} \frac{1}{pi} \sigma_{mpi} - \delta_{m,1} \frac{1}{p^2} \sigma_{p^2} \qquad (\mathfrak{p}^{v+1}) \\ &\equiv -\sum_{i=1}^{p-1} \frac{1}{i} \sigma_{mi} - \sum_{i=1}^{p-1} \frac{1}{i} \left(\frac{1}{p} \sigma_{mi}^p + \gamma^{mi} \right) - \delta_{m,1} \left(\frac{1}{p^2} \sigma^{p^2} + \frac{1}{p} \gamma^p \right) \qquad (\mathfrak{p}^{v+1}) \\ &\equiv \begin{cases} -\sum_{i=1}^{p-1} \frac{1}{i} \sigma_{mi} - \sum_{i=1}^{p-1} \frac{1}{i} \gamma^{mi} - \delta_{m,1} \frac{1}{p} \gamma^p & (\mathfrak{p}^{v+1}), \quad v \neq 1, \\ -\sum_{i=1}^{p-1} \frac{1}{i} \sigma_{mi} - \sum_{i=1}^{p-1} \frac{1}{i} \gamma^{mi} - \delta_{m,1} \left(\frac{1}{p} \gamma^p + \frac{1}{p} \sigma^p \right) & (\mathfrak{p}^{v+1}), \quad v = 1. \end{cases} \end{split}$$

We have used Lemma 2 in the above transformation.

Regarding Lemma 3 we have

$$\log N_{K/k}(1-\Pi^m) \equiv \operatorname{Log} N_{K/k}(1-\Pi^m) + \delta_{m,1} a \operatorname{Log} \zeta \qquad (\mathfrak{p}^p)$$

Of course a means a number satisfying $\zeta^a N_{K/k} (1 - \Pi^m) \equiv 1$ (\mathfrak{p}^p),

i.e.,
$$a \equiv \left\{ \begin{array}{ll} -\frac{1}{\lambda} \gamma & (p), & v \neq 1, \\ \\ -\frac{1}{\lambda} (\gamma + \sigma) & (p), & v = 1. \end{array} \right.$$

From these congruences and from Lemma 4 follows

$$a \operatorname{Log} \zeta \equiv \left\{ egin{array}{ll} -rac{1}{p} \ r^p & (\mathfrak{p}^p), & v
eq 1 \ -rac{1}{p} \ (r^p + \sigma^p) & (\mathfrak{p}^p), & v = 1 \ . \end{array}
ight.$$

Consequently in both cases where $v \neq 1$ and v = 1,

$$\log N_{K/k}(1-H^m) \equiv \sum_{i=1}^{p-1} \frac{1}{i} \sigma_{mi} - \sum_{i=1}^{p-1} \frac{1}{i} \gamma^{mi}$$
 (\mathfrak{p}^{v+1}),

that is,

$$N_{K/k}(1-\Pi^m) \equiv (1-\gamma^m) \prod_{i=1}^{\left[v \atop m \right]} (1-\sigma_{mi})^{\frac{1}{i}} \quad (\mathfrak{p}^{v+1})$$
 .

Here by making use of the formula (*), we have

$$N_{K/k}(1-\Pi^m) \equiv (1-\gamma^m)(1-\gamma^v)^{e(m)} \quad (\mathfrak{p}^{v+1})$$
 ,

$$e(m) \equiv \frac{m}{s} \xi^{-d} \sum_{m \mid n} \frac{1}{(p-n)!} l_{r}^{(p-n)}(\mu) \quad (p^{v+1}) \quad \text{for } m = 1, 2, \dots, v.$$

These are the desired explicit formulas of norms.

4. Reciprocity law.

Our explicit formulas mentioned above yield readily a reciprocity law with respect to a base γ .

If we put ν in a form of power products $\nu \equiv \prod_{m=1}^{v} (1-\gamma^m)^{a_m}$ (\mathfrak{p}^{v+1}), then by Möbius' inversion formula we can verify

$$a_m \equiv -\frac{1}{m} \sum_{t=0}^{\infty} \mu(\frac{m}{d}) \frac{1}{(d-1)!} l_r^{(d)}(\nu)$$
 (p),

where $\mu(x)$ denotes Möbius' function.

The norm of element $E \equiv \prod_{m=1}^{v} (1 - \Pi^m)^{a_m}$ (\mathfrak{p}^{v+1}) can be expressed in terms of the differential quotients as follows.

$$N_{K/k}E \equiv \prod_{m=1}^{v} (1-\gamma^m)^a{}_m (1-\gamma^v)^{R(E)} \quad (\mathfrak{p}^{v+1})$$
 ,

$$R(E) \equiv \sum_{m=1}^{v} a_m \frac{m}{s} \xi^{-d} \sum_{m \mid n} \frac{1}{(p-n)!} l_r^{(p-n)}(\mu) \quad (p).$$

It follows from these formulas that we have the relation

$$\sum_{m=1}^{v} \sum_{d|m} \sum_{m|n} \mu\left(\frac{m}{d}\right) \frac{l_{r}^{(d)}(\nu)}{(d-1)!} \frac{l_{r}^{(p-n)}(\mu)}{(p-n)!} \equiv 0 \qquad (p),$$

as a necessary and sufficient condition for ν to be a norm from K to k. This condition is equal to

$$\sum_{n=1}^{p-1} \frac{l_{\Upsilon}^{(n)}(\nu)}{(n-1)!} \frac{l_{\Upsilon}^{(p-n)}(\mu)}{(p-n)!} \equiv 0 \qquad (p),$$

i.e.,

$$\sum_{n=1}^{p-1} (-1)^{n-1} l_{\tau}^{(n)}(\nu) l_{\tau}^{(p-n)}(\mu) \equiv 0 \qquad (p),$$

which gives us the reciprocity law desired.

In the next section we verify the so-called invariance to the effect that this conclusion is equivalent to

$$\sum_{n=1}^{p-1} (-1)^{n-1} l_{\pi}^{(n)}(\nu) l_{\pi}^{(p-n)}(\mu) \equiv 0 \qquad (p),$$

through a formal calculation by making use of Lagrange's inversion formula for power series. Herein π means an arbitrary prime element in k.

5. Proof of the invariance.

We verify the invariance following an idea of Yamamoto [8]. We define differentials of a non-unit integer α and an integer ν ,

$$D_{\pi}^{i}\alpha\equiv a_{i}$$
 (p), $i=1,2,\cdots,p-1$, $D_{\pi}^{0}\alpha\equiv 0$ (p), $D_{\pi}^{i}\upsilon\equiv c_{i}$ (p), $i=0,1,\cdots,p-2$,

by
$$\alpha \equiv \sum_{i=1}^{p-1} \frac{1}{i!} \alpha_i \pi^i$$
 (\mathfrak{p}^p), $a_i \in \mathbb{Q}_Q$, $v \equiv \sum_{i=0}^{p-2} \frac{1}{i!} c_i \pi^i$ (\mathfrak{p}^{p-1}), $c_i \in \mathbb{Q}_Q$. Also we define
$$\frac{d\alpha}{d\pi} = \sum_{i=0}^{p-2} \frac{1}{i!} a_{i+1} \pi^i$$
, $\frac{dv}{d\pi} = \sum_{i=0}^{p-3} \frac{1}{i!} c_{i+1} \pi^i$.

The following identities are valid for legitimately defined operators $D_{\pi}^{i}(D_{\pi}^{1}=D_{\pi})$ and are readily proved.

(1)
$$D_{\pi}(\alpha\beta) \equiv \alpha D_{\pi}\beta + \beta D_{\pi}\alpha$$
 (b),

(2)
$$D_{\pi}^{m}(\alpha\beta) \equiv \sum_{i=0}^{m} {m \choose i} D_{\pi}^{i} \alpha D_{\pi}^{m-i} \beta$$
 (p)

(3)
$$D_{\pi}^{m+1}(\alpha \pi^i) \equiv (m+i)_i D_{\pi}^m \alpha$$
 (p) ,

$$(4) \quad D_{\pi}^{m} \frac{d\alpha}{d\pi} \equiv D_{\pi}^{m+1} \alpha \qquad (p).$$

Now Lagrange's inversion formula for power series is expressed as follows: If θ , π denote arbitrary two prime element in k, then

$$D_{\theta}^{m} \alpha \equiv D_{\pi}^{m-1} \left(\frac{d\alpha}{d\pi} \left(\frac{\pi}{\theta} \right)^{m} \right) \qquad (p).$$

For a proof of this formula one is referred to [8]. By making use of these notations we can simply express our norm condition as follows:

$$\sum_{n=1}^{p-1} (-1)^{n-1} l_{\tau}^{(n)}(\nu) l_{\tau}^{(p-n)}(\mu) \equiv D_{\tau}^{p-1} \left(\text{Log } \nu \frac{d}{d\tau} \text{ Log } \mu \right) \qquad (p).$$

Consequently we have only to verify the invariance

$$D_{\pi}^{p-1}\left(\operatorname{Log}\nu\,\frac{d}{d\pi}\,\operatorname{Log}\,\mu\right) \equiv D_{\tau}^{p-1}\left(\operatorname{Log}\nu\,\frac{d}{d\gamma}\,\operatorname{Log}\,\mu\right) \qquad (p).$$

Since $D^{p-1}_{\theta}\omega \equiv D^{p-1}_{\theta'}\omega$ (p) holds for two primes θ, θ' such that $\theta = a\theta'$ with $a \in \mathbb{Q}_Q$, and also $D^{p-1}_{\pi}\left(\omega \frac{d}{d\pi}\alpha\right)$ is linear with respect to an integer ω and a non-unit α , it suffices to show that

$$D_{\pi}^{p-1}\left(\pi^{i} \frac{d\pi^{j}}{d\pi}\right) \equiv D_{\theta}^{p-1}\left(\pi^{i} \frac{d\pi^{j}}{d\theta}\right) \qquad (p)$$

for $0 \le i \le p-1$, $1 \le j \le p-1$ under the assumption $D_{\pi}^{0}\left(\frac{\pi}{\theta}\right) \equiv 1$ (p).

Now by Lagrange's inversion formula indicated above we have

$$\pi \equiv \sum_{t=1}^{p-1} \frac{1}{t \,!} D_{\pi}^{t-1} \left(\left(\frac{\pi}{\theta} \right)^t \right) \theta^t \qquad (\mathfrak{p}^p) \,.$$

Therefore

$$\pi^{i+j-1}$$

$$\equiv \sum_{t=i+j-1} \sum_{S}^{p-1} \frac{(i+j-1)!}{n_1! \cdots n_{p-1}!} \frac{1}{1!^{n_1} \cdots (p-1)!^{n_{p-1}}} D_{\pi}^0 \left(\left(\frac{\pi}{\theta} \right) \right)^{n_1} \cdots D_{\pi}^{p-2} \left(\left(\frac{\pi}{\theta} \right)^{p-1} \right)^{n_{p-1}} \theta^t \ (\mathfrak{p}^p),$$

where the second summation extends over all partitions $S: n_1 + \cdots + n_{p-1} = i+j-1, n_1 + \cdots + (p-1)n_{p-1} = t.$

On one hand this equality and $\frac{d\pi}{d\theta} \equiv \sum_{t=0}^{p-2} \frac{1}{t!} D_{\pi}^{t} \left(\left(\frac{\pi}{\theta} \right)^{t+1} \right) \theta^{t}$ (\mathfrak{p}^{v+1}) yield

$$D_{\theta}^{p-1}\left(\pi^{i} \frac{d\pi^{j}}{d\theta}\right) \equiv D_{\theta}^{p-1}\left(\pi^{i+j-1}j \frac{d\pi}{d\theta}\right) \qquad (p)$$

$$\equiv j \sum_{n} p \frac{1}{1!^{n_{1}} \cdots (p-1)!^{n_{p-1}}} \frac{(i+j-1)!}{n_{1}! \cdots n_{p-1}!} D_{\pi}^{0}\left(\left(\frac{\pi}{\theta}\right)\right)^{n_{1}} \cdots D_{\pi}^{p-2}\left(\left(\frac{\pi}{\theta}\right)^{p-1}\right)^{n_{p-1}} (p)$$

$$\equiv -j \, \delta_{p,i+j} D_{\pi}^{0}\left(\left(\frac{\pi}{\theta}\right)\right)^{p} \equiv -j \, \delta_{p,i+j} \qquad (p) .$$

On the other hand

$$D_{\pi}^{p-1} \left(\pi^i \frac{d\pi^j}{d\pi} \right) \equiv D_{\pi}^{p-1} (j \pi^{i+j-1}) \equiv -j \delta_{p,i+j}$$
 (p).

This completes a proof of our assertion.

6. Kummer's differential quotients.

We can interpret classical Kummer's differential quotients as follows.

A principal unit ν has a unique expression with regard to a prime element π .

$$\nu = \sum_{i=0}^{p-2} c_i (1-\pi)^i$$
,

where c_i are rational integers.

After Kummer and Hilbert we define for ν an adjoint polynomial of degree p-1,

$$\nu(x) = \sum_{i=0}^{p-2} c_i x^i - \frac{1}{p} \left(\sum_{i=0}^{p-2} c_i - 1 \right) \left(\sum_{i=0}^{p-1} x^i \right),$$

so that $\nu(1) = 1$, $\nu(1-\pi) \equiv \nu$ (*p*).

Suppose $L_{\pi}^{(i)}(\nu) \equiv \frac{d^i}{dv^i} \log \nu(e^v) \Big|_{v=0}$ (p) for $i=1,2,\cdots,p-1$, then we maintain the relations

$$l_{\text{Log}(1-\pi)}^{(i)}(\nu) \equiv L_{\pi}^{(i)}(\nu)$$
 (p) for $i = 1, 2, \dots, p-1$.

For, by making use of Stirling numbers of the second kind $\mathfrak{S}(i,j)$ = $\frac{1}{j!} \sum_{p} (-1)^{j-v} \binom{j}{v} v^i$, we have first

$$L_{\pi}^{(i)}(\nu) \equiv \sum_{j=1}^{\ell} \mathfrak{S}(i,j) \frac{d^j}{dx^j} \log \nu(x) \Big|_{x=1}$$
 (p).

Noticing that $\nu \equiv \sum_{i=0}^{p-1} b_i \pi^i$ (\mathfrak{p}^p), $b_i = (-1)^i \frac{\nu^{(i)}(x)}{i!}\Big|_{x=1}$, we obtain

$$\operatorname{Log} \nu \equiv \sum_{n=1}^{p-1} (-1)^{n-1} \frac{1}{n} \left(\sum_{i=1}^{p-1} b_i \pi^i \right)^n$$

$$\equiv \sum_{i=1}^{p-1} L_{\pi}^{(i)}(\nu) \sum_{t=i}^{p-1} \frac{(-1)^t}{t!} S(t, i) \pi^t \quad (\mathfrak{p}^p).$$

This modification has been carried out by means of the orthogonality relation of Stirling numbers

$$\sum_{\boldsymbol{\cdot}} \mathfrak{S}(i,t) \, S(t,j) = \delta_{i,j} \,, \qquad \sum_{\boldsymbol{\cdot}} \, S(i,t) \, \mathfrak{S}(t,j) = \delta_{i,j} \,.$$

Herein S(i,j) denotes the Stirling number of the first kind defined by $(x)_i = \sum S(i,j)x^j$.

Because we also have

$$\frac{(\text{Log}(1-\pi))^{i}}{i!} \equiv \sum_{t=i}^{p-1} \frac{(-1)^{t}}{t!} S(t,i) \pi^{t}$$
 (p^p),

we finally conclude

$$\operatorname{Log} \nu \equiv \sum_{i=1}^{p-1} \frac{1}{i!} L_{\pi}^{(i)}(\nu) \left(\operatorname{Log}(1-\pi) \right)^{i}$$
 (p^p)

that is,

$$l_{\text{Log}(1-\pi)}^{(i)}(\nu) \equiv L_{\pi}^{(i)}(\nu)$$
 (p) for $i = 1, 2, \dots, p-1$.

Especially if we take λ in place of π , $L_{\pi}^{(i)}(\nu)$ coincides just with Kummer's differential quotient, and then by Lemma 4 we have $\text{Log}(1-\pi) \equiv \tilde{\omega}$ (\mathfrak{p}^p), as was pointed out in [8].

Finally we should like to note such a reciprocity law that is expressed in terms of exponents of power products.

The relations

$$l_\pi^{(i)}(\mu) \equiv (i-1)! \sum_{d \mid i} \alpha_d(\mu)$$
 (p) for $i=1,2,\cdots,p-1$,

immediately yield

$$\sum_{i=1}^{p-1} (-1)^{i-1} l_{\pi}^{(i)}(\nu) l_{\pi}^{(p-i)}(\mu) \equiv \sum_{i=1}^{p-1} \frac{1}{i} \sum_{d|i} \sum_{d'|p-i} a_d(\nu) a_{d'}(\mu) \qquad (p)$$

It is necessary and sufficient for ν to be a norm from K to k that we have

$$\sum_{d=1}^{p-1} a_d(\nu) \quad \sum_{d=1}^{p-d} a_{d'}(\mu) \ f(d,d') \equiv 0 \qquad (p).$$

Herein

$$f(d,d') = \sum_{\substack{t \equiv 0 \ (d), \ t \equiv 0 \ (d'), \\ 1 \leq t \leq p-1}} \frac{1}{t} \text{ and } \nu \equiv \prod_{m=1}^{p-1} (1-\pi^m)^a m^{(\nu)} \ (\mathfrak{p}^p), \ \mu \equiv \prod_{m=1}^{p-1} (1-\pi^m)^a m^{(\mu)} \ (\mathfrak{p}^p).$$

This formula as a matter of fact does not depend on the choice of prime element π .

Kyushu University.

References

- [1] E. Artin und H. Hasse, Die beiden Erganzungssätze zum Reziprozitätsgesetz der *lⁿ*-ten Potenzreste im Körper der *lⁿ*-ten Einheitswurzeln, Abh. Math. Sem. Univ. Hamburg, 4 (1928), 146-162.
- [2] B. Dwork, Norm residue symbol in local number fields, Abh. Math. Sem., Univ. Hamburg, 22 (1958), 180-190.
- [3] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie algebraischen Zahlkörper, Berlin, Teil I, Ia, II 1927, 1930.

- [4] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jber. Deutsch. Math. Verein. 4 (1897), 175-546.
- [5] M. Kneser, Zum expliziten Reziprozitätsgesetz von I. R. Šafarevič, Math. Nachr., 6 (1952), 89-96.
- [6] I. R. Šafarevič, A general reciprocity law, Amer. Math. Soc. Transl., Ser. 2, 4 (1956), 13-106.
- [7] T. Takagi, On the law of reciprocity in the cyclotomic corpus, Proc, Phys.-Math. Soc. Japan Ser. 3, 4 (1922), 173-182.
- [8] K. Yamamoto, On the Kummer-Hilbert reciprocity law, Mem. Faculty Science, Kyushu Univ., Ser. A, Vol. III, 2 (1959), 85-95.