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1. Introduction.

Let p be an odd prime number, @ the field of rational p-adic numbers, {
a fixed primitive p-th root of unity, and &= Q).
"The classical Kummer-Hilbert reciprocity law was purely locally proved
by K. Yamamoto in the following form.?
Let p» be the prime ideal, and = an arbitrary prime element in k2 By
making use of the polynomial
p—jl ( 1)1:—1
Log (1-+2) = >f S,
we define differential quotients /@(v), which are determined modulo p, for a
principal unit v in % as follows:

»-1
Logy= > L1820 (7).
i=1
Then it is necessary and sufficient for v to be a norm of an element of
K=k~ u), where o is a principal unit in %, that we have

S ()mee) 1w =0 ().

Since the Lemmas 5,5’ in [8], which are of importance in the local proof,
contain an error, we shall make an attempt to obtain explicit formulas of
general forms correcting [8], and therefrom we shall show that we may
derive the above reciprocity law naturally. In the last section of this note
we also obtain a formal generalization of the classical differential quotients
of Kummer.

We exclude the case that g is primary, i.e., K/k does not ramify, in

which case we have /P(u)=0 (p) for all i and the above proposition is
evidently true.

1) Cf. also Hilbert [4], Takagi [7], Artin and Hasse [1], Safarevi¢ [6], Kneser
Dwork [2].
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Let » be the ramification constant of K/k and suppose u=1—2, Ord,(3)
=s, then we have p=s+» ([3]). Now choose the least non negative integers
¢,d such that cs—pd=1 and fix a prime element II =(1—M)*z"® in K for an
arbitrary prime element 7z in % and a p-th root M of u. The element II is
indeed a prime element since K/k is totally ramified and so the exponent of
1—M with respect to the prime ideal of K is s. Then our explicit formulas
of norms read:

Nep(l—H™) = 1—7™ A=y @,

— ___1 _ J(p-n) — s
em) = Am 2 G T W (B, m=1,2,0.
min
Herein Ngj, denotes of course the norm from K to %k, A a certain constant
depending only on 7, v and we put 7y = Ng,/1.

2. Several lemmas.

The following lemmas are as a matter of fact due to Yamamoto [8]
Lemma 1. If we define o,= Sgi(Il%), 6 =0, and make use of the above
notations, then

oo=prtglz] ooy

Herein t means an arvbitvary positive integer, Sgu, the trace from K to k, and [x]
Gauss’ symbol indicating the greatest integer = x.

As a proof has been given in [8], we shall omit one. This lemma will
be used only for 1<#=v.

Lemma 2.
1
. atp——rt =—02=0 (ptY),
1 1 3 v+
=0l = o= oy,

The upper congruence is valid for any positive integer t if v+ 1 but fort=2
if v=1. The lower one has no vestriction.
This lemma will be readily verified by the fact that Sgi(P) =1y, j=

[i—i—(P_;)(v”’"l)] for the prime ideal P in K.

Now the polynomial Log(1-+x) and the inverse polynomial Exp x =

s
[

=
~

have the following properties.
If ¢, ¢, denote two principal units and «,, @, non-unit integers in % re-
spectively, then
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Log ¢,+Loge, =Logee,, Expa, Expa,=Expla,+a,) ®Y),
Log Expa,=«a,, ExpLoge =¢ ®7).
Furthermore we have
Lemma 3. If p=1+al (03, A=1-C, then
log n=Log u+aLog{ (®7).

Proor. Because Ord,(v—1) > }5{1‘ implies that logv = Logv (p?), we have
log {*n=Log {*n (p7), that is,
logu=Log p+alogl (¥?).

The following lemma is of special interest and our proof is slightly
different from [8]

Lemma 4. Log¢ = —]1; 22 (0P,  In particular by using & ="~ —p such that
(=148 B), we have 3 =Log {, {=Expa (?).

Proor. We make use of the polynomial F(x)=%-: (l—x)i=;v_,~:(—1)f(?>xf.

§=

0 : 1 _ e L DNy :
The fact F(A) =0 implies that b AP=3 (-1 ?—( ; )x , from which we have

—% A?=Log{ (p?). Here we have 52-%7 A? (p?) for the element & in the

proposition. We have therefore @ =Log ¢ (*) and { =Exp & (7).

3. Computation of norms.

Our problem consists in calculating explicitly the norms in terms of the
differential quotients defined in Introduction. We transform o, further as
follows.

Determine a (p—1)-th root of unity &, by &8 =7 (*p). Then we have for
t=1,2, -, p—1,

) o, =—¢™ il;‘ "@;1'",‘)' O (.
For, on one hand from follows
o =0 oY) for t=p (s),
Op-si = —ECDG" (7).

On the other hand we have, by 7= B& (p?),

p-i
Logu=—3 Lei g,
i=1

so that
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(») for stt,
19 = | )
—s(t—1) 1% (p) for s|¢.
Therefore (¥) follows immediately from these two congruences.

Now by solving an inequality [m;—l)—@il')«]—( p—1) Ord, () < v for 4,

which is equivalent to %—GWEO »"*1), we obtain

oo

1

log Ngu(1—II™) = — " Omi
i=1
p-1 p-1
= — "}*‘ Omi— E “‘;}[ O'mpi-’am,l El-f Ops (bv+1)
i=1 i=1
-1 p—-1
= “‘icl —}— Omi— 2 —Zl-ﬁ(—zl; G%H—rmi)—(?m,l(-gz— op’—i—% r”) 1+
&1 L1 1
— 2 " Omi— E A @, v#1,
i=1 i=1
o 1 IR 1 1
S e S s (L L) e, 0,
i=1 t=1 .

We have used in the above transformation.
Regarding [Lemma 3 we have

log Ngu(1—IT™) = Log Ngp(1—II"™)+0,,;aLog{  (b9).

Of course ¢ means a number satisfying {*Ng,(1—II™) =1 (p?),

SR

r (P, v#1,

._.
o
R
I

(r-+o) (»), v=1.

From these congruences and from follows
1 » y4
- Tb‘ T (p )) v+1 ’
alogl=
- ’; (rP+a?) "), v=1.

Consequently in both cases where v1 and v =1,
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p-1 p-1
my — N 1 mi v
LOg J\/vK/k(1 —1I ) = Z *iﬁ Omi— -Z.A 7 (p +1) ’

—

i=1

that is,

v

[;mﬁ
Nep(l—=I™) = 1—1r™) E (1—0m0)

1
i

(p’v+1) .

Here by making use of the formula (x), we have
Nep(l—I™) = A—r™A—7") ™ (),

= ﬂ_ —d “..__,,,];,mw (p—n) v+1 — e
em="2¢ Z Gy TP ) for m=1,2,,0.
These are the desired explicit formulas of norms.

4. Reciprocity law.
Our explicit formulas mentioned above yield readily a reciprocity law
with respect to a base 7.
If we put v in a form of power products v= 12[ A—7™% (p**Y), then by
m=1

Mohbius’ inversion formula we can verify

= %% #(Z) Gty ) @),

where u(x) denotes Mobius’ function.
The norm of element F= ﬂl(l—ﬂ ™% (p**!) can be expressed in terms of

the differential quotients as follows.

NenE = ﬁl(l—rm)“m(l—r”)m’” (o),

= N ﬂ -d _____,];__ (p—-n)
R(E)'Zlam g Z Gy 1 W (@)
It follows from these formulas that we have the relation
N mN P 19T _
> 2% @=DT (p—m1 =0 @),

m=1dlm m|n

as a necessary and sufficient condition for v to be a norm from K to %2 This
condition is equal to

|
-

»
1P 1P ™) _
=D (p=m1 =0 (@B,

b

3
i
-
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ie.,
-1
S PO T W=0  (8),

which gives us the reciprocity law desired.

In the next section we verify the so-called invariance to the effect that
this conclusion is equivalent to

B O 1w =0 (),

through a formal calculation by making use of Lagrange’s inversion formula
for power series. Herein z means an arbitrary prime element in .

5. Proof of the invariance.

We verify the invariance following an idea of Yamamoto [8]
We define differentials of a non-unit integer « and an integer v,

Dia=a; (p);- Z=1,2,’P—1» Dia=0 (p)’
D =c¢; (p), i=0,1,--,p—2,

- p-2 1 .
a= E Tt (PP, @, €D, v = _20 I 7 (PPN, c;€Dq. Also we define
= =0l
da _pz-)z ps Ao 21
dr 1,02' i4+1 ’dn—zoz'cwln

The following identities are valid for legitimately defined operators
Di (DL = D;) and are readily proved.

(1) Da(af)=aDxB+pDxet ®,
@ DHap) = S (" )Dia Dyt ®),
@) Dp*Yan’)=(m+i)Dye ),
@ Dp 9% =ppig .

Now Lagrange’s inversion formula for power series is expressed as fol-
lows: If 6,7 denote arbitrary two prime element in &, then

Dra= Dml—( )) ).

For a proof of this formula one is referred to [8]. By making use of these
notations we can simply express our norm condition as follows:



418 K. SHIRATANI

p=1 d
S (—17 1 1) 197 =Dy (Log v - Log 1) (9).
n=1 2’
Consequently we have only to verify the invariance
_ d — ppe d
Dz l(Log Vg Log M): De 1(Log ] 3 Log ﬂ) (.

Since D% 'w = D%'w (p) holds for two primes 6,6’ such that 6 =af’ with

a =g, and also D! ((u ’dd;r“ a) is linear with respect to an integer @ and a
/i

non-unit «a, it suffices to show that

dn

ppt (x4 ) = Dy (= 4 (#)

for 0=i=p—1, 1 <j=p—1 under the assumption D} (—Z—)E 1 (p).

Now by Lagrange’s inversion formula indicated above we have

=S foe () o,
Therefore -

n_i+j—1

p-1

E 2 (1 J ”i) ' 11 ... (;_1) [ D?r(({;‘))m"' D%_2<<_g_)p—l)n1’—1 0* (pp) ’

t=i+j-1

where the second summation extends over all partitions S: #n+-+ny
=i+j—1, m+-+(Pp—Dny =1t

On one hand this equality and 47 = N Lo ((Z)™)er o+ vield
oo y=pei ) o
=i 08 ety st PG o ((5)) @
=—j 03,00 DY((-5)) =i 0p.ias ©F
On the other hand
Dp(t T )= i iy = 6,0 .

This completes a proof of our assertion.
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6. Kummer’s differential quotients.

We can interpret classical Kummer’s differential quotients as follows.
A principal unit v has a unique expression with regard to a prime ele-

ment .

y= 20 cd—n),

where ¢; are rational integers.

After Kummer and Hilbert we define for v an adjoint polynomial of

degree p—1,

p=2 1 p-=2
v(x)= 2 cx'——— (20 ¢i—
i=0 D iz

so that v(1)=1, vQ—r)=v ().

p-1
(S ),

i |
Suppose LW(V)—J-_ logu(e")| () for i=1,2,-,p—1, then we main-
=0

tain the relations

I @ =ELEW) ()

for i=1,2,-,p—1.

For, by making use of Stirling numbers of the second kind &(,7)

_ 1 j—v ] 2
=T %_} (—1) (1))0 , we have first

1 .
7
L)'= ) @) 57 log v(v)

i=1
Noticing that Vzpz: byt (V7), by = (—1)
p—1
Logy= Z( 1)1
n=1
p—1 p—1

yO(x)
i

(®).

=1

, we obtain

Te=1

’ (—t})t SODERCOR

This modification has been carried out by means of the orthogonality relation

of Stirling numbers

2 86, 1) St 7) = 04,55

225G, 1) ©(t,7) = 04,5

Herein S(;,7) denotes the Stirling number of the first kind defined by (x);=

2 5@, ).

Because we also have
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-1

(Log(1—n))? E,, D" g iy 7

il i
t=1%
we finally conclude
p-1
Logy= Y i LE) (Log(l—m)) ),

i=1

that is,
I8 oW =LEW) (p) for i=1,2,---,p—1.

Especially if we take 1 in place of =, L) coincides just with Kummer’s
differential quotient, and then by [Lemma 4 we have Log(l—z)=da& (p?), as
was pointed out in [8].

Finally we should like to note such a reciprocity law that is expressed
in terms of exponents of power products.

The relations

PW=G—D13 alw) (p)  for i=1,2,,p—1,

immediately yield

p-1
T DO W=y N b a8
i=1 ali d'ip~i

It is necessary ‘and sufficient for v to be.a norm from X to %2 that we
have

£ a) B awraa=0 o).
Herein

fddy= 2 1 oand v=TI Q=™ ?), g =TI Q—zmm® (7).
g ! " "

This formula as a matter of fact does not depend on the choice of prime
element .

Kyushu University.
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