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On the Goldbach problem in an algebraic number field II.

By Takayoshi MITSUI

(Received Aug. 18, 1959)

§4. Treatment of I(x;2) (I).

Let A be a totally positive integer with sufficiently large norm N(1) and
£2(2) be the set of all prime numbers @ such that

0<Q)((D§l(q> (q=1; 2) oo xrl)r
“4.1)
| 0P| =[2®] (p=n+1, - ,n+r).
We shall define a trigonometrical sum
4.2) SE;)= 3 ewmisw@
w<EIW
where z=(z,, 24, **+, 2,) IS a point of E.

We know by (2.1) that z, z,, ---, 2, are written in the form

Zj :kgxkak(j) (j = 1, 2: Tt n)
with real numbers xy, %,, -+, %,. Taking x,, %,, -+, ¥, as variables, we consider
an integral
1/2
4.3) I(n:2)= f_';;zj S(z ; A)e 28 ¥ gy dxy ++r A%y,

where s is a positive rational integer, u is a totally positive integer and the
domain of integration is given by the conditions

PIESS (=12, ,m).
We see that I(z;2) is equal to the number of the s-tuples (@, @,, -+, ®,)
of prime numbers which satisfy the following conditions :
p=0,+wy+ - + 0,
w; < 2(2) (j=12,---,5).
Therefore, for any totally positive unit # we have
L(nusnd) =I(n3 %) .
On the other hand, by suitable choice of a totally positive unit 7, we have
il NQY™ < | 297D | < ¢ N(AYV™ (G=1,2,--,m).
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Taking A7, instead of 1, we shall assume that 2 in satisfies the inequalities
e NQY™ < 2P | < e, N(AY™ (G=12,--,m).
If we put
N =max(A®, -=+ | 279 | J7+D | oo | A™ ),

then N is sufficiently large and the inequalities
(4.4) cN<|2P|EN (G=12,-,n)
are satisfied.

Now we take positive constants o, g;, 65, 0; 6, and o5 such that

4.5) g=3, 0y >0y, o,+o0=0,,
4.6) min(—%——l, It 0,—1) 2 (@+m)o+3r48,
%)) min (02, »%, 01——1> = 4+n)o+3r+12+a, (r=r+r—1).
(We can easily find such constants.) Putting
_ N —_ o 3
4.8) H= Y@W , T = (log N)™,

we consider the Farey division of E with respect to (H, 7). In this and fol-
lowing paragraphs we shall always use the notations H and T in the meaning
of

We shall now define a division of E, which is slightly different from the
Farey division with respect to (4, T).

Let I be the set of numbers y of K such that (%, 79, .., r™)e E and
r—a with N(@) < T". For every y €I' we define a domain By C E as follows:

n—1

Bi={ziz€E, |tr® =L (1=1,2,,mn)
(4.9)

for any r; =y (mod b‘l)}
and put B°=FE — ) B;.

rerl’
Let E; be a domain defined by (2.4). If z< Ey, then we have
; ™! Tnt .
| Zj_‘To(]) | = vHN(ai)g T G=12,--,m)

for a certain 7, such that y,=7 (modbd™!). Hence we have
B'CcE' B,DE, (el).
Moreover, we shall prove that
(4.10) Br.N\Br,.=¢ Goreel,ri#79.
If By, N\ By, + ¢, then there would exist a point z € By, N\ By, and, choosing
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suitably r,° and r,° such that 7=y, (mod d™!) and r,°=7, (mod d"), we have
A . . 2
@) O S P S S =12, ),

Let a, and a; be the denominators of y, and 7, respectively, then 7,°—7,°<
(ba;a,)~!. Since 7, # 71, (4.11) would give

P S 1 1

H"™ =| Ni,"—r) = "N(balaz) = DT

But this inequality is not true for sufficiently large N and so is proved.
In the integral of we shall change the variables of integration x,, x,,
-+, %, into Xi(z), X5(2), -+, X,(2). Then we have

(4.12) I(n; ) =2"D j f S(z 3 A)’e2miswa gy(z)
B
where
B={x(2); (21,29 ,22) EE}

and we write

dx(z) - dXJ(Z)dXQ(Z) on d)(n(z) .
Now we define subdomains of B as follows:

By ={x(2); @1,20r,22)EBr} (el

B=B—\J B;.

r€r
Then we see that

Br.N\Br,=¢  (Gurosl, ri#7)
and we write

(4.13) Lz n=2vD{f %j+ E f . [}8t; ayemsenax(z).
v€r

In the following paragraphs §5 and §6, we shall estimate the trigonomet-
rical sum S(z;2) on B and B, (y €I') respectively.

§ 5. Estimation of S(z;1) (I).

In this paragraph we assume that z=(z,z,, **+, 2,) belongs to E° which is
defined by the Farey division with respect to (H, T).

Let M, be the set of all integers v of K which satisfy the following con-
ditions :

e —

M(IOgMZ\ZV—)?<IV(ml§M(p)I (p=n+1-,rntr).
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Since N is sufficiently large, we see from that 9, is not empty.

Let T be the product of all prime ideals p with N(p) < N™2, then an in-
teger v M, which is prime to | must be a prime number. Therefore, we
have
(5'1) 2 e21tiS(wz) — E e21fiS(Vz) s

wEM, veM,
(v, W)=1

where the left-hand side is a sum taken over all prime numbers » in I, and
the right-hand side is a sum taken over integers v of M, such that (v, ®)=1.
Using Mobius function u(a) for ideals, we can write the right-hand side of

as follows:
2 e?ﬂ'iS(Uz) —_ Z e27TiS(Vz) 2 ﬂ(a)

yEM, yEM, al(y, %)
, %) =1
=2 u(@) 25 8¢ =3 u(a) X, 2S¢,
al® al{y) al R vEM,
vEM, yEa
Therefore, putting for any ideal a
I((l) — 2 e21rr's(y;,) ,
vEM,
yea
we have
Nn
Ses =y a@ID+0(-qor 3y
Nglgmzv”
(5.2) N
'\ n
= Z I(a) — E I(a) +O(_(1W) .
al®R al®
Ne=N", pl@)=1 Na=N", py(a)=-1

Now we shall consider the first sum in the right-hand side of (5.2). We
put
So = > I(a)

alR
NasN®, ula)=1

and
T= %Nn
~ (log N)*
and divide S, into three parts:
So= 2+ > + X =S5+S+S;,
Na=(log M (log N)%'<Nasr t<NasN"
where o, and o, are the constants defined in the previous paragraph.
We shall estimate these sums S; (j =1,2,3) one after another.
(i) Estimation of S;.
Let § be an ideal class of K. We define a sum
S(@)—‘—N Ema‘ll(a)l.

as (log
asg
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where a runs through all ideals belonging to €& with N(a) =(log N)’. Then
we have

(5.3) IS 1= %TS(@) ,
where € runs through all ideal classes of K. Therefore it suffices to estimate
S(6).

Let a, be an ideal belonging to €, then each ideal a in € is the product
of g, and a certain number a = q,7}, that is,

(5.4) a= aq, (asa,™).
Moreover, we may assume that « in satisfies the inequalities
CO§|O"(D] é(;N(a)l/n (j:1727"'7n)-

Let o4, 09, -*-, p, be a basis of a, such that

lpj(k)léc (j,k=1,2,---,n),
then «ap,, ap,, -+, @p, is a basis of a= «aq, satisfying the inequalities
] (x(k)pj(k) ] § CN(a)l/n (jy k - 1, 2’ "ty n) .

Therefore, by Lemma 3.6, we have

I(a) < N*™'min (N, || S(ap;2) ™)

1=j£n

so that
(5.5) S(@€) <« N* hX min (N, || Sap2) |7,

=

c.,é]w[;i“c%‘y,:N)‘“/” 1=
where «a runs through all elements of a,”! such that
co =] a?| =c(log N)™/ (G=12,:,m).

If we put V=c,(log N)’“* for a suitable positive number ¢, then the ine-
quality (3.61) holds, on account of the inequality o, >0, in Therefore,
we can apply Theorem 3.2 to the estimation of the sum in the right-hand side

of and, putting
V=c¢(log N/*, U=N, <=1
in (3.63), we obtain

- 7 1 1 log N
S(@) <N (log N) < (log N)”: + (10g N)d;—-x-i-a}/"ri’-*_' N ) ’

whence follows

Nn
SO < og Ny
on account of and [(4.6).
Thus we have
S <2
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(ii) Estimation of S..
We define two sets of ideals as follows:

My ={a; (log NY*™" = N(a) < ﬁgfmﬁ} ,

My={a;a|R, z@=1, (og Ny <N@= o N)a_,}

Then we have

S, =3 S misea — 3 S gmisea)

beil, yeir, bem, veM,
yEDL 7(;)76M‘
This is a sum of the type treated in Theorem 3.5. Therefore, putting
__ N «.  N” * 7 N™ _
N() - (log N)o' ’ U (10g ]\'7)0“ ’ Vl - (log N) ’ Vz (lOg N)o‘, ’ (= 1
in (3.97) and noting that the condition (3.66) is satisfied, we obtain

2

S, < N*(log NY1 732

1 _JT” - _(_l_gg N)O'n - 1 1 ) 1/4
><((log Ny T og Ny TN T T deg Nyt T dog ' n,,,_l) ’

whence follows

S: < log NY
on account of and [(4.7)
(iii) Estimation of S,.
We shall put

A= {a o ! o) =1, (1’og*N)*°T < N < N“}
then we have

S, =31 3 gpmiswa

a=A4 yEM,

_ yEa

(5.6)
— ) 3 s
1=Nas(log M% yeEM,

v
aEA

We denote by A; the set of the ideals of A which are divisible by exact
j prime divisors whose norms exceed (log N)* with ¢, in and divide the
inner sum in the last term of (5.6) as follows:

v 2SS — Z E g2rira)
( mn J vEM,
v) ) i

o ~E4 a € 4j

The range of the indices j of A; is given as follows:
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0=j=log N.

Let v be an integer of M, such that (v)/as A, with 1= N(a) <(log N)*.
If this (v)/a has £ prime divisors, then

(log NY¥s =
so that

- log N

If we denote by z(b) the number of the divisors of ideal b, then gives
<(")) _0k> NioriosTosw
Therefore, we have

1 b
3 et 2 Y ()

W) e, gye}zmu

—ed,

= (P)=x »1= n »1

Vfgao yfgfx" bi— (V) 1<Nb<—1;; x;eesgf:
< N(a) > N(b) < N(a) log N.
Nb<\7
Na
Hence
= L emi S(v2) —0s
(5.8 VEZ)% e < N(a) ——(log N)
Ql €4,
Now we put
Tk(a)z 3 gmisea (E=1).
yEM,
J:T)E A

Moreover we define a set

={a;alN, p=-—1, Nu)=N" ais divisible by exact {
prime divisors whose norms exceed (log N)**}

and a sum
(5.9) T*(a) = 2 > gmseR z=1).
(log N)"5<Nb§_;N"/2 ” yEM,
“ap S4¥k-1

ap

where outer sum is taken over all prime ideals p such that (log N)* < N(p) <
N72 and the inner sum is taken over all integers v € I, such that (v)/ap € A*,_,.

We shall divide the inner sum in into two parts, by the condition
veap® or veapr. Then we have the following estimations ;
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E e21tt Swa)
yEM,

TKEA/c 1, veEap?

(log MY+ < NpsN"/2

= 3 miswd » 1= kTw(a)

vEM, pl Wi/

l%’-e 4, (log M+ <Nps N/
and
i 2 E e27tiS(Vz) I
(log MTs<mpsy™? () v
- a;EA,C 1» yEap?
= 3 1< > (s
- s n/2 yEM, N(aPZ)
(log M)P*<Np=N"/" | =0ns (log 7)%° < Np= /2
N™ 1
& N2y 2Y E < log N)= .
N@) N < dog )
(log N)75<Np
Therefore

T,5@) = BT(0)+ 0z l0g N
From this result and follows
1
> emson =N Tr@)+0( Az log ™)

vEM,

1sk
l;) c4 =

+0(NGy ()(logN)_”’ > )

1=k=log N
_ _1‘_‘ % 1—0%
— 35— T @+0(Jyzy og M=)
Putting this result in (5.6), we have

1
(.10) S, = 2 27 T*(a)+O(N"(log N)*=%).
1=Nas(log N)%¢ 1=k
Now we put
M= {p;(og N)™ < N(p) =< N*},

then
T¥(a)= 2 S emisen,

yeM yeMm,

up €A%y

which is of the same type as was treated in Theorem 3.5. Therefore, putting

ﬂo—gjivfr’ U¥=N", Vi*=(og N)*, VH*=N"2, c¢=q

in (3.97), we have

No=
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3r
+5+2

N™ no.
T+(0) < gy (log N *

1 1 (og Ny™/™ 1 (log N)!+7+/n \ 1/4
“(tog Ny T Qg Ny TN T deg Ny )
N™ I3 g 1 1 1 174
< w108 N (oo Ny T (log M)

and, putting then this result in [5.10), we obtain

S, < N*(log N+

+-"';1+34’—+3< 1 + 1 N 1 )1/4
(log N)* 7 (log N)*™ " (log N)y*~!
N’n
+ (log N)«n—2 ’

whence follows

Nn

5 < log NY
on account of and
Thus we finally obtain

N’n

% < (log NY

In the similar way, we can estimate the second sum in the right-hand side
of (56.2).
Thus we have
Tureorem b5.1. Let S(z;2) be the trigonometrical sum defined in §4. If z
belongs to E°, then we have
N’IL
S(Z 5 Z) <K W

with o = 3.

§6. Estimation of S(z;4) (1I).

We quote from [3] the prime number theorem in the slightly simple form:
LemMma 6.1. Let a be an ideal and p be a totally positive integer prime to a.
Let Ny, Ny, -+, N, be positive numbers such that
Npl:Np (P=7’1+1,'",7’1+7’2),
NjéNka (j,k=1,2,---,n)
with a large constant a. Moreover we take v, positive numbers ¢, (n+1=p=
r1+7,) such that 0<4,=1 (p=r+1, -, 7r+r).

We denote by w(a, p3; N,®) =m(a, 0; N,, -+, Nu 3 Er,015 >+ s Fr.4r,) the number of
prime numbers @ which satisfy the following conditions

w=p(mod a),
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O<0)(Q)§NII (q=1:2"";7/1)/
la)(p)[§Np (p:7'1+1,"',7’1+72)7

0=arg o' <278, (p=nr-+1, -, r+r).
Then we have

wlld, dtydty -+ dtye,

003 N = i [ | Tog(tdy - £

6.1)
FOWNLN, -+ Nye™ ™OEI 20y,
wherve h is the class number of K, R is the regulator of K, w is the number of
the roots of unity in K, ¢(a) is Euler’s function for ideals and the domain of in-
tegration is defined as follows:
2=t =N (G=1,2,, 7,47

with e;=1 (G=r), =2 (j=n+1),r=r+r—1 and the notation II means a pro-
duct over p=v,+1, -, 7,+7,. ?

If N(a) = (log(N; -+ N))Y4 for a positive constant A, then the constants in the
ervor term ave independent of a.

From now on, we shall use the notations 7%, R, w and IT in the meaning of

Lemma 6.1 !

Tueorem 6.1. Let z= (2, 2y, -+, 2,) be a point belonging to Br which is de-
fined by (4.9) with r—a. We can choose a suitable number 1, such that v, =
r (mod ™) and

|z—r? =L (G=12,,m).
We shall put y;=z;—r, (j=1,2,-,n).
Then we have

cay . wu(e) 12 o2TS @ .
S(Z > l) zr,hRgD(a) f J‘ H f N"J/Z log(tl—m dtl as,

+0(rog 25T »

6.2)

wheve the domain of the integration is given by the conditions
0=6,=1 (p=n+1, -, r+r),
NP =t; <29 | (G=1,2,-,7+1)
with e;=1 (G =r),=2G >n). In the integrand, we put
f,=1t (¢=1,2,--,7),
£, = /£, ety

3 o p=r+1, -, r+7).
fo = t, e 2ip
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Movreover, b= (n—1) 06,40, and we can take a sufficiently large.
Proor. We shall divide the sum S(z; 1) into two parts;
S; )= 2 4+ 2 =S5+85;.
(w,a)=1 (o, Q)51
0E2W  0E2
First we have

where the sum is taken over all prime numbers » such that (»)|a and || =
N (=1,2,---,%n). Denoting by (E a sum taken over all prime principal ideals
)

dividing a, we have

1S l=2 2 1,

() lew|EN

where the inner sum gives the number of units ¢ such that | P |=<N (j=
1,2,+-+,m). Therefore, applying Lemma 3.4, we have

S; € (log N)" Z{ 1 < (og NY log(N(a)+1)
6.3) '
& (log N)*t.
Now we shall consider S,.
Let £2,(2) be the set of prime numbers @ which satisfy the following con-
ditions:

'\/l\f < @?P é P (El= ]-: 2: tty 7’1) ’

VN <]o® | <[P (p=n+1, -, 7r+7).
Then we have
Si= X emisentO(NmI)

(w0, @) =1
wER: )

=S,/ +O(N™ 7).

6.4)

We denote by p the elements of the complete system of residues moda

which are totally positive and prime to a. If the summation > is used for
0
the sum over these p, then

S1/ =3 P2 ST 3 22T S(0Y)
0 w=p(a)
wER:(A)

= 3 SIDG (),
o

(6.5)

Now, we shall divide two intervals [V N, N] and [0,1] as follows:
M():'\/N_<M <A{_w < e <M_1 <M:N,

0,=0<0,<6:; < <0, <O,=1,
where



336 T. MiTsuUIl

N .
My —M; < (og N)* (j=0,1,-,I-1),
1 ; - . —
(6.6) 0,;:,—0; <K “log NY* (G=01,--,m—1),
[ < (log N)*, m < (log N)*
with ¢ > b= m—1) 6,-~0,. Moreover we assume that each of the AW, ... 2",
[ATD| e (|20 s equal to one of M, -+, M.

By these divisions of [V'N, N] and [0,1] the set £2,(Q) is divided into
O((log N)*™) subsets each of which consists of the prime numbers » such that
Miq_1<CUM)§Mq (q=1,2)"'v7’1):
M, s <|oP|= M;,
(P = 7’1—}-1, ) 7’1+”2) .
27[@jp_1 < arg P = 277:@.7;11

We take one of these subsets and denote it by 2(M;0). We shall write, for
brevity, the conditions for w=2(M;6) as follows;

Mq,<ﬂ)(q)§Mq (q=1,2, '")7’1))
Mp/ < ] w(p) ' éMp

(p=r+1 -, 119
210, <arg o® <276,

Now we write

(67) Sﬂ(y) = VZ@ Sp(y ; M @)
with
Se(y; M, 0) = —E £2mEsy)
w3618

The sum in is taken over all possible M;, (j =1,2,,7+7) and 6;, (p=
i1, e ).
We put
M,= M, (¢=1,2,--,71),

(p: 7’1+1, Tty 1’1—]"7’2) ’
then, noting that

lyjl=-— N (7=1,2,--,n)
and for w = 2(M; O)

) ~ N .
D N AV —
0P—M; L (log Ny G=12,--,m),
we have

QAmIS©@Y) — eznis<ﬂy>+o((10g Ny,
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Therefore we have
Su(y; M, 0) = (& S +-0((log N~ 3 1.
wewli(gl(?)@)
We now apply to this last sum. Then we obtain
dty --- dt
1= . w (o) _@ ’ Aly °°° Qlryr
2 00 ZORC )fM ,e,f Togls ~ fes)
(6.8)
+O(N"g™Vlos V'),
where the domain of integration is given by the conditions
M <t; <M, (G7=1,2,---,7+1).

Since N(a) < T"= (log N)*, the constants in the error term in (6.8) are inde-
pendent of a. Therefore, putting

_ dtidty - dtrsy
JM) = j j log(tity -+ trs1) ’

we have
So(y; M, 0)= ZT,IZR(P(Q) ——T1(6,—6,) J(M)ex™iStitw)
: I;I(@p—@p’)J(M)
n,—CcVvViogz N
FOWN e )+ 0(2 st Ny )
(6.9)
Z“hRgo(a) ezms(My) f f J M)H dﬁ
p— 11(©e,—6,")J(M)
n,—cViog N
+HO(N"e 155 7 )+ O (-2 oz N )
Now we define #,,7,, -+, 1, as in our Theorem and assume
M,ej :<—_tj_§Mjej (.7= 1’ 2: ) 71'{"7’2) ’
@pléepggp (P=71+1;“‘y7’1‘|'7’2),
then

S(My) = S{iy)+0((log NY~%),
which gives

Sp(y 5 M, 9) zvth¢(a) f -ff

e2m.S(ty) d dﬁ
j log(t,¢; - tr+1) frs H

M; 'e.i

o H(@p_@p/)](M)
_{__O(Nne—c\/log N )_{_0< pgo(a)(log N)a_b ) ]

Therefore we have
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gnes
14 ])l e2mS(ty)

Sely) = 2“h1’€90(a)j j Hd j e,/zf 108z ) Prdla - dtras

- N
+O(N™e cWHO(ZB’(&}(IBE Wjd’-’ﬁi“) ,

whence follows

e .
__wp() W S2TSED
Sy = znhRgo(a)f fIIdﬁ f ottt e dt,dty -+ dtryy

+0(og Ny )

(6.10)

since
Z eZn’iS(Tﬂ) — ,U,(Q) .

pmoda
(p, a)=1

follows from (6.3) and (6.10).

§7. Treatment of I(x;2) (I).

Now we shall return to Iy(u;2) defined in From now on we assume
that s =3.

First we have, by [Theorem 5.1,

_fs;;fS(z;1)36‘2"is‘”2’dx(z)

N2 1/2,
@.1) < iog Ny ) o J 1@ D Pdndz, - d,
_ Nn(s—z) - _ Nn(s—l) Nn(s—l)
h(Tog N)acs—z) w’;{;wl( (log N)d(s D+1 < (log N)s+1 .

Now we put

72) W= 2hR

w

and

1% 227 S

T3 = [ f11a8, | - o ogt o iy @ty -+ dtray

which is the integral in (6.2). It is obvious that

e N
J(y; 0K log N °

If z is a point of B, with y—a, then we have by [Theorem 6.1.

Stz 2 = ey T3 D0 (g o)
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and

j"'JS(Z-; 1) @ 2mSw 4 (2)
(7.3) _ W{ig()a)s_e—mswn j‘ - J' T35 2) e~ 2miSew g( )

NGs=D
+O< (].Og N)a b(n+1)+s> ’
where
b
8= {a); 1312 (OB =12, m)

The error term of follows from

o o B

Summing up the both sides of [7.3) over all y I', we have

D fe St e mserdta
r

7€

(7.4) ‘VT}'SAE /;)Eg;s - 2miSUD) 5;3-;ff(y;l)se"z"is‘”wdx(y)

+O(Nn(s 1)(10g N)—a,+b(n+1)+2nn',—s)’
since

Z 1« 3 Na) < T =(og N)™:.

rerl NasT"
Therefore, putting
a=>bn+1)+2n0,+1,

RGus = [ J(y; 2 esmisendn(y)

and
Gla,p)= 3 e ms#n,

7oa
7 mod p7*

339

where r runs through a complete system of residues modd™ such that 7r—a,

we have by and [7.4)

Ly 27 VD p@)° N7
(5) LG D= R DY) 20 Gl w0 (g nye) -
NasT"
Now we shall prove
Lemma 7.1. We have
1 . log(Ma)+1)
@0 o@ < N
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Proor. We have
N@ _ ol NN 1
log-oy = ;ﬂl"g(l N<p>>“;aN<v> oW,

where p runs through all prime divisors of a. We know, by the prime ideal
theorem,

mle)= 3 1= ) +O(e— Vo5 ey ,

log t
(See Landau [2]). Therefore

x]-1

] []
5 sy = Sz (L

Np=x m=1 m=2

= |77 qurom = [ ([ &) -+on)

_(* dt _
= f . Flog 7 HOW =log log z+-0(1).

Since
1 1
e < <
Ny = 2 oy = log log(N@-+D)+c,
pla Np=N
we have
log %\D% = log log(N(a)+1)+c,
and obtain (7.6).
Now we put
.7 £ =bn+1)+1
and define a set D(1) of integers v of K which satisfy the following conditions :
Q@D (log]vN)_F < YO < Q@ =12 --,r),
(7.8) N
ll(p)—v(p)l§w (p=r+1, -, ntn).

Assume that 2 =®(1). Then we have
e—27ti8(ﬂy) — e—-zm‘suly)+0( (Iog]VN)" max (l X (y) D)
therefore
RO D= R, D) € oo -+ max( X(5) Ddx(y)

an+1 (log N)b(n+1) Nn(s-—l)

(log N)t*s : N7+ - (log N)1

so that, by Lemma 7.1, we have
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2«/D

Iy )=

(a) Nn(s—l)
oy 0@ D +0(og wyer)

NasT"
We shall sum up the both sides over all x=®(1). Then we have

TADH= 2 I{u;d)
HED(A)

7.9
214/ D u(a)® N©s
=S RAL D 3 A D 6, m+0(-qog nymer) »

NasT™ HEDQ)

since
__ 2raN® N
,ﬁﬁ»l " +/D (log N)** + ( (log N)*®=b )
on account of Lemma 3.2.
We shall consider a sum

Se= 23 Glo,p) (N@=T").

HED [e))

If a=o, then G(a, #)=1 for all u=D).
Assume that a=0 and take a number y €I' with y—a. If we put

;= 3 e wmisem

pEDQ)
then, by Lemma 3.5, we have
N'n—-l N 1
I < TIBS:T\T)T(HYEI?%( “tlog Ny » 1St ) ,
where py, 04+, 0 iS a basis of p such that
1 if j=¢k _
Ste.00 = o G k=1,2, -, ).
0 if 7k

Since the assumption a0 means that not all | S(o,;7)| vanish, we have

So= 3 z<<mgN—N)—— > min(ISeml.

7n7;odb mod p~!
T"“

We shall denote by L, the sum in this right-hand side.
Now we write

S(ojr) = a;+d;
with rational integer @; and —1/2<d;=<1/2(j=1,2,-+,n) and put

z9=j§laj6,-, C:j=21dj6j.
Then y=4¢-+¢ and

341



342 T. Mitsul

Lt 2 min (4 Xi-l(@ )

-
T niod »?

We take » rational integers gy, g,, -, g, and define a parallelotope B(g) in #-
dimensional euclidean space as follows :

1 1 1 1
B(g)= {(xn sy X)) m—a)—)ﬁa—(gr‘*zﬁ> <x = —ma“»nﬁ“(gj-l-*‘z")

(G=1,2,-,m}.

Since { € (ab)™*, the number of y in L, such that x({) € B(g) is at most one.
Therefore we have

L < N@* 3 min (T;j—l),

{g} =10} 1=j=n

where g, g, ***, g, in the sum run through all » rational integers for which
B(g) contain the points x({) defined by 7.
The range of {g,, g, -, 2.} is roughly given by the conditions
gj<<N(a)”” (.7=1: 2: ,71).
Therefore, applying Lemma 3.3, we obtain
L.< N@)log N,
which gives

Nn—-l
Se < N(a) (og N)F@=i>=1

and

u(a)® RN N(a) N1
Ler D Cam=» 14+0( Y O o M=)

Na=<T™ 2EDQD) HEDWA) NasT?

__ 2rpe N N
="VD (log Ny <(1og Nyeoer)

Putting this result in (7.9), we have

227 N™R(A, A (log Ny
)= ZEERAD (110 CE )

(7.10) A
+0( tog ) -
On the other hand, by the definitions of 7Z(x ;1) and ®(1), (4.3) and (7.8)

respectively, we see that 7'(1) is equal to the number of the s-tuples (w;, s,
., w;) of prime numbers which satisfy the following conditions :
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x(q)__(@%_ <P+, P+ - F@ P29 (g=1,2,+-,1),
N
62 6] 62)] 6] A =
(Cw) ] @) » +C02 P + +O)s o )‘ p ! S (log N)/c (P }’1—-}-1, 2 7’1_{'7’2) ’
w; € 20) (G=1,2,-,5).

In¥the following paragraph §8, we shall reduce these conditions to that
connected“with integers.

§8. Some relations between prime numbers and integers.

We put
_(2nam W\ _ 1
G=(57p ) st
with W and £ in and [7.7) respectively, and
N
N _Elog N)}T ’

Y =C,N,(log N)'*,
G =[(log N)*],
where [x] means the integral part of real number x.
We take #,+7,=r+1 positive rational integers gy, g, -+, gr1 Such that
8.1) 1=g;=c(log N)* (G=12,-,1+7)

and 7, positive rational integers %4, such that 1<4,<G (p=r,41, -, 7+1).
Let n(N,; 2, 8) =n(Ny; @1 » Zrets Fris1s 5 Frry) be the number of integers v
which satisfy the following conditions :

(&—1N, <v@® = g,N, (g=1,2,--,1),
(gp_l)NO < | V(p) [ §~gpN0
(p=r+1, -, 71+7),
~2G7r~(hp—1) <arg vy? < szlhp .

Then we have, by Lemma 3.2,

(8.2) n(Noy s & b) = ( ) «/D pT;I(ng 1)(1+O(\/§% >>

where the constants in the error term are independent of g; 1 <j=r+1) and
Ry ntl=p=r-tr).

In the following lines of this paragraph, we shall use symbols O and <«
when the constants in them are independent of g; A =j=r+1) and %, (n+1=
D=1117).
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Let (Y ;8,0 =n(Y ;80 &+t Frie1» - » Firry) be the number of prime num-
bers w which satisfy the following conditions
0<a)(q)§qu (q:1y2;"':7’1)7
| w(p) | ggpy

5 (l):71+1,"‘,71+72),
%’;— (hp—1) <arg o® = -Gy

then we have, by [Lemma 6.1,

@Iy dt
. / O Tt s ot 7 ,~C oo NV
E(Yag’ ]Z) W'Gy, f log(tl i r+1) ‘I"‘O(N e i gN),
where the domain of integration is given by the conditions
2=t;=(g;Y) (G=L.2,-,r+1).

This integral can be easily estimated. Putting

TitTs T+l Pl
H = H , E = Z} y H - . ’
» p=T +1 i j=1 J J=1
we have
Y"Hg 3
o 1 7 S
E(Y,g) k) WG log(Yan] _7) <1TO< log N))
~+O(N"gViog V)
8.3

Y Ilg
- W%}“ ) log(Y’]‘HJgjej) <1+O(logl—N ))
J

Y”ngej Zejloggj
v ey (g r+olaw)
wG nlogY nlogY log N

Let g/,8,, -, 8-~ be positive rational integers derived from g, g5 *** , &re1
by substracting 1 from some of g, g, -+, &,+1- Then we have
wGT nlog Y nlog Y log N
n re ) )
waG nlog Y nlog Y log N//’

(Y8, h)=

since
‘2ejlog g;i—2le;log g K1.
J J

Therefore, if we denote by #¥(Y; g h)==*(Y; gy, Zre1» Ariwry -+ 5 Rryy) the
number of the prime numbers @ which satisfy the following conditions
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(gq'—l)Y< C0<q)§gqyr (Q—“— 1, 2) Tty 7'1) ’

(gp_l)Y< ] a)(p) l _S.:ng
(p:ﬂ"—l’ L Vi),

)
—Lg——(llp—]_) < arg w(p) é ~~2(§"’llz_p )

then we have

. ) 1 . yn
s = G s v
2e;log g;
- 1
AR L
®.4) i (1 nlog Y +O< log N > )

2e;log g;
_ (2m\" _loglog N G, 50 1
~( G \/ZTH(Zg” 1)< n log N »n log N +O<logN))'

Comparing the results and we see that the inequality

(8.5) (Y ;8 ) =n(No; g h)

is true for sufficiently large N and for any g, 2 ***, &rs satisfying

We shall denote by #%(Y; g, %) the set of the prime numbers belonging
to n*(Y;g,%). Similarly we define a set #(N,;g,%). Above inequality
shows that we can construct a mapping ¢ = ¢(g, /)

8.6) ¢: (Y8 M—aNosg ),

which always maps the different elements of #*(Y;g, %) into the different ele-
ments of 7#(N,;g, &), that is,

@.7) Plw) # ¢plw,) (if o =w,).

Moreover, we can easily prove that

N (s
(log N)F+t 7

(8.8) W@ — _]%f__(ﬁ(m)(n <
0

for w € #*(Y; g, h).
Now we put

Z =C,Ny(log No)un(l g 10%9%%

with a=(k,+1)/n and define a set of prime numbers #*(Z;g, ) similarly to
z*(Y ;g #%). Then we have

by log g;
. B Zn e i 1
(258 )= I}(ng—l)WW log Z(l - nlog Z- —+0 (15g N))

— (F) DT e,- )(1+a1°§O;°§VN-)

2ejlog g;
x(1- liglé‘;gzév % ;og ~—+0( logl ¥))
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2e;log g;
_‘jniogNJ (logll\/:»'

Since
1
Se; log g; < n(:co—~—)log log N+0(1),
j n

we have, for sufficiently large N,

8.9) (202 (55) D a1 (1+- et )

so that

(8.10) 528, )= n(Ny; 8, 1) .

Therefore, we can also construct a mapping ¢ =v(g, %)

(8.11) A Ny, g, h—75(Z g, h)

such that

(8.12) ) #=YP,) if v#r)

Moreover, we can prove that

8.13) YY) — —ﬁoﬂz‘f’ < HBEZ\JTV)’”‘“ (G=12,--,m)

for venlN,y; g, k).
Now we define rational integers Gy, G,, -+,G,y and G/, Gy, ,Gry by
the following conditions :

G, Y < A0 < (G41)Y
G/Z <A< (G/+1)Z

G, Y <|AP| < (Gt DY
G,/ Z<| AP | <G,/ +1)Z

It is obvious that G/ = G; < (log N)**! (=1,2,---,n).
We shall denote by &, the set of all integers v such that

(Q‘—‘l, 2) oo :7’1))

(p:' 7’1+1’ Ty 71—11"7'2) .

0 <v? = (G+1DN, (g=1,2,---,m),
| VP = (Gp+1N, (p=n+1, -, n+n)
and by &, the set of all integers v such that |
0 <P =GN, g=1,2,---,7),
[v® | = Gp'N, (p=n+1, -, 711+7).

€, and &, are divided into subsets as follows:
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Gy+1 G?,HH

=33 X #wNo;gh,

h gi=1 &rp1=1

& Cret

22=§’ 2 X Ny g k),

&=l g=l

where we use the abbreviation :

G G
I S I
ke Ppr1=1 hyyg=t
It is obvious that
Gy +1 GT+1+1
Lc 2 X m™(Yigh
hogi=t & 1=
and
Gy’ Gyt
LA)D 2 - X 7T g h).
b gi=1 &py 1=t

Now we shall define a mapping & : 2(2)— &, as follows:
$(@) = ¢(g, B)(w) (if we74(Y;gh),
then, by and [8.8), we see that
8.14) @) #d@) (@0 cl2R),0*0),

(8.15) 0PN O <o N @8, =12, m).

Similarly we can define a mapping 1} : 8, — 2(2) such that
(8.16) V) =P ©,) W, v, €8, v £y,

8.17) FOO—Fr P <o 0SS i=12 .

Choosing a suitable positive constant B, we can write the conditions
and [8.17) as follows:

Q i/ I j — 7 2 _.‘_,ZV“_, PR p— .
(B.15) !co‘” NIO P ) | = (logf Ny (we);j=1,2-,n),
8.17)Y ()(”——— ple BN el i=1,2 -
. ",//’V 1__ lOgN)Hl Y 257 » &y ’n)'

Now we shall return to 7(1) in §7, which is the number of the s-tuples
(®1, @y, -, w;) of prime numbers satisfying the conditions (C,). We denote by
T(2) the set of these s-tuples.

Let T be the number of the s-tuples (v, v, -+, v,) of integers which satisfy
the following conditions :
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N sBN _ .
(log NY ™~ (log NYT @=b2mn)

< ——(U Dy, @p e oy @) < Q@D | (lo;B;\]/'\)f"“ ,

X(Q)___

(o) —(u PP e D)= AP = g{VN)’“ 5 (lozsffj)\'z _
(p=r+1, -, 141,
Ny N
O<y,@< v (/1<<1>+(SB—I CO)W> (q=1,2 -,7),
N C.N
|y, @ < v9,<} AP |- W)

(P= 7’1+1; Tty 71+72) ’ (]: 1, 2: Tty S) .
We shall denote by T, the set of these s-tuples.

If we take (w5, ,, -+, w5) € T(X), then we can prove without difficulty that
(@@, $@y), -+ ,dwy) € T,. Moreover, if (w;, @y -, ;) and (@,°% @,°, -+ , ) are
different elements of 7Y1), then it follows from (8.14) that ((w,),d(w,), -+,
B@y)) # (3(@,%), 3(@,9), -+, B(@,?)). Therefore we have

T, =TQR).

Similarly, if we denote by 7T, the number of the s-tuples (v, v,, -+-,vs) of
integers which satisfy the following conditions :

N N — ’
Z“D—W*—i—(slg-i—co)‘zm}ﬂ (g=1,2,--,1)

< _J%(Vltq)+yz<q)+ o Fp, @) K XD —(sB4Cy) ffo—g%—)"‘“‘ ,

© 1= 0P+ )| e 2B OO e

(p = 7’1+1, "ty 1’1+7’2) ’

0<V < ]}70 (1(@""?1’&%\[)1?1_) (g=1,2,-,7),
GN
I vy 2 ] =5 (I Z(p)l _(l_ogv‘oj\j)xﬂ )

(p: 7’1+1| Tty 7,1+7’2) ’ (] = 1; 2’ Tty S) ’
then we have an inequality
T =T,.

Thus the estimation of 7(1) is reduced to that of 7 and T3.



On the Goldbach problem in an algebraic number field II. 349

§9. The number of the representations of a totally positive
integer as the sums of s totally positive integers.

Let M be a sufficiently large number and M, M,, ---, M,, be positive num-
bers such that

M < M;<c,M (G=12,m),
My = M, (p=n+1, -, r+r).
Let 2= (24, 2y, -*,2,) be a point of E and define a sum
9.1) T(z; M) =3 2S¢ |

14

where v runs through all integers such that

O<V(q)§Mq (q:172y"'7r1):
9.2)
|v® | < M, (p=r+1, -, ri+79).
We put
_ ntl
T ont+2

and divide FE into two parts D, and D;:
Di={z;ze€FE, |z;|=M™* (=12,--,n)},
Dy=E—-D;.
By Lemma 3.5, we have
Ty M) < M 32}5‘1, (M, [[S(e;2) 1171,

where oy, 09+, 0n 1S @ basis of o such that

1 if j=%& )
S(00k) = o (Gk=1,2--n).
0 if 7=k
Now we write
Zj :kélxkak(j) (.7 = 13 2: R n)
with real numbers x;, x5, -+, x,. If z & D,, there exists at least one x;, 1 =/=<n)
such that |x;|=cM™® Therefore we have
9.3) T(z; M) M"‘llmin M, | x; ™) K Mrite
=jzn

for ze D,.
Now we assume that z = D,. We take an integer v satisfying the condi-
tion (9.2) and write

n
Y= m0;.
i=1
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with rational integers m,, m,, -+, m,. We put
n . .
gj =t2‘iti10i(]) (.7 = 1) 2’ "ty 72)

with m; <, <w;+1 (i=1,2,+-,%n). Then we have
Svz)—S(¢z) K max (Jz; <M
Sj=n

so that
TSR — ezm'S(Ez) +O(M~)

= jm:;lj e27fis($z)dt1 dtn+O(M_a) ’

where the domain of integration is given as follows:
m =t =< m+1 (=1,2,---,m).
Therefore we have
mg+1 AN
9.4) T(z; M) =3 " | sty -t + O™,
where the sum is taken over all (w,, m,, ---,m,) which are derived from inte-
gers v satisfying the condition (9.2). The number of these integers is O(M™),

which gives the error term in the right-hand side of [(9.4)
From now on we shall use abbreviations for the notations of products;

1 Ti+7, r+1
I1=11, II= 11 , II=11
q g=1 P p=r;+1 J Jj=1
If we put
qufq (q=112"")7’1)7
Upy=18&,|
? ? (P:7’1+1: “';7’1'{—7’2)’
0,=arg &,
then we have
Oty tgy o 5 1n 27
_ (1 2 ) HUp

WUI" e ’ U7'+1’ 0n+17 Tty 0r+1) - '\/D: »
and

T, M)= _\%‘fj‘ £2mis€a) 1;1 Upl;Ide].;)Id6~p+O(jwn_a)

73 M, 14 M,
= Al e P viau,
+O(M"™").
We shall put

My o Mp
(9.5) ;s M) =TI [ "emataU L [ db, | "emcrtriviorU,dU,
qgvo pVvo 0
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and estimate it. It is obvious that
Mq oz, U 3 _LA — ces
(9.6) jo el JU < min (M qu) (@=1,2,,7).

As for the integral in the second factor of the right-hand side of putting

Qp=arg z, (p=n+1, -, r+r),
we have

2T aMp . 27 nMp
AL (2 8y +208p0) — AT U |2, cos (0+9 )
fo jo i Cptpteppd [ dU,d0, jo jo ¢tz PUIUAS .
By partial-integration we have

u ,
j' iUzl cosO+ O 7T T
0

M M U
— AU |z| cos(O+ @) Jr7__ Amitlzl cosf+@)
Mjoe U jo {joe dt}dU.
Since
J‘mfyemum cos+®) J1d0 & min(U, L)
0 Yo [z |
(Siegel [6, (83)]), we obtain
2T p M.
9.7) f f Pzl o +ep 4140 < M min<M, - ) (p=r+1, -, 11+
0 Yo i Zp l
If we put
r+l
F(z)= M1l min (.M, »——) ,
j=1
then it follows from and (9.7) that
#(z; M) < F(z2).

Now we take a rational integer s=3 and a totally positive integer # and
define an integral

1/2 .
©.8) T3 My = oo [ Tas MYe™™Se2dndny -+ di.

We define two sets ®, and 9, in n#-dimensional euclidean space as follows:
Dy = {x(2) ; 2= (21, 2y, -+ , 2u) € Dy} ,
D, = {x(2); 2= (21, 29, =+ , 25) € Dy}

and we divide the integral into two parts:

(9.9) Jde; My=2v'D { j - f + j - j } TGz Mye™s#9dx(z).

As for the first integral in this right-hand side, we have by [(9.3)
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j‘fs.j T(Z ; Al)se—WtiS(,uz)dx(z)

1/2
<<M(n—1+axs—2>j' - 5‘| T(z; M) |dx, - dx, < M@ 1r@6=dtn
-1/2
If z€ Dy, then, using the estimation for 7T'(z; M)*;

T(e; MY = s 9(a s MY +OGM™),

we have
21‘:(8-1'1) I
Tl s M) = ~pa=oyr LD f $(z 3 M)'e™*m 5" dx(z)
_l_O(Mns—a) j;D j dx(z)+O(Mn(s—1)—(l—a)(s—-2))
(9.10) Ora(s+1) l
— _D_“___D/_zj;_.j‘ (23(2 ; M)se—zniswz)dx(z)
+O(Mns—-a(1+n))+O(Mn(s—1)—(1—a)(s—2)) ,
since

j@j dx(z) < M.
Now we put
Uq = Zq (q:1)27'”77’1);
Uy = ] Zp |
(p=r+1 -, 7r1+r)
@, =2arg z,
and
ay=min((n+a—n, (a—1)(s—2)),
then we have from (9.10)
212(3+1) .
Jw; M) = Wff P(z ; M) gm2mesa ];Iupl;ldujl;ld%

x.
+O(Mre-re)
where the domain of integration is given as follows:
lugl =M~ (g=1,2,-,m),
X O=u, =M™
0<p, <2 (p=n+1, - r+tr).
We consider a domain X containing X; which is defined by the conditions :
l26g | < oo (g=1,2,-,1),
X: 0=u,<co

(]5_—‘7’ +1""77+7’)’
0<g, <2 1 1772
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and estimate
I=| - | Fzy du; TTd, .
fx-x,f (2) ]i;[“pg[ ”Jl;[ Py
Easily we have

f:min(M, —zlt—)sdu L M1,
f:min (M, %)sudu L M2,

j;_amin<M %)sdu < Ma,(.;‘—l) ,

oo

min (]W, -1—>Sudu L M=
M-e U
which gives

I << M”(S"I)‘"(l —a)(§—2} .

Therefore we have

M :& © M)Se—2miswa) d du;
js(//t ) ) D(s—l)/z x ¢(Z ) ) e I;[MIJ gopl;[ uJ
(9.11)
+O(M =Dy |
Since
1
¢z M) = M,M, - Mnﬂfoequququq
q
2 1 )
% I}L dﬁpfoe27tLMp(Zpsp+2p’Ep’) U,dU,,
we have
27‘:(3-{‘1) ~
]s(ﬂ ; M) = W(M% Mn)s—lf...f ¢(z)se~2mswz) H%pd§0pﬂd%j
9.12) * ? I
FO(MrE=1-00y
where
=B (1,2, m)
Mj » ~y ’
and

1 om r .
¢(z) = I;[fo e2nquzquqI}j0 dﬁp j‘oe27l'l(3p6p+2p &p )Udep .
The last function ¢(z2) is also written as follows:

#() =TI j’ ! emitag gy | j' j' PLLICYS SICEETS SO A A
qgvo P

u?+vi=s1

Therefore we have

j‘ J' ¢(z)se~2n‘is(/7z) Hupd¢pH duj
X P j
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— f _:j' ¢(Z)se—2nis<ﬁ"z> dx(2)
9.13)

= gf_i(j:ezﬂwt dt>se—21n:/7(q) g

1 co oo s _ ~ ~
X 5 I j' j ( j‘ j ezni(uz+vy)dudv) I p B+ Xy B ly |
p Y =00V —o0 w?+v=1

We shall denote this integral by J,.
Now we put

KQ(tu) = f_w ¢1(w)se~2"i;j<Q)zvdw (Q= 1) 2) Tty 7’1) ]
¢(w) = f Iem wdt,
0
Kp(ﬂ) :J‘ = f ” by (%, y)se—zns<xp<ﬁ>x+xp/</'i)y>dxdy (p=r+1, -, ri+79),

bux9) = (| WD Gy dy
u?+vi=s1

Then we have
1
9.14) Jo= 72?9 Kq(ﬂ) I;I ]{p(/«‘) .
Now we write
¢10) = | . | Y Ry
1 0 1o s

then, putting & =4¢-+4+ --- +4, we have

by = F@emviae,
where

F§) = .- [ andt, - dt,-s
with the domain of integration

0=¢4=1 G=12,--,s—1),
0 = E'_(tf*‘tz‘*" R X _1) é 1

B;:
so that
K, (1) :f = {J‘ . F(&) ezniwedf} e‘z’”ﬁm‘”dw (@=1,2,-,1).

It is obvious that F(&) is a continuous function of &, therefore we have, apply-
ing the theory of Fourier integrals,

K(n) = F(g®) (g=1,2,-,1).

Now we assume that



On the Goldbach problem in an algebraic number field I1. 355

ngﬂ(q) (q=1,2,"'77’1):

then we can easily calculate K (u):

AN

(9.15) Kq(ﬂ) = T%T)( Mq (q =12, 7).

In the similar way, we have
Kp(#)zj' mj‘ - {f ” j' “ G(U, V) e v 4 V} ¢~ X pBa+ X! B ly

(p=r+1, -, 141,
where

GU, V)= j - j duyduy -+ dity_dv,dvy -+ dvs_,

is a 2(s—1)-fold integral with the domain of integration
Mj2+vj2§1 (.7:1’ 2)""3'—'1)’
s+ -+ttt —UY+@ 400+ - +o,,— V) =1.

Therefore we have, by the theory of Fourier integrals,

B,

916)  Kyw) = GG, Xp( i) = [ oo [t tecsdlt o ditasdpy - ey,
p(p

where B,(u) is defined as follows:

0<wu;<1, 0=<¢,<2 (G=1,2,+,s—1),
Bp('u): @ |

]ulei¢:+ -l—us_leif”s-l—L“» <1.

b

By the above results (9.12)-(9.16), we have

2raG=D([y D .. gy r)s=1
017 Jw s M) = DEDR(s—] ) HMpm—DKp(ﬂ)+O(Mn(s_1)_a') .

14

Obviously, /(¢ ; M) is equal to the number of the s-tuples (v,,v,, -+, v,) of in-
tegers which satisfy the following conditions:

L=V FV+ o g,

0 <y, P <M, (¢g=12,---,7r), (4=12,:-,9)),
|Vj(p)|§Mp (P:7'1+1:"'7’1+1’2)
with
qu‘ﬂ(’n (61:1, 2)"'77’1)-

Now we take a sufficiently small number & >0 such that 6M =1 and # real
numbers %, %, .-, £, Which satisfy the following conditions :
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0<%,= M, (¢=12,-,m),
(9.18) %, = M,+O(M?)
| #,+i%, | = Mp+O(MD)
We shall define a set TM(X) of integers u such that
- Mo < pP =%, (¢=1,2,--,7),
| %yt ifp—p® | < Mb (p=ri+1, e, 147

Since K,(#)=0(1) and p®=<M, (¢g=1,---,n) for pM&), we have
from (9.17)

(p=nr+1, -, n+mr).

(9.19)

r2(S—1) s—1
s My =2 D(s-(y/;(](‘fz_l)%’:? IL K1)+ 0@ M™ )+ O(M™07)

for € MQE).
Now we consider an integral

I:j‘l;oj‘ Uy - us_ldul dus—1d€01 aee d@s—l

with the domain of integration

O_S_ujé.l’ 0§¢j§2n‘ (j:1,2,“',$—1),
B,
’ | w6 e i —1| <1,

and we shall prove

(9.20) Ky(u) = I+0(5) (n € TU(R)) -

We change the variables in I and K,(u); x;=1u;c0s ¢;, y;=u;sing; (j=1,2,-,
s—1) and write

Ky(u) = f Bp,(ﬂ)f dx,dx, -+ d%;—1dy:1dy; -+ dYs—s

with
xj2+yj2§]- (j=1,2,"‘,3—1),
Bp,(,u) : s—1 s—1
(| g»|— lej)2+(121yj)2 =1
i -
and
I={... [ dndx, - dxidyidys - dy-y
B,
with
xj2+yj2§1 (]=1; 2}"'73*1)7
By :

<1—:§ xj>2+<:§y,->2 <1.

Clearly, | I—K,(¢)| does not exceed the volume of V= (B, (u)—By)\(By/—
B, (1)) in 2(s—1)-dimensional euclidean space, (x;, -+, s, ) being the points of



On the Goldbach problem in an algebraic number field II. 357

this space. If (x, -, %1, ¥1» =+, ¥s-1) 1S @ point of V for given y, 9, ==, Y51,
then x,, x;, +-+ , x,—; satisfy the conditions

IxJ]§1 (j=1,2,"‘,3_1),
f(yb L Yse) S XXt e X =f(yy - » Ys—1)+co

with a certain function f(yy, -+, ¥s—1) Of 91,5 =+, ¥s—1. Therefore we have
fvf axdx, -+ d%;_1dy:dy; -+ dYsy = ff ay; - dys—lj""f dxy =+ A%y
1
<< 6"'._.1.‘{ dyl ces dys_l << 6

and the assertion is proved.
If we put

o(s) = -fmf du, - Arts_1dPy -+ dPs—y
with
B Oé”]ély 0§¢j§27f (j=1’2:'°"$_1):
’ | Vg 67 o Vs, 1| <1,
then o(s)=2%"1I. Therefore we have for x € M)
O20)  Js M) = o= (MM, MY+ O@M™ D)L O
D ((s—1)!)m

Now we sum up the both sides of (9.21) over all =T (%). It is obvious
that

— 2“”“ n{" n—13n—1
,le%(a)l— VD M3"+O(M™™0") -
Therefore we have
. — (271«-0(3))” nsn vee s—1
/;GE)JZK:E)]S(M s M) - Ds/2((s__1) | )n M 0 (MMZ Mn)
+HOL™5™)+OL™=o+0") +O(M™16")
9.22)

(2ra(s))™

= pa(s—1) Ty MMMy -+ May~(1+00)+0(M ™)

+O(@ M),

This left-hand side is equal to the number of the s-tuples (v, v,, --+,v,) of in- |
tegers which satisfy the condition

Eq— Mo < P+vy Pt -+ P =5y (¢=1,2,+,1),
| Zpt-idy— WP 4y, P+ o+ P) S M6 (p=n+], -, ntm),
o0<v, =M, (@=L12,-,7),
v, | < M, (p=n+1,-,r+r),

(9.23)
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provided that M =>1 and
ClMéMjf—:-CzM (j=1,2,"‘,ﬂ),
(9.24) My—c; Mo < %, = M, (g=1,2,--,m),
Mp—C4M5 < I fp—*-ifp, I = Mp+C5M6 (p =17 +1; Tty 7’1’*‘7’2)

for suitable positive constants c¢;, ¢y, 5, ¢, and c;.

§10. Generalization of Goldbach-Vinogradov’s theorem.

Using the notations in §8, we shall put, in (9.23),

%, :%&(N’Jr@%) @=1,2,-,7),
R (b=nt1, -, b,
M, =3 (X2 (6B+C) oy (¢=1,2,,7),

My= (12 |4 o ) (p=rtL, 1+,
Me NN, 5= 1 (1 2sB

Yy (log N)* \ 1+ log N

‘We see that, after these substitutions, (9.23) coincides to the conditions (C,) for

T, in §8. Moreover, the conditions are satisfied. Therefore, we can now
estimate 7, by making use of the results in §09.
Since

1
Mo = Co(logj\lf\f)’““/" (1+o( lolgogO%N )

ot 1w G o )

we have by (9.22)

‘log N

@)t NP NG log log N
= WWAG=1) 1) " (og Ny (1+o(~ log N ))

In the similar way, putting
Z= -ZZO (l(q)’(SB'*'CO) (og N)IC+1 )) q=12,--,1),

Fyify = D 2P (b=n+t1, -, mtr),

(10.1) L= @?/2'((s~1) D Cl¥(log N)™®*s <1+O( >)
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N, C.N
]V[q =- iZL(l(Q)—m—éJJ‘VSEﬁA) (g= 1,2,-,7),
_ N C.N ,
: (i A1 =og V)rTf) (p=n+1 -, n+trn),
NN, 1 _ 2AsB+Cy)
M==20 o= w1 T N )

we also have

_ (tsrlsg(s))m ) N™ N(A)s1! N log log N
(10.2) T, = W=D 1) (log N)"*+s (1 O( log N )> :

These two results (10.1) and (10.2) give the asymptotic formula for 7(R):

(2t sg(s)) N™ N(/l)s‘ / log log N
TW = 7D 1y (log Ny T kg v )

Comparing this result with another asymptotic formula (7.10) for 7(1), we
have

21 3x1=3g(s))" N Nt (1#0< log log N))

W ((s—1) 1)y~ (log N)™*+s log N

2! N"R(2, A) (H—O( (Iogj{JV)”+1 )) ’

Ws(log N)**

which gives an asymptotic formula for R(Z,2):

3 a(s)™ L NQ log log N'
R D= 5=y ez Gog 0y (O (g N )

Putting this result in [7.5), we finally obtain

Con w'o(s) D2 . N@T! u()
Is(l ’ Z) B ((3‘1) ! )n(2n+nnr,hR)s (log N(Z))s E qo(a)s G((I, l)

NosT?

NP log log N
+0( (log Ny )-

Now we define the singular series:

_ V u(a)®
S,(1) = 2 FOd G(a, 4),

where a runs through all integral ideals. This series is convergent and

em— Y L can< JJ(ESZ

Na=T" No>T"

LT < (log N)™

on account of [Lemma 7.1.

Therefore we have
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w'o(s)y DV Ny Ny~ log log NQ)
j +0(rog . ):

=) D@ RRy 2P (og N  log N(2).

I 2) = (log N(x))sﬂ

The following properties of the singular series &,(1) has already been
studied. (See Rademacher [4]).
S,(2) is written in the form of an infinite product as follows:

1 1 s+1
e = mlJ“‘W((p))l)S ) H ()

where first product is taken over all prime divisors of 2 and second product
is taken over all other prime ideals.

Let & be the product of all prime ideals p with Mbp)=2. (If no such ideal
exists, we put €=0). We'shall call an integer u of K even, if u < &, and odd,
if (u,¥) =1. Then we see that, if both s and 1 are even or odd, then

G =zc>0
and in other case, &,(1)=0.
Now collecting all our results, we have
Tueorem 10.1. Lei X be a totally positive integer of K and s be a rational
integer = 3. We denote by I,(R) the number of the s-tuples (w,, @, -+, ®;) of prime
numbers of K which satisfy the following conditions

A :Q)1+Q)3+ o +(l)s ’

O<Q)j(q)§£(q) (421)2)"'77,1)’
(j:1’2: 73)'
| @;P | <] 29| (p=nri+1, -, 7+7)
Then we have
wa(s)" D2 ~ NQ@y! Ny log log N(A)
LA == 1y iy SO g Moy O (fog My )

wheve D is the absolute value of the discviminant of K, w is the number of the
voots of unity in K, h is the class number and R is the regulator of K, o(s) is
a 2(s—1)-fold integral:

a(s) =j.'; f duy - diws_1dP; - APs_y

with the domain of integvation
i 0=u;=1, 0=¢,=2r (=12, -,5=1),
| vV, €%+ - VU, es1—1] = 1.

&,(2) is the singular sevies which is written in the form of an infinite product:

&)= H (werotyr >H () -
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If both s and A arve even or odd, then

@s(l) =c> 0
and otherwise ©4(2) = 0.

. Generalization of Estermann’s theorem.
§11. G lizati f Est ’s th

In this paragraph, we assume that N is a sufficiently large rational integer
and we take positive constants ¢,0, and o, as in [45), [4.6) and [4.7) We put

___ N
~ (log N)*

and consider the division of E into B° and By (y = I') which are defined by (4.9).
Lemma 11.1. Let 2= (21, 29, =+ » 2n) be @ point of Br with r—a. Then we have

H T = (log N)"

N} () 2TSHY) N™
S N)= WV L ) _em T T \
LD SE N = onpp o EA , Jog NG TO( (g Nye-vH )
ned,

where S(z; N) is the trigonometrvical sum defined by (4.2), a is a positive constant
which can be taken sufficiently lavge, b= (n—1)o,+0,,
yj:Zj_T(j) (7:17 2: ot 7”)

and A(N) is the set of integers pn such that

O<pu®<N (g=1,2,,7),
P [=N (p=r1+1, -, 1+7),
1< N).
Proor. Let A,(N) be the set of integers u# such that
VN < <N (¢=1,2,--,7),

VN <|p®|=N (p=n+1, -, r+r).
We divide the intervals [N, NJ and [0,1] as we did in (6.6), that is,
My=~VN<M <M< - <M_<M=N,
0,=0<6,<60;< <O, ; <O, =1,

where
P .
Mju—M; < og Ny (7=0,1,-,0-1),
1 .
@j+1_@j & ‘(lagfjv)a‘ (] = 0, 1, ey m——l) ,

! < (log N)*, m < (log N)*.

In the similar way as we defined the set £2(1/,0) in §6, we now define the
set A(M, ©) of integers v of K such that
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MQI<V(q)§Mq (Q:1,2,"',7’1),
M, <|v®|< M,
270, <arg v <270,

(15 = rl+1y ) 7’1+7’2) .

We shall define a sum as follows:

(11:2) (M, ©) = 2 iag%v‘(;)

rEAM, 6)

where ¢ runs through all elements of A(M, ©).
Let # be an element of A(M, ©) and p,, 0y, ---, 0, be a basis of 5. Then x is
written in the following form

= 2m;0; .
i=1
If we put
= 2w (G7=1,2,,%)
i=1

with m, fwu; <m;+1 (1=1,2,---, n), then

C\/*\rél’gb]! (j:112J"'7n))
s}l(j)_gj1§c (j=1,2,---,n),
log N(1+47 #—¢
1 1 log N(u/&) :
Tog N(uy ~ log N&) ~ Tog N(z) log N(&) ~ TogIN(z) log J\/(E)
P S
\/N (log N)*’
and
| S o uy AN S S T
(11.3) log NG&) =) - § o gy e dn0(— 7 (log NYy: )-
Summing up both sides of over all x € A(M, ©), we have
_ 2 1 n=1/2
(11.4) 1M, 0) =5 [+ ou gy BHOTON™15),
where the domain of integration is defined as follows:
MqléXq(E)éMq (Q=1,2,"',7’1),

B: D" = X6+ X8 = My
270, = arg(X,(6)+iX,p () = 226,

(p= 71+1’ ) 71_!_72) .

If we put
fngq (q=1>2:""7’1)7

\/Z; 26D — &,
— . (p=r+1,-,ntr),
Vi, e = £,
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then we have from [(11.4)

g — 717”7 dtl * dtr.H n-1/2
(113) I(M 9) - '\/Dﬁj‘ jlj‘M py 5‘ 10g(l‘1 t7‘+1) d0h+1 dﬁr+1+O(N ):

where the domain of integration is defined as follows:
Mj,ejétjéMje] (j=1,2, ...’7+1),
6, =0,=6, (p=n+1, - ,rntr)

with e;=1 (j=rn), =2 (j=n+1).
Comparing this result (11.5) with (6.9), a formula for S,(y; M, ©), and using
the same notations as in §6, we have

. _ wvV'D_ i S(My) .
SK33 M, 0) = 5oy €0 AE )
nE AL

T1(6,—6,)J(M) N
ooz M) o@

__I_O(Nn ~Cvlog N )+O<

Moreover, we have for p e AM, ©)

S(uy) = S(M»)+0((log N~
Therefore

: oot 1 p2riS(y) n
2L S(My) o
¢ ’ E log N(u) - E log N(w) + ((log N)a(nﬂ) 0+1 )’

uEAM, 0) uEAM, 0
since Lemma 3.2 shows that
N‘n

e, of < Tlog Ny 2
so we have

. ANV N v N ,=C/Tog N
Sp(y ) M 9) 2"/2R§0(a) log N(/,t) O(N e log N)

neAM,

w\/ D E pEmS MY

H(@ —6 ’)f(M)
N7L
+0< o(a)(log N)*™° )+0< o) log N)a,(n+l)—b+r) ,

wvD E p2mLSHy) ( N™ )

= 3hReG) 2 Tog Ny O gaytog Ny= 1
#E A,
and finally
] _ w,\/ﬁ' . #(a) 1 2T SHy) N*
S N) =m0k " o) ;( Tog Nz +0( (og Ny=o71 )-
#uEM4 (N,
Since

1 g N |
#EA ) = A (N)
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we complete the proof.
Now we define a function g,(2) = g,(z;, 25, ** , 2n) as follows:

978 S(2)
(11.6) g1(z)= E T(f_gm'

HE A, (N)

We denote by A®), for positive real number #, the set of integers v such
that

0<v@<t (¢=1,2,-,7),
=t (p=n+1, -, r+mn)
and consider the square of g,(z):
&’(z) = ﬂe%mB(ﬂ) i 8Ha

with

1
B(p)= 2 log N(v,) log N(v,) *

If we put for any ideal a
(11.7) gz ;0= 2 £%z—7),

roa

7 mod 5™}
where 7 runs through a complete system of residues mod d™! with 7y —aq, then
we have

(11.8) gz ;0= 3 B(p)G(a, p)emisen
HEAQN)
with
Gla,my= X emsem,

To0
7 mod p~*
As for this sum G(a, 1), we have, by Rademacher [4],
Gla, )= 23 N(ula/c).
e (a, @)

Hence

Y 1
Gaml= B NO=NMem) Y N

c[(a, w)

SN@ ) Y g < N@ w)1+log N@).

Ne = Na

Therefore we have by
&xz;0) K N"(1+log N()) 2 N, 1)),
MEAQN)

since B(x) € N*. In this right-hand side, the sum over x is estimated as
follows :
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2 Mau)=% 2 NMo=>X 2 NQ©
uEAQRN) cla paE ”)2N) cla /‘e”/le(?N)

<<N"ZI)1=N”r(a).

Now we shall prove
11.9) 7(a) < N(a)?
for any given positive constant 4.

Consider the set of pairs (m,p) of rational integers m and prime ideals p
such that

1-4+m > N(p)™3 .
Then it is obvious that this set is finite. Therefore, decomposing a into the
product of prime divisors as follows; a=p,%p,* --- p;%, we have
() = A+a)A+ay) - A+ay) < NO)HN (pg)*3 -+ N(p,)%?

and the assertion is proved.

Thus we have
(11.10) 2.(z;0) K N1 +1log N(a))r(a) < N**N(a)®,
with a sufficiently small positive constant e.

If we define a function of z=(z;, 2s, *** , Z0),

(11.11) g =>4V 0,

where a runs through all ideals, then g,(z) converges on account of the esti-

mation [(11.10) for g.(z;a).
Moreover we put

Fo= ) A8 g0

Na=T"

(11.12)

(@) 2
%2)2 E &1 (Z—T)'

n T—a
NasT ¢ mod 51

Lemma 11.2. If 2=1(2, 24, ***, 24) is a point of E, then we have

(11.13) £i(e) <N min (N, |z ™).
Proor. First we have
11.14) £(z) K N™.
Let A,(N) be the set of integers v such that
1<y?<N (¢g=1,2,-,1),
1<[Vy?»|<N (p=nri+1, -, r+7)

and put
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. ezrriS(ﬂz)
W) = E Tog N(z) *

HE A, (N)
then we have

&1(2) = h(z2)+O(N™1).
Let p be one of py, 0y '+, 0n a basis of o, then

gl(z)e2ﬂi8(ﬂz) — h(z)e2ﬂi8(pz)+O(Nn—1)
and

2TL.S(P2) ___ J— Y‘ 2WiS(ﬂz)
£i(@)e D=2 (1og Na—p) Tog N(u)>

nE A (N)
mn- pEA:(N)
+0( X 1+ 3 DHOW™Y
HEA(N) CEA;( N)
e oA () B ()
— \! 2708 S (Hz) N7-1)
D e < log Nu—p) ™ Tog NGz ) HON™™
HEA(N)
4= pE A (V)
In the last sum,
S Y 1 ¢ log Nd—p/u)l _7,2
log Mu—p)  log N(u) (log N(w))* (log Ny 4 Tp9 |
Therefore we have
(11.15) 2(2)(E@HSe 1) & AE },1 <J>l(10g NG PO
i

Moreover we have

=

-1

1 1 1
E [ 2% (log NG@)E = % 2 (log N(w))*

D

pEA:(N) HE A2 (N)
m<i P |sm+1
N~ N-1 1
= E m(log(m+1))2 ,,E(m L <N E m(logimi 1y <N

e m<ly(1 |I=m+1
Hence
(11.16) g.(z)(ermsea 1) « N* 1,
Therefore, by [(11.14) and [(11.16),
(11.17) g1(z) K N*! 1rr_l.in (N, [1SG 1™ .

=jsn
Since (z,, 23, ** , 2,) € E, writing
zj—2x5‘” G=12-,m)

i=1

with a basis 6y, 0, -+, 0, of D! such that
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1 if i=J o
S(aipj) = . . . (ZJ] = 17 2: "t n) ’
0 if i#jJ
we see that
(11.18) [ SCo2) | = S(os2) | =1 x5 | (G=L2--,n).
It is obvious that
(1119) Izj]<<maX(|x1I,Ile,---,[xnl) (j=1’2:"':n)-

Hence we have, from [11.17), [(11.18) and [(11.19),
2@« N""lm_ip (N, lz;179).

=j=n

Lemma 113, If z2=1(2y 2y, -+, 2,) is @ point of By, and v #r1, 7 €I, then we
have

(11.20) g1(z—7) K N*(log N)*=.

Proor. Let 2°=(z,% -+, 2,") be a point of £ such that z2°=z—r (mod d™),
then by Lemma 11.2 we have

(11.21) &z—r)=gE"H< N”‘llmi; (N, 12,21
=j=n

On the other hand, there exists a certain number r, such that r, =

7, (mod ™) and
b

(11.22) 7. = LI (=19, ),
We put 2°=z—¢r-+p. Since 7 =7, (mod d7!), we see that r,—r-+p is a non-
vanishing element of (ba;a)~!, where y —a and y;—a,. Therefore

1 1
IN(Tz_‘T‘l“ﬁ) I = N(baa,) = DT

and there exists an index / (1 £/=n) such that

-1/n

(11.23) o=+ 2 2
From [11.22) and [(11.23) follows that

4
|20 21 P O=1O+B% = 2= 1:® || Z s = {1og Ny

Putting this result in [(I11.21), we complete the proof.
Lemma 114, We put
wv'D \?
D= ("grik
and assume that ¢ = 20+b+1 in Lemma 11.1.
Then we have

(11.24) S(z 3 N)?*—DF(2) € m]gzj\f)ga“ .
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Jor every z=(2,,2y, **, 2,) € E.

Proor. First we assume that z € By, with y,—a. Then Lemma 11.1 shows
that

_ wvD  pa) Nt
(11.25) Stes N) = "G ey £1@—T0+0((1og N)z,,)
so that

(11.26) Sz, NP=Dy= <5

( 2, Nan
o(a)? - g% (z— 71)+O< (log N)2o‘>

On the other hand, using Lemma 11.3 and Lemma 7.1, we have

_ou(e)?® N u)?
F(z) o) gz—r)= o) 2 g:2(z—r)
NasT™ TT‘;':wT*T‘
R 2n—2 403 2n—2 403+2
< E gD(a)N (log NY'" < N*2(log N)@+1 .
NasT®

Therefore we have

J.Nzn
. 2 = B
11.27) Sz ; N?—D,F(2) £ (log Ny
Now assume that z € B then Theorem 5.1 shows that
(11.28) Stz Ny« N
’ (log N)’ *

We shall take y eI' and define a point z°=(z,% z,% -+, 2,%) of E such that
2"=z—r+pB with a certain febd™'. Since z=(z, 2y ', 2,) € B’, there exists
an index 7 (1 =<j=<#n) such that

l Zj—‘r(j)-l_ﬂ(j) | 2 ,,,,,,,, Nv”_
Therefore, by Lemma 11.2, we have

2i(z—r) =g,(2") < N*(log N)™°
and consequently

1 N?n N"’
(11.29) F@ € D iy (og N < (log Ny#=2

NasT"

By (11.28), (11.29) and (4.6), which shows that 20—2 = 2¢, we have

. NY—D N
S(Z 5 N) —_ OF(Z) L (lag*NVf
for z= B Thus the proof is completed.

LemMmr 11.5. For z= (2, -+, 2,) € E, we have

(11.30) S(z3 NY—Dogy(e) < oy

Proor. Using the estimation (11.10) for g,(z;a) and Lemma 7.1, we have
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_ _ u(a)? n
ga(z) F(z) = §0(Q)2 gz(z (I) < N? E N(a)2 3
No>T" Na>T"
Nzn Nzn

(10g N)(l €)nos < (10g N)mn/z .

Since #no,=40, our Lemma follows directly from
Lemma 11.6. If we put

/
(11.31) T = 5 (15 Ny =Dy i@ [ dxdss -
-1/2
then we have
N n
(11.32) JIN) K~ (log N)@ *
Proor. We have, by Lemma 11.5,
: N2n 1/2 . _ .
JIN) KL WL;}J | Sz ; N¥?—D, g:(2) | dx,d%, - dxn

Therefore, it suffices to prove

1/2
(11.33) j -;}Zj |S(z; N2—D, g4(2) | d%; -+ dxg < N™.

First we obtain
1/2
(11.34) jj 1Sz N) Pday - dtp= 2 1<
—1/2 wel

Now we have

1/2 ) . 1 Nn
f—l/Zj‘ | g1(z—1) Pdxy -+ dxp = E (log N(n))? < (Tog N

pEA(

1/2 ) N®

f_l/zj | gaolz s a) [ dxy ++- dxn < (a) og NY©
and

e p@ l

-f—1/2»f ¢(CI)2 gz 0) | dxy -+ dxp
NasN?®
N? N™” log N(a) n
<log NP ) go(a) < log N)? > Ny SV

NosNZP Nasn2h

Finally we have, by (11.10),

]/2_” 2 ggg;z gz(Z;a)'dxl e dxy

—']/2
Na/Mr)n

&« N E Tv(%)ﬁ & N¥n & N™.

Na>Nm
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Hence

1/2
(11.35) f ks j | g5(2) | dxy -+ dxy < NP

This results [11.35) and [11.34) give [11.33) and then we complete the proof.

Now we consider the square of S(z; N):
S(Z , N)2 — 2 A(ﬂ)e2ﬂi8(ﬂz) ,

HEAQN)
where

is the number of the representations of x as the sums of two prime numbers

belonging to 2(N).

We write
O ala)? - X
g:(2)= quE&)T E E B(p)e2misum gami st
) r ady AEACD)
= 2 Bu)S(u)emsH ,
#EAQN)
where

ey — N 4@
€(u) = E o(a)? Ga, 1)

&(u) is a convergent series and we can write €(u) in the form of an in-

finite product:

e =[] (1+ N(p%-ﬂ )H(l“ (N(p)lf—l)2 )-
o

Plu

In the first product, p runs through all prime divisors of # and in the second
product, p runs through other prime ideals. We shall define even or odd in-

teger of K as in §10. Then we see that
Su)=zc>0 (if pu is even),
S(uw)=0 Gf u is odd).

Now we see that

(11.36) JN)= 3 {A(w)—DB(m)&(w)}*.
HEAQRN)

From the definition of B(x) follows

1
B gy !

#=vitys
v, Ao (N)

and, since the number of the units e such that |e?|<N (j=1,2,

O(log N)Y), we have

e ,m) is
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B(w) = T log NY (/FZ. 1—c(log N)).

Vi TVs3
v, €AWN)

Now we put & =(20—4)/(2n-+1) and take an integer u# such that

o W SHOSN (q=1,2,,7),
11.37
o “(Taéyﬁj’gélﬂ(m|§N (p=r+1, -, n+n).
Then we see that for such u
(11.38) BU) 2 ¢ e 2 oyt

Let @, be the number of even integers x which satisfy the condition (11.37)
and for which A(x)=0. Then we have from [(11.36) and [11.38)

CQ]Z\]Z?L -
](N)énog N)t+aas *

On the other hand, shows that

N3
J(N) K Tl‘é '*N)a;,— .

Therefore, we have

(11.39) Q. < ﬁag\,)? .
Now let Q(N) be the number of even integers g such that
rveAN), Aw=0,
then we have from [(11.36) and [11.39)

N* N™
(11.40) RIN) L _(T()-g?f)_f-}—@l L ﬁ@w .

Thus we can prove
Tueorem 11.1.  Almost all totally positive even integers of K are represented
as the sums of two totally positive odd prime numbers of K.
Proor. Let P(N) be the number of even integers u such that uz< A(N).
Then we have
P(N)=cN™.

Hence (11.40) shows that almost all even integers in A(N) are represented as
the sums of two totally positive prime numbers.

Now assume that 4 = w;+w,, where x is an even integer in A(N) and w,
and @, are prime numbers in 2(N) at least one of which is not odd. Suppose
w; is not odd, then (w,)=p is a prime ideal with N(p)=2. Since u is even,
g <, which implies (w,) =p. Therefore we see that the number of even in-
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tegers u = A(N) which are represented as the sums of two prime numbers in
L2(N), but not of two odd prime numbers, does not exceed the numbers of the
pairs (w;, w,) of prime numbers such that w,, w, € 2(N) and NMw,) = Nw,) = 2.
Applying Lemma 3.4, we see that the latter is O((log N)*").

Hence we obtain the proof.

Gakushuin University.
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