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and its application
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Recently Z. Ciesielski has proved that a J-convex function of m-th order
which is bounded on a set of strictly positive Lebesgue measure is continuous
on some interval [I] This is a generalisation of a well known result due to
A. Ostrowski (m=1). On the other hand, T. Popoviciu has proved that the
boundedness of a J-convex function of m-th order on some interval implies its
continuity [3]

The main results of this paper are Theorems 1 and 2. In Theorem 1, we
prove a property of a set of strictly positive Lebesgue measure in n-dimen-
sional Euclidean space E™, and, in Theorem 2, we use this result in order to
prove that a function considered there which is bounded on a set PS E™ of
strictly positive measure is bounded on some sphere. Since a J-convex func-
tion of m-th order satisfies the conditions of Theorem 2, we find, in Theorem 3,
that the boundedness of a J-convex function on a set of positive measure im-
plies its boundedness on some interval and (by the result of T. Popoviciu) its
continuity on this interval. Theorem 4 is an application of Theorem 2. It is
a generalisation of the well-known theorem according to which a measurable
function f such that:

2o () Atk =0

for all x and y is necessarily a polynomial of degree =m—1.

NoraTtions. An element x = E” will be identified with a centered vector
x which has the terminal point x and the initial point the origin. By A—B
(4, BS E™), we denote the set of all vectors ¢—b with e = A and b= B. For
a real number « and a set AS E™, aA will denote the set of all e with ¢ <
A. The Lebesgue measure of a measurable set AS E™ is denoted by mA.

Tueorem 1. Let E™ be n-dimensional Euclidean space, P< E™ a set of strictly
positive Lebesgue measuve, and &, &, +++ , 0y, veal numbers such that

0<]ak1§1 (k:]-,z)"')m)-

If x, is a point of density of the set P, then there are two spheres K(x,r’) and
K(x,, ) around x, with radius v’ vesp. v such that:
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a) Kxy,7") S Klx, 1)
b)Y For exery x = K(x,, ') theve is a sequence of vectors
a(x) € P\ K(xy, v) (k=1,2,--,m)
and a vector I(x) with the property that:
a(x) = x+a,hx),
ay(x) = x+ayhx),

(%) = X+ (%) .
Proor. 1. Since x, is a point of density of the set P, we have ([2, p. 1567])

. m[ PN\ K(x, 0)] _
1,,133 mK(x,, p) =1

Hence, for
1

2o e TaeT)

lal ]C( I | Ko,

& =

there is a sphere K(x,,») (r > 0) such that
mS=emK,
where K= K(x,,7), Q=K P and S=K\Q. We assert that the set

T — onmQ x“f\ f\Q X

m
has strictly positive measure. Otherwise, we should have »7T =0 which implies:

mK(0, v) = m[ KO, Y\T']
=m[ KON 2 T4m KON N O T

+m[ KO,nN 5],

But 0<|al=1 implies:
KO,7n _

Using this we find :

MK, ”)<E [K(O 7))\ @— xo]

Il
Ms

[ m[K(0, N\(Q—x,)]

=
I
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| ay |

= (Y “]7}2“ )mL Kz, M\Q1.

il

Hence

mE(x,, 1) = mKQ0, 7) < ( E ﬁ) mS < ﬁg]{_
k=1

which is impossible. Thus the set T has strictly positive measure.

II. The function

Q—x  Q—x

Ay ay,

n(x)zm[-%_li(\

is continuous. In order to see this denote by x(x;S) the characteristic func-
tion of the set S. Using some simple properties of such functions we find:

77(X)=fEnx<y; =z Q;Zx N8 >dy

291 X
= [ x(; *chﬁ) #(v; %—?—) e 2(s Qa;x )ay

= fEnx(eraly ;@) x(atayy; Q) - x(rtany; Q)dy.

This and 0=y =<1 implies:

G —n@ = [t +any; Q—rGrtauy; @ | dy.
k=1

But

fE,LI 1 +ay; Q—x(xtay; Q) | dy

= T;l;l—fﬂl 2" +y; Q) —x(a+y; @) | dy—0
as x'—x.
Thus the function 7 is continuous on E”. Since
(%) =mT >0,
there is a sphere K(x,,#’) such that ' =<7 and
7(x) >0

for every x < K(x,,7’). This implies that the set
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Q—x _Q__ﬂm (\,Q_i

a, &y (2

is not empty for any x = K(x,,7’). If A(x) denotes an element of this set, then

_a®—x _ a®—x _  __ a0)—x
h(x) = o @, A
with (%), @y(x), -, an(x) € . Thus for every x € K(x,, 7’) there are vectors
ay(x) € Q =P K(x, 7) (k=1,2,--,m)
such that
a(x) = x+ah(x). Q. E.D.

Tueorem 2. Let f(x) be a real-valued function which is defined in « sphere
KCE™ and let 7o,71 s 7m and By < B < - < By be two sequences of veal num-
bers such that vy 7, <0.

Further suppose that

) éonﬂxwkm =10

for every x and h for which x+ahe K (R=0,1, -, m).

If the function fis bounded on a set PS K of strictly positive Lebesgue mea-
sure then f is bounded in some spheve K’ S K.

Proor. From (1) we have:

@ — oSt B = 3 1St Bul)
and
®3) —r S B S oS B+ 2 St B
Setting y=x+£,% in (2) and y=x+23,4 in (3), we find:
@) ~ro S () = 3 rif Ly-+HE—Bol]
and
3 —1 i) S oS L+ Be— B0+ 2 s Ty+ (BB
Now set:
ak:&“‘ﬁoﬂ for k=1,2,---,m,
B
a, = HLELB,L and
am+k=&‘;ﬂ—& for £=2,3,-,m,

where ﬁ=mgx{l B8, | Bx—B. 1}
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Since mP >0, there is a point x, € PS K which is a density point of the set
P. We take a sphere K(x,,#) around x, such that K(x, 7)) S K. Now 0<|a]|
<1 and the sphere K(x,, 7) satisfy all conditions of [Theorem 1. There is there-
fore a sphere K(x,,7") S K(x,,7) (#/ >0) with the property that y € K(x,, 7’) im-
plies the existence of ax(y) € P\ K(x,, 7) and a vector A(y) such that

a(y) = y+a(y).

For a given y € K(x,, 7’') we set

_ ).
h=57

If —7,/(» =0, then (2) and the assumption
M=sup|f(y) | <+oo
yEeEP

imply :
—rofD =1 1D =3 (73] |FTy+Be—Bo)i]
= 3 7el 1/Ts+auh()]] =2 7l | fTa]]
=MEInl, e,
Tr_ N e
@ lﬂMéM;MbéMgln

If —7,/(») =0, then —7,/(») =0 and (3") lead to

) 1ﬂM§M§}%n

From (4) and (5) we deduce

sup | f(») | <+4o0  (y€ Klx, 7)),

i.e., the function f is bounded in the sphere K(x,, 7’). Q.E.D.

TueoreEm 3. Let f(x) be a real valued function of a real variable x & (a,b)
=4 (a<b). The function f is called J-convex of the m-th order (i. e. convex in the
Jensen sense) (1] on 4 if

A () =0
Jor all x and h for which
X x+h - xt+m+1Dhed,
where
A5 () = A5+ — 457 (),

4 f(x) = f(x) .
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If 1 is bounded on a set P< 4 of strictly positive Lebesgue measure, then f is
continuous in some interval ([1, Theorem 1, p. 3]).

Proor. It is readily seen that f satisfies all conditions of Theorem 2. Thus
f is bounded on some subinterval ¢ of 4. By a result of T. Popoviciu [3], a
J-convex function of order s bounded on ¢ is also continuous in 4. Thus f is
a continuous function on some subinterval of 4. Q. E.D.

Tueorem 4. Let f be a real-valued function which is defined on the set of
all rveal numbers and let oy <o) <. <y (A #0, k=1,2,---) be a sequence of
real numbers such that

©) i ref Gt ay) =0

holds for all x and y, wherve 74,711, >+, Tm arve Some real numbers such that r,-r, <O0.
If the function f is measurable, then f is a polynomial of degree < m—1.
Proor. Being measurable, f is bounded on a set P of strictly positive
Lebesgue measure. This and Theorem 2 imply that £ is bounded on some in-
terval which obviously leads to boundedness of f on every finite interval. Thus
f is summable on every finite interval. If in (6) we replace x+«,y by x we find:

™ rf@+ 3 rufttBiy) =0,

where B, =a,—a, (k=1,2,---,m). Now we integrate (7) with respect to y from
0tol We get:

m

®) rof@=— = [ty

k=1

From (8) and 7, # 0, we conclude that f(x) is a continuous function on the set of
real numbers. But from (8) we see that f is also derivable and that its deriva-
tive is a sum of derivable functions. This implies the existence of f/, f”, etc.,
i.e., f possesses derivatives of all orders.

If we take the p-th derivative of (6) with respect to y and if we set y=0,
we get:

( kf‘:l 7eci ) fP(x) =0.
If f(x) is different from zero in at least one point, then we have:
(9) ’;lrkakp=0 p=0,1,2,---,m.

Since 7,-7; <0, the system (6) has non-trivial solution y. Thus:
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1 1 1
Q, ay (e 7™
@ @t oant =0,
aom a™ e ay™

which contradicts the assumption that all «’s are different one from another.
Thus

™) =0,
i.e., f is a polinomial of degree =m—1. Q. E.D.
Department of Mathematics
Zagreb, Yugoslavia
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