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A property of a set of positive measure
and its application

By Svetozar KUREPA

(Received Feb. 17, 1960)

Recently Z. Ciesielski has proved that a J-convex function of m-th order
which is bounded on a set of strictly positive Lebesgue measure is continuous
on some interval [1]. This is a generalisation of a well known result due to
A. Ostrowski $(m=1)$ . On the other hand, T. Popoviciu has proved that the
boundedness of a J-convex function of m-th order on some interval implies its
continuity [3].

The main results of this paper are Theorems 1 and 2. In Theorem 1, we
prove a property of a set of strictly positive Lebesgue measure in n-dimen-
sional Euclidean space $E^{n}$ , and, in Theorem 2, we use this result in order to
prove that a function considered there which is bounded on a set $P\subseteqq E^{n}$ of
strictly positive measure is bounded on some sphere. Since a J-convex func-
tion of m-th order satisfies the conditions of Theorem 2, we find, in Theorem 3,
that the boundedness of a J-convex function on a set of positive measure im-
plies its boundedness on some interval and (by the result of T. Popoviciu) its
continuity on this interval. Theorem 4 is an application of Theorem 2. It is
a generalisation of the well-known theorem according to which a measurable
function $f$ such that:

$\sum_{k=0}^{m}(-1)^{m-k}\left(\begin{array}{l}m\\k\end{array}\right)f(x+ky)=0$

for all $x$ and $y$ is necessarily a polynomial of degree $\leqq m-1$ .
$N_{oTATIONS}$ . An element $x\in E^{n}$ will be identified with a centered vector

$x$ which has the terminal point $x$ and the initial point the origin. By $A-B$

$(A, B\subseteqq E^{n})$ , we denote the set of all vectors $a-b$ with $a\in A$ and $b\in B$. For
a real number $\alpha$ and a set $A\subseteqq E^{n},$ $\alpha A$ will denote the set of all $\alpha a$ with $ a\in$

$A$ . The Lebesgue measure of a measurable set $A\subseteqq E^{n}$ is denoted by $mA$ .
THEOREM 1. Let $E^{n}$ be n-dimensional Euclidean space, $P\subseteqq E^{n}$ a set of strictly

positive Lebesgue measure, and $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{m}$ real numbers such that

$0<|\alpha_{k}|\leqq 1$ $(k=1,2, \cdots, m)$ .

If $x_{0}$ is a point of density of the set $P$, then there are two spheres $K(x_{0}, r^{\prime})$ and
$K(x_{0}, r)$ around $x_{0}$ with radius $r^{\prime}$ resp. $\gamma$ such that:
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a) $K(x_{0}, r^{\prime})\subseteqq K(x_{0}, r)$

b) For exery $x\in K(x_{0}, r^{\prime})$ there is a sequence of vectors

$a_{k}(x)\in P_{\cap}K(x_{0}, r)$ $(k=1,2, \cdots, m)$

and a vector $h(x)$ with the property that:

$a_{1}(x)=x+\alpha_{1}h(x)$ ,

$a_{2}(x)=x+\alpha_{2}h(x)$ ,

$a_{m}(x)=x+\alpha_{m}h(x)$ .
PROOF. I. Since $x_{0}$ is a point of density of the set $P$, we have ([2, p. 156])

$\lim_{\rho\rightarrow 0}\frac{m[P_{\cap}K(x_{0},\rho)]}{mK(x_{0},\rho)}=1$ .
Hence, for

$\epsilon=\frac{1}{2(\frac{1}{|\alpha_{1}|}+\frac{1}{|\alpha_{2}|}+\cdots+\frac{1}{|\alpha_{m}|})}$

,

there is a sphere $K(x_{0}, r)(r>0)$ such that

$mS\leqq\epsilon mK$ ,

where $K=K(x_{0}, r),$ $Q=K_{\cap}P$ and $S=K\backslash Q$ . We assert that the set

$T=\frac{Q-x_{0}}{\alpha_{1}}\cap\frac{Q-x_{0}}{\alpha_{2}}\cap\cdots\cap\frac{Q-x_{0}}{\alpha_{m}}$

has strictly positive measure. Otherwise, we should have $mT=0$ which implies:

$mK(0, r)=m[K(0, r)\backslash T]$

$\leqq m[K(0, r)\cap\frac{Q-x_{0}}{\alpha_{1}}]+m[K(0, r)\cap-Q\frac{-x_{0}}{\alpha_{2}}]+\cdots$

$+m[K(0, r)\cap\frac{Q-x_{0}}{\alpha_{m}}]$ .

But $0<|\alpha|\leqq 1$ implies:

$\frac{K(0,r)}{\alpha}=K(0,$ $\frac{\gamma}{|\alpha|})\supseteqq K(0, r)$ .
Using this we find:

$mK(0, r)\leqq\sum_{k=1}^{m}m[\frac{K(0,r)}{\alpha_{k}}\backslash \frac{Q-x_{0}}{\alpha_{k}}]$

$=\sum_{k=1}^{m}\frac{1}{|\alpha_{k}|}m[K(0, r)\backslash (Q-x_{0})]$
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$=\sum_{k=1}^{m}\frac{1}{|\alpha_{k}|}m[(x_{0}+K(0, r))\backslash Q]$

$=(\Delta\nabla_{\ulcorner\alpha_{k}\overline{|}}^{1})m[K(x_{0}, r)\backslash Q]k=1m$

Hence

$mK(x_{0}, r)=mK(O, r)\leqq(\sum_{k=1}^{m}\frac{1}{|\alpha_{k}|})mS\leqq\frac{mK}{2}$

which is impossible. Thus the set $T$ has strictly positive measure.
II. The function

$\eta(x)=m[\frac{Q-x}{\alpha_{I}}\cap\frac{Q-x}{\alpha_{2}}$ A $\frac{Q-x}{\alpha_{m}}]$

is continuous. In order to see this denote by $\chi(x;S)$ the characteristic func-
tion of the set S. Using some simple properties of such functions we find:

$\eta(x)=\int_{E^{n}}\chi(y;\frac{Q-x}{\alpha_{1}}\cap\frac{Q-x}{\alpha_{2}}\cap\cdots\cap\frac{Q-x}{\alpha_{m}})dy$

$=\int_{E^{n}}\chi(y;\frac{Q-x}{\alpha_{1}})\chi(y;\frac{Q-x}{\alpha_{2}})\cdots\chi(y;\frac{Q-x}{\alpha_{m}})dy$

$=\int_{E^{n}}\chi(x+\alpha_{1}y;Q)\chi(x+\alpha_{2}y;Q)\cdots\chi(x+\alpha_{m}y;Q)dy$ .

This and $C\leqq\chi\leqq 1$ implies:

$|\eta(x^{\prime})-\eta(x)|\leqq\sum_{k=1}^{m}\int_{E^{n}}|\chi(x^{\prime}+\alpha_{k}y;Q)-\chi(x+\alpha_{k}y;Q)|dy$ .

But

$\int_{E^{n}}|\chi(x^{\prime}+\alpha y;Q)-\chi(x+\alpha y;Q)|dy$

$=\frac{1}{|\alpha|}\int_{E^{n}}|\chi(x^{\prime}+y;Q)-\chi(x+y;Q)|dy\rightarrow C$

as $x^{\prime}\rightarrow x$ .
Thus the function $\eta$ is continuous on $E^{n}$ . Since

$\eta(x_{0})=mT>0$ ,

there is a sphere $K(x_{0}, r^{\prime})$ such that $r^{\prime}\leqq r$ and

$\eta(x)>0$

for every $x\in K(x_{0}, r^{\prime})$ . This implies that the set
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$\frac{Q-x}{\alpha_{1}}\cap\frac{Q-x}{\alpha_{2}}\cap\cdots\cap\frac{Q-x}{\alpha_{m}}$

is not empty for any $x\in K(x_{0}, r^{\prime})$ . If $h(x)$ denotes an element of this set, then

$h(x)=\frac{a_{1}(x)-x}{\alpha_{1}}=\frac{a_{2}(x)-x}{\alpha_{2}}=\ldots=\frac{a_{m}(x)-x}{\alpha_{m}}$

with $a_{1}(x),$ $a_{2}(x),$ $\cdots$ , $a_{m}(x)\in Q$ . Thus for every $x\in K(x_{0}, r^{\prime})$ there are vectors
$a_{k}(x)\in Q=P_{\cap}K(x_{0}, r)$ $(k=1,2, \cdots, m)$

such that
$a_{k}(x)=x+\alpha_{h}h(x)$ . Q. E. D.

THEOREM 2. Let $f(x)$ be a real-valued function which is defined in a sphere
$K\subset E^{n}$ and let $\gamma_{0},$ $\gamma_{1}$ , , , $\gamma_{m}$ and $\beta_{0}<\beta_{1}<\cdots<\beta_{m}$ be tu $0$ sequences of real nzrm-
bers such that $\gamma_{0}\cdot\gamma_{1}<0$ .

Further suppose that

(1) $\sum_{k=0}^{m}\gamma_{k}f(x+\beta_{k}h)\geqq 0$

for every $x$ and $h$ for which $x+\alpha_{h}h\in K$ $(k=0,1, , m)$ .
If the function $f$ is bounded on a set $P\subseteqq K$ of slrictly $pos\downarrow\wedge\neq\dot{I}PeLebes_{\leftarrow Q^{\wedge}le}$ mea-

sure then $f$ is bounded in some sphere $K^{\prime}\subseteqq K$

PROOF. From (1) we have:

(2) $-\gamma_{0}f(x+\beta_{0}h)\leqq\sum_{k=1}^{m}\gamma_{k}f(x+\beta_{k}h)$

and

(3) $-\gamma_{1}f(x+\beta_{1}h)\leqq\gamma_{0}f(x+\beta_{0}h)+\sum_{k=2}^{m}\gamma_{k}f(x+\beta_{h}h)$ .

Setting $y=x+\beta_{0}h$ in (2) and $y=x+\beta_{1}h$ in (3), we find:

(2) $-\gamma_{0}f(y)\leqq\sum_{k=1}^{m}\gamma_{k}f[y+(\beta_{k}-\beta_{0})h]$

and

(3) $-\gamma_{1}f(y)\leqq r_{0}f[y+(\beta_{0}-\beta_{1})h]+\sum_{k=2}^{m}\gamma_{k}f[y+(\beta_{k}-\beta_{1})h]$ .
Now set:

$\alpha_{k}=\frac{\beta_{k}-\beta_{0}}{\beta}$ for $k=1,2,$ $\cdots$ , $m$ ,

$\alpha_{0}=\frac{\beta_{0}-\beta_{1}}{\beta}$ and

$\alpha_{m+k}=\frac{\beta_{k}-\beta_{1}}{\beta}$ for $k=2,3$ , – , $m$ ,

where $\beta=\max_{k}\{|\beta_{k}-\beta_{0} , |\beta_{k}-\beta_{1} \}$ .
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Since $mP>0$ , there is a point $x_{0}\in P\subseteqq K$ which is a density point of the set
$P$. We take a sphere $K(x_{0}, r)$ around $x_{0}$ such that $K(x_{0}, r)\subseteqq K$ Now $0<|\alpha_{k}|$

$\leqq 1$ and the sphere $K(x_{0}, r)$ satisfy all conditions of Theorem 1. There is there-
fore a sphere $K(x_{0}, r^{\prime})\subseteqq K(x_{0}, r)(r^{\prime}>0)$ with the property that $y\in K(x_{0}, r^{\prime})$ im-
plies the existence of $a_{k}(y)\in P_{\cap}K(x_{0}, r)$ and a vector $h(y)$ such that

$a_{k}(y)=y+\alpha_{k}h(y)$ .
For a given $y\in K(x_{0}, r^{\prime})$ we set

$h=\frac{h(y)}{\beta}$ .

If $-\gamma_{0}f(y)\geqq 0$ , then $(2^{\prime})$ and the assumption

$ M=\sup_{y\in P}|f(y)|<+\infty$

imply:

$-\gamma_{0}f(y)=|\gamma_{0}f(y)|\leqq\sum_{k=1}^{m}|\gamma_{k}||f[y+(\beta_{k}-\beta_{0})h]|$

$=\sum_{k=1}^{m}|\gamma_{k}||f[y+\alpha_{k}h(y)]|=\sum_{k=1}^{m}|\gamma_{k}||f[a_{k}(y)]|$

$\leqq M\sum_{k=1}^{m}|\gamma_{k}|$ , $i$ . $e.$ ,

(4) $|f(y)|\leqq 1\psi\sum_{k=1}^{m}|\frac{\gamma_{k}}{\gamma_{0}}|\leqq M\sum_{k=0}^{m}|\frac{\gamma_{k}}{\gamma_{0}}|$ .

If $-\gamma_{0}f(y)\leqq 0$ , then $-\gamma_{1}f(y)\geqq 0$ and (3) lead to

(5) $||f(y)|\leqq M\sum_{k=0}^{m}|\frac{\gamma_{k}}{\gamma_{1}}|$ .

From (4) and (5) we deduce

$\sup|f(y)|<+\infty$ $(y\in K(x_{0}, r^{\prime}))$ ,
$i$ . $e.$ , the function $f$ is bounded in the sphere $K(x_{0}, r^{\prime})$ . Q. E. D.

THEOREM 3. Let $f(x)$ be a real valued function of a real variable $x\in(a, b)$

$=\Delta(a<b)$ . The function $f$ is called J-convex of the m-th order ( $i$. $e$ . convex in the
Jensen sense) [1] on $\Delta$ if

$\Delta_{h}^{m+1}f(x)\geqq 0$

for all $x$ and $h$ for which
$x,$ $x+h$, – , $ x+(m+1)h\in\Delta$ ,

where
$\Delta_{h}^{k}f(x)=\Delta_{h}^{k-1}f(x+h)-\Delta_{h}^{k-1}f(x)$ ,

$\Delta_{h}^{0}f(x)=f(x)$ .
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If $f$ is bounded on a set $ P\subseteqq\Delta$ of strictly positive Lebesgue measure, then $f$ is
continuous in some interval ([1, Theorem 1, p. 3]).

PROOF. It is reafily seen that $f$ satisfies all conditions of Theorem 2. Thus
$f$ is bounded on some subinterval $\delta$ of $\Delta$ . By a result of T. Popoviciu [3], a
J-convex function of order $m$ bounded on $\delta$ is also continuous in $\delta$ . Thus $f$ is
a continuous function on some subinterval of $\Delta$ . Q. E. D.

THEOREM 4. Let $f$ be a real-valued function which is defined on the set of
all real numbers and let $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ $(\alpha_{k}\neq 0, k=1,2, )$ be a sequence of
real numbers such that

(6) $\sum_{k=0}^{m}\gamma_{k}f(x+\alpha_{k}y)=0$

holds for all $x$ and $y$ , where $\gamma_{0},$ $\gamma_{1},$
$\cdots$ , $\gamma_{m}$ are some real numbers such that $\gamma_{0}\cdot\gamma_{1}<0$ .

If the function $f$ is measurable, then $f$ is a polynomial of degree $\leqq m-1$ .
PROOF. Being measurable, $f$ is bounded on a set $P$ of strictly positive

Lebesgue measure. This and Theorem 2 imply that $f$ is bounded on some in-
terval which obviously leads to boundedness of $f$ on every finite interval. Thus
$f$ is summable on every finite interval. If in (6) we replace $x+\alpha_{0}y$ by $x$ we find:

(7) $\gamma_{0}f(x)+\sum_{k=1}^{m}\gamma_{k}f(x+\beta_{k}y)=0$ ,

where $\beta_{k}=\alpha_{k}-\alpha_{0}(k=1,2, \cdots, m)$ . Now we integrate (7) with respect to $y$ from
$0$ to 1. We get:

(8) $\gamma_{0}f(x)=-\sum_{k=1}^{m}\frac{\gamma_{k}}{\beta_{k}}\int_{x}^{x+\beta_{k}}f(y)dy$ .

From (8) and $\gamma_{0}\neq 0$ , we conclude that $f(x)$ is a continuous function on the set of
real numbers. But from (8) we see that $f$ is also derivable and that its deriva-
tive is a sum of derivable functions. This implies the existence of $f^{\prime},f^{\prime\prime}$ , etc.,
$i$ . $e.,$ $f$ possesses derivatives of all orders.

If we take the p-th derivative of (6) with respect to $y$ and if we set $y=0$ ,
we get:

$(\sum_{k=1}^{m}\gamma_{k}\alpha_{k}^{p})f^{(p)}(x)=0$ .

If $f^{(m)}(x)$ is different from zero in at least one point, then we have:

(9) $\sum_{k=1}^{m}\gamma_{k}\alpha_{k^{P}}=0$ $p=0,1,2,$ $\cdots,$ $m$ .

Since $\gamma_{0}\cdot\gamma_{1}<0$ , the system (6) has non-trivial solution $\gamma$ . Thus:
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$\left|\begin{array}{llll}1 & 1 & \vdots & 1\\\alpha_{0} & \alpha_{1} & \vdots & \alpha_{m}\\\alpha_{0}^{2} & \alpha_{1}^{2} & \vdots & \alpha_{m}^{2}\\\vdots & \vdots & \vdots & \vdots\\\alpha_{0}^{m} & \alpha_{1}^{m} & \vdots & \alpha_{m}^{m}\end{array}\right|=0$ ,

which contradicts the assumption that all $\alpha’ s$ are different one from another.
Thus

$f^{(m)}(x)\equiv 0$ ,
$i$ . $e.,$ $f$ is a polinomial of degree $\leqq m-1$ . Q. E. D.
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Zagreb, Yugoslavia
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