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\S 1. Introduction.

Historically, discrete flows and continuous flows have played the most
important roles in topological dynamics (see [1] and [2]). A discrete flow is
a transformation group whose phase group is the additive group $I$ of all
integers with the discrete topology. A continuous flow is a transformation
group whose phase group is the additive group $R$ of all real numbers with
the usual topology. As we know, in either $R$ or $I$, every non-trivial cyclic sub-
group ( $i$ . $e$ . a cyclic group generated by a non-identity element of the group)

is syndetic (we call this Property S). A subset $N$ of a topological group $G$ is
called left syndetic (see [2]) if there exists a compact subset $K$ of $G$ such that
$N\cdot K=NK=\{xy|x\in N,y\in K\}=G$ . Similarly, we can define right syndetic subsets.
A set $N$ is called syndetic if it is both left syndetic and right syndetic. A
subgroup $H$ of $G$ which is left syndetic is also right syndetic, and vice versa.
As we know, the almost periodicity properties of transformation groups are
based on syndetic subsets of the phase group. It is interesting to consider
the following problem:

“ What is the structure of a topological group which has the Property $S$ ? “

The author will show in this paper (see Theorem 4) that a group of this
type is either (a) compact, (b) topologically isomorphic to $I,$ $(c)$ topologically
isomorphic to $R$ or (d) radical (see [7]) which is not locally compact (see

Theorem 5).
We rarely consider compact transformation groups, ab initio, in topological

dynamics, since under a compact phase group each point is always almost
periodic (see [2]) and recurrent (see [2]) and any orbit is equal to its orbit
closure. However, it is interesting we discover a new type group, the non-
locally compact, radical group having the Property S.

In the present paper, a topological group will be denoted by $G$ , and $e(0$ in
the abelian case) will denote either the identity element of $G$ or the trivial
subgroup consisting of the identity only. The additive group of all integers
with the discrete topology will be denoted by $I$, and the additive group of
all real numbers with the usual topology will be denoted by $R$ . A topological
isomorphism between two topological groups, $G_{1}$ and $G_{2}$ , is simultaneously an
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algebraic isomorphism and a homeomorphism and we denote its existence by
$G_{1}\cong G_{2}$ . If $G_{1}$ and $G_{2}$ are two topological groups, their direct product (topo-

logical group) $G_{1}\times G_{2}$ is the algebraic direct product group endowed with the
cartesian product topology. All other terminologies and notaticns which are
not mentioned here are taken from [1], [5], [6] and [11].

The author wishes to acknowledge the advice of M. Goto, W. H. Gottschalk
and H. C. Wang in the preparation of this paper.

\S 2. Fundamental properties.

$D_{EFlNITION}1$ . A bonded group is a topological group such that each non-
$triVial$ cyclic subgroup of this group is syndetic (see \S 1). In particular, if a
group consists of the identity alone, it is a bonded group.

From this definition, it follows that every non-trivial subgroup of a bonded
group is syndetic.

LEMMA 1. Every closed subgroup $A$ of a bonded group $G$ is bonded.
PROOF. Let $x$ be any element different from $e$ in $A$ and let $C$ be the

cyclic subgroup of $A$ (of course, of $G$) generated by $x$. Since $G$ is a bonded
group, there exists a compact subset $K$ in $G$ such that $CK=G$ . It follows
that $C(K_{\cap}A)=A$ , and since $K_{\cap}A$ is compact, $C$ is syndetic in $A$ .

LEMMA 2. If $G$ is a bonded group, $H$ a topological group and $\phi$ : $G\rightarrow H$ a
continous homomorphism of $G$ into $H$, then $\phi(G)$ is a bonded group.

PROOF. Let $\phi(x)$ be an element in $\phi(G)$ such that $\phi(x)\neq e$ , where $e$ is the
identity of $H$ and let $C$ be the cyclic subgroup of $\phi(G)$ generated by $\phi(x)$ .
Since $x$ is not the identity of $G$ , the cyclic group $B$ of $G$ generated by $x$ is
syndetic, $i$ . $e$ . there exists a compact subset $K$ of $G$ such that $BK=G$ . But
$\phi(K)$ is compact and $\phi(G)=\phi(B)\phi(K)=C\phi(K)$ . It follows that $C$ is syndetic.

$CoROLLARY$ . Let $G$ be a bonded group and let $Nbe$ a closed normal subgroup

of G. Then the quotient group $G/N$ is a bonded group.
LEMMA 3. The additive group I of all integers with the discrete topology,

the additive group $R$ of all real numbers with the usual topology and all compact
groups are bonded.

PROOF. Every non-trivial cyclic subgroup of each of them is syndetic.
LEMMA 4. Let $G_{1}$ and $G_{2}$ be topological groups such that $G_{1}\neq e,$ $G_{2}\neq e$ . $Ij$

one of them is not compact, then $G=G_{1}\times G_{2}$ is not bonded.
PROOF. Suppose $G$ is bonded. Let $G_{1}$ be non-compact and let $e_{1}$ and $e_{2}$ be

the identities of $G_{1}$ and $G_{2}$ respectively. Let $x_{2}\in G_{2},$ $x_{2}\neq e_{2}$ and let $C$ be the
cyclic subgroup of $G$ generated by $(e_{1z}x_{2})$ . Since $C$ is syndetic and $\{e_{1}\}\times$

$G_{2}\supset C,$ $\{e_{1}\}\times G_{2}$ is syndetic. Then $G/\{e_{1}\}\times G_{2}\cong G_{1}$ should be compact, which
contradicts the assumption. Hence $G$ is not bonded.

LEMMA 5. Let $G$ be a topological group. If $G$ contains a non-trivial compact
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subgroup $H$, then $G$ is bonded if and only if $G$ is compact.
PROOF. If $G$ is compact, then, by Lemma 3, it is bonded. If $G$ is bonded,

then $H$ is syndetic and $G$ would be compact.
LEMMA 6. Let $G$ be a $\sigma$-compact group. Then $G$ is of second category if

and only if $G$ is locally compact.

PROOF. Let $G=\bigcup_{i=1}^{\infty}K_{i}$ , where the $K_{i}$ are compact subsets of $G$ . If $G$ is of

second category, then $K_{n}^{o}$ , the interior of $K_{n}$ , is non-empty for some $n$ . Hence
$G$ is locally compact at some point of $K_{n}^{o}$ . The conclusion follows from the
homogeneity of $G$ . The converse is well-known.

$CoROLLARY$ . Let $G$ be a bonded group. Then $G$ is of second category if and
only if $G$ is locally compact.

LEMMA 7. Let $G$ be a locally compact topological group and let $H$ be a sub-
group of G. If $H$ is bonded, then so is $\overline{H}$.

PROOF. Let $x\in H,$ $x\neq e$. Let $C$ be the cyclic group generated by $x$. Since
$\overline{C}$ is a locally compact monothetic group in $\overline{H}$, we know that either $C\cong I$ or
$\overline{C}$ is compact. But $C$ is syndetic in $H$, and hence $H=C\cdot K$ for some compact
subset in $H$. If $\overline{C}$ is compact, then $\overline{H}$ is compact and is a bonded group. If
$C\cong I$, then $C$ is closed in $\overline{H}$ and $\overline{H}=\overline{C}\cdot K=C\cdot K=H$. Hence $\overline{H}$ is a bonded
group.

$CoROLLARY$ . Let $G_{1}$ and $G_{2}$ be topological groups and let $G_{1}$ be bonded and
$G_{2}$ be locally compact. If $\phi$ : $G_{1}\rightarrow G_{2}$ is a continuous homomorphism of $G_{1}$ into
$G_{2}$ , then $\overline{\phi(G_{1})}$ is bonded.

DEFINITION 2. A semigroup $S$ in a topological group $G$ is said to be e-proper
if $S$ does not contain the identity element $e$ of $G$ .

$D_{EFINlTION}3$ . A topological group $G$ is said to be a radical group, if $G$

contains no e-proper open semigroup. A subgroup $H$ of a topological group $G$

$is$ said to be a radical subgroup of $G$ if $H$ considered as a topological group
with the induced topology is a radical group (see [7]).

Every compact group is radical, since each non-empty open semigroup of
a compact group is a subgroup (see [8]).

A simple example of non-radical groups is the locally compact, non-compact
abelian group, generated by a compact neighborhood of the identity.

LEMMA 8. Let $G$ be a topological group and $C$ a subgroup of $G$ which is
discrete with respect to the relative topology of $G$ and such that $G=CL$ where $L$

is a compact subset of G. Then $G$ is locally compact.
PROOF. Let $G/C$ be the (left) coset space of $G$ . Since $L$ is compact, $G/C$

is compact. Let $P:G\rightarrow G/C$ be the natural projection. We know $C$ is discrete,
$P$ is a local homeomorphism and $G/C$ is compact, it follows that $G$ is locally
compact.

LEMMA 9. Every bonded group $G$ is either a compact group, a non-compact
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radical group such that each non-trivial cyclic subgroup of $G$ is not discrete, or a
locally compact, non-compact, group such that each non-trivial cyclic subgroup of
$G$ is discrete.

PROOF. Assume $G$ is not compact. Then, by Lemma 5, $G$ is torsion-free
( $i$ . $e$ . each non-identity element of $G$ is of infinite order).

Let $C_{x}$ be the free cyclic subgroup of $G$ which is generated by a non-
identity element $x$ of $G$ and let $G=C_{x}K_{x}$ , where $K_{x}$ is a compact subset of $G$ .
Then, by a theorem of F. B. Wright (here $C_{x}$ is a regular one-parameter
group in the sense of Wright. See [9, Theorem 1]), $C_{x}$ is either a radical
group or topologically isomorphic to $I$.

If some free cyclic subgroup $C_{a}$ , generated by $a$ , of $G$ is not radical,
then $C_{a}\cong Ii$ . $e$ . $C_{a}$ is discrete with respect to the relative topology of $G$ .
Since $G$ is a group, $C_{a}$ is closed. By Lemma 8, $G$ is locally compact. Since
$C_{a}$ is closed, $G$ cannot be compact. Let $C_{b}$ be another free cyclic subgroup of
$G$ , we shall show that $C_{b}$ is discrete and, therefore, is closed. Assume that $C_{b}$

is not discrete. Since $\overline{C}_{b}$ is a monothetic group and $C_{b}$ is not topologically
isomorphic to $I$, it follows that $C_{b}$ is compact. Then $G$ should be compact
which contradicts the assumption. Hence, if some $C_{a}$ is discrete then all $C_{x}$

are discrete and $G$ is locally compact.
If all $C_{x}$ are radical, we shall show that $G$ itself is radical. Suppose not,

then there exists an e-proper non-empty open semigroup $M$ of $G$ . Let $a\in M$,
then $ M_{\cap}C_{a}=B\neq\phi$ and $B$ is an e-proper open semigroup of $C_{a}$ . This gives a
contradiction to the fact that $C_{a}$ is radical. This proves that $G$ is radical.

\S 3. Discrete bonded groups.

LEMMA 10. Let $G$ be a discrete group. Then the following statements are
equivalent:

(1) $G$ is a bonded group and of infinite order.
(2) $G$ is torsion-free and every free cyclic subgroup of $G$ is syndetic.
(3) $G$ is torsion-free and every free cyclic normal subgroup of $G$ is syndetic.

PROOF. Clearly, (1) is equivalent to (2) and (2) implies (3).

By a well-known result in group theory, we know that if any subgroup
$H$ is of finite index to the group $G$ , then there exists a subgroup $H^{\prime}$ of
$H$ such that $H^{\prime}$ is a normal subgroup and of finite index to $G$ . Hence (3)
implies (2).

LEMMA 11. Let $G$ be a discrete torsion-free abelian (additive) group and let
$Z$ be a free-cyclic syndetic subgroup of G. Then $G$ is free-cyclic.

PROOF. Let $Z$ be generated by some non-zero $a_{0}\in G$ . The quotient group
$G/Z=\{Z, a_{1}+Z, \cdots , a_{s}+Z\}$ , where each $a_{i}\in G,$ $i=1,2,$ $\cdots$ , $s$, is finite.
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Here $L=\{a_{0}, a_{1}, \cdots , a_{s}\}$ generates $G$ . Since $G$ is a finitely generated and
torsion-free abelian group, $G=G_{1}\oplus\cdots\oplus G_{r}$ , where $G_{i}’ s$ are infinite cyclic
groups. If $r>1$ , then the cyclic subgroup $Z$ has an infinite index, contrary
to the hypothesis. Hence $r=1$ , namely $G$ is infinite cyclic.

LEMMA 12. Let $G$ be a torsion-free group and let $Z$ be a free cyclic normal
subgroup of G. If the order of $G/Z$ is a prime number $p$, then $G$ is free cyclic.

PROOF. Let $Z$ be generated by some non-identity element $a$ in $G$ . Clearly
$Z$ is a proper subgroup of $G$ . We may write $G/Z=\{Z,$ $bZ,$ $b^{2}Z$, $\cdot$ .. $ b^{p-1}Z|b\in$

$G,$ $b\neq e$ }. It follows that $b^{p}=a^{s}$ for some non-zero integer $s$ . Since $bZ=Zb$ ,
we have $ba=a^{r_{1}}b$ and $ab=ba^{r_{2}}$ for some non-zero integers $r_{1}$ and $r_{2}$ . It follows
that

$ab=a^{r_{1}r_{2}}b$ or $a=a^{r_{1}r_{2}}$ ,

and we have $r_{1}r_{2}=1$ . Hence either $r_{1}=r_{2}=1$ or $r_{1}=r_{2}=-1,$ $i$ . $e$ . either $ba=$

ab, or $ba=a^{-1}b$ .
Suppose $ba=a^{-1}b$ . Then $ba^{s}=(a^{-1}b)a^{s-1}=a^{-s}b$ and, by $a^{s}=b^{p}$, we have

$b^{p+1}=b^{-1)+1}$ or $b^{2p}=e$ . It is impossible since $G$ is torsion-free. Hence $ab=ba$

and $G$ is abelian. By Lemma 11, we have the required result.
LEMMA 13. Let $G$ be a discrete, torsion-free group and let $Z$ be a free cyclic

subgroup of G. If $Z$ is syndetic then $G$ is free cyclic.
PROOF. Let $Z_{1}$ be a free-cyclic normal subgroup of $G$ such that $Z_{1}\subset Z$

and $Z_{1}$ is syndetic. The quotient group $G/Z_{1}$ is finite. We shall prove the
lemma by induction on the order of $G/Z_{1}$ .

By Lemma 12, we know the lemma is true, when $O(G/Z_{1})$ , the order of
$G/Z_{1}$ , is prime.

Suppose the lemma is true for $O(G/Z_{1})\leqq n-1$ .
Let $\pi:G\rightarrow G/Z_{1}$ be the natural projection, by $\pi(g)=gZ_{1}\in G/Z_{1}$ , where

$g\in G$ .
We shall divide the proof into two cases: $G/Z_{1}$ is not simple, and $G/Z_{1}$ is

simple.
If $F=G/Z_{1}$ is not simple, then it contains a proper normal subgroup

$N_{1}\subset F$. Consequently, $G_{1}=\pi^{-1}(N_{1})$ is a proper normal subgroup of $G$ . Since
$Z_{1}$ is a normal subgroup of $G_{1}$ and $O(G_{1}/Z_{1})<n$ by the induction hypothesis,
$G_{1}$ is free cyclic. On the other hand, $G_{1}$ is a free cyclic normal subgroup of
$G$ and $O(G/G_{1})<n$ . Again, by the induction hypothesis, $G$ is free cyclic.

If $F=G/Z_{1}$ is simple, we shall consider the following two cases: one is
when $F$ is a $p$-group and the other is when $F$ is not a $p$-group.

If $F$ is a $p$-group, then $F$ must be of order $p$ , for some prime number $p$ ,
since otherwise $F$ would contain a proper normal subgroup and would not be
simple. Then, by Lemma 12, we know $G$ is free cyclic.

If $F$ is not a $p$-group, let $F_{1}$ be a sylow group of $F$. Clearly, $F_{1}\neq F$ and
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$G_{1}=\pi^{-1}(F_{1})$ is a proper subgroup of $G$ . Since $Z_{1}$ is a normal subgroup of
$G_{1}$ and $O(G_{1}/Z_{1})<n$ , by the induction hypothesis, we know that $G_{1}$ is free
cyclic. Hence $\pi(G_{1})=F_{1}$ is a proper cyclic subgroup of $F$. This shows that
every sylow group of $F$ is cyclic. By a well-known result, we know that if
every sylow group of a finite group is cyclic, then the group itself is solvable
(see [11, Theorem 10, Ch. V]). Hence, $F$ is solvable. From the fact that $F$ is
simple and solvable it follows that $F$ is a cyclic group of prime order. This
contradicts our assumption, namely that $F$ is not a $p$-group.

Hence if this lemma is true for $0(F)\leqq n-1$ and if $O(F)=n$ and $F$ is simple,
then $F$ is a cyclic group of prime order and, consequently, $G$ is free cyclic.

Hence, by induction, the lemma is always true.
REMARK: Lemma 13 can also be proved, using the following group-theo-

retic theorem of Baer-Neumann-Witt: If the center of a group $G$ is of finite
index, then the commutator subgroup of $G$ is finite.

By Lemma 11 and Lemma 13, we have the following result immediately.
THEOREM 1. Every discrete bonded group is either finite or isomorphic to $I$.

\S 4. Connected, locally compact bonded groups.

THEOREM 2. Any connected locally compact bonded group $G$ is either compact
or topologically isomorphic to the additive group $R$ of all real numbers with the
usual topology.

PROOF. It is known that for any connected, locally compact group $G$ ,

there exists a maximal compact subgroup $K$, such that the quotient-space $G/K$

is homeomorphic to n-dimensional Euclidean space $R^{n}$ fcr some positive integer
$n$ (see [3, Theorem 13], together with [10, Theorem 5]).

Since $G$ is not compact, by Lemma 5, $K=e$ . Hence $G$ is a Lie group. Let
us introduce a canonical coordinate of the second kind in $G$ and let $x_{1}(t),$ $\cdots$ ,
$x_{n}(t)$ be $n$ one-parameter groups of $G$ such that all the $x_{i}’ s$ are topologically
isomorphic to $R$ (see [3, Theorem 13]) and for each $g\in G$ , there exist $t_{i}$ ,
$-\infty<t_{i}<\infty,$ $i=1,2,$ $\cdots,$ $n$ such that

$g=x_{1}(t_{1})x_{2}(t_{2})\cdots x_{n}(t_{n})$ .
Let $D=\{x_{1}(m)|m\in I\}$ . Then $G/D\approx R^{n-1}\times T$, where $T$ is the circle group and
$‘‘\approx‘‘$ means “ homeomorphism”. Since $D$ is a free cyclic subgroup of $G$ and
$G$ is bonded, it follows that $G/D$ and hence $R^{n-1}\times T$ is compact. Hence,
$n-1=0$ or $n=1$ and $G$ is topologically isomorphic to $R$ .

\S 5. Locally compact bonded groups.

THEOREM 3. Every locally compact bonded group $G$ is one of the following

three types: (I) compact, (II) topologically isomorphic to the additive group I of all
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integers with the discrete topology, or (III) topologically isomorphic to the additive
group $R$ of all real numbers with the usual topology.

PROOF. Since every compact group is bonded, we need only prove the
case for a locally compact but not compact group.

We divide this case into three parts: (a) $G$ is connected, (b) $G$ is discrete
and (c) $G$ is neither connected nor discrete. (a) If $G$ is connected, then by
Theorem 2, $G\cong R$ . (b) If $G$ is discrete, then by Theorem 1, $G\cong I$. The only
case left to discuss is case (c) for which $G$ is neither compact, connected, nor
discrete.

Let $G_{0}$ be the component subgroup of $G$ . Then $G/G_{0}$ is a totally discon-
nected, locally compact group. Since $G_{0}$ is a closed subgroup of $G$ , by Lemma
1, $G_{0}$ is bonded. Since $G_{0}$ is connected, by Theorem 1, we know that $G_{0}$ is
either compact or isomorphic to $R$. By Lemma 5, we know that $G_{0}$ cannot
be a non-trivial compact subgroup of $G$ since otherwise $G$ would be compact.
$G_{0}$ cannot be the identity either, since then $G$ would be totally disconnected
and since not discrete, would contain a non-trivial open compact subgroup.
But by Lemma 5 $G$ would then be compact. This gives a contradiction. Hence
$\backslash G_{0}\cong R$ .

Since $G/G_{0}$ is compact, by a result of Iwasawa (see [3, Lemma 3.8]), there
exists a ccmpact subgroup $K$ of $G$ , such that $G=K\cdot G_{0}$ and $K\cap G_{0}=e$ . By
Lemma 5, we have $K=e$ and $G=G_{0}$ , which contradicts the assumption. This
proves the groups of case (c) cannot be bonded. The proof is completed.

COROLLARY 1. Any locally compact solenoidal group $G(i$ . $e$ . there is a con-
linuous homomorphism $\phi$ from $R$ into $G$ and $\overline{\phi(R)}=G$) (see [2], [4], [6] or [8])

is either topologically isomorphic to $R$ or is compact.
PROOF. By Lemma 3, Theorem 3, Corollary to Lemma 7, and the fact that

the closure of a continuous image of a connected group in a topological group
is again connected, we have the required result.

THEOREM 4. Every bonded group is one of the following four types. (I)

compact, (II) topologically isomorpoic to $I$, (III) topologically isomorphic to $R$ or
(IV) radical which is not compact.

PROOF. By Theorem 3, Lemma 9, and the fact that $I$ and $R$ are not radical,

we have the required result.

\S 6. Non-locally-compaet bonded groups.

THEOREM 5. Every non-locally-compact bonded group $G$ has the following
properties.

(1) It is radical.
(2) Every closed subgroup of $G$ is radical.
(3) It is forsion free, indecomporable and every non-trivial cyclic subgroup
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$\wedge is$ not discrete.
(4) For every non-trivial cyclic subgroup $C$ there exists a compact subset $K_{c}$

of $G$ , such that $G=C\cdot K_{c}$. Here, $(K_{c})^{o}$ , the interior of $K_{c}$ , is always empty.
(5) If some $K_{c}$ in (4) is finite, then $G$ is algebraically isomorphic to $I$.
PROOF. Property (1) is the direct consequence of Theorem $3and$ Theorem 4.

Property (2) is a result of Theorem 3 and Lemma 1. Property (3) is a result
of Lemma 4, Lemma 5 and Lemma 9. Property (4) is a simple application of
the proof of Lemma 6. Property (5) is the direct consequence of Theorem 1.
A simple example of (5) is a free cyclic subgroup in the circle group with
the induced topology.

University of Michigan and
University of Pennsylvania
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