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Introduction.

Let $U$ and $V$ be normal varieties defined over a finite field $k$ with $q$

elements, and assume that $U$ is a Galois covering of $V$ with the Galois group
$\mathfrak{G}$ . Under these circumstances several authors defined the L-series associated
with the characters of $\mathfrak{G}$ . In [7], Lang introduced an L-series following the
original idea of Artin [2] and proved the density theorem. But in his defini-
tion the singular points and the branch points of $V$ are all neglected. For
his purposes it is sufficient, but for other purposes it may be inconvenient.
We shall give, borrowing the ideas in [3], [4], a new definition of L-series
without neglecting the singular and branch points, which is a natural generali-
zation of Lang’s one and Weil’s one given in the case of curves in [9]. Ishida
also treated L-series in a different way in [6]. It will be seen that our defi-
nition and the one given in [6] are the same one.

On the other hand Sampson and Washnitzer [8] obtained a functional
equation cf the zeta-function of the non-singular variety $U$ under some assump-
tion. Using the same assumption as that used in [8], we shall deduce a func-
tional equation of our L-series for the Galois covering $V/U$ when $U$ is a non-
singular variety. When $U$ is a curve, it is obtained by Weil in [9]. When
$U$ is an abelian variety with the abelian Galois group $\mathfrak{G}$ , the same result is
obtained by Ishida in [5]. Thus our L-series will seem to be a satisfactory

one.
Here the author wishes to express his hearty thanks to Prof. Y. Nakai for

his suggestions and his encouragement, and to Dr. M. Ishida for his valuable
advice.

\S 1. Galois coverings defined over a finite field $k$ .
Let $\pi:U\rightarrow V$ be a Galois covering of degree $n$ , defined over a finite field

$h$ with $q$ elements.1) In the following we shall assume that $U$ and $V$ are
normal, projective varieties cf dimension $r$. Let $\alpha,$ $\sigma,$ $\tau,$

$\cdots$ , be the automcr-

1) For the definition of a Galois covering of an algebraic variety, see Lang [8].
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phisms of the function field $E$ of $U/k$ over the function field $K$ of $V/k$ . $T$.
will denote the induced correspondence of $U$ into itself by $\alpha$ , which is bi-
regular and birational. Then the Galois group $\mathfrak{G}$ is identified with the trans-
formation group of $U$ consisting of $T_{\alpha},$ $T_{\sigma},$ $T_{\tau},$ $\cdots$ .

Let $Q$ be a point of $V$ algebraic over $k$ and let $\mathfrak{O}$ be the quotient ring of
$Q$ in $V/k$ . We shall call such a local ring in $K$ a ” locality ” of dimension
zero following Chevalley, and we shall say that $Q$ belongs to the lccality $\mathfrak{O}$ or
that $Q$ is a point of the locality O. A point $Q^{\prime}$ cf $V$ belongs to the locality
$\mathfrak{O}$ if and only if $Q^{\prime}$ is a conjugate point of $Q$ with respect to $k$ . In what
follows, we shall treat exclusively the localities of dimension zero. Therefore,
for simplicity, we shall always understand by a locality, a locatity of dimension
zero. Let $\mathfrak{p}$ be the maximal ideal of the locality S). Then we shall denote
by $\deg P$ the number of the points which belong to $\mathfrak{O}$ . Then $\deg P$ is equal
to the degree $[O/P:k]$ .

Let $\mathfrak{O}^{*}$ be the integral closure of $\mathfrak{O}$ in $E$ and let $\mathfrak{P}_{1}\cdots$ $\mathfrak{P}_{g}$ the maximal
ideals of $\mathfrak{O}^{*}$ . Then each local ring $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}(i=1, \cdots, g)$ is a locality in $E$ and at
least a point of $\pi^{-1}(Q)^{2)}$ belongs to $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}$ . Conversely each point of $\pi^{-1}(Q\rangle$

belongs to one of the localities $\mathfrak{O}_{\mathfrak{P}_{1}}^{*},$ $\cdots$ , $\mathfrak{O}_{\mathfrak{P}_{g}}^{*}$ .
Let $\mathfrak{Z}_{\mathfrak{P}_{i}}$ be the splitting group of $\mathfrak{P}_{i}/\mathfrak{p}$ and let $\mathfrak{T}_{\mathfrak{P}_{i}}$ be the inertia group

of $\mathfrak{P}_{i}/p^{3)}$ Then it can be seen easily that $\mathfrak{Z}_{\mathfrak{P}_{i}}$ consists of the elements $\tau_{\alpha}$ of
$\mathfrak{G}$ such that $T_{a}$ transforms each point of $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}$ into a point cf $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}$ and that
$\mathfrak{T}_{\mathfrak{P}_{i}}$ consists of the elements $T_{t}$ of $\mathfrak{G}$ such that $T_{\alpha}$ fixed each point of $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}$ .

Since the order of $\mathfrak{T}_{\mathfrak{P}_{i}}$ and the index $[\mathfrak{Z}_{\mathfrak{P}_{i}} : \mathfrak{T}_{\mathfrak{P}_{i}}]$ are independent of $i$ and
depend only on $\mathfrak{p}$ , we shall denote these values by $C\mathfrak{p}$ and $f_{\mathfrak{p}}$ respectively. The
number $e_{\mathfrak{p}}$ will be called the ramification index of $\mathfrak{P}_{i}/\mathfrak{p}$ and the number $f_{\mathfrak{p}}$ will
be called the relative degree of $\mathfrak{P}_{\dot{t}}/\mathfrak{p}$ . Then we have the equality $n=e_{\mathfrak{p}}f_{\mathfrak{p}}g$.
Since the residue group $\mathfrak{Z}_{\mathfrak{P}_{i}}/\mathfrak{T}_{\mathfrak{P}_{i}}$ is isomorphic to the Galois group of $\mathfrak{O}^{*}/\mathfrak{P}_{i}$

over $\mathfrak{O}/\mathfrak{p}$ , there exists an element $T_{\alpha}$ of $\mathfrak{Z}_{\mathfrak{P}_{i}}$ such that $T_{a}(P)=P^{(q^{\deg \mathfrak{p}})4)}$ for
any point $P$ of $\mathfrak{O}_{\mathfrak{P}_{i}}^{*}$ . Therefore we shall understand by a Frobenius corre-
spondence for $\mathfrak{P}_{i}/\mathfrak{p}$ such an element that has the property as above. If T.,
transforms a point of $\mathfrak{O}_{\mathfrak{P}_{1}}^{*}$ to a point of $\mathfrak{O}_{\mathfrak{B}_{i}}^{*}$ and if $T_{\ell 1}$ is a Frobenius corre-
spondence for $\mathfrak{P}_{1}/\mathfrak{p}$ , then the Frobenius correspondences for $\mathfrak{P}_{i}/\mathfrak{p}$ are the ele-
ments of the set $\mathfrak{T}_{\mathfrak{B}_{i}}T_{\kappa_{i}}T_{\sigma_{1}}T_{\kappa_{i}}^{-1}=T_{\kappa_{i}}\mathfrak{T}_{\mathfrak{P}_{1}}T_{\sigma_{1}}T_{\kappa_{i}}^{-1}$ .

Let $\mathfrak{H}$ be a subgroup of $\mathfrak{G}$ and let $F$ be the fixed subfield of $E$ for $\mathfrak{H}$

2) We shall understand always $\pi(P),$ $\pi^{-1}(Q)$ , etc., in the set theoretic sense.
3) For these definitions, see Chap. I, 7 in Abhyankar [1].
4) If $P$ is a point of a variety $U$, thcn $P(Q^{\prime t})$ denotes the point which is $th^{\circ}$.

transform of $P$ by $\omega u$ , where $ru$ is the automorphism of the universal domain $\Omega$ such
that $a^{\omega}=az$ for any $a$ in $\Omega$ .
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Let $W$ be the normalization of $V$ in $F$ and $\pi^{\prime\prime}$ be the natural rational mapping
$W\rightarrow V$, which is everywhere regular on $W$. We have also a rational mapping

$\pi^{\prime}$ : $U\rightarrow W$ such that $\pi=\pi^{\prime\prime}\pi^{\prime}$ . $U$ is a Galois covering of $W$ with $\mathfrak{H}$ as the
Galois group.

Let $\overline{\mathfrak{O}}$ be the integral closure of $\mathfrak{O}$ in $F$, and $q_{1},$ $\cdots,$ $q_{g^{J}}$ be the maximal
ideals in O. Renumbering the $\mathfrak{P}_{i}$ in $\mathfrak{O}^{*}$ , we denote by $\mathfrak{P}_{j1}\cdots \mathfrak{P}_{jg_{j}}$ the
maximal ideals in $\mathfrak{O}^{*}$ which lie over $q_{j}$ . Let $n^{\prime}$ be the order of $\mathfrak{H}$ , let $e_{q_{j}}^{\prime}$ be
the ramification index of $\mathfrak{P}_{ji}/q_{j}$ and let $f_{\mathfrak{q}_{j}}^{\prime}$ be the relative degree of $\mathfrak{P}_{ji}/q_{j}$ .
Then we have the equalities $n^{\prime}=e_{\mathfrak{g}_{j}}^{\prime}f_{\eta_{f}}^{\prime}g_{j}$ $(j=1, \cdots , g^{\prime})$ . If we put $[\overline{\mathfrak{O}}/q_{j} : \mathfrak{O}/\mathfrak{P}]$

$=f_{q_{j}}^{\prime\prime}$ , then we have $f_{\mathfrak{p}}=f_{q_{j}}^{\prime}f_{q_{j}}^{\prime\prime}$ .
Let $\overline{\mathfrak{Z}}_{\mathfrak{P}_{ji}}$ be the splitting group of $\mathfrak{P}_{ji}/q_{j}$ and let $\overline{\underline{\tau}}_{\mathfrak{P}_{ji}}$ the inertia group

of $\mathfrak{P}_{ji}/q_{j}$ . Then we have $\overline{\mathfrak{Z}}_{\mathfrak{P}_{ji}}=\mathfrak{Z}_{\mathfrak{P}fi}\cap \mathfrak{H}$ and $\overline{\mathfrak{T}}=\tau_{\mathfrak{P}_{j\dot{t}}}\cap \mathfrak{H}$ In particular,
if we put $e_{\eta_{j}}^{\prime\prime}=e_{\mathfrak{p}}/e^{r_{\eta_{j}}}$ , then we have the equalities

(1) $e_{q_{j}}^{\prime\prime}=[\mathfrak{T}_{\mathfrak{P}_{J^{i}}} ; \underline{\overline{7}}_{\mathfrak{P}ji}]$ , $e_{q_{1}}^{\prime\prime}f_{\mathfrak{q}_{1}}^{\prime\prime}+\cdots+e_{q_{g^{\prime}}}^{\prime\prime}f_{q_{g^{\prime}}}^{\prime\prime}=n/n^{\prime}=[F:K]$ .

\S 2. A fundamental lemma.

The notations being as above, let us divide the group $\mathfrak{G}$ into the sum of
the left cosets of a subgroup $\mathfrak{H}$ as follows:

$\mathfrak{G}=\mathfrak{H}T_{\tau_{1}}+\cdots+\mathfrak{H}T_{\tau_{n^{\prime\prime}}}$ .
Let $\psi$ be a character of $\mathfrak{H}$ We shall understand that the value $\psi(T_{a})$

is zero, when $T_{\alpha}$ does not belong to $\mathfrak{H}$ Then it is well known that the
function

(2) $\chi_{\psi(T_{a})}=\sum_{j=1}^{n/\prime}\psi(T_{\tau_{j}}T_{a}T_{\tau_{f}^{-1}})$ for $\tau_{\alpha}\in \mathfrak{G}$

is a character of $\mathfrak{G}$ , and is called the induced character by $\psi$ of G.
Let $\chi_{i}$ ($i=1,2,$ $\cdots$ , h) be the simple characters of the group $\mathfrak{G}$ , where $\chi_{1}$ is

the principal character of G. Let $\mathfrak{H}^{(j)}$ ($j=1,$ $\cdots$ , s) be all the cyclic subgroups
of the group $\mathfrak{G}$ and let $\psi_{ji}(i=1, \cdots, h_{(j)})$ be the simple characters of $\mathfrak{H}^{(j)}$,
where $\psi_{j1}$ is the principal character of $\mathfrak{H}^{(j)}$

Then, by Artin $[$2 $]^{}$ we have the following
LEMMA 1. Each non-principal character $\chi_{i}$ is expressed as a linear combina-

lion of $\mathcal{X}\psi_{ji}(j=1, \cdots, s;i=2, \cdots , h_{(j)})$ with coefficients consisting of rational
numbers, where $\chi_{\psi_{ji}}$ are the induced characters by $\psi_{ji}$ of G.

The next lemma is analogous to the result6) obtained by Artin in [3], in
the case of algebraic number fields, and the proof will be given in the same

5) See pp. 102-103 in Artin [2].
6) See pp. 4-5 in Artin [3].
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line as that of Artin’s. But the lemma is fundamental in the following
discussions, hence we shall write down the complete proof.

LEMMA 2. Retaining the notations as in \S 1, let $T_{\sigma}$ be a Frobenius corre-
spondence for $\mathfrak{P}_{11}/\mathfrak{p}$ , and let $\tau_{\rho_{i}}$ be a Frobenius correspondence for $\mathfrak{P}_{i1}/q_{i^{7)}}(i=1$ ,
... , $g^{\prime}$ ). Then we have

(3)
$\sum_{\tau_{\alpha}\in x_{\mathfrak{P}_{11}}}x_{\psi(T_{\sigma}^{\mu}T_{a})=\sum_{\mathfrak{n}_{t}^{\prime}}e_{q_{i}}^{\prime\prime}f_{\mathfrak{q}_{i}}^{\prime\prime}\sum_{\mathfrak{P}_{i1}J^{\prime}1\mu\tau_{\alpha}\in \mathfrak{T}}\psi(T_{\beta i}^{\mu/f_{\rho i}^{\prime\prime}}T_{\alpha})}$

for any positive integer $\mu$ , where $\psi$ is a character of the subgroup $\mathfrak{H}$ and $\mathcal{X}\psi$ is
the induced character by $\psi$ of G.

PROOF. For simplicity, in the proof we put $e_{q_{i}}=e_{i}^{\prime\prime}$ and $f_{\mathfrak{q}t}^{\prime\prime}=f_{i}^{\prime\prime}$ . Let
$T_{\sigma_{i}}$ be a Frobenius corre spondence for $\mathfrak{P}_{i1}/\mathfrak{p}$ , and let $P$ be a point of $\mathfrak{O}_{\mathfrak{B}_{i1}}^{*}$ .
Then we have $ T_{\sigma_{i}}^{f_{i}^{\prime\prime}}(P)=P^{(qJ_{i}^{\prime\prime}\deg \mathfrak{p})}=P^{(q^{de}\Leftrightarrow q_{t})7)}\sigma$ and $T_{\rho_{i}}^{-1}(P^{(q^{\deg q)}})=P$ and we
have $T_{\rho_{b}^{-1}}T_{\sigma_{i^{i}}}^{f^{\prime\prime}}(P)=P$. Hence $T_{\rho_{\dot{b}}^{-1}}T_{\sigma_{i}}^{f_{i}^{\prime\prime}}$ is in $\mathfrak{T}_{\mathfrak{P}_{x1}}$ and we have $T_{\sigma_{i}\sim}^{f_{i}^{\prime\prime}}\tau_{\mathfrak{P}_{1i}}=$

$T_{\rho_{i}}\mathfrak{T}_{\mathfrak{P}_{i1}}$ . Since $\mathfrak{T}_{\mathfrak{P}_{i1}}$ is a normal subgroup of $\mathfrak{Z}_{\mathfrak{P}_{i1}}$ which contains $T_{\sigma_{i}}$ and $T_{\rho_{l}}$ ,

we have $T_{\sigma_{i}}^{\nu f_{i}^{\prime\gamma}}\mathfrak{T}_{\mathfrak{P}_{l1}}=T_{\rho_{1}}^{\nu}\mathfrak{T}_{\mathfrak{P}_{i1}}$ . From this fact we can see that the coset
$T_{\sigma_{i}}^{\nu f_{i}^{f\prime}}\mathfrak{T}_{\mathfrak{P}_{i1}}$ contains an element $T_{\rho_{i}}^{\nu}$ of $\mathfrak{H}$

Conversely, if the coset $T_{\sigma_{i}}^{\nu}\mathfrak{T}_{\mathfrak{P}_{i1}}$ contains an element $\tau_{\gamma}=T_{\sigma_{i}}^{\lambda}T_{\delta_{i}}$ of $\mathfrak{H}$,

then we have $T_{\gamma}(P)=P^{(q\lambda\deg \mathfrak{p})}$ . Since $T_{\gamma}$ is in $\mathfrak{H}$, it follows that $\pi^{\prime}T_{\mathcal{T}}(P)=$

$\pi^{\prime}(P)$ . Therefore we have $\pi^{\prime}(P)=\pi^{\prime}(P)^{(q\lambda\deg \mathfrak{p})}$ . As $\pi^{\prime}(P)$ belongs to $\overline{\mathfrak{O}}_{q_{i}}$ , it
can be seen easily that $\lambda\deg \mathfrak{p}$ is a multiple of $\deg q_{i}$ and that $\lambda$ is a multiple

of $f_{i}^{\prime\prime}$ . Then $\mathcal{I}^{\tau}\lambda_{\sigma i}\mathfrak{T}_{\mathfrak{P}_{i1}}=T_{\rho_{l}}^{\lambda/f_{i}^{\prime\prime}}\mathfrak{T}_{\mathfrak{P}_{i1}}$ . Therefore we have the following asser-
tion:

$(*)$ The intersection of $T^{\lambda_{\sigma_{i}}}\mathfrak{T}_{\mathfrak{B}_{t1}}$ with $\mathfrak{H}$ is empty if $\lambda$ is not a multiple
of $f_{i}^{\prime\prime}$ , and it consists of the elements of $T_{\beta i}^{\lambda/f/\prime_{i}}\overline{\mathfrak{T}}_{\mathfrak{B}_{i1}}$ if $\lambda$ is a mul-
tiple of $f_{i}^{\prime\prime}$ .

Let $\tau_{\kappa_{ij}}$ be an element of $\mathfrak{G}$ such that it transforms a point of $\mathfrak{O}_{\mathfrak{P}_{11}}$ to a
point of $\mathfrak{O}_{\mathfrak{P}_{ij}}$ .

Now we consider two cosets of the forms $\mathfrak{H}T_{\zeta_{i}}T_{\kappa_{i1}}$ and $\mathfrak{H}T_{\zeta_{f}^{\prime}}T_{\kappa_{f1}}$ , where
$T_{\zeta_{i}}$ is in $\mathfrak{Z}_{\mathfrak{P}_{i1}}$ and $T_{\zeta^{\prime}j}$ is in $\mathfrak{Z}_{\mathfrak{B}_{f1}}$ . If they are same, $\tau_{\tau}=T_{\zeta_{j}^{\prime}}T_{\kappa_{j1}}T_{\hslash i1}^{-1}T_{C_{i}}^{-1}$ must
be in $\mathfrak{H}$ Then it can be seen that $i=j$ and $T_{\mathcal{T}}=T_{\zeta_{j}^{\prime}}T_{\zeta_{i}}^{-1}$ Hence $T_{\mathcal{T}}$ must be
in $\overline{\mathfrak{Z}}_{\mathfrak{P}\iota\iota}$ . Since the index $[\mathfrak{Z}_{\mathfrak{P}_{i1}} : \overline{\mathfrak{Z}}_{\mathfrak{P}_{i1}}]$ is equal to $e_{i}^{\prime\prime}f_{i}^{\prime\prime},$ $\mathfrak{Z}_{\mathfrak{P}_{i1}}$ is divided into the
sum of $e_{i^{\prime}}f_{i^{\prime\prime}}$ cosets of $\mathfrak{Z}_{\mathfrak{P}_{i1}}$ as follows;

$\mathfrak{Z}_{\mathfrak{P}_{i1}}=\overline{\mathfrak{Z}}_{\mathfrak{P}_{i1}}T_{\zeta_{i1}}+\overline{\mathfrak{Z}}_{\mathfrak{P}_{i1}}T_{\zeta_{i2}}+\cdots\cdots$

Then the cosets $\mathfrak{H}T_{\zeta_{ij}}T_{\kappa_{i1}}(i=1,2, \cdots , g^{\prime} ; j=1,2, \cdots, e_{i}^{\prime\prime}f_{i}^{\prime\prime})$ are different each

7) For convenience we shall understand that a Frobenius correspondence for
$\mathfrak{P}_{i1}/q_{i}$ and $\deg q_{i}$ mean a Frobenius correspondence for $\mathfrak{P}_{iI}/q_{i}\overline{\mathfrak{O}}_{0i}$ and $\deg q_{i}D_{q_{i}}$ .
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other by the above observation. The number of those cosets is $\sum_{i=1}^{g^{\prime}}e_{i}^{\prime\prime}f_{i}^{\prime\prime}$ and

hence by (1) those cosets are all the cosets cf $\mathfrak{H}$ in G. Therefore we have
from (3)

(4) $x_{\psi}\tau_{a_{i=1}}g_{\urcorner}e^{\prime\prime}f^{\prime\prime}\sum_{j=1}^{ri}\lrcorner\urcorner\psi(T_{\zeta_{ij}}T_{\kappa_{i1}}T_{a}T_{\kappa_{i1}}^{-1}T_{\zeta_{ij}}^{-1})$ .

On the other hand, we can easily see that

(5)
$\sum_{\tau_{\alpha}\in \mathfrak{T}_{\mathfrak{P}_{11}}}T_{\zeta_{if}}T_{\kappa_{i1}}T_{\sigma}^{\mu}T_{a}T_{\kappa_{i1}}^{-1}T_{\zeta_{ij}}^{-1}$

$=\sum_{T\in \mathfrak{T}}T_{\zeta_{ij}}T_{\sigma}^{\mu_{1}}T_{a}T_{\zeta_{ij}}^{-1}=\sum_{T_{\mathcal{O}}\in \mathfrak{T}_{\mathfrak{B}_{i1}}}T_{\sigma_{1}}^{u}T_{\alpha}$
.

By (4), (5) and $(*)$ , it fcllows that

$\alpha \mathfrak{P}_{11}\sum_{T\in \mathfrak{T}}x_{\psi(T_{\sigma}^{u}T_{\alpha})=\sum_{i=1}^{g^{f}}\lambda_{1}^{f}\sum_{T_{a}\in \mathfrak{T}_{\mathfrak{P}_{i1}}}\psi(T_{\sigma}^{l}.T_{a})}e_{i_{\urcorner^{N}}i}^{\prime\prime}j=$

$=\sum_{i\Rightarrow 1}^{g^{\prime}}\sum_{\mathfrak{P}_{i1}\tau_{\alpha}\in \mathfrak{T}}e_{i}^{\prime\prime}f_{i}^{\prime\prime}\psi(T_{\sigma_{i}}^{\{\ell}T_{\alpha})=\sum_{f_{i}^{\prime\prime}1\mu}e_{i^{\prime}}^{\prime}f_{i^{\prime}}^{\prime}\sum_{\mathfrak{P}_{i1}\tau_{\alpha}\in \mathfrak{T}^{-}}\psi(T_{\rho}^{\mu_{i}/f_{i}^{\prime\prime}}T_{\alpha})$ .

This completes the proof.

\S 3. Definition of $L$-series.

The notations being as above, let $T_{\sigma_{if}}$ be a Frcbenius correspondence for
$\mathfrak{P}_{ij}/\mathfrak{p}(i=1,2, \cdots, g^{\prime} ; j=1,2, \cdots , g_{i})$ and let $\chi$ be a (nct necessary simple) charac-
ter cf G. Then it is easily seen that for any positive integer $l$ , the values

$-e_{\mathfrak{p}}^{1_{-}}$ $\Sigma$
$\chi(T_{\sigma}^{\mu_{if}}T_{\alpha})$ $(i=1,2, \cdots, g^{\prime} ; j=1,2, \cdots,g_{t})$

are same, depend on $\mathfrak{p}$ only and will be denoted by $x(\mathfrak{p}^{\mu})$ .
Then L-series $L(u, \chi, U/V)$ for the Galois covering $\pi:U\rightarrow V$, associated

with a character $\chi$ is defined as follows;

(6) $\log L(u, \chi, U/V)=\sum_{\mu=1}^{\infty}\sum_{\mathfrak{p}}\frac{x(\mathfrak{p}^{\prime J})}{\mu}u^{\mu^{d}eg\mathfrak{p}}$ ,

where the sum $\sum_{\mathfrak{p}}$
are taken over the maximal ideals of all the localities in

$K$.
From this definition, we have immediately
$p_{ROPOSITION}1$ . For any two characters $\chi,$

$\chi^{\prime}$ of $\mathfrak{G}$ , we have

$L(u, \chi+\chi^{\prime}, U/V)=L(u, \chi, U/V)L(u, \varphi^{\prime}, U/V)$ .
Now we consider the special case when $\mathfrak{G}$ is an abelian group and when
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$\chi$ is a simple character of $\mathfrak{G}$ . Then since the inertia group $\mathfrak{T}_{\mathfrak{B}_{ij}}$ and a
Frobenius correspondence $T_{\sigma}$ for $\mathfrak{P}_{ij}/\mathfrak{p}$ depend only on $\mathfrak{p}$ , we put $\mathfrak{T}_{\mathfrak{P}}$ $=\mathfrak{T}_{\triangleright}$

$ij$

and $T_{\sigma}=T_{\sigma_{\mathfrak{p}}}$ . Moreover we put $e_{P}=1$ if $\chi$ induces the principal character on
$\mathfrak{T}_{\mathfrak{p}}$ , and $\mathcal{E}\mathfrak{p}=0$ otherwise. Then we have

$\chi(0^{\mu})=\perp$
$\Sigma$ $\chi(T_{\sigma_{\mathfrak{p}}}^{\mu}T_{a})=\epsilon_{\mathfrak{p}}\chi(T_{\sigma_{\mathfrak{p}}})^{\mu}$ ,

$e_{\mathfrak{p}}$

$\tau_{\alpha^{\in \mathfrak{T}}\mathfrak{p}}$

and therefore

$\log L(u, \chi, U/V)=\sum_{\mathfrak{p},/1}\frac{\epsilon_{\mathfrak{p}}\chi(T_{\sigma_{\mathfrak{p}}})}{\rho\ell}u^{\mu\deg \mathfrak{p}}$

$=-\sum_{\mathfrak{p}}\epsilon_{\mathfrak{p}}\log(1-\chi(T_{\sigma_{\mathfrak{p}}})u^{\deg \mathfrak{p}})$ .

Therefore we have the following
PROPOSITION 2. If $\mathfrak{G}$ is an abelian group and if $\chi$ is a simple character of

$\mathfrak{G}$ , then we have

$L(u, \chi, U/V)=\prod_{\mathfrak{p}}(1-\chi(T_{\sigma_{\mathfrak{p}}})u^{\deg \mathfrak{p}})^{-:_{\mathfrak{p}}}$
,

where $T_{\sigma_{\mathfrak{p}}}$ and $\mathcal{E}\mathfrak{p}$ are as above. In particular, each coefficient of $u$ in the ex-
pression of $L(u, \chi, U/V)$ as a pouer series of $u$ is an integer in an algebraic
number field of finite degree.

Returning to general cases, we shall obtain some results which are also
analogous to the results8) of algebraic number fields.

PROPOSITION 3. If $\psi$ is a character of $\mathfrak{H}$ and if $\chi_{\psi}$ is the induced character
by $\psi$ of $\mathfrak{G}$ , then we have

$L(u, \chi_{\psi}, U/V)=L(u, \psi, U/W)$

where $W$ is the normalization of $V$ in the fixed subfield of $E$ for $\mathfrak{H}$ .
PROOF. The same convention as in the proof of Lemma 2 will be retained

for $e_{0_{i}}^{\prime\gamma}$ and $f_{q_{i}}^{\prime\gamma}$ .
Dividing the both sides of (3) by $e_{\mathfrak{p}}$ , we have

$\chi_{\psi}(\mathfrak{p}^{\mu})=\sum_{f_{i}^{\prime f}1\mu}f_{i}^{\prime\prime}\psi(q_{\iota^{\mu/f_{i}^{\prime\prime}}})$

and hence

$\log L(u, \chi_{\psi}, U/V)=\sum_{\mathfrak{p}_{\mu f^{\prime}}\prime}\sum_{t^{1\mu}}\frac{f_{i}^{\prime\prime}\psi(q_{i}^{lr/f^{\prime\prime}i})}{\mu}u^{\mu\deg \mathfrak{y}}$

$=\sum_{\mathfrak{p}.\lambda}\sum_{\mathfrak{q}_{i}1\mathfrak{p}}\frac{\psi((I_{i}^{\lambda})}{\lambda}u^{\lambda\deg q_{i}}=\sum_{q,\lambda}\frac{\psi(q^{\lambda})}{\lambda}u^{\lambda degq}$

$=\log L(u, \psi, U/W)$ .

8) See the formula (9) in Artin [4].
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This completes the proof.
THEOREM 1. Let $\mathfrak{H}^{(i)}(i=1,2, \cdots, s)$ be all the cyclic subgroups of $\mathfrak{G}$ , and let

$\psi_{ij}(j=2,3, \cdots, h_{(i)})$ be all the non-principal simple characters of $\mathfrak{H}^{(i)}$ . Moreover
let $W_{i}$ be the normalization of $V$ in the fixed subfield of $E$ for $\mathfrak{H}^{(i)}$ . Then we
have, for each non-principal simple character $\mathcal{X}c$ of $\mathfrak{G}$ ,

$L(u, \chi_{t}, U/V)=\prod_{i=1}^{s}\prod_{j=2}^{h_{(i)}}L(u, \psi_{ij}, U/W_{i})^{r_{ij}(t)}$ ,

where $r_{ij}(t)$ are rational numbers depending on $\chi_{t}$ .
PROOF. This is a direct consequence of Lemma 1 and Proposition 3.
PROPOSITION 4. Let $\mathfrak{H}$ be a normal subgroup of $\mathfrak{G}$ and let $W$ be the nor-

malization of $V$ in the field $F$ corresponding to $\mathfrak{H}$. Then the natural mapping
$\pi^{\prime\prime}$ : $W\rightarrow V$ is considered as a Galois covering with $\mathfrak{G}/\mathfrak{H}$ as its Galois group, and
a character $\chi$ of $\mathfrak{G}/\mathfrak{H}$ is also considered as a character of G. In this situalion
we have

$L(u, \chi, U/V)=L(u, \chi, W/V)$ .
PROOF. The notation being same as in \S 1, we can easily see that the

inertia group $\mathfrak{T}_{1^{*}}$ of $q_{1}/\mathfrak{p}$ is the group $\mathfrak{T}_{\mathfrak{P}_{11}}\mathfrak{H}/\mathfrak{H}$ and that if $T_{\sigma_{1}}$ is a Frobenius
correspondence for $\mathfrak{P}_{11}/\mathfrak{p}$ , then the class $\tau_{\sigma_{1}}*=T_{\sigma_{1}}\mathfrak{H}$ is a Frobenius corre-
spondence for $q_{1}/\mathfrak{p}$ . Let $e_{\mathfrak{p}}^{*}$ be the order of $\mathfrak{T}_{\mathfrak{P}_{11}}\mathfrak{H}/\mathfrak{H}$ and let $g^{*}$ be the order
of $\mathfrak{T}_{\mathfrak{P}_{11}}\mathfrak{H}$ Then we have

$\frac{1}{e_{\mathfrak{p}}}\sum_{\mathfrak{P}_{11}T_{\mathcal{O}}\in \mathfrak{T}}\chi(T_{\sigma_{1}}^{\mu}T_{a})=\frac{1}{g^{*}}\sum_{\in\tau_{\alpha \mathfrak{P}_{11}}\mathfrak{T}\mathfrak{H}}\chi(T^{\mu_{\sigma_{1}}}T_{a})$

$=\frac{1}{e_{\mathfrak{p}}^{*}}\sum_{*\tau_{\alpha}\in T_{1}^{*}}\chi(T_{\sigma_{1}}^{*\mu}T_{\alpha^{*}})$ .

This relation shows that our assertion is true.

\S 4. Expression of $L$-series as the logarithmic derivative.

Let $k_{\mu}$ be, as usual, the unique extension of $k$ of degree $\mu$ . Let $\mathfrak{p}$ be the
maximal ideal of a locality $\mathfrak{O}$ in $K$ such that $\deg p$ is a divisor of $\mu$ . If a
point $Q$ belongs to $\mathfrak{O}$ . then $Q$ is a rational point with respect to $k_{\mu}$ . Now let
us denote by $\mathfrak{p}_{\mu}(Q)$ the maximal ideal of the locality $O_{\mu}$ in $V/k$. with the
unique point $Q$ . Let $P$ be a point of $\pi^{-1}(Q)$ and let $\mathfrak{P}$ be the maximal ideal
of the locality $\mathfrak{O}^{*}$ in $E$ to which $P$ belongs. The geometric interpretation of
the inertia group $\mathfrak{T}_{\mathfrak{P}}$ and a Frobenius correspondence $\mathfrak{T}_{\sigma_{\mathfrak{P}}}$ for $\mathfrak{P}/\mathfrak{p}$ yields the
following

(7) $\chi(0^{\mu/\deg \mathfrak{p}})=\frac{1}{e_{\mathfrak{p}}}\sum_{\mathfrak{P}\tau_{\alpha}\in \mathfrak{T}}\chi(T^{\mu/\deg \mathfrak{p}}T_{\alpha})=\chi(\mathfrak{p}_{\alpha}(Q))$ ,
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where in the right hand side the field of definition is considered to be $k_{\mu}$ .
Let us denote by $V_{J}$ the set of the rational points on $V$ over $k_{\mu}$ . From

\langle 6), it follows that

$\frac{d}{du}\log L(u, \chi, U/V)=\sum_{\mu=1}^{\infty}\sum_{\mathfrak{p}}\chi(0^{\prime t})\deg \mathfrak{p}u^{\mu\deg \mathfrak{p}-1}$

$=\sum_{\lambda\Leftarrow 1}^{\leftrightarrow}\{ \sum_{\deg \mathfrak{p}|\lambda}\chi(\mathfrak{p}^{\lambda/\deg \mathfrak{p}})\deg \mathfrak{p}\}u^{\lambda-1}$ .

Therefore we have from (7)

\langle 8) $\frac{d}{du}\log L(u, \chi, U/V)=\sum_{g\ell=1}^{\infty}\{\sum_{Q\in r_{\mu}}\chi(p_{J^{\lrcorner}}(Q))\}u^{\mu-1}$ .

Now we shall express L-series by the geometric languages. Let us denote
by $U_{\mu}(T_{\alpha})$ the set of the points $P$ on $U$ such that $T_{\alpha}(P)=P^{(q^{11})}$ , and let $N_{\mu}$

$(T_{a})$ be the number of the points which belong to $U.(T.)$ . Then we put, for
any character $\chi$ of $\mathfrak{G}$ ,

(9) $c_{\mu}(\chi)=\frac{1}{n}\sum_{\tau_{\alpha}\in \mathfrak{G}}\chi(T_{\alpha})N_{\mu}(T_{\alpha})$ $(\mu=1,2, \cdots)$ .

Let $P$ be a point of $U_{\mu}(T_{a})$ , then if we put $Q=\pi(P)$ , we have $\pi(P^{(q^{g_{l}})})=$

$\pi(T_{\alpha}(P))=\pi(P)=Q$ and hence $Q^{(q^{\mu})}=Q$ , since $\pi$ is defined over $k$ . This
means that $Q$ is a rational point on $V$ over $k_{\mu}$ . If $P$ belongs to $\mathfrak{O}^{*}$ , whose
maximal ideal is $\mathfrak{P}$ , then we have, for any $T_{\tau}$ of $\mathfrak{T}_{\mathfrak{P}},$ $T_{a}T_{\tau}(P)=T_{\alpha}(P)=P^{(q^{\prime t})}$

and hence $P$ belongs also to $U.(T.T.)$ for any T. of $\mathfrak{T}_{\mathfrak{P}}$ . Conversely if $P$

belongs to $U_{\mu}(T_{a^{\prime}})$ , then we have $T_{\alpha^{\prime}}(P)=T_{\alpha}(P)=P^{(q^{\mu})}$ and therefore $T_{a}^{-1}T_{\alpha},(P)$

$=P$. This means that $T_{\alpha}^{-1}T_{a\prime}$ belongs to $\mathfrak{T}_{\mathfrak{P}}$ . Thus, T., is an element of
$T_{\alpha}\mathfrak{T}_{\mathfrak{P}}$ .

Now $P^{\prime}$ be a point of $\pi^{-1}(Q)$ . If $T_{\gamma}$ is an element such that $T_{\gamma}(P)=P^{\prime}$ ,
we have, for any $T_{\tau}\in \mathfrak{T}_{\mathfrak{P}},$ $T_{\gamma}T_{\alpha}T_{\tau}T_{\gamma}^{-1}(P^{\prime})=P^{\prime(q^{\mu})}$ and hence $P^{\prime}$ belongs to
$U_{\mu}(T_{\mathcal{T}}T_{\alpha}T_{\tau}T_{\gamma}^{-1})$ for any $T_{\tau}\epsilon \mathfrak{T}_{\mathfrak{P}}$ . It can be also seen that $P^{\prime}$ belongs to these
$U_{\mu}(T_{\gamma}T_{\alpha}T_{\tau}T_{\gamma}^{-1})$ only.

On the other hand, by the definition of $x(\mathfrak{p}_{\mu}(Q))$ , we have

$e_{0}\chi(\mathfrak{p}_{\mu}(Q))=\sum_{T\in \mathfrak{T}}\chi(T_{\alpha}T_{\tau})=\sum_{\mathfrak{P}T_{T}\in \mathfrak{T}}\chi(T_{\gamma}T_{\alpha}T_{\tau}T_{\gamma}^{-1})$
.

Since the number of the points of $\pi^{-1}(Q)$ is $n/ep$ , it can be seen easily
that the effect of the points of $\pi^{-1}(Q)$ in $nc_{\mu}(\chi)$ is exactly equal to $n\chi([\}_{\mu}(Q))$ .
Therefore we have

(10)
$c_{\mu}(\chi)=\sum_{Q\in V_{\mu}}\chi(\mathfrak{p}_{/A}(Q))$

.

Thus, by (8) aad (10), we have the following
THEOREM 2. For any character $\chi$ of $\mathfrak{G}$ , we have
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(11) $\frac{d}{du}\log L(u, \chi, U/V)=\sum_{\mu=1}^{\infty}c_{\mu}(\chi)u^{\mu-1}$ ,

where $c_{\mu}(\chi)$ are constants determined by (9).

Remark. This theorem shows that our L-series is nothing else than
Ishida’s one defined in [6].

Next we shall consider the case when the covering variety $U$ is non-
singular. In this case, the number $N_{fI}(T_{\alpha})$ is given by the intersection num-
bers cf $U\times U$-cycles as follows:

Let us dencte by $I_{1}$ the graph of the rational mapping which maps a
point $P$ on $U$ to the point $P^{(q^{\mu})}$ on $U$. Moreover we shall denote by $\Gamma_{a}$ the
graph of the correspondence $T_{a}$ . Then we have the following

LEMMA 3. If $U$ is non-singular, then the number $N_{\mu}(T_{a})$ is equal to the
degree of the cycle $I_{J}\cdot\Gamma_{a}$ of dimension zero on $U\times U$ for each $T_{\alpha}\in \mathfrak{G}$ .

PROOF. It is enough to show, by the criterion of multiplicity 1, that $\Gamma_{\alpha}$

is transversal to $I_{\mu}$ at each component of $I_{\mu}\cdot\Gamma_{\alpha}$ . Let $P\times P^{(q^{\mu})}$ be a component
of $I_{\mu}\cdot\Gamma_{\alpha}$ . Then it is evident that $(U\times P^{(q^{\mu})})\cdot\Gamma_{\alpha}=P\times P^{(q^{\mu})}$ and therefore $\Gamma_{\alpha}$

is transversal to $U\times P^{(q^{\mu})}$ at $P\times P^{(q^{\prime t})}$ . On the other hand it can be seen
easily that $U\times P^{(q^{\mu})}$ and $I_{\mu}$ have the same tangent linear variety to them at
$P\times P^{(q^{\mu})}$ . This fact means the lemma.

Now let $\mathfrak{R}(U\times U)$ dencte the group of numerical equivalence classes of
cycles on $U\times U,$ $\mathfrak{R}^{r}(U\times U)$ will stand for the subgroup consisting of classes of
dimension $r$. Let $\mathfrak{d}_{\mu}$ denote the numerical equivalence class of the cycle $I_{\mu}$

for every positive integer $\mu$ , and let $c_{\alpha}$ denote the numerical equivalence
class of the cycle $\Gamma_{\alpha}$ for every T. $E$ (S. Indicating the canonical scalar product
in $\mathfrak{R}^{r}(U\times U)$ by symbol $\langle$ ee, $\mathfrak{y}\rangle^{9)}$ we have from Lemma 3

(12) $ N_{\mu}(T_{a})=\langle \mathfrak{d}_{\mu}, c_{\alpha}\rangle$ ,

and hence

(13) $ c_{\mu}(\chi)=\frac{1}{n}\sum_{\tau_{\alpha}\in \mathfrak{G}}\chi(T_{\alpha})\langle \mathfrak{d}_{\mu}, c_{a}\rangle$ .

Thus, from Theorem 2, we have the following
$CoROLLARY$ . If $U$ is non-singular, we have

(14) $\frac{d}{du}\log L(u, \chi, U/V)=\sum_{\mu\Leftarrow 1}^{\infty}\{\frac{1}{n}\sum_{\tau_{\alpha}\in \mathfrak{G}}\chi(T_{a})\langle \mathfrak{d}_{\mu}, c_{\alpha}\rangle\}u^{\mu-1}$ .

9) If $D_{1},$ $D_{2}$ belong to $\mathfrak{x}\mathfrak{y}$ , respectively, and if $D_{1}\cdot D_{2}$ is defined, then $\langle \mathfrak{x}\mathfrak{y}\rangle$ is
nothing other than $\deg(D_{1}\cdot D_{2})$ .
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\S 5. The functional equation of $L$-series. 10)

In [8], Sampson and Washnitzer gave the functional equation of the zeta-
function of a non-singular variety under a certain assumption which will be
defined and be denoted by the hypothesis (FC) later on. In this paragraph,
we shall show that their methods are also applicable to give the functional
equation of L-series when the covering variety $U$ is non-singular.

First we shall give a lemma which is a generalization of theorem 1 in [8].

LEMMA 4. Let $L$ be an algebraic number field of finite degree. Let $R(x)=$

$\sum_{\mu=1}^{\infty}a_{\mu}x^{\mu-1}$ be a power series satisfying the following conditions:

(i) $R(x)$ is a rational function of $x$ and each of its poles is the inverse of
an algebraic integer.

(ii) Each $a_{\mu}$ is an integer in $L$ .
(iii) If we put $R_{h}(x)=,\sum_{\alpha=1}^{\infty}a_{\mu h}x^{\mu-1}$ for $h=1,2,$ $\cdots$ , then the function

$\exp\{\int_{0}^{x}R_{h}(x)dx\}$ has a representation as a power series in $x$ with coefficient con-

sisting of integers in $L$ .
Then $R(x)$ has a partial fraction decomposition of the form

$R(x)=\gamma l/(1-\alpha_{1}x)+\cdots+r_{s}/(1-\alpha_{s}x)$ .
Proof is similar to that of Theorem 1 in [8]. Therefore we shall give

brief suggestions. By the condition (i), we have

(15) $R(x)=\Sigma\gamma_{j}/(1-\alpha_{j}x)^{m_{f}}+P(x)$

where the $\alpha_{f}$ are algebraic integers and where $P(x)$ is a polynomial with
coefficients in $L^{\prime}=L(\alpha_{1}, \cdots, \alpha_{s})$ . Let G5 be the ring of the integers in $L^{\prime}$ . By
conditions (ii) and (iii), we have

(16) $a_{h}^{p}\equiv a_{hp}$ $(mod p)$

for all rational primes $p$ and all rational integers $h$ . From (15), the ccefficients
of $x^{h-1}$ and $x^{hp-1}$ in $R(x)$ are, respectively,

(17) $\gamma_{f}\alpha_{j}^{h-1}m_{j}(m_{j}+1)\cdots(m_{j}+h-2)/(h-1)!+b_{h-1}$ ,
and
\langle 18) $\gamma_{f}\alpha^{hp-1}m_{f}(m_{f}+1)\cdots(m_{f}+/\iota p-2)/(hp-1)$ ! for large $p$ ,

where $b_{h-1}$ is the coefficient of $x^{h-1}$ in $P(x)$ .
Now the relation

(19) $m_{j}(m_{j}+1)\cdots(m_{f}+hp-2)/(hp-1)!\equiv 0(mod p)$ for large $p,$ $m_{j}\neq 1$

10) The author was communicated, after he had completed the work, that M.
Jshida had also obtained the similar results in this section.
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is shown in the proof of theorem 1 in [8]. Let $\mathfrak{p}$ be a prime ideal in $\mathfrak{S}$ of
degree 1 such that the norm $N_{\mathfrak{P}}=p$ is sufficiently large and such that $\mathfrak{p}$ does
not appear in divisors of the $\gamma_{j}$ and the $b_{f}$ . Then we can easily seen, from
(16), (17), (18), (19) and Fermat’s theorem, that

(20)
$\sum_{(m_{j}>1)}\gamma_{f}\alpha_{j}^{h-1}m_{f}(m_{j}+1)\cdots(m_{f}+h-2)/(h-1)!+b_{h-1}\in \mathfrak{p}\mathfrak{S}_{\mathfrak{p}}$

.

Since this relation holds for infinitely many prime ideals in $\mathfrak{S}$ , we can
conclude that

$\sum_{(m_{j}>1)}\gamma_{f}/(1-\alpha_{f}x)^{m_{j}}+P(x)=0$
.

This means Lemma 4.
Let the notations be same as those in \S 4, and assume that $U$ is non-

singular. Let $P$ be a generic point of $U$ over $k$ . Then we shall denote by
$I_{\mu}^{\prime}$ the locus of $(P^{(q^{\mu})}, P)$ over $k$ and denote by $\mathfrak{R}(\mathfrak{d})$ the subgroup of $\mathfrak{R}^{r}(U\times$

$U)$ generated by the classes $\mathfrak{d}_{\mu}$ and $\mathfrak{d}_{\mu}^{\prime}(\mu=0,1,2, \cdots)$ , where $\mathfrak{d}_{\mu}^{\prime}$ are the classes
of the divisors $I_{\mu}^{\prime}$ .

Then, the following hypothesis plays an essential r\^ole to give the func-
tional equations of L-series.

HYPOTHESIS (FC). The group $\mathfrak{R}(\mathfrak{d})$ is finitely generated.11)

In what follows, we shall assume always the hypothesis (FC). Now we
define three regular mapping $\phi,$ $\sigma$ and $\tau$ of $U\times U$ onto itself as follows:

$\phi(P, Q)=(P^{(q)}, Q)$ , $\sigma(P, Q)=(Q, P)$ , $\tau(P, Q)=(P^{(q)}, Q^{(q)})$ ,

where $P$ and $Q$ are points of $U$. These mapping are defined over $k$ and are
related by the identities

(21) $\sigma\sigma=1$ , $\sigma\phi\sigma\phi=\tau$ ,

and more generally

(21) $\sigma\phi^{\nu}\sigma\phi^{\nu}=\tau^{\nu}$ ,

where 1 is the identity mapping of $U\times U$ and $\phi^{\nu},$ $\tau^{\nu}$ are the v-fold iterations
of $\phi,$ $\tau$ .

It is known that each of the mappings $\phi^{\nu},$
$\sigma,$

$\tau^{\nu}$ induces an endomorphism
of $\mathfrak{R}^{r}(U\times U)$ . These endomorphisms will be denoted by $\phi^{\nu*},$ $\sigma^{*},$ $\tau^{\nu*}$ , respectively.
Then we can see that $\phi^{\mathcal{V}*},$

$\sigma^{*}$ and $\tau^{\nu*}$ map $\mathfrak{R}(\mathfrak{d})$ into itself and that the follow-
ing equality holds

(22) $\tau^{\mathcal{V}*}=(\tau^{*})^{\nu}=q^{r\nu}\times identity$ in $\mathfrak{R}(\mathfrak{d}).12)$

11) As to the curves, this hypothesis is true by the theorem of N\’eron-Severi,
which shows that the group of algebraic equivalence classes of divisors on a variety
has a finite base.

12) For this equality, see No. 5 in [8].
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The group $\mathfrak{R}^{\gamma}(U\times U)$ is free from tcrsion. Therefore, because of (FC),
$\mathfrak{R}(\mathfrak{d})$ must be a free group of finite rank $\rho$ . Since $\phi^{*}$ must satisfy consequent-
ly its characteristic equation, there exist rational integers $e_{1},$ $\cdots,$ $e_{\rho}$ such that

(23) $(\phi^{*})^{\nu}+e_{1}(\phi^{*})^{\nu-1}+\cdots+e_{\rho}(\phi^{*})^{\nu-0}=0$ in $\mathfrak{R}(\mathfrak{d})$

for every $\nu\geqq\rho$ .
On the other hand, we can see that $\phi^{\nu*}(\mathfrak{d}_{\mu})=\mathfrak{d}_{\nu+\mu}$ where $\mathfrak{d}_{\lambda}$ is the class of

$I_{\lambda}$ as defined in \S 4.
Therefore, from (12) and (23), it follows that

(24) $N_{1}(T_{a})+e_{1}N_{J-1}(T_{a})+\cdots+e_{\beta}N_{\mu-\rho}(T_{\alpha})=0$ ,

for $\mu\geqq\rho$ and for every $T_{\alpha}$ of G. Therefore, from (9) we have

(25) $c_{\mu}(\chi)+e_{1}c_{\mu-1}(\chi)+\cdots+e_{\rho}c_{\mu-\rho}(\chi)=0$ ,

for $\mu\geqq\rho$ and for any character $\chi$ of G.

From (25), we can conclude that the function $\frac{d}{du}\log L(u, \chi, U/V)$ is a

rational function of $u$ satisfying the condition (i) of the Lemma 4, whenever the
hypothesis (FC) is true. From this fact we have the following

THEOREM 3. Suppose that $U$ is non-singular and that the hypothesis ( $FC\rangle$

on $U$ is true.

Then the function $\frac{d}{du}\log L(u, \chi)U/V)$ has a partial fraction decomposition

of the form
(26) $\gamma_{I}$ , $\chi/(1-\alpha_{1}u)+\cdots+r_{m,x}/(1-\alpha_{m}u)$ ,

where the $\gamma_{i,\chi}$ depend on $\chi$ , and where the $\alpha_{i}$ depend on the covering variety $U$

only.
PROOF. We consider first the case when the Galois group $\mathfrak{G}$ is an abelian

group and the character $\chi$ is a simple character of $\mathfrak{G}$ . Then the theorem is
a direct consequence of (8), Proposition 2 and Lemma 4, since the rationality
of the function has been showed already. In the case when $\mathfrak{G}$ is any group
and $\chi$ is a non principal simple character, we can reduce to the above case
by Theorem 1. If $\chi$ is the principal character of $G$ , then $L(u, \chi, U/V)$ is the
zeta-function of the variety $V$. Therefcre the condition (iii) of Lemma 4 is

$d$

satisfied for $-\log L(u, \chi, U/V)d\overline{u}$ and other conditions are evidently satisfied.

Thus, we have also the theorem in this case. In general case, $\chi$ is a linear
combination of simple characters of $\mathfrak{G}$ with integral coefficients. Therefore
this case is a consequence of above cases. It is evident that $\alpha_{1},$ $\cdots,$ $\alpha_{m}$ are
the distinct roots of the equation $x^{\rho}+e_{1}x^{\rho-1}+\cdots+e_{\rho}=0$ . Hence the $\alpha_{i}$ are
depend only on $U$.



132 H. YANAGIHARA

Thus the proof is completed.
Now let $\mathfrak{n}_{1}$ , $\mathfrak{n}_{\rho}$ be a base of $\mathfrak{R}(\mathfrak{d})$ and we put

$\phi^{*}(\mathfrak{n}_{i})=\lambda a_{ij}\eta_{j}j=1\rho_{\urcorner}$

(27)
$(i=1,2, \cdots, \rho)$ ,

$\sigma^{*}(\mathfrak{n}_{i})=\sum_{j=1}^{\rho}s_{if}\mathfrak{n}_{f}$

\ddagger he $a_{ij}$ and the $s_{ij}$ being rational integers. Write $A=(a_{ij}),$ $S=(s_{ij})$ .
If $f(x)$ is the characteristic equation of $A$ , then we have $f(x)=x_{\rho}+e_{1}x_{\rho^{-1}}$

$+\cdots+e_{\beta}$ , where the $e_{i}$ are same as in (23). Then we can easily see, from (21)

and (22), that
$f(x)=e_{\rho}^{-1}x^{\rho}f(q^{\gamma}/x)$ .

Therefore if $\alpha_{j}$ is a root of $f(x)$ , then $q^{r}/\alpha_{f}$ is also a root of $f(x)$ and will
be denoted by $\alpha_{s_{f}}$ . It is evident that $j\rightarrow sj$ designates a permutation of 1, 2,

, $m$ of the period 2 if $\alpha_{1}$ , , $\alpha_{m}$ are the distinct roots of $f(x)$ .
Since it can be seen easily that $\sigma^{*}(\mathfrak{d}_{0})=\mathfrak{d}_{0}$ and $\sigma^{*}(c_{\alpha})=c_{\alpha^{-1}}$ (notice $T_{a}^{-1}=$

$T_{a^{-1}}$ !!), we have

\langle 28) $\sum_{l=1}^{\rho}c_{i}s_{ij}=c_{j}$ ,

putting $\mathfrak{d}_{0}=c_{1}n_{1}+\cdots+c_{\rho}n_{\rho}$ .
Let the coefficients of $A^{\nu}$ be denoted by $a_{ij}^{(\nu)}$ . Then we have from (12)

(29) $ N_{\nu}(T_{\alpha})=\sum_{i.j}c_{i}a_{i^{(\nu)}j}\langle\iota\uparrow_{j}, c_{\alpha}\rangle$

because of $\mathfrak{d}_{\nu}=\phi^{\nu*}(\mathfrak{d}_{0})$ . Since $\sigma$ is a biregular mapping, we have $\langle \mathfrak{d}_{\nu}, c_{a}\rangle=$

$\langle\sigma^{*}(\mathfrak{d}_{\nu}), \sigma^{*}(c_{\alpha})\rangle$ . Therefore we have, using the relation $A^{\nu}S=q^{r\nu}SA^{-\nu}$ which
is a direct consequence of (21) and (22),

(30) $ N_{\nu}(T_{\alpha})=\langle\sigma^{*}(\mathfrak{d}_{\nu}), \sigma^{*}(c_{a})\rangle$

$=,\sum_{i_{J}.k}c_{i}a_{ii}^{(\nu)}s_{j,k}\langle \mathfrak{n}_{k}, c_{\alpha^{-1}}\rangle$

$=q^{r\nu}\sum_{i.j,k}c_{i}s_{if}a_{jk}^{(-y)}\langle \mathfrak{n}_{k}, c_{a^{-1}}\rangle$

$=q^{r\nu}\sum_{j.k}c_{f}a_{jk}^{(-\nu)}\langle \mathfrak{n}_{k}, c_{\alpha^{-1}}\rangle$ .

Let us now define $N_{\nu}(T_{a})$ and $c_{\nu}(\chi)$ for $\nu\leqq 0$ by means of the difference equa-
tions (24) and (25) respectively. It is clear that the values so obtained for
$N_{-1}(T_{\alpha}),$ $N_{-2}(T_{a})$ , etc. are same as the values calculated from (29) by putting
$\nu=-1,$ $-2$ , etc. and that the relation (9) is also satisfied for $\nu\leqq 0$ . Then we
have from (30)

(31) $N_{\nu}(T_{\alpha})=q^{r\nu}N_{-\nu}(T_{\alpha}^{-1})$ for $\nu=0,1,2$ , etc.,

and hence from (9)
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(32) $c_{\nu}(\chi)=q^{r\nu}c_{-\nu}(\overline{\chi})$ ,

where $\overline{\chi}$ is the conjugate character of $\chi$ as usual.
Now we put $\beta_{j.\chi}=\gamma_{j,\chi}/\alpha_{f}$ , where the $\gamma_{j,\chi}$ are the constants determined in

(26). Then it follows that

(33) $c_{\nu}(\chi)=\sum_{j=1}^{m}\beta_{J,x}\alpha_{f}^{\nu}$ for $\nu=0,$ $\pm 1,$ $\pm 2$ , etc.

This relation is trivial for $\nu\geqq 0$ and as to the case for $\nu<0$ , it is enough
to consider the fact that for each $j$ , the $\alpha^{\nu_{j}}$ satisfy the difference equation
with same coefficients as (25). Then we can see, since the $\alpha_{j}$ are distinct,
that $\beta_{j,\chi}=\beta_{sj,\overline{\chi}}$ .

Now we have by the Theorem 3,

$\frac{d}{du}\log L(1/q^{r}u, \chi, U/V)=\sum_{=,J\perp}^{m}\beta_{J,x}\alpha_{j}/(1-\alpha_{f}/q^{r}u)$

$=\sum_{j=1}^{m}\beta_{j,x}\alpha_{j}/(1-1/\alpha_{sj}u)=-\sum_{j=1}^{m}\beta_{j,\chi}\alpha_{j}\alpha_{sf}u/(1-\alpha_{sj}u)$

$=-q^{\gamma}u\sum_{j=1}^{m}\beta_{sj,\overline{\chi}}/(1-\alpha_{sf}u)=-q^{\gamma}u^{2}\sum_{j=1}^{n}\beta_{j,\overline{x}}\alpha_{j}/(1-\alpha_{j}u)-q_{\gamma}u\sum_{f=1}^{m}\beta_{f,\chi}$

$=-q^{r}u^{2}-d^{d}\overline{u}\log L(u,\overline{\chi}, U/V)-q^{\gamma}uc_{0}(\overline{\chi})$ .

From this we have

(34) $-\frac{1}{q^{r}u^{2}}\{\frac{d}{du}\log L(1/q^{\gamma}u, \chi, U/V)\}$

$=\frac{d}{du}\log L(u,\overline{\chi}, U/V)+\frac{1}{u}c_{0}(\overline{\chi})$ .

On the other hand, by the result” of Ishida [6], we can easily see that
$L(u, \chi, U/V)$ is a power series with a positive convergent radius. Now we
shall consider a domain $D$ in the complex u-plane $D_{0}$ with the property as
follows: Let $J$ be a Jordan arc whose end points are $1/\alpha_{1}$ and the point at
infinity. Moreover $1/\alpha_{2},$ $\cdots$ , $1/\alpha_{m}$ are on $J$ and the origin is not on $J$. Then
$D$ consists of the points which do not belong to $J$. Then, by the theorem 3,
$L(u, \chi, U/V)$ defines a univalent regular function on $D$ . This function will be
also denoted by $L(u, \chi, U/V)$ . Now we shall determine the functional equation
of this function.

From (34) we have

(35) $L(1/q^{\gamma}u, \chi, U/V)u^{Co(\overline{\chi}}L(u,\overline{\chi}, U/V)$ ,

where $C_{\chi}$ is a constant depending on $\chi$ , and where a suitable branch is chosen
in $u^{Co()}x$ .

13) See the corollary of the Theorem 1 in [6].
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Since $\beta_{j,\chi}=\beta_{sj.\overline{\chi}}$ for $j=1$ , $\cdot$
., , $m$ , we have $c_{0}(\chi)=c_{0}(\overline{\chi})$ . If $\alpha$ is a root of

$f(x)$ , then the complex conjugate $\overline{\alpha}$ of $\alpha$ is also a root of $f(x)$ . If we put
$\overline{\alpha}_{j}=\alpha_{tj}$ , then $j\rightarrow tj$ designates a permutation of 1, $\cdots,$ $m$ of the period 2.
Since we have $\overline{c_{\mu}(\chi)}=c_{\mu}(\chi)$ for each $\mu>0$ , it can be seen, from (33), that
$\beta_{j,\overline{\chi}}=\overline{\beta_{tj.\chi}}$ for each $j$ . Therefore we can conclude that $c_{0}(\chi)$ is a real number
for any $\chi$ .

If we replace $u$ by $1/q^{r}u$ in (35), we have

$L(u, \chi, U/V)=C_{\chi}(1/q^{r}u)^{c_{0()}}\overline{\chi}L(1/q_{r}u,\overline{\chi}, U/V)$ .
Therefore we can see that $|C_{\chi}C_{\overline{\chi}}|=|q^{rc_{o(\chi)}}|$ , since $c_{0}(\chi)$ is real.

Now we assume that the $\beta_{f,\gamma}$ are all real numbers. From Theorem 3, we
have

$L(u, \chi, U/V)=\sum_{f=1}^{m}(1-\alpha_{f}u)^{-\beta_{j,\chi}}$

if suitable branches are chosen. From this relation and (35), we have, putting
$u=1$ ,

$|_{J^{m}}1_{\Rightarrow}I_{1}(1-\alpha_{f}/q^{r})^{-\beta}J,x|=|C_{\chi}||\prod_{j\overline{-}1}^{m}(1-\alpha_{j})^{-\beta_{j,\overline{\chi}}}|$ .

Hence we have, using $\beta_{j,\chi}=\beta_{sJ.x}\leftrightarrow$ and $\alpha_{j}\alpha_{sj}=q^{r}$ ,

$|C_{\chi}|=\prod_{j=\downarrow}|\alpha_{f^{\beta_{j,\chi}}}|m$

Moreover we have, using $\beta_{j,\chi}=\beta_{tj,\overline{x}}$ ( $\alpha_{j.\chi}$ is real !!)

$|C_{\overline{\chi}}|=\prod_{f=1}^{m}|\alpha_{f}^{\beta}J,7|=\prod_{j=1}^{m}|\alpha_{j}^{\theta_{tj,x|=\prod_{f=1}^{\eta\iota}|\overline{\alpha}_{tj}^{\beta_{tj,x|}}}}$

$=\prod_{j=1}^{m}|\alpha_{f}^{\beta}J,x|=\prod_{j=1}^{m}|\alpha_{J^{\beta_{j,\chi|=|C_{\gamma}|}}}$ .

Thus we have shown that $|C_{\chi}|=|C_{\chi}|=|q^{rc_{0}(\chi)/2}|$ , if the $\beta_{j,\chi}$ are all real num-
bers. In conclusion we have

THEOREM 4. Suppose that the covering variety $U$ is non-singular, and that
the hypothesis (FC) on $U$ is true, then $L(u, \chi, U/V)$ , considered as a function in the
domain $D$, satisfies the following functional equation

$L(1/q^{r}u, \chi, U/V)=C_{\chi}u^{c_{0}(\chi)}L(u,\overline{\chi}, U/V)$ ,

where $C_{\chi}$ is a constant such that $|C_{\chi}C_{7}-|=|q^{rc_{0}(\chi)}|$ and where $c_{0}(\chi)=\underline{1}\sum\chi(T_{\alpha})$

$nT_{\alpha}\in \mathfrak{G}$

$\langle \mathfrak{d}_{0}, c_{\alpha}\rangle=\sum_{j=1}^{m}\beta_{J,x}$ .
Moreover, if the $\beta_{f,x}$ are all real numbers, we have
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$|C_{\chi}|=\prod_{j=1}|\alpha_{J^{\beta}}J,x|=|q^{rc_{0}(\chi)/2}|m$

Remark. If $U$ is a curve and if $\chi$ is a non-principal simple character of
$\mathfrak{G}$ , the value $c_{0}(\chi)$ is calculated as follows: Using notations in Weil [9], the
trace $\sigma(T_{\alpha})$ of the correspondence $T$ is equal to $ 2-\langle \mathfrak{d}_{0}, c_{\alpha}\rangle$ by the definition.
Therefore from the orthogonality of characters we have

$c_{0}(\chi)=\frac{1}{n}\sum_{\tau_{\alpha}\in \mathfrak{G}}\chi(T_{a})\langle \mathfrak{d}_{0}, c_{\alpha}\rangle=-\frac{1}{n}\sum_{\tau_{\alpha}\in \mathfrak{G}}\chi(T_{a})\sigma(T_{a})$ .

This means that our functional equation and Weil’s one in [9] are same, if
we do not refer to the constant $C_{\chi}$ .

Faculty of Science,
Hiroshima University
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