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Introduction

The object of the present paper is to investigate the properties of the
fractional powers $A^{\alpha}$ of linear operators $A$ in a Hilbert space $\mathfrak{H}$ , when $-A$ is
closed and maximal dissipative in the sense of Phillips $[15, 16]$ . $-A$ is said to
be dissipative if ${\rm Re}(Au, u)\geqq 0$ for every $u\in \mathfrak{T}[A]$ , and $-A$ is maximal dis-
sipative if it has no proper dissipative extension. It is known (see [15]) that
a closed, maximal dissipative operator is densely defined, that $-A$ is closed
and maximal dissipative if and only if $-A^{*}$ is, and also if and only if $-A$ is
the infinitesimal generator of a contraction semi-group $\{\exp(-tA)\}_{0<\iota<\infty}$ , that
is, $\Vert\exp(-tA)\Vert\leqq 1$ .

Following a suggestion due to Friedrichs [4], we shall say that $A$ is
accretive if $-A$ is dissipative. In what follows we shall be concerned with
accretive rather than with dissipative operators.

The fractional powers $A^{\alpha}$ can be defined in a natural way, at least for
$0\leqq\alpha\leqq 1$ , if $A$ is closed and maximal accretive, and $A^{\alpha}$ are again closed and
maximal accretive. Such fractional powers have been defined for a more
general class of linear operators in Banach spaces by several authors (see,

among others, Balakrishnan $[1, 2]$ , Glushko and Krein [5], Kato [9], Kras-
nosel’skii and Pustylnik [12], Krasnosel’skii and Sobolevskii [13], Sobolevskii
[17], Solomiak [18], Yosida [19]).

One of the important results to be proved in the present paper is that, if
$A$ is closed and maximal accretive, $A^{\alpha}$ and $A^{*\alpha}$ are comparable for $0\leqq\alpha<1/2$ ;
by this we mean that $A^{t}$ and $A^{*\alpha}$ have the same domain $\mathfrak{D}_{a}$ and that the
ratios $\Vert A^{*\alpha}u\Vert/\Vert A^{a}u\Vert$ for $u\in \mathfrak{D}_{a}$ are bounded from above and from below by
positive constants. Another result is that $A^{\alpha}$ and $A^{*\alpha}$ have an acute angle for
$0\leqq\alpha<1/2$ ; by this is meant that ${\rm Re}(A^{a}u, A^{*\alpha}u)/\Vert A^{a}u\Vert\Vert A^{*\alpha}u\Vert$ is bounded
from below by a positive constant (see Sobolevskii [17]). These results are
remarkable in view of the fact that nothing is assumed for the relationship
between the domains of $A$ and $A^{*}$ themselves or for the angle between $A$

and $A^{*}$ .
It follows from these results that $H_{a}=(A^{a\prime}+A^{*\alpha})/2$ is nonnegative self-

adjoint and that it is comparable, and has acute angle, with both $A^{a}$ and
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$A^{*a}$ . $H_{a}$ may be regarded as the real part of $A^{\alpha}$ (and also of $A^{*a}$). This
suggests the possibility that $A^{a}$ and $A^{*\alpha}$ be also comparable with $H^{\alpha}$ , where
$H$ is the “ real part ” of $A$ . But the real part of $A$ cannot be defined without
further restrictions on $A$ ; in any case the simple definition $H=(A+A^{*})/2$

fails because the intersection of $\mathfrak{D}[A]$ and $\mathfrak{D}[A^{*}]$ need not be wide enough.
A reasonable definition of the real part of $A$ is furnished by the theory

of sesquilinear forms in $\mathfrak{H}$ , not for all maximal accretive $A$ but for an impor-
tant subclass of such operators. A sesquilinear form $\phi[u, v]$ is a complex-
valued function defined for all $u,$ $v$ of a linear subset $\mathfrak{D}[\phi]$ of $\mathfrak{H}$ , the domain
of $\phi$ , such that $\phi[u, v]$ is linear in $u$ and semilinear (conjugate-linear) in $v$ . It
is known (and will be proved below for completeness) that, under certain
general conditions, including the one that ${\rm Re}\phi[u, u]\geqq 0$ , there exists a closed,
maximal accretive operator $A$ such that $\mathfrak{D}[A]\subset \mathfrak{T}$) $[\phi]$ and (Au, $v$) $=\phi[u, v]$ for
$u\in \mathfrak{T}[A]$ and $v\in\Phi_{\sim}[\phi]$ . An accretive operator $A$ associated in this way with
a sesquilinear form will be called regularly accretive. If we now set $f[u, u]=$

${\rm Re}\phi[u, u],$ $f$ can be extended to a symmetric (Hermitian) sesquilinear form
(polar form) $f[u, v]$ with $\mathfrak{D}[\phi]=\mathfrak{B}[f]$ , and the operator $H$ associated with $f$

in the above sense is nonnegative selfadjoint. This $H$ is by definition the
real part of A Thus the real part of $A$ is defined whenever $A$ is regularly
accretive.

We can now prove that, with $H$ thus defined, $H^{\alpha}$ is comparable with any
one of $A^{\alpha},$ $A^{*\alpha}$ and $H_{a}$ for $0\leqq\alpha<1/2$ .

Our further study is concerned with the change of $A^{a}$ when $A$ is subjected
to a small change (perturbation theory). To this end, it is convenient to
assume that $A$ is regularly accretive and express the change of $A$ in terms of
the change of the associated sesquilinear form $\phi$ . Under certain conditions,
including that $\mathfrak{D}[\phi]$ is unchanged, it can be shown that $\mathfrak{T}[A^{\alpha}]$ is unchanged
and that the change of $A^{\alpha}u$ is small if $0\leqq\alpha<1/2$ and if the change of $\phi[u]$

is small for all $u\in 2[\phi]$ . An important special case is that in which $\phi=\phi(t)$

depends on a complex parameter $t$ analytically; in this case it follows that
$A(t)^{\alpha}$ has a constant domain and $A(t)^{a}u$ depends on $t$ analytically.

Most of the results stated above are subject to the restriction $0\leqq\alpha<1/2$ .
There are exafnples showing that their extension to the case $\alpha>1/2$ is in
general impossible, but it is not known whether or not $\alpha=1/2$ can be in-
cluded. We have some partial results for this case (see \S 5), but there remain
many unsettled questions.

It appears that these results have their own interest, but their investi $\cdot$

gation by the present author has been motivated by the study of the abstract
evolution equation

(E) $du/dt=-A(t)u+f(t)$ , $0\leqq t\leqq T$ ,
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in which the unknown $u=u(t)$ and the inhomogeneous term $f(t)$ are elements
of $\mathfrak{H}$ and the coefficient $A(t)$ is a regularly accretive operator, all depending
on $t$. It can be shown that (E) has a unique strict solution for an arbitrary
initial value $u(O)$ , if $A(t)^{\alpha}$ has a constant domain for some $\alpha=1/m,$ $m=$

$1,2,3,$ $\cdots$ , and if $A(t)$ and $f(t)$ satisfy certain smoothness conditions. The
results on the perturbation of the fractional powers of regularly accretive
operators described above now show that these assumptions are satisfied for
$m=3,4,$ $\cdots$ , if the sesquilinear form $\phi(t)$ associated with $A(t)$ has constant
domain and changes smoothly with $t$ in a certain sense. In particular it can
be shown that $u(t)$ is analytic if $\phi(t)$ and $f(t)$ are analytic. In this way the
results of the present paper have an important application to the theory of
the evolution equation (E).

The general theory of the evolution equation (E), which is developed in a
more general setting in the case of a Banach space, as well as the application
of the results of the present paper to (E), will be dealt with in a separate
paper of the author [11]. The present paper contains the material necessary
for this application, but it contains other results too and can be read inde-
pendently of this application.

1. Fractional powers of dissipative (accretive) operators.

Let $\mathfrak{H}$ be a Hilbert space. In this section we consider closed, maximal
accretive operators in $\mathfrak{H}$ and their fractional powers. The definition and
elementary properties of dissipative and accretive operators are stated in
Introduction, and those are all that we need in the following. The definition
and fundamental properties of the fractional powers of linear operators are
summarized in Appendix at the end of the present paper, together with some
lemmas needed in the text.

Let $A$ be closed and maximal accretive. Then $A$ is of type $(\pi/2,1)$ (see

Appendix), so that the fractional power $A^{\alpha}$ is defind and of type $(\pi\alpha/2,1)$ for
$0\leqq\alpha\leqq 1$ . In particular $A^{a}$ is also closed and maximal accretive and, more-
over, $-A^{\alpha}$ is the infinitesimal generator of an analytic semi-group $\{\exp(-tA^{a})\}$

for $0\leqq\alpha<1$ . Since $A^{*}$ is also closed and maximal accretive, $A^{*\alpha}$ are defined
and enjoy similar properties.

Our first problem concerns the relationship between $A^{\alpha}$ and $A^{*a}$ . We
introduce the operators

(1.1) $H_{\alpha}=_{2}^{1}--(A^{\alpha}+A^{*\alpha})$ , $K_{a}=\frac{1}{2i}(A^{\alpha}-A^{*\alpha})$ .

$H_{a}$ and $K_{a}$ have domain $\mathfrak{B}[A^{\alpha}]\cap \mathfrak{T}[A^{*\alpha}]$ , and at first it is not clear whether
this domain is larger than $\{0\}$ . But it will be seen that it is large enough if
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$0\leqq\alpha<1/2$ . In fact we shall prove
THEOREM 1.1. Let $A$ be closed and maximal accretive. For any $\alpha$ such that

$0\leqq\alpha<1/2$ , we have $\mathfrak{T}[A^{\alpha}]=\mathfrak{T}[A^{*a}]=\mathfrak{B}[H_{a}]=\mathfrak{T}[K_{\alpha}]\equiv \mathfrak{D}_{a}$ . $H_{a}$ is nonnegative
selfadjoint and $K_{a}$ is symmetric. For any $u\in \mathfrak{D}_{a}$ we have

(1.2) $\Vert K_{a}u\Vert\leqq\tan\frac{\pi\alpha}{2}\Vert H_{\alpha}u\Vert$ ,

(1.3) $(1-\tan\frac{\pi\alpha}{2})\Vert H_{a}u\Vert\leqq\Vert A^{a}u\Vert\leqq(1+\tan\frac{\pi\alpha}{2})\Vert H_{\alpha}u\Vert$

(1.4) $\Vert A^{*a}u\Vert\leqq\tan\Vert A^{\alpha}u\Vert\underline{\pi(1+}\underline{2\alpha)}4$

(1.5) ${\rm Re}(A^{\alpha}u, A^{*\alpha}u)\geqq\cos\pi\alpha\Vert A^{a}u\Vert\Vert A^{*\alpha}u\Vert$ ,

(1.6)
${\rm Re}(A^{a}u, H_{\alpha}u)\geqq\frac{(\cos\pi\alpha)^{1/2}}{\cos\frac{\pi\alpha}{2}}\Vert A^{a}u\Vert\Vert H_{a}u\Vert$

,

and similar inequalities with $A^{a}$ and $A^{*a}$ exchanged.
REMARK. (1.2) to (1.4) imply that $A^{a},$ $A^{*a}$ and $H_{\alpha}$ are mutually “ compar-

able.” (1.5) and (1.6) imply that any two of these three operators form an
” acute angle.” As is seen from the example given below, $A^{a}$ and $A^{*a}$ need
not be comparable for $\alpha>1/2$ .

PROOF. The proof will be given in several steps.
I. First we make the additional assumption that $A$ is bounded and

${\rm Re}$ (Au, $u$) $\geqq\delta(u, u)$ with a constant $\delta>0$ , so that $A^{-1}$ is also bounded. Then
$A^{\alpha}$ is defined for all complex numbers $\alpha$ by means of, for example, the Dun-
ford integral

(1.7) $ A^{a}=\frac{1}{2\pi i}\int_{c}\lambda^{\alpha}(\lambda-A)^{-1}d\lambda$ ,

where the integration contour $C$ is a simple closed curve enclosing the
spectrum of $A$ but excluding the negative real axis and the origin; such a
curve can be found since $\lambda=0$ belongs to the resolvent set of $A$ . It is easy
to see that for $0<\alpha<1$ (1.7) coincides with the $A^{\alpha}$ defined before (see

Appendix). It follows from (1.7) that $A^{\alpha}$ is an entire function of $\alpha$ . Similarly,
$A^{*\alpha}$ is an entire function of $\alpha$ , so that the same is true with $H_{\alpha}$ and $K_{a}$ if
these are defined by (1.1) for all complex numbers $\alpha$ .

Now we have

(1.8) $\Vert H_{a}u\Vert^{2}-\Vert K_{a}u\Vert^{2}={\rm Re}(A^{\alpha}u, A^{*\alpha}u)={\rm Re}(A^{\alpha+\overline{\alpha}}u, u)$ ,

since $(A^{*\alpha})^{*}=A^{\overline{\alpha}}$ as is seen from (1.7) by choosing $C$ symmetric with respect
to the real axis. It follows from (1.8) that

(1.9) $\Vert K_{\alpha}u\Vert\leqq\Vert H_{a}u\Vert$ for $-1/2\leqq{\rm Re}\alpha\leqq 1/2$ ;
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this is obvious for $0\leqq{\rm Re}\alpha\leqq 1/2$ since $A^{\beta}$ is accretive for $0\leqq\beta\leqq 1$ as noted
above, while for $-1/2\leqq{\rm Re}\alpha\leqq 0$ it suffices to note that $A^{-1}$ is accretive with
$A$ by
(1.10) ${\rm Re}(A^{-1}u, u)={\rm Re}(A^{-1}u, AA^{-1}u)\geqq\delta\Vert A^{-1}u\Vert^{2}\geqq\delta\Vert A\Vert^{-2}\Vert u\Vert^{2}\geqq 0$ .

(1.8) implies also that, writing $\xi={\rm Re}\alpha$ ,

(1.11) $\Vert H_{a}u\Vert^{2}\geqq{\rm Re}(A^{2\xi}u, u)\geqq\delta^{2\xi}\Vert u\Vert^{2}$ for $0\leqq\xi\leqq 1/2$

in virtue of Lemma A6 of Appendix. Noting (1.10), we have similarly

\langle 1.12) $\Vert H_{\alpha}u\Vert^{2}\geqq{\rm Re}(A^{2\xi}u, u)\geqq(\delta\Vert A\Vert^{-2})^{21\xi I}\Vert u\Vert^{2}$ , $-1/2\leqq\xi\leqq 0$ .
These inequalities show that $H_{\alpha}$ has bounded inverse $H_{\alpha^{-1}}$ for $|{\rm Re}$ a $|\leqq 1/2$ .
$H_{\alpha^{-1}}$ has domain $\mathfrak{H}$ for real $\alpha$ , for $H_{\alpha}$ is then selfadjoint. Since $H_{a}$ is con-
tinuous in $\alpha$ in norm, it follows that $H_{\alpha^{-1}}$ has domain $\mathfrak{H}$ for all $\alpha$ with
$|{\rm Re} a|\leqq 1/2$ . Thus $H_{t}^{-1}$ is also holomorphic for $|{\rm Re}\alpha|\leqq 1/2$ .

Thus (1.9) is equivalent with

(1.13) $\Vert K_{a}H_{\alpha^{-1}}\Vert\leqq 1$ , $|{\rm Re}\alpha|\leqq 1/2$ .

Consider now the operator-valued function $T(\alpha)=K_{\alpha}H_{\alpha^{-1}}/\tan\frac{\pi\alpha}{2}$ . $T(\alpha)$ is
holomorphic in $\alpha$ in the strip $|{\rm Re}$ a $|\leqq 1/2$ , for $K_{a}$ has a zero at $\alpha=0$ . Since
$|\tan\frac{\pi\alpha}{2}|=1$ on the boundary of this strip (the points with ${\rm Im}\alpha=\pm\infty$ being

included in this boundary), it follows from (1.13) that I $T(\alpha)$ I is bounded by
1 on the boundary. According to the maximum principle, it follows that
$\Vert T(\alpha)\Vert$ is bounded by 1 in the whole strip. Restricting $\alpha$ to the real interval

$0\leqq\alpha\leqq 1/2$ , this proves (1.2) under the stated additional assumptions.
(1.3) follows from (1.2) by noting that $A^{\alpha}=H_{\alpha}+iK_{a}$ and (1.4) follows from

(1.3) and similar inequalities with $A$ replaced by $A^{*}$ . To prove (1.5), we sub-

stitute (1.1) into (1.2), obtaining $\Vert A^{\alpha}u-A^{*\alpha}u\Vert\leqq\tan\underline{\pi}_{2}\underline{\alpha}\Vert A^{\alpha}u+A^{*\alpha}u\Vert$ , which

gives 2 ${\rm Re}(A^{a}u, A^{*a}u)\geqq\cos\pi\alpha[\Vert A^{\alpha}u\Vert^{2}+\Vert A^{*a}u\Vert^{2}]\geqq 2\cos\pi\alpha\Vert A^{r}u\Vert\Vert A^{*\alpha}u\Vert$ .
Similarly, the substitution of $iK_{\alpha}=A^{\alpha}-H_{\alpha}$ into (1.2) gives 2 ${\rm Re}(A^{\alpha}u, H_{\alpha}u)\geqq$

$’||A^{\alpha}u\Vert^{2}+(1-\tan^{2}\underline{\pi}_{2}\alpha_{-})\Vert H_{\alpha}u\Vert^{2}\geqq 2(1-\tan^{z^{\underline{\pi}_{2}\alpha_{-)^{1/2}}}}\Vert A^{a}u$ I $\Vert H_{\alpha}u\Vert$ . This proves
\langle 1.6).

II. Next we consider unbounded $A$ but still assume that a bounded inverse
$A^{-1}$ exists. Set
\langle 1.14) $J_{n}=(1+n^{-1}A)^{-1}$ , $A_{n}=AJ_{n}=n(1-J_{n})$ , $n=1,2,3,$ $\cdots$ .

$J_{n}$ are bounded with $\Vert J_{n}\Vert\leqq 1$ since $A$ is of type $(\pi/2,1)$ (see Appendix). Hence
$A_{n}$ are also bounded, and it follows from $(A_{n}u, u)=(AJ_{n}u, (1+n^{-1}A)J_{n}u)=$

$(AJ_{n}u,J_{n}u)+n^{-1}\Vert A_{n}u\Vert^{2}$ that $A_{n}$ are accretive and $\Vert A_{n}\Vert\leqq n$ . Furthermore, we
have $A_{n^{-1}}=A^{-1}+n^{-1}$ so that $A_{n^{-1}}$ are uniformly bounded. Thus the inequal-
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ities (1.2) to (1.6) are satisfied if $A$ is replaced by $A_{n}$ and $H_{a},$ $K_{\alpha}$ respectively
by $H_{na},$ $K_{n\alpha}$ constructed from $A_{n}$ by (1.1). We shall now show that the same
inequalities are obtained for $A$ by taking the limit $ n\rightarrow\infty$ , with the necessary
domain characterization.

To this end we first note that

(1.15) $A_{n}^{a}=A^{\alpha}J_{n^{\alpha}}\supset J_{n^{a}}A^{\alpha}$ , $0\leqq\alpha\leqq 1$ .
Here $J_{n}^{\alpha}=(1+n^{-1}A)^{-a}$ exists since $1+n^{-1}A$ is maximal accretive with A. (1.15)

follows from the identity $I_{n}^{a}=(A^{-1}A_{n})^{\alpha}=A^{-\alpha}A_{n^{\alpha}}=A_{n}^{\alpha}A^{-\alpha}$ , which is in turn
a simple consequence of the ” operational calculus ” mentioned in Appendix
(note that $A^{-1}$ and $A^{-\alpha}$ are bounded).

In letting $ n\rightarrow\infty$ , we note that

(1.16) $\Vert J_{n}^{\alpha}\Vert\leqq 1$ , strong $\lim_{n\rightarrow\infty}J_{n}^{\alpha}=1$ , $0\leqq\alpha\leqq 1$ .

The first inequality of (1.16) follows from Lemma Al (Appendix), while the
second relation can be proved easily by making use of the formula (A1) (set
$\lambda=0$ , replace $A$ by $1+n^{-1}A$ and let $ n\rightarrow\infty$ , noting the principle of dominated
convergence).

Suppose now that $u\in \mathfrak{T}[A^{\alpha}]$ . Then $A_{n}^{\alpha}u=J_{n}^{\alpha}A^{a}u$ by (1.15), and so
$\Vert A_{n}^{\alpha}u\Vert\leqq\Vert A^{\alpha}u\Vert,$ $A_{n}^{\alpha}u\rightarrow A^{a}u,$ $ n\rightarrow\infty$ , by (1.16). But we have, for $0\leqq\alpha\leqq 1/2$ ,

(1.17) $\Vert A_{n}^{*a}u\Vert\leqq c_{\alpha}^{\prime}\Vert A_{n}^{o^{\prime}}u\Vert\leqq c_{\alpha}^{\prime}\Vert A^{\alpha}u\Vert$ , $c_{a}^{\prime}=\tan\frac{\pi(1+2\alpha)}{4}$ ,

for (1.4) has been proved for $A_{n}$ . (1.17) shows that the sequence $\Vert A_{n}^{*\alpha}u\Vert$ is
bounded. Furthermore, we have for any $v\in \mathfrak{B}[A^{a}]$

(1.18) $(A_{n^{*\alpha}}u, v)=(u, A_{n}^{\alpha}v)\rightarrow(u, A^{\alpha}v)$ , $ n\rightarrow\infty$ .
(Note that $A_{n}^{*\alpha}=A_{n^{\mathcal{O}*}}$ , see (A9) of Appendix.) Since $\mathfrak{B}[A^{a}]$ is dense in $\mathfrak{H}$, we
see that $A_{n^{*\alpha}}u$ is weakly convergent. Let $w$ be its weak limit. Then (1.18)
gives $(w, v)=(u, A^{a}v)$ . Since this is true for every $v\in \mathfrak{B}[A^{a}]$ , we conclude
that $u\in \mathfrak{D}[A^{a*}]=\mathfrak{D}[A^{*\alpha}]$ . Then the same argument as given above shows
that $A_{n^{*a}}u\rightarrow A^{*\alpha}u$ even strongly. In view of the symmetric relationship be-
tween $A$ and $A^{*}$ , we have thus proved that $\mathfrak{B}[A^{*a}]=\mathfrak{B}[A^{\alpha}]\equiv \mathfrak{D}_{a}$ and that
$A_{n^{a}}u\rightarrow A^{a}u,$ $A_{n^{*a}}u\rightarrow A^{*a}u$ for $u\in \mathfrak{D}_{\alpha}$ .

Now the operators $H_{\chi}$, and $K_{\alpha}$ defined by (1.1) have likewise the domain
$\mathfrak{D}_{a}$ and are symmetric, and we have $H_{n\alpha}u\rightarrow H_{a}u,$ $K_{n\alpha}u\rightarrow K_{a}u$ for $u\in \mathfrak{D}_{a}$ . The
inequalities (1.2) to (1.6) are thus established as the limit of the correspond-
ing inequalities already proved for $A_{n}$ .

III. Let us now remove the assumption that $A$ has a bounded inverse.
For any $\epsilon>0,$ $ A+\epsilon$ is closed and maximal accretive with $A$ and $(A+\epsilon)^{-1}$ is
bounded. Thus we have $\mathfrak{B}[(A+\epsilon)^{\alpha}]=\mathfrak{D}[(A^{*}+\epsilon)^{a}]$ for $0\leqq\alpha<1/2$ and the
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inequalities (1.2) to (1.6) hold for $A$ replaced by $ A+\epsilon$ . But we know (see

Lemma A2 of Appendix) that $\mathfrak{D}[(A+\epsilon)^{\alpha}]=\mathfrak{T}[A^{\alpha}]$ and $(A+\in)(tu\rightarrow A^{\alpha}u,$
$\epsilon\rightarrow 0$,

for $u\in \mathfrak{D}[A^{\alpha}]$ and similarly for $A^{*}$ . Hence these inequalities are extended to
$A$ by taking the limit $\epsilon\rightarrow 0$ .

IV. It remains to show that $H_{\alpha}$ is selfadjoint (that $H_{a}$ is nonnegative is
obvious since $A^{a}$ is accretive). Since $H_{a}$ is symmetric and nonnegative, it
suffices to show that $1+H_{\alpha}$ has range $\mathfrak{H}$ Since $\Vert K_{\alpha}u\Vert\leqq c_{\alpha}$ I $H_{a}u\Vert\leqq c_{\alpha}\Vert(1+$

$ H_{\alpha})u\Vert$ with $c_{\alpha}=\tan\frac{\pi\alpha}{2}<1$ , there is a bounded operator $B_{a}$ such that $K_{\alpha}=$

$B_{\alpha}(1+H_{\alpha})$ and $\Vert B_{\alpha}\Vert\leqq c_{a}$ . Then $1+A^{\alpha}=1+H_{\alpha}+iK_{\alpha}=(1+iB_{a})(1+H_{\alpha})$ . But $1+$

$A^{a}$ has range $\mathfrak{H}$ since $A^{a}$ is closed and maximal accretive. Since $1+iB_{\alpha}$ is an
automorphism of $\mathfrak{H}$ in virtue of $\Vert B_{\alpha}\Vert<1$ , it follows that $1+H_{\alpha}$ has range $\mathfrak{H}$.
This completes the proof of Theorem 1.1.

EXAMPLE. Let $\mathfrak{H}=L^{2}(0, \infty)$ and let $A$ be the differential operator $A=d/dx$

with the boundary condition $u(0)=0$ . As is well known, $A$ is maximal
accretive (if the differentiation $d/dx$ is interpreted appropriately). The ad-
joint of $A$ is $A^{*}=-d/dx$ with no boundary condition. Thus $\mathfrak{D}[A]$ is a proper
subset of $\mathfrak{T}$) $[A^{*}]$ . Nevertheless, Theorem 1.1 shows that $A^{\alpha}$ and $A^{*\alpha}$ have the
same domain for $0\leqq\alpha<1/2$ . It is not easy to verify this directly, for $A^{a}$

and $A^{*\alpha}$ are rather complicated operators.
We shall now show that $\wp_{\sim}[A]\neq \mathfrak{T}[A^{*}]$ for $1/2<\alpha\leqq 1$ . As is well known,

$(\lambda+A)^{-1}$ and $(\lambda+A^{*})^{-1}$ are integral operators given by

$(\lambda+A)^{-1}u(x)=\int_{0}^{x}e^{-(x-y)}l.u(y)dy$ ,

$(\lambda+A^{*})^{-1}u(x)=\int_{x}^{\infty}e^{-\lambda(y-x)}u(y)dy$ .

Application of (A1) of Appendix (set $\lambda=0$ , replace $A$ by $ A+\lambda$ ) gives

$(\lambda+A)^{-\alpha}u(x)=\Gamma(\alpha)^{-1}\int_{0}^{x}e^{-\lambda^{(x-y)}}(x-y)^{\alpha-1}u(y)dy$ ,

$(\lambda+A^{*})^{-a}u(x)=\Gamma(\alpha)^{-1}\int_{x}^{\infty}e^{-A(y-x)}(y-x)^{a-1}u(y)dy$ ,

where $\lambda>0$ and $0<a<1$ If $1/2<a<1$ , it follows that

$|(\lambda+A)^{-\alpha}u(x)|^{2}\leqq\Gamma(\alpha)^{-2}[\int_{0}^{x}e^{-2j_{\backslash }(x-y)}(x-y)^{2^{\alpha-2}}dy]$ .

. $[\int_{0}^{x}|u(y)|^{2}dy]\leqq const$ . $x^{2\alpha-1}$ .

Therefore, for any $u\in L^{2}(0, \infty),$ $(\lambda+A)^{-a}u(x)$ is locally bounded and tends to
zero for $x\rightarrow 0$ . Since $\mathfrak{D}[A^{\alpha}]=\mathfrak{D}[(A+\lambda)^{\alpha}]=\mathfrak{R}[(A+\lambda)^{-\alpha}]$ by Lemma A2 of Ap-
pendix, any $v\in \mathfrak{B}[A^{\alpha}]$ must satisfy the boundary condition $\lim v(x)=0$ . On
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the other hand, $\mathfrak{D}[A^{*a}]\supset \mathfrak{D}[A^{*}]$ and a function $w\in \mathfrak{D}[A^{*}]$ need not satisfy
such a boundary condition. Hence $\mathfrak{D}[A^{*\alpha}]\neq \mathfrak{D}[A^{\alpha}]$ . But it is not known to
the author whether $A^{1/2}$ and $A^{*1/2}$ are comparable.

THEOREM 1.2. Let $A$ be bounded with domain $\mathfrak{H}$ and accretive. Then

(1.19) $\Vert H_{1^{\mathcal{O}}}u\Vert\leqq\Vert H_{\alpha}u\Vert$ , $0\leqq\alpha\leqq 1/2$ ,

(1.20) $\Vert H_{1}^{\alpha}u\Vert\leqq(1-\tan\frac{\pi\alpha}{2})^{-1}\Vert A^{a}u\Vert$ , $0\leqq a\leqq 1/2$ .

REMARK. If $A$ is bounded, $H_{1}$ defined by (1.1) with $\alpha=1$ is also bounded
and symmetric, hence selfadjoint. Since $H_{1}\geqq 0,$ $H_{1}^{\alpha}$ can be constructed. This
is in general not true if $A$ is unbounded.

PROOF. Again we first assume that ${\rm Re}$ (Au, $u$) $\geqq\delta(u, u)$ for some $\delta>0$ , so
that $A$ has a bounded inverse $A^{-}$ . Then we have (1.11). On the other hand
$H_{1}^{a}$ is an entire function of $\alpha$ and

(1.21) $\Vert H_{1^{tl}}u\Vert=\Vert H_{1}^{\xi}u$ I ,

since $H_{1}$ is selfadjoint and $H_{1}\geqq\delta>0$ . It follows from (1.11) and (1.21) that
$\Vert H_{1}^{\alpha}u\Vert/\Vert H_{\alpha}u\Vert\leqq\delta^{-\xi}\Vert H_{1}^{\xi}u\Vert/\Vert u\Vert\leqq\delta^{-\xi}\Vert H_{1}\Vert^{\xi}$ . Hence $\Vert H_{1}^{\alpha}H_{\alpha^{-1}}\Vert\leqq\delta^{-\xi}\Vert H_{1}\Vert^{\xi}$, and
the holomorphic function $H_{1}^{\alpha}H_{\alpha^{-1}}$ is bounded in the strip $0\leqq{\rm Re}\alpha\leqq 1/2$ . But
we have a sharper bound to this function on the boundary of this strip,
namely
(1.22) $\Vert H_{1}^{a}H_{\alpha^{-1}}\Vert\leqq 1$ for $\xi=0$ and $\xi=1/2$ .
In fact, for $\xi=0$ we have from (1.11) $\Vert H_{\alpha}u\Vert^{2}\geqq\Vert u\Vert^{2}=\Vert H_{1}^{a}u\Vert^{2}$ and for $\xi=1/2$

similarly $\Vert H_{\alpha}u\Vert^{2}\geqq{\rm Re}$ (Au, $u$) $=(H_{1}u, u)=\Vert H_{1}^{1/2}u\Vert^{2}=\Vert H_{1}^{\alpha}u\Vert^{2}$ . These are equi-
valent with (1.22).

According to a theorem of Phragmen-Lindelof type, it follows that $\Vert H_{1}^{a}H_{\alpha^{-1}}\Vert$

$\leqq 1$ in the whole strip $0\leqq{\rm Re}\alpha\leqq 1/2$ . This proves (1.19), and (1.20) follows
by using (1.3). The additional assumption that ${\rm Re}$ (Au, $u$) $\geqq\delta(u, u)$ can be re-
moved by considering $ A+\epsilon$ in place of $A$ and later going to the limit $\epsilon\rightarrow 0$,

just as in the proof of Theorem 1.1.

2. Sesquilinear forms and regularly accretive operators.

To proceed further with the study of accretive operators, we introduce
the notion of regularly accretive operators. This is most conveniently defined
in terms of sesquilinear forms in $\mathfrak{H}$ In the present section we present a
general theory of sesquilinear forms and the associated operators. Some of
the results given below are known, but since they are scattered in literature,
we find it convenient to give here a unified treatment of them. A detailed
theory of symmetric sesquilinear forms is given by Friedrichs [3] and the
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author [8]. The following exposition of non-svmmetric forms are based on
the results of these treatises.

A complex-valued function $\phi[u, v]$ defined for $u,$ $v$ belonging to a linear
subset $\mathfrak{D}$ of $\mathfrak{H}$ is called a sesquilinear form if it is linear in $u$ and semilinear
in $v$ . $\mathfrak{D}$ is called the domain of $\phi$ and denoted by $\mathfrak{D}[\phi]$ . For brevity we
write $\phi[u]=\phi[u, u]$ . If $\phi$ is a sesquilinear form, $\phi^{*}[u, v]=\phi\overline{[v,u]}$ defines
another sesquilinear form $\phi^{*}$ with $\mathfrak{B}[\phi^{*}]=\mathfrak{B}[\phi]$ . $\phi^{*}$ is called the adjoint

form of $\phi$ . If $\phi=\phi^{*},$ $\phi$ is said to be (Hermitian) symmetric.
If $\phi$ is a symmetric form, $\phi[u]$ is real-valued; if $\phi[u]\geqq 0$ for all $u\in \mathfrak{T}[\phi]$ ,

$\phi$ is nonnegative. For a nonnegative symmetric form $\phi$ , we have the Schwarz
inequality $|\phi[u, v]|^{2}\leqq\phi[u]\phi[v]$ . If $\phi$ is symmetric and bounded in the sense
that $|\phi[u]|\leqq M\Vert u\Vert^{2}$ for all $u\in \mathfrak{D}[\phi]$ , then we have also $|\phi[u, v]|\leqq M\Vert u\Vert\Vert v\Vert$ .

Any sesquilinear form $\phi$ can be written

$\phi=f+ig$ , $f=\frac{1}{2}(\emptyset+\phi^{*})$ , $g=\frac{1}{2i}(\phi-\phi^{*})$ ,

where $f$ and $g$ are symmetric. We have ${\rm Re}\phi[u]=f[u]$ and ${\rm Im}\phi[u]=g[u]$ .
Therefore $f$ and $g$ may be called the real and the imaginary parts of $\phi$ , and
denoted by ${\rm Re}\phi$ and ${\rm Im}\phi$ , respectively, although $f[u, v]$ and $g[u, v]$ are not
real-valued.

Let us now state without proof some results on symmetric forms (cf. [3]

and [8] cited above). A nonnegative, symmetric form $f$ is said to be closed
if $u_{n}\in \mathfrak{D}[f],$ $u_{n}\rightarrow u\in \mathfrak{H}$ and $f[u_{n}-u_{m}]\rightarrow 0$ imply $u\in \mathfrak{T}[f]$ and $f[u_{n}]\rightarrow f[u]$ .
To each closed, nonnegative symmetric form $f$ with $\mathfrak{B}[f]$ dense in $\mathfrak{H}$ , there
is associated a unique nonnegative selfadjoint operator $H$ such that $\mathfrak{T}[H]\subset$

$\mathfrak{D}[\phi]$ and $\phi[u, v]=(Hu, v)$ for $u\in \mathfrak{B}[H]$ and $v\in \mathfrak{B}[\phi]$ . $H$ is also characterized
by the fact that

(2.1) $\mathfrak{D}[H^{\iota/2}]=\mathfrak{D}[\phi]$ and $\phi[u, v]=(H^{1/2}u, H^{1/2}v)$ for $u,$ $v\in \mathfrak{D}[\phi]$ .
DEFINITION 2.1. A sesquilinear form $\phi$ will be said to be regular if 1) $\mathfrak{D}[\phi]$

is dense in $\mathfrak{H}$, 2) ${\rm Re}\phi$ is a closed, nonnegative symmetric form and 3) there is
a $\beta\geqq 0$ such that
(2.2) $|{\rm Im}\phi[u]|\leqq\beta{\rm Re}\phi[u]$ .

The smallest number $\beta$ with the property (2.2) will be called the index of $\phi$ .
Note that (2.2) implies, writing $f={\rm Re}\phi,$ $ g={\rm Im}\phi$ , that

(2.3) $|g[u, v]|\leqq\beta f[u]^{1/2}f[v]^{1/2}$ , $\lfloor\phi[u, v]|\leqq(1+\beta)f[u]^{1/2}f[v]^{1/2}$ .
We now prove a fundamental theorem on regular sesquilinear forms, which

generalizes the relationship between a closed nonnegative symmetric form $f$

and the associated selfadjoint operator $H$ stated above.
THEOREM 2.1. Let $\phi$ be a regular sesquilinear form. Then there is a unique
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closed, maximal $accreti\cdot ve$ operator $A$ with $\mathfrak{D}[A]\subset \mathfrak{D}[\phi]$ such that

(2.4) $\phi[u, v]=(Au, v)$ for $u\in \mathfrak{D}[A]$ and $v\in \mathfrak{D}[\phi]$ .
$A$ will be called the accretive operator associated with the regular sesquilinear

form $\phi$ . Similarly, $A^{*}$ is the maximal accretive operator associated with $\phi^{*}$ . In
other words, $\mathfrak{D}[A^{*}]\subset \mathfrak{D}[\phi]$ and $\phi[u, v]=(u, A^{*}v)$ for $u\in \mathfrak{D}[\phi]$ and $v\in\varphi\sim[A^{*}]$ .

PROOF. $ f={\rm Re}\phi$ is nonnegative and closed by hypothesis. As is well
known ([3, 8]), it follows that $\mathfrak{D}[\phi]$ becomes a complete Hilbert space, denoted
by $\mathfrak{H}\emptyset$ , which a new inner product and the associated norm are introduced by

(2.5) $((u, v))=(u, v)+f[u, v]$ , $\Vert|u\Vert|^{2}=\Vert u\Vert^{2}+f[u]\geqq\Vert u\Vert^{2}$ .

Since $|\phi[u, v]|\leqq(1+\beta)\Vert|u\Vert|\Vert|v\Vert|$ by (2.3) and (2.5), $\phi$ is a bounded sesquil;near
form on $\mathfrak{H}_{\emptyset}$ The same is true with $\phi_{0}[u, v]=\phi[u, v]+(u, v)$ and we have
${\rm Re}\phi_{0}[u]=\Vert|u\Vert|^{2}$ .

Now $(w, v)$ is a bounded semilinear form of $ v\in \mathfrak{H}\emptyset$ for any fixed $w\in \mathfrak{H}$ , for
$|(w, v)|\leqq\Vert w\Vert\Vert v\Vert\leqq\Vert w\Vert\Vert|v\Vert|$ . According to a theorem of Lax and Milgram
[9], there exists a $ u\in \mathfrak{H}\emptyset$ such that $(w, v)=\phi_{0}[u, v]$ with $\Vert|u\Vert|\leqq\Vert w\Vert$ . This
defines a bounded linear operator $B$ on $\mathfrak{H}$ to $\mathfrak{H}_{\emptyset}$ such that $u=Bw$ and

(2.6) $(w, v)=\phi_{0}[Bw, v]=\phi[Bw, v]+(Bw, v)$ .
$B$ is invertible; in fact, $Bw=0$ implies $(w, v)=0$ for all $v\in \mathfrak{D}[\phi]$ so that

$w=0$ because $\phi$ is densely defined. Set $A=B^{-1}-1,$ $B^{-1}$ and $A$ being con-
sidered linear operators in $\mathfrak{H}$ Then $\mathfrak{D}[A]=\mathfrak{D}[B^{-1}]=\Re[B]\in\Phi[\phi]$ and (2.6)

gives (2.4) by setting $u=Bw$ .
Since ${\rm Re}(Au, u)={\rm Re}\phi[u]\geqq 0,$ $A$ is accretive. That $A$ is closed and

maximal accretive follows from the fact that $A+1=B^{-1}$ has the range
$\mathfrak{R}[B^{-1}]=\mathfrak{D}[B]=\mathfrak{H}$ ; in fact this implies that $-1$ belongs to the resolvent set
of $A$ and, therefore, the whole semi-plane ${\rm Re} z<0$ must belong to the resol-
vent set of $A$ , showing that $A$ is maximal accretive.

In particular this implies that $\mathfrak{T}[A]$ is dense in $\mathfrak{H}$ . We have actually a
stronger result that $\mathfrak{T}[A]$ is dense in $\mathfrak{H}_{\emptyset}$ . In fact, suppose $\mathfrak{B}[A]=\mathfrak{R}[B]$ is
not dense in $\mathfrak{H}_{\emptyset}$ Then there would exist a $v\neq 0$ of $\mathfrak{H}\psi$ such that $\phi_{0}[Bw, v]=0$

for all $w\in \mathfrak{H}$ (the Lax-Milgram theorem) and (2.6) gives $(w, v)=0$ , contradicting
that $v\neq 0$ .

Since $\phi^{*}$ is regular with $\phi$ , we can construct in the same way a closed,
maximal accretive operator $A^{\prime}$ such that $\mathfrak{T}[A^{\prime}]\subset \mathfrak{T}[\phi^{*}]=\mathfrak{T}[\phi]$ and $\phi^{*}[v, u]=$

$(A^{\prime}v, u)$ , that is, $\phi[u, v]=(u, A^{\prime}v)$ , for $u\in \mathfrak{T}[\phi]$ and $v\in \mathfrak{T}[A^{\prime}]$ . Now let, in
particular, $u\in \mathfrak{D}[A]$ and $v\in \mathfrak{D}[A^{\prime}]$ . Then we have (Au, $v$) $=\phi[u, v]=(u, A^{\prime}v)$ .
This shows that $A^{\prime}\subset A^{*}$ . But as $A^{*}$ is accretive and $A^{\prime}$ is maximal accre $\cdot$

tive, we must have $A^{\prime}=A^{*}$ and so $A=A^{\prime*}$ . This proves the last statement
of Theorem 2.1 and, at the same time, the uniqueness of the operator $A$ with
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the properties stated in the theorem. This completes the proof of Theorem
2.1.

DEFINITION 2.2. An operator A $w\iota 7l$ be said to be regularly accretive if it is
associated with a regular sesquilinear form $\phi$ in the way described in Theorem
2.1. The index of $\phi$ will be called also the index of $A$ .

Obviously a regularly accretive operator $A$ must satisfy the inequality

(2.7) $|{\rm Im}$ (Au, u) $|\leqq\beta{\rm Re}$ (Au, u) , $u\in\Phi[A]$ ,

for some $\beta\geqq 0$ .
THEOREM 2.2. Let $A$ be regularly accretive with index $\beta$ . Then the speclrum

of $A$ is a subset of the sector $S_{\theta}$ : $|\arg z|\leqq\theta=\arctan\beta<\pi/2$ , and the resolvent
of $A$ satisfies the inequality

(2.8) $\Vert(z-A)^{-1}\Vert\leqq\left\{\begin{array}{l}[|z|sin(argz-\theta)]^{-1},\theta<argz\leqq\frac{\pi}{2}+\theta,\\|z|^{-1}, argz>^{\pi}-2-+\theta.\end{array}\right.$

REMARK. This theorem implies that $A$ is of type $(\theta, 1)$ . In particular,
$-A$ is the infinitesimal generator of an analytic semi-group $\{\exp(-tA)\}$ , see
Appendix.

PROOF. Since $A$ satisfies the inequality (2.7), the numerical range of $A$ is
a subset of $S_{\theta}$ . Since $A$ is closed and maximal accretive, the spectrum of $A$

is a subset of its numerical range and $\Vert(z-A)^{-1}\Vert$ does not exceed the inverse
of the distance $d$ of $z$ from the numerical range (note that (Au, $u$)$-z|=$
$|((A-z)u, u)|\geqq d$ for $\Vert u\Vert=1$ implies $\Vert(A-z)u\Vert\geqq d\Vert u\Vert)$ . Hence $\Vert(z-A)^{-1}\Vert\leqq$

$d^{\prime-1}$ where d’ is the distance of $z$ from $S_{\theta}$ . This gives (2.8).

It is not known to the author whether (2.7) is sufficient for a closed, maxi-
mal accretive operator $A$ to be regularly accretive. The following theorems
answer this question only partially.

THEOREM 2.3. Let $A$ be closed and maximal accretive and let (2.7) hold with
a $\beta<1$ . Then $A$ is regularly accretive.

PROOF. Define a sesquilinear from $\phi$ by $\phi[u, v]=(Au, v)$ with $\mathfrak{D}[\phi]=\mathfrak{D}[A]$ .
$ f={\rm Re}\phi$ is in general not closed, but it has a closed extension. To see this,
it suffices to show that $\mathfrak{D}[\phi]\ni u_{n}\rightarrow 0$ and $f[u_{n}-u_{m}]\rightarrow 0$ , $n,$ $ m\rightarrow\infty$ , imply
$f[u_{n}]\rightarrow 0$ (see [8]). But $f[u_{n}-u_{m}]=f[u_{n}]+f[u_{m}]-2{\rm Re} f[u_{n}, u_{m}]=f[u_{n}]+$

$f[u_{m}]-{\rm Re}(\phi+\phi^{*})[u_{n}, u_{m}]=f[u_{n}]+f[u_{m}]-{\rm Re}\phi[u_{n}, u_{m}]-{\rm Re}\phi[u_{m}, u_{n}]$ and
${\rm Re}\phi[u_{n}, u_{m}]\leqq|\phi[u_{n}, u_{m}]|\leqq(1+\beta)f[u_{n}]^{1/2}f[u_{m}]^{1/2}$ by (2.3). Hence we have

$f[u_{n}-u_{m}]\geqq f[u_{n}]+f[u_{m}]-(1+\beta)f[u_{n}]^{1/2}f[u_{m}]^{1/2}-{\rm Re}(Au_{m}, u_{n})$

$\geqq[1\frac{(1+\beta)^{2}}{4}]f[u_{m}]-{\rm Re}(Au_{m}, u_{n})$ .

Let $ n\rightarrow\infty$ and then $ m\rightarrow\infty$ . Since the left member tends to $0$ by hypothesis,
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the desired result $f[u_{m}]\rightarrow 0$ follows.
Let $f^{\prime}$ be the closure of $f$ (see [8]). In view of (2.3), $\phi$ can be extended

to a form $\phi^{\prime}$ with $\mathfrak{B}[\phi^{\prime}]=2[f^{\prime}]$ such that $f^{\prime}={\rm Re}\phi^{\prime}$ , the inequality (2.3)
being conserved in this extension. $\phi^{\prime}$ is obviously regular, and we have
(Au, $v$) $=\phi[u, v]=\phi^{\prime}[u, v]$ for $u,$ $v\in \mathfrak{T}[A]\subset \mathfrak{T}[\phi^{\prime}]$ , and this relation is extended
to all $v\in \mathfrak{D}[\phi^{\prime}]$ by continuity. This shows that $A$ is the regularly accretive
operator associated with the regular sesquilinear form $\phi^{\prime}$ (note the uniqueness
of $A$ in Theorem 2.1).

THEOREM 2.4. Let $A$ be closed and maximal accretive. If $0\leqq\gamma<1,$ $A^{\gamma}$ is

regularly accretive with index $\leqq\tan^{\pi_{2}\gamma_{-}}-$ .
PROOF. Let $\alpha=\gamma/2$ . If $0\leqq\gamma<1$ , we have $0\leqq\alpha<1/2$ so that $\mathfrak{T}[A^{a}]=$

$\mathfrak{D}[A^{*\alpha}]\equiv \mathfrak{D}_{a}$ by Theorem 1.1. We now define a sesquilinear form $\phi_{\alpha}$ by

(2.9) $\phi_{\alpha}[u, v]=(A^{a}u, A^{*\alpha}v)$ , $\mathfrak{T}[\phi_{a}]=\mathfrak{D}_{a}$ .

On introducing the operators $H_{a}$ and $K_{\alpha}$ by (1.1), this becomes

$\phi_{\alpha}=f_{\alpha}+ig_{a}$ ,

(2.10) $f_{a}[u, v]=(H_{\alpha}u, H_{a}v)-(K_{a}u,K_{a}v)$ ,

$g_{a}[u, v]=(H_{a}u, K_{a}v)+(K_{a}u, H_{a}v)$ .
The inequality (1.2) now gives $f_{\alpha}[u]=\Vert H_{\alpha}u\Vert^{2}-\Vert K_{a}u\Vert^{2}\leqq\Vert H_{\alpha}u\Vert^{2}$ and $ f_{a}[u]\geqq$

$(1-c_{\alpha}^{2})\Vert H_{a}u\Vert^{2}\geqq 0$ with $c_{a}=\tan\frac{\pi\alpha}{2}$ . From this it is easy to show that $f_{\alpha}$ is

nonnegative and closed (note that $H_{\alpha}$ is selfadjoint). Also $|g_{a}[u]|\leqq 2\Vert H_{a}u\Vert$ .
. $\Vert K_{\alpha}u\Vert\leqq 2c_{\alpha}\Vert H_{\alpha}u\Vert^{2}\leqq\beta_{\alpha}f_{a}[u]$ , where $\beta_{\mathcal{O}}=2c_{a}(1-c_{a}^{2})^{-1}=\tan\pi\alpha=\tan\frac{\pi\gamma}{2}$ .

Thus $\phi_{\alpha}$ is regular. Let the associated accretive operator be denoted by
$A_{\alpha}$ . We shall show that $A_{\alpha}=A^{2a}=A^{\gamma}$, establishing thereby that $A^{\gamma}$ is indeed
regularly accretive.

Set $A_{\epsilon}=A+\epsilon,$ $\epsilon>0$ . Then $A_{\epsilon^{-1}}$ is bounded and it is easily seen that
$A_{s}^{-2\alpha}=(A_{e}^{-\alpha})^{2}$ (operational calculus). This implies that $A_{\epsilon}^{2\alpha}=(A_{\epsilon}^{a})^{2}$ and so
$(A_{\epsilon}^{2a}u, v)=(A_{=,\vee}^{\alpha}u, A_{\epsilon}^{*\alpha}v)$ for $u\in \mathfrak{D}[A_{s}^{2a}]\subset \mathfrak{D}[A_{\text{\’{e}}}^{a}]$ and $v\in \mathfrak{D}[A_{\epsilon}^{\alpha}]$ . But since
$\mathfrak{D}[A^{a}]=\mathfrak{D}[A^{a}]$ and $A_{P}^{a}u\rightarrow A^{\alpha}u$ for $\epsilon\rightarrow 0$ by Lemma A2 (Appendix), we obtain
$(A^{2\alpha}u, v)=(A^{a}u, A^{*\alpha}v)$ for $u\in \mathfrak{D}[A^{2\alpha}]\subset \mathfrak{D}[A^{\alpha}]\ni v$ . On the other hand we have
$(A^{\alpha}u, A^{*\alpha}v)=(u, A_{a^{*}}v)$ for $u\in \mathfrak{D}[A^{a}]$ and $v\in \mathfrak{D}[A_{a^{*}}]\subset \mathfrak{D}[A^{a}]$ by the definition
of $A_{\alpha}$ . Hence $(A^{2\alpha}u, v)=(u, A_{\alpha^{*}}v)$ for $u\in \mathfrak{D}[A^{2a}]$ and $v\in \mathfrak{D}[A_{a^{*}}]$ , so that
$A^{2\alpha}\subset A_{\alpha}$ . But we have the equality here, for $A_{\alpha}$ is accretive and $A^{2\alpha}$ is
maximal accretive.
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3. Fractional powers of regularly accretive operators.

If $A$ is regularly accretive, stronger results can be obtained for the frac-
tional powers $A^{ct}$ than given by Theorem 1.1 and 1.2. By definition $A$ is
associated with a regular sesquilinear form $\phi=f+ig$ according to Theorem
2.1. Since the symmetric form $f$ is nonnegative and closed, there is associated
with $f$ a nonnegative selfadjoint operator $H$ such that (2.1) is true. $H$ will be
called the real part of A. $H$ is also the real part of $A^{*}$ , as is seen from
Theorem 2.1. $H$ should be distinguished from the $H_{1}$ given by (1.1). If $A$ is

1bounded we have $H=-2-(A+A^{*})=H_{1}$ , but in general $H_{1}$ is not selfadjoint

even if $A$ is regularly accretive.
We shall now show that $H^{a}$ is comparable with $A^{\alpha},$ $A^{*\alpha}$ and $H_{a}$ for $ 0\leqq$

$\alpha<1/2$ . More precisely, we have
THEOREM 3.1. Let $A$ be regularly accretive uith index $\beta$ and let $H$ be the

real part of A. For each $a$ with $0\leqq a<1/2$ , we have $\mathfrak{T}:[H^{\alpha}]=\mathfrak{T}[A^{\alpha}]=\mathfrak{D}[A^{*a}]=$

$\mathfrak{D}[H_{a}]=\mathfrak{D}_{\alpha}$ and, besides the inequalities (1.2) to (1.6),

(3.1) $(1-\tan\frac{\pi\alpha}{2})\Vert H^{a}u\Vert\leqq\Vert A^{\alpha}u\Vert\leqq[1+(\frac{\alpha}{\pi}\tan\pi\alpha)^{1/2}(\beta+\beta^{2})]\Vert H^{\alpha}u\Vert$

and similar inequalities with A replaced by $A^{*}$ .
PROOF. I. First we deduce an identity connecting $A$ and $H$. Let $A$ be

associated with the regular sesquilinear form $\phi=f+ig$ as in Theorem 2.1;
then $H$ is associated with $f$ by (2.1). We have by (2.1) and (2.3)

(3.2) $|g[u, v]|\leqq\beta\Vert H^{1/2}u\Vert\Vert H^{1/2}v\Vert$ , $u,$ $v\in \mathfrak{B}[H^{1/2}]=\mathfrak{D}[\phi]$ .
Thus $g[u, v]$ is determined by $H^{1/2}u$ and $H^{1/2}v$ and, therefore, may be regarded
as a bounded symmetric form of the latter. Hence there is a bounded operator
$B$ (not necessarily unique) with domain $\mathfrak{H}$ such that

(3.3) $g[u, v]=(BH^{1/2}u, H^{1/2}v)$ , $B^{*}=B$ , $\Vert B\Vert\leqq\beta$ .
From (2.1) and (3.3) we have

(3.4) $\phi[u, v]=(f+ig)[u, v]=((1+iB)H^{1/2}u, H^{1/2}v)$ .
Let $u\in \mathfrak{D}[A]$ . Then $\phi[u, v]=(Au, v)$ for all $v\in \mathfrak{D}[\phi]=\mathfrak{D}[H^{1/2}]$ by (2.4).

Comparing this with (3.4) and noting the selfadjointness of $H^{l/2}$ , we see that
$H^{1/2}(1+if?)H^{1/2}u$ exists and is equal to $Au$ . This shows that $A\subset H^{x/2}(1+iB)H^{1/2}$ .
But it is obvious that the right member is accretive. In view of the fact
that $A$ is maximal accretive, we must have an equality in place of the inclu-
sion, that is,
(3.5) $A=H^{1/2}(1+iB)H^{1/2}$ .

II. We shall now show that
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(3.6) $A+\lambda=(H+\lambda)^{1/2}(1+iK_{A})(H+\lambda)^{1/2}$ , $\lambda>0$ ,
where

(3.7) $K_{\lambda}=(\frac{H}{H+\lambda})^{1/2}B(\frac{H}{H+\lambda})^{1/2}$ $K_{\lambda^{*}}=K_{\lambda}$ ,

$|IK_{\lambda}\Vert\leqq\Vert B\Vert\leqq\beta$ .
To this end, let $n\in \mathfrak{D}[A]\subset \mathfrak{D}[H^{1/2}]$ . Using (3.7) and (3.5), we have

$(1+iK_{\lambda})(H+\lambda)^{1/}\sim n=(H+\lambda)^{1/2}u+i(\frac{H}{H+\lambda})^{1/2}BH^{1/2}u$

$=(H+\lambda)^{1/2}u-H(H+\lambda)^{-1/2}u+(\frac{H}{H+\lambda})^{1/2}(1+iB)H^{1/2}u$

$=(H+\lambda)^{-1/2}(\lambda+A)u$ .
Hence $(H+\lambda)^{1/2}(1+iK_{J})(H+\lambda)^{1/2}u$ exists and is equal to $(A+\lambda)u$ . An argument
similar tc that used above then gives (3.6).

Taking the inverse of (3.6) and noting that $(1+iK)^{-1}=1-iK-K(1+iK)^{-1}K$,
we have (for brevity we write $K$ in place of $K_{j}$)

(3.8) $(A+\lambda)^{-1}=(H+\lambda)^{-1}-i\frac{H^{1/2}}{H+\lambda}B\frac{H^{1/2}}{H+\lambda}$

$-\frac{H^{1/2}}{H+\lambda}B(\frac{H}{H+\lambda})^{1/2}(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/2}B\frac{H^{1/2}}{H+\lambda}$

$\equiv(H+\lambda)^{-1}+\frac{H^{1/2}}{H+\lambda}C_{\lambda^{-}}^{H^{1^{\prime}2}}H+\lambda$

with $\Vert C_{\lambda}\Vert\leqq\beta+\beta^{2}$ . Note that $K^{*}=K$ implies $\Vert(1+iK)^{-1}\Vert\leqq 1$ , and we have
$\Vert B\Vert\leqq\beta,$ $\Vert H^{1/2}(H+\lambda)^{-1/2}\Vert\leqq 1$ . It follows by Lemma A7 (Appendix) that for
$u\in \mathfrak{D}[H^{a}]$

(3.9) $\lim_{R\rightarrow\infty}\int_{0}^{R}[(A+\lambda)^{-1}u-(H+\lambda)^{-1}u]\lambda^{\alpha}d\lambda=u\dagger$

exists and
$\Vert w\Vert\leqq(\beta+\beta^{2})(\frac{2\pi\alpha}{\sin 2\pi\alpha})^{1/2}\Vert H^{\alpha}u\Vert$ .

But we have

(3.10) $\lim_{R\rightarrow\infty}\int_{0}^{R}[\lambda^{-1}-(H+\lambda)^{-1}]n\lambda^{\alpha}d\lambda=--H^{\alpha}u\overline{\sin}^{\pi}\pi\alpha$

as is easily verified by using the spectral representation of $H$ Hence

(3.11) $ v=\lim_{R\rightarrow\infty}\int_{0}^{R}[\lambda^{-1}-(A+\lambda)^{-1}]u\lambda^{\alpha}d\lambda$

$=\lim_{R\rightarrow\infty}\int_{0}^{P}A(A+\lambda)^{-1}u\lambda^{\alpha-1}d\lambda$
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exists and

(3.12) $|^{1}||v-\frac{\pi}{\sin\pi\alpha}H^{a}u|||\leqq(\beta+\beta^{2})(\frac{2\pi}{n}\frac{\alpha}{\pi\alpha})^{1/2}\Vert H^{\alpha}u\Vert$ .
An application of Lemma A5 (Appendix) shows, then, that $u\in \mathfrak{T}[A^{\alpha}]$ and

$v=-\frac{\pi}{in\pi\alpha}A^{\alpha}us$ Thus $\mathfrak{D}[H^{a}]\subset \mathfrak{D}[A^{a}]$ and (3.12) implies that

(3.13) $\Vert A^{a}’ u-H^{\alpha}u\Vert\leqq(\frac{\alpha}{\pi}\tan\pi\alpha)^{1/2}(\beta+\beta^{2})\Vert H^{a}u\Vert$ , $u\in 2[H^{a}]$ .

III. Next we prove the converse inclusion $\mathfrak{D}[A^{\alpha}]\subset\underline{\pi}[H^{\alpha}]$ . To this end,
we introduce an approximating sequence $\{A_{n}\}$ of $A$ by setting

(3.14) $A_{n}=H_{n^{1/2}}(1+iB)H_{n^{1/2}}$ , $H_{n}=H(1+n^{-1}H)^{-1}$ , $n=1,2,3,$ $\cdots$ .
$H_{n}$ are bounded with $\Vert H_{n}\Vert\leqq n$ . Hence $A_{n}$ are also bounded with $\Vert A_{n}\Vert\leqq$

$n(1+\beta)$ . Furthermore, $A_{n}$ are uniformly regularly accretive since

$|{\rm Im}(A_{n}u, u)|=|(BH_{n^{1/2}}u, H_{n^{1/2}}u)|\leqq\beta\Vert H_{n^{1/2}}u\Vert^{2}=\beta{\rm Re}(A_{n}u, u)$ .
Since $A_{n}+A_{n^{*}}=2H_{n}$ , it follows from (1.20) that

\langle 3.15) $\Vert H_{n}^{\alpha}u\Vert\leqq c_{a}^{\prime\prime}\Vert A_{n}^{a}u\Vert$ , $c_{\alpha}^{\prime\prime}=(1-\tan\frac{\pi\alpha}{2})^{-1}$ , $0\leqq\alpha<1/2$ .

For the moment let us assume that $H$ has positive lower bound, so that
$H^{-1}$ is bounded. Then $H_{n^{-1}}=H^{-1}+n^{-1}$ and $A_{n^{-1}}=H_{n^{-1/2}}(1+iB)^{-1}H_{n^{-1/2}}$ are also
bounded, and (3.15) implies that $\Vert H_{n}^{a}A_{n^{-a}}\Vert\leqq c_{\alpha}^{\prime\prime}$ . We shall show that the
bounded sequence $\{H_{n}^{a}A_{n}^{-\alpha}\}$ is weakly convergent. For this it suffices to
show that, for any $u\in \mathfrak{H}$ and $v\in \mathfrak{T}[H^{\alpha}],$ $(H_{n^{\alpha}}A_{n^{-\alpha}}u, v)=(A_{n^{-a}}u, H_{n}^{\alpha}v)\rightarrow(A^{-a}u$ ,
$H^{a}v)$ . But this follows from $H_{n^{-1}}=H_{n^{-1}}+n^{-1}\rightarrow H^{-1}$ . In fact, this implies
$H_{n^{-1/2}}\rightarrow H^{-1/2}$ and so $A_{n^{-1}}\rightarrow A^{-1}$ in norm, whence follows that $A_{n^{-\alpha}}\rightarrow A^{-\alpha}$,

while $H_{n}^{\alpha}v\rightarrow H^{a}v$ can be proved by noting that $(1+n^{-1}H)^{-\alpha}\rightarrow 1$ .
Let $R$ be the weak limit of $\{H_{n}^{\alpha}A_{n}^{-\alpha}\}$ . It follows from above that $\Vert R\Vert\leqq$

$c_{a}^{\prime\prime}$ and $(Ru, v)=(A^{-a}u, H^{a}v)$ for every $v\in \mathfrak{T}[H^{a}]$ . Hence $H^{a}A^{-a}u$ exists and
is equal to $Ru$ for every $u\in \mathfrak{H}$ This implies that $\mathfrak{D}[A^{\alpha}]\subset \mathfrak{D}[H^{a}]$ and that
$H^{\alpha}w=RA^{\alpha}w,$ $\Vert H^{\alpha}w\Vert\leqq c_{\alpha}^{\prime\prime}\Vert A^{\alpha}w\Vert$ for $w\in \mathfrak{D}[A^{\alpha}]$ . Combined with (3.13), this
proves Theorem 3.1 under the additional assumption that $H$ has positive lower
bound.

IV. The general case can be dealt with, as we have frequently done, by
applying the foregoing results to $ A+\epsilon$ and then letting $\epsilon\rightarrow 0$ . There is no
difficulty if we note Lemma A2 of Appendix.

4. Perturbation theory.

In this section we consider the change of a regularly accretive operator
$A$ and its fractional powers $A^{\alpha}$ , when the sesquilinear form $\phi$ that defines $A$ is
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subjected to a small change. In particular we shall prove the analytic de-
pendence of $A^{\alpha}$ on a parameter $t$ when $\phi$ depends on $t$ analytically.

Let $\phi=f+ig$ be a regular sesquilinear form with index $\beta$ , and let $\phi^{\prime}=$

$f^{\prime}+ig^{\prime}$ be another sesquilinear form such that

(4.1) $\mathfrak{D}[\phi^{\prime}]=\mathfrak{D}[\phi]=\mathfrak{D}$ and $|\phi^{\prime}[u]-\phi[u]|\leqq bf[u]$ for $u\in \mathfrak{D}$ ,

where $b$ is a constant. This implies that $|f^{\prime}[u]-f[u]|\leqq bf[u]$ or
(4.2) $(1-b)f[u]\leqq f^{\prime}[u]\leqq(1+b)f[u]$ .
If $b<1$ , it follows from (4.2) that the symmetric form $f^{\prime}$ is nonnegative and
closed with $f$ (see [8]). (4.1) implies also that $|g^{\prime}[u]-g[u]|\leqq bf[u]$ , hence
$|g^{\prime}[u]|\leqq|g[u]|+bf[u]\leqq(\beta+b)f[u]\leqq(\beta+b)(1-b)^{-1}f^{\prime}[u]$ . This shows that $\phi^{\prime}$

is also regular with index not exceeding $(\beta+b)(1-b)^{-1}$ .
It follows also from (4.1) that

(4.3) $|(\phi^{\prime}-\phi)[u, v]|\leqq 2bf[u]^{1/2}f[v]^{1/2}=2b\Vert H^{1/2}u\Vert\Vert H^{1/2}v\Vert$ .
Just as in (3.3), (4.3) implies the existence of a bounded linear operator $T$ such
that
(4.4) $(\phi^{\prime}-\phi)[u, v]=(TH^{1/2}u, H^{1/2}v)$ , $u,$ $v\in \mathfrak{D},$ $\Vert T\Vert\leqq 2b$ .
From (3.4) and (4.4) we have

(4.5) $\phi^{\prime}[u, v]=((1+iB+T)H’/2u, H^{1/z}v)$ ,

which gives, as in (3.5) and (3.6),

(4.6) $A^{\prime}=H^{1/2}(1+iB+T)H^{1/2}$ ,

(4.7) $A^{\prime}+\lambda=(H+\lambda)^{1/2}(1+iK_{\lambda}+X_{\lambda})(H+\lambda)^{1/2}$ ,

where $K_{\lambda}$ is given as before by (3.7) and

(4.8) $X_{\lambda}=(\frac{H}{H+\lambda})^{1/2}T(\frac{H}{H+\lambda})^{1/2}$ , $\Vert X\Vert\leqq\Vert T\Vert\leqq 2b$ .

We now take the inverse of (4.7). Here we substitute the expansion (we

write $K_{\lambda}=K,$ $X_{\lambda}=X$ for simplicity)

(4.9) $(1+iK+X)^{-1}=(1+iK)^{-1}+\sum_{p=1}^{\infty}(-1)^{p}(1+iK)^{-1}[X(1+iK)^{-1}]^{p}$ .

Since $\Vert(1+iK)^{-1}\Vert\leqq 1$ by $K^{*}=K$, the series (4.9) is absolutely convergent for
$\Vert X\Vert\leqq 1$ , which is the case if $2b<1$ . Since $A^{\prime}$ coincides with $A$ for $X=0$ , we
thus obtain

(4.10) $(A^{\prime}+\lambda)^{-1}-(A+\lambda)^{-1}=\sum_{p=1}^{\infty}(H+\lambda)^{-1/2}(1+iK)^{-1}X^{(p)}(1+iK)^{-1}(H+\lambda)^{-1/2}$ ,

where

(4.11) $X^{(p)}=(-1)^{p}[X(1+iK)^{-1}]^{p-1}X=(-H\frac{H}{+\lambda})^{1/2}Y^{(p)}(\frac{H}{H+\lambda})^{1/2}$
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with $Y^{(1)}=-T$ and

(4.12) $Y^{(p)}=(-1)^{P}T(\overline{H}+\lambda H)^{1/2}(1+iK)^{-1}[X(1+iK)^{-1}]^{p-2}(\frac{H}{H+\lambda})^{1/2}T$ ,

$p\geqq 2$ .
Let us examine the p-th term on the right of (4.10). Here $(1+iK)^{-1}$ can be
written in the two different forms

$(1+iK)^{-1}=1-iK(1+iK)^{-1}=1-(\frac{H}{H-\tau\lambda})^{1/2}iB(\frac{H}{H+\lambda})^{1/2}(1+iK)^{-1}$ ,

$(1+iK)^{-1}=1-(1+iK)^{-1}iK=1-(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/2}iB(\frac{H}{H+\lambda})^{1/2}$

in virtue of (3.7). Therefore, noting the form (4.11) of $X^{(p)},$ $(4.10)$ can be
written in the form

(4.13) $(A^{\prime}+\lambda)^{-1}-(A+\lambda)^{-1}=\sum_{p=I}^{\infty}\frac{H^{1/2}}{H+\lambda}Z^{(p)}\frac{H^{1/2}}{H+\lambda}$

with

(4.14) $Z^{(p)}=Y^{(p)}-iB(\frac{H}{H+\lambda})^{1/2}(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/2}Y^{(p)}$

$-Y^{(p)}(\frac{H}{H+\lambda})^{1/2}(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/}\grave{4}iB$

$+iB(\frac{H}{H+\lambda})^{1/2}(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/2}\rightarrow Y^{(p)}(\frac{H}{H+\lambda})^{1/2}$

. $(1+iK)^{-1}(\frac{H}{H+\lambda})^{1/2}iB$ ,

Although $Z^{(p)}$ depends on $\lambda$ , it can be estimated uniformly in $\lambda$ , using $\Vert(1+$

$iK)^{-1}\Vert\leqq 1,$ $\Vert(\frac{H}{H+\lambda})^{1/2}\Vert\leqq 1,$ $\Vert B\Vert\leqq\beta$ and $\Vert X\Vert\leqq\Vert T\Vert\leqq 2b$ , as

(4.15) $\Vert Z^{(p)}\Vert\leqq(1+2\Vert B\Vert+\Vert B\Vert^{2})\Vert Y^{(p)}\Vert\leqq(1+\beta)^{2}(2b)^{p}$ , $p=1,2,$ $\cdots$ .
Hence

(4.16) $\Vert\sum_{p=1}^{\infty}Z^{(p)}\Vert\leqq\sum_{p=1}^{\infty}\Vert Z^{(p)}\Vert\leqq\frac{(1+\beta)^{2}2b}{1-2b}$ .

It follows from (4.13), (4.16) and Lemma A7 (Appendix) that

(4.17) $\Vert\lim_{R\rightarrow\infty}\int_{0}^{R|}[(A^{\prime}+\lambda)^{-1}u-(A+\lambda)^{-1}n]\text{{\it \‘{A}}}^{\alpha}d\lambda|$

$\leqq\frac{(1+\beta}{1-}2^{)}\frac{22b}{b}(\overline{s}in^{\pi}2\alpha 2a_{\pi})^{1/2}\Vert H^{a}u\Vert$ ,

where we assume that $u\in T_{\sim}[H^{\alpha}]$ with $0\leqq\alpha<1/2$ . If we further restrict $fi$
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to $\mathfrak{D}[A]\subset \mathfrak{D}[A^{\alpha}]=\mathfrak{D}[H^{a}]$ (see Theorem 3.1), we have $\int_{0}^{\infty}[\lambda^{-1}-(A+\lambda)^{-1}]u\lambda^{\alpha}d\lambda=$

$\frac{\pi}{\sin\pi a}A^{\alpha}u$ by Lemma A4. Therefore, an argument similar to the one applied

to deduce (3.13) leads to the result that $u\in \mathfrak{D}[A^{\prime\alpha}]$ and

(4.18) $\Vert A^{\prime\alpha}u-A^{a}u\Vert\leqq\frac{(1+\beta}{1-}2\frac{)^{2}2b}{b}(\frac{\alpha}{\pi}\tan\pi\alpha)^{1/2}\Vert H^{a}u\Vert$ .

In virtue of (3.1), this gives

(4.19) $\Vert A^{\prime\alpha}u-A^{\alpha}u\Vert\leqq\frac{(1+\beta)^{2}2b}{1-2b}(1-\tan\underline{\pi}_{2}\underline{\alpha})^{-1}(\frac{\alpha}{\pi}\tan\pi\alpha)^{1/2}\Vert A^{\alpha}u\Vert$ .

So far this was proved only for $u\in \mathfrak{D}[A]$ . Since, however, $\mathfrak{D}[A]$ is a core of
$A^{\alpha}$ (see Lemma A3 of Appendix), (4.19) is extended to all $u\in \mathfrak{D}[A^{a}]$ , the in-
clusion $\mathfrak{D}[A^{\alpha}]\subset \mathfrak{D}[A^{\gamma a}]$ being implied.

Actually we have $\mathfrak{D}[A^{\alpha}]=\mathfrak{D}[A^{\prime\alpha}]$ . To see this, we regard $A^{\prime}$ as the
unperturbed operator and $A$ the perturbed one. Then we have $|\phi[u]-\phi^{\prime}[u]|$

$\leqq bf[u]\leqq b(1-b)^{-1}f^{\prime}[u]$ by (4.2). If $2b(1-b)^{-1}<1$ , the above result is appli-
cable with $A$ and $A^{\prime}$ exchanged, so that $\mathfrak{D}[A^{\prime\alpha}]=\mathfrak{D}[A^{a}]$ . If $2b(1-b)\geqq 1$ , we
consider a family of forms $\phi(t),$ $0\leqq t\leqq 1$ , defined by $\phi(t)=\emptyset+t(\phi^{\prime}-\phi)$ . Then
$f(t)={\rm Re}\phi(t)$ are mutually comparable by $(1-tb)f[u]\leqq f(t)[u]\leqq(1+tb)f[u]$ ,
and we have $|\phi(t^{\prime})[u]-\phi(t)[u]|\leqq|t^{\prime}-t|bf[u]\leqq|t^{\prime}-t|b(1-b)^{-1}f(t)[u]$ . Thus
we see that $\mathfrak{D}[A(t^{\prime})^{\alpha}]=\mathfrak{D}[A(t)^{a}]$ for $|t^{\prime}-t|<(1-b)/2b$ . Hence $\mathfrak{D}[A(t)^{a}]$ must
be constant for $0\leqq t\leqq 1$ , in particular $\mathfrak{D}[A^{\alpha}]=\mathfrak{D}[A^{\prime\alpha}]$ .

Thus we have proved the following
THEOREM 4.1. Let $\phi=f+ig$ be a regular sesquilinear form with index $\beta$ .

Let $\phi^{\prime}=f^{\prime}+ig^{\prime}$ be another sesquilinear form such that (4.1) holds with $0\leqq b<1$ .
Then $\phi^{\prime}$ is also regular. Let $A$ and $A^{\prime}$ be the regularly accretive operators as-
sociated with $\phi$ and $\phi^{\prime}$ , respectively. Then we have $\mathfrak{D}[A^{\alpha}]=\mathfrak{D}[A^{\prime\alpha}]$ for $0\leqq a$

$<1/2$ . Furthermore, there is a constant $M_{a}$ , depending only on $\alpha$ , such that

(4.20) $\Vert A^{\prime\alpha}u-A^{\alpha}u\Vert\leqq(1+\beta)^{2}M_{\alpha}\frac{2b}{1-2b}\Vert A^{a}u\Vert$ , $u\in \mathfrak{D}[A^{a}]$ ,

provided $b<1/2$ . If in particular $A$ has a bounded inverse, the operator $A^{\prime a}A^{-\alpha}$

is bounded with domain $\mathfrak{H}$ , with

(4.21) $\Vert A^{\prime a}A^{-\alpha}-1\Vert\leqq(1+\beta)_{1}^{2}tI_{\alpha}\frac{2b}{1-2b}$ for $b<1/2$ .

REMARK. The fact that $\mathfrak{D}[A^{\alpha}]=\mathfrak{D}[A^{\prime\alpha}]$ can be proved more simply if
one uses the Heinz inequality. Since $f^{\prime}$ and $f$ have the same domain $\mathfrak{D}$ , the
associated selfadjoint operators $H^{\prime}$ and $H$ have the property that $\mathfrak{D}[H^{\prime 1/2}]=$

$\mathfrak{D}[H^{1/2}]$ by (2.1). Then it follows from the Heinz inequality (see [6, 7]) that
$\mathfrak{D}[H^{\prime\alpha}]=\mathfrak{D}[H^{\alpha}]$ for $0\leqq\alpha\leqq 1/2$ . The desired result then follows immediately
from Theorem 3.1. This proof does not assume that $\phi^{\prime}-\phi$ is small; it suffices
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to assume that $\phi$ and $\phi^{\prime}$ are both regular and have the same domain.
Suppose now that a family of regular sesquilinear forms $\phi(t)$ is given,

with the associated regularly accretive operators $A(t)$ , where $t$ is a real or
complex parameter. Then Theorem 4.1 shows that any continuity property
of $\phi(t)$ is inherited by $A(t)^{\alpha}$ . We have, for example,

THEOREM 4.2. Let $\phi(t)=f(t)+ig(t)$ be Holder continuous in the sense that
$\mathfrak{D}[\phi(t)]=\mathfrak{D}$ is independent of $t$ and

(4.22) $|\phi(t)[u]-\phi(s)[u]|\leqq M|t-s|^{\rightarrow}\vee f(s)[u]$ , $u\in \mathfrak{D}$ ,

for any $s,$ $t$ in the parameter domain. Then $A(t)^{\alpha}$ has constant domain $\mathfrak{D}_{\alpha}$ for
$0\leqq a<1/2$ and is $H\dot{o}$ lder continuous in $t$ in the sense that

(4.23) $\Vert A(t)^{\alpha}u-A(s)^{\alpha}u\Vert\leqq M_{a}^{\prime}|t-s|^{\epsilon}\Vert A(s)^{a}u\Vert$ , $u\in \mathfrak{D}_{a}$ ,

at least for sufficiently small $|t-s|$ . If in particular $A(t)$ has bounded inverse
for each $t,$ $A(t)^{\alpha}A(s)^{-a}$ is bounded with

(4.24) $\Vert A(t)^{\alpha}A(s)^{-\alpha}-1\Vert\leqq M_{\alpha}^{\prime}|t-s|^{\epsilon}$

The most interesting case for application is that in which $\phi(t)$ is analytic
in $t$. We have

THEOREM 4.3. Let $\phi(t)$ be holomorphic in a domain $\Delta$ of the complex t-plane,
in the sense that $\mathfrak{D}[\phi(t)]=\mathfrak{D}$ is independent of $t$ and $\phi(t)[u]$ is holomorphic for’
$ t\in\Delta$ for each $u\in \mathfrak{D}$ . Furthermore, let $f(t)={\rm Re}\phi(t)$ be strictly positive for each
$t$ in the sense that $f(t)[u]\geqq\delta(t)\Vert u\Vert^{2}$ with $\delta(t)>0$ . Then $A(t)^{\alpha}$ is holomorphic for
$0\leqq\alpha<1/2$ in the sense that $\mathfrak{D}[A(t)^{a}]=\mathfrak{D}_{\alpha}$ is independent of $t$ and $A(t)^{a}u$ is
holomorphic for $ t\in\Delta$ for each $u\in \mathfrak{D}_{a}$ . $A(t)^{\alpha}A(s)^{-\alpha}$ and $A(t)^{-a}$ are bounded oper-
ator functions holomorphic for $ t\in\Delta$ for each fixed $s$ .

PROOF. Without loss of generality we may assume that $ 0\in\Delta$ . $\mathfrak{D}$ becomes
a complete Hilbert space $\mathfrak{H}_{0}$ by the introduction of the new inner product
$((u, v))=f_{0}[u, v]$ and the corresponding norm $\Vert|u\Vert|\geqq\delta_{0^{1/2}}\Vert u\Vert$ , where $f_{0}=f(0)$

and $\delta_{0}=\delta(0)$ . If $\phi(t)$ is considered a form on $\mathfrak{H}_{0}$ , it is a bounded form depend-
ing holomorphically on $t$, so that it can be expanded into a power series of $t$

near $t=0$ :

(4.25) $\phi(t)=\sum_{n=0}^{\infty}t^{n}\phi_{n}$ ,

where each $\phi_{n}$ is a bounded form on $\mathfrak{H}_{0}$ with bound majorized by, say, $kc^{n-1}$

with some constants $k$ and $c$ (a consequence of the principle of uniform
boundedness). This implies, as in (4.4),

(4.26) $\phi_{n}[u, v]=(T_{n}H_{0}^{1/2}u, H_{0^{1/2}}v)$ , $\Vert T_{n}\Vert\leqq kc^{n-1}$ ,

where $H_{0}$ is the selfadjoint operator associated with $f_{0}$ by (2.1). Thus

(4.27) $(\phi(t)-\phi(O))[u, v]=(T(t)H_{0^{1/2}}u, H_{0^{1/2}}v)$
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with

(4.28) $T(t)=\sum_{=\eta 1}^{\infty}t^{n}T_{n}$ .

Now substitute $\phi(0),$ $\phi(t),$ $T(t),$ $H_{0}$ for $\phi,$ $\phi^{\prime},$ $T,$ $H$ of (4.4), respectively. An
examination of the formulas (4.4) to (4.16) then shows that the operator $Z^{(p)}$

becomes a power series with the majorizing series $(1+\beta_{0})^{2}(\frac{kt}{1-ct})^{p}$ , where $\beta_{\theta}$

is the index of $\phi(0)$ . Thus we see from (4.18) that $A(t)^{\alpha}u-A(0)^{a}u$ has the

majorizing series $(1+\beta_{0})^{2}\frac{kt}{1-(k+c)t}(\frac{a}{\pi}\tan\pi a)^{1/2}\Vert H_{0^{\alpha}}u\Vert$ . This result is im-

mediately extended to every $u\in \mathfrak{D}_{\alpha}$ as before. Thus $A(t)^{\alpha}u$ is holomorphic
near $t=0$ . Since $t=0$ is not a distinguished point of $\Delta,$ $A(t)^{a}u$ is holomorphic
for $ t\in\Delta$ . Since $A(t)^{-1}$ are bounded by $\Vert A(t)^{-1}\Vert\leqq\delta(t)^{-1},$ $A(t)^{-a}$ are also bounded
and the last assertion of the theorem is a simple consequence of the preced-
ing result.

5. The case $\alpha=1/2$ .
Most of the theorems obtained above for the fractional powers $A^{a}$ are

concerned with the case $0\leqq\alpha<1/2$ . In view of the example given after
Theorem 1.1, it is in general impossible to extend them to $\alpha>1/2$ , but the
question naturally arises whether these results are valid for $\alpha=1/2$ . Un-
fortunately, the questions are open in most of these theorems. But we have
at least partial answers to them.

THEOREM 5.1. Let $A$ be closed and maximal accretive. Then $\mathfrak{D}_{1/2}=\mathfrak{D}[A^{1/2}]$

$\cap \mathfrak{D}[A^{*1/2}]$ is a core of both $A^{1/2}$ and $A^{*1/2}$ . $H_{1/2}$ given by (1.1) with $a=1/2$ is
selfadjoint.

PROOF. I. Set
(5.1) $B_{n}=A^{1/2}(1+n^{-1}A^{1/2})^{-1}$ , $n=1,2,3,$ $\cdots$ .

Since $A^{1/2}$ is closed and maximal accretive, $B_{n}$ are defined on $\mathfrak{H}$ and bounded
with $\Vert B_{n}\Vert\leqq n$ (cf. (1.14)). Hence we may write

(5.2) $B_{n}=P_{n}+iQ_{n}$ , $P_{n^{*}}=P_{n}$ , $Q_{n^{*}}=Q_{n}$ .
That $A^{1/2}$ is accretive implies the same for $B_{v\iota}$ (cf. (1.14)) so that $P_{n}\geqq 0$ .
Actually we have, more strongly,

(5.3) $ 0\leqq P_{1}\leqq P_{2}\leqq P_{3}\leqq\cdots$ .
To see this we note that, for $m\leqq n$ ,

(5.4) $B_{n}-B_{m}=(m^{-1}-n^{-1})A(1+n^{-1}A^{1/2})^{-1}(1+m^{-1^{\leftarrow}}A^{1/2})^{-1}$ ,

$((B_{n}-B_{m})u, u)=(m^{-1}-n^{-1})(Av, (1+m^{-1}A^{1/2})(1+n^{-1}A^{1/2})v)$
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$=(m^{-1}-n^{-l})[(Av, v)+(m^{-1}+n^{-1})(Av, A^{1/2}v)$

$+m^{-1}n^{-1}\Vert Av\Vert^{2}]$ ,

with $v=(1+n^{-1}A^{1/2})^{-1}(1+m^{-1}A^{1/2})^{-1}u$ . But ${\rm Re}(Av, v)\geqq 0$ and ${\rm Re}(Av, A^{1/2}v)\geqq 0$

since $A$ and $A^{1/2}$ are accretive. Hence $((P_{n}-P_{m})u, u)={\rm Re}((B_{n}-B_{m})u, u)\geqq 0$ .
II. As is well known (see, for example, Kato [7, 8]), (5.3) implies

(5.5) $\lambda^{-1}\geqq(\lambda+P_{1})^{-1}\geqq(\lambda+P_{2})^{-1}\geqq\cdots$ , $\geqq 0$ ,

and, therefore, there is a bounded selfadjoint operator $R,$ $0\leqq R\leqq\lambda^{-1}$ , depend-
ing on $\lambda$ , such that
(5.6) strong $\lim_{n\rightarrow\infty}(\lambda+P_{n})^{-1}=R$ .
We shall show that $R$ is invertible. To this end we note that

$(\lambda+B_{n})^{-1}=(\lambda+P_{n})^{-1/2}(1+iQ_{n^{\prime}})^{-1}(\lambda+P_{n})^{-1/2}$

with $Q_{n^{\prime}}=(\lambda+P_{n})^{-1/2}Q_{n}(\lambda+P_{n})^{-1/2}$ ,

$\Vert(\lambda+B_{n})^{-1}u\Vert\leqq\lambda^{-1/2}\Vert(\lambda+P_{n})^{-1/2}u\Vert$

(since $\Vert(1+iQ_{n^{\prime}})^{-1}\Vert\leqq 1$ by $Q_{n^{\prime*}}=Q_{n^{\prime}}$ )

and therefore
(5.7) $\lim_{n\rightarrow}\sup_{\infty}\Vert(\lambda+B_{n})^{-1}u\Vert\leqq\lambda^{-1/2}\Vert R^{1/2}u\Vert$ ;

note that (5.6) implies strong $\lim(\lambda+P_{?7})^{-1/2}=R^{1/2}$ . On the other hand, (5.1)
$ n\rightarrow\infty$

gives $B_{n}v\rightarrow A^{1/2}v$ if $v\in \mathfrak{D}[A^{1/2}]$ . Hence

(5.8) $(\lambda+B_{n})^{-1}u-(\lambda+A^{1/2})^{-1}u=(\lambda+B_{n})^{-1}(A^{1/2}-B_{n})(\lambda+A^{1/2})^{-1}u\rightarrow 0$

for every $u\in \mathfrak{H}$ (note that 1 $(\lambda+B_{n})^{-1}\Vert\leqq\lambda^{-1}$).

It follows from (5.7) and (5.8) that 1 $(\lambda+A^{1/2})^{-1}u\Vert\leqq\lambda^{-1/2}\Vert R^{1/2}u\Vert$ . Thus
$Ru=0$ implies $R^{1/2}u=0$ and so $(\lambda+A^{1/3})^{-3}u=0,$ $u=0$ . This shows that $R$ is
invertible. Set $ P=R^{-1}-\lambda$ so that $R=(\lambda+P)^{-1}$ . $P$ is selfadjoint with $P\geqq 0$,

since $0\leqq R\leqq\lambda^{-1}$ . (That $P$ is independent of $\lambda$ will be seen later. For the
moment $\lambda$ is fixed.) We have thus proved that
(5.9) $(\lambda+P_{n})^{-1}\geqq(\lambda+P)^{-1}$ , $(\lambda+P_{\iota})^{-1}\rightarrow(\lambda+P)^{-1}$ strongly.

III. We next prove that

(5.10) 1 $(\lambda+P_{n})^{1/2}(\lambda+P)^{-1/2}\Vert\leqq 1$ ,

(5.11) strong $\lim(\lambda+P_{n})^{1/2}(\lambda+P)^{-1/2}=1$ .
$ 7\iota\rightarrow\infty$

To this end, set $X_{n}=(\lambda+P_{n})^{1/2}(\lambda+P)^{-1/2}$ . (5.9) shows that $\Vert(\lambda+P)^{-1/2}u\Vert\leqq$

$\Vert(\lambda+P_{n})^{-1/2}u\Vert$ or 1 $X_{n^{*}}\Vert\leqq 1$ . Hence $\Vert X_{\iota}\Vert\leqq 1$ , which proves (5.10). Further-
more, we have $\Vert(X_{n^{*}}-1)(\lambda+P)^{-1/2}u\Vert=\Vert X_{n^{*}}[(\lambda+P)^{-1/2}u-(\lambda+P_{n})^{-1/2}u]\Vert\rightarrow 0$ (see

the remark after (5.7)). Since the range of $(\lambda+P)^{-1/2}$ is dense and $\Vert X_{n^{*}}\Vert\leqq 1$ , it
follows that $X_{n^{*}}\rightarrow 1$ strongly. This implies that $X_{n}\rightarrow 1$ weakly and, in view
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of 1 $X_{n}\Vert\leqq 1$ , even strongly. This proves (5.11).

IV. $B_{n^{2}}$ is accretive, for $B_{n^{2}}=A(1+n^{-1}A^{1/2})^{-2}$ and ${\rm Re}(B_{n^{2}}u, u)\geqq 0$ follows
as in (5.4). Since $B_{n}^{2}=(P_{n}+iQ_{n})^{2}=P_{n^{2}}-Q_{n^{2}}+i(P_{n}Q_{n}+Q_{n}P_{n})$, we have $P_{n^{2}}\geqq Q_{n^{2}}$ ,
in other words,
(5.12) $\Vert Q_{n}u\Vert\leqq\Vert P_{n}u\Vert$ .
Hence
(5.13) $\lambda+B_{n}=\lambda+P_{n}+iQ_{n}=(1+S_{n})(\lambda+P_{n})$ ,

with $S_{n}=iQ_{n}(\lambda+P_{n})^{-1}$ , $\Vert S_{n}\Vert\leqq 1$ .
1 $S_{n}\Vert\leqq 1$ follows from (5.12): I $S_{n}u\Vert=\Vert Q_{n}(\lambda+P_{n})^{-1}u\Vert\leqq\Vert P_{n}(\lambda+P_{n})^{-1}u\Vert\leqq\Vert u\Vert$ .
Therefore, we can choose a subsequence $\{n^{\prime}\}$ of 1, 2, 3, $\cdots$ such that weak
$\lim S_{n}^{\prime}=S$ exists. Writing (5.13) in the form $(\lambda+P_{n})^{-1}=(\lambda+B_{n})^{-1}(1+S_{n})$ and
taking the adjoint, we have $(\lambda+P_{n})^{-1}=(1+S_{n^{*}})(\lambda+B_{n^{*}})^{-1}$ . We now let $ n\rightarrow\infty$

along the subsequence $\{n^{\prime}\}$ . Noting (5.9) and that $(\lambda+B_{n^{*}})^{-1}\rightarrow(\lambda+A^{*1/2})^{-1}$

strongly for the same reason as in (5.8), we obtain $(\lambda+P)^{-1}=(1+S^{*})(\lambda+A^{*1/2})^{-1}$ .
Reverting to the adjoint, this gives $(\lambda+P)^{-1}=(\lambda+A^{1/2})^{-1}(1+S)$ . This implies

(5.14) $(\lambda+A^{1/2})(\lambda+P)^{-1}=1+S$ , $\mathfrak{D}[A^{1/2}]\supset \mathfrak{D}[P]$ .
Incidentally, this shows that the weak limit $S$ of $\{S_{n}’\}$ is independent of the
choice of the subsequence $\{n^{\prime}\}$ , so that the original sequence $\{S_{n}\}$ is itself
weakly convergent to S.

Let $u\in \mathfrak{D}[P]\subset \mathfrak{D}[A^{1/2}]$ . Then we have
${\rm Re}((\lambda+A^{1/2})u, u)=\lim Re((\lambda+B_{n})u, u)=\lim((\lambda+P_{n})u, u)$

$=\lim\Vert(\lambda+P_{n})^{1/2}u\Vert^{2}=\lim\Vert X_{n}(\lambda+P)^{1/2}u\Vert^{2}$

$=\Vert(\lambda+P)^{1/2}u\Vert^{2}=((\lambda+P)u, u)$

where $X_{n}$ is as above. This implies that ${\rm Re}(A^{1/2}u, u)=(Pu, u)$ . Since the
selfadjoint operator $P$ is determined by the values of (Pu, u) for all $n\in \mathfrak{D}[P]$ ,

it follows that $P$ is independent of $\lambda$ used in its definition.
It follows also from (5.14) that $(\lambda+A^{1/2})u=(1+S)(\lambda+P)u$ for $u\in \mathfrak{D}[P]$ .

Hence $A^{1/2}u=Pu+iQu$ , where we set $iQ=S(\lambda+P)$ with $\mathfrak{D}[Q]=\mathfrak{D}[P]$ . $Q$ is
also independent of $\lambda$ and the above result ${\rm Re}(A^{1/2}u, u)=(Pu, u)$ shows that
$Q$ is symmetric. Since $\Vert S\Vert\leqq 1$ by (5.13), we have $\Vert Qu\Vert\leqq\Vert(\lambda+P)u\Vert$ and,

letting $\lambda\rightarrow 0$ , we have $\Vert Qu\Vert\leqq\Vert Pu\Vert$ . Thus we have

(5.15) $A^{1/2}\supset P+iQ$ , $\Vert Qu\Vert\leqq\Vert$ Pu $\Vert$ .
V. Applying the same arguments as above to $B_{n^{*}}=P-iQ_{n}$ , we arrive at

the result $A^{*1/2}\supset P-iQ$ . Combined with (5.15), this gives $A^{1/2}+A^{*1/2}\supset 2P$.
Here we must have equality instead of inclusion, for the left member is
symmetric and the right member selfadjoint. Hence

(5.16) $P=\frac{1}{\angle}(A^{1/2}+A^{*1/2})=H_{1/2}$ , $\mathfrak{D}[P]=\mathfrak{D}[A^{1/2}]\cap \mathfrak{D}[A^{*1/2}]=\mathfrak{D}_{1/2}$ ,
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see (1.1).

Finally we show that $\mathfrak{D}[P]$ is a core of $A^{1/2}$ . This is equivalent to that
$(\lambda+A^{1/2})\mathfrak{D}[P]$ is dense in $\mathfrak{H}$ for $\lambda>0$ . Since $\mathfrak{D}[P]$ is the range of $(\lambda+P)^{-1}$ , it
suffices by (5.14) to show that $1+S$ has a dense range, or, that $1+S^{*}$ has
nullity zero. Since $\Vert S\Vert\leqq 1$ , this is the case if and only if $1+S$ has nullity
zero. But this is obvious from (5.14). With this result, the proof of Theorem
5.1 is complete.

REMARK 1. We do not know whether or not $\mathfrak{D}[A^{1/2}]=\mathfrak{D}[A^{*1/2}]$ in Theorem
5.1. This is perhaps not true in general. But the question is open even when
$A$ is regularly accretive. In this case it appears reasonable to suppose that
both $\mathfrak{D}[A^{1/2}]$ and $\mathfrak{D}[A^{*1/2}]$ coincide with $\mathfrak{D}[H^{1/2}]=\mathfrak{D}[\phi]$ , where $H$ is the real
part of $A$ and $\phi$ is the regular sesquilinear form which defines $A$ according
to Theorem 2.1. But all that we know are $\mathfrak{D}[\phi]\supset \mathfrak{D}[A]\subset \mathfrak{D}[A^{1/2}]\supset \mathfrak{D}[P]$ and
a similar chain of inclusions with $A$ replaced by $A^{*}$ .

REMARK 2. If $A=H$ is selfadjoint in Theorem 5.1, the question raised
above is answered in the affirmative, for we have $\mathfrak{D}[\phi]=\mathfrak{D}[H^{1/2}]$ , see (2.1).

The question is still open, however, whether or not Theorems 4.2 and 4.3 are
true with $a=1/2$ when $A(t)$ are selfadjoint for real $t$, although it is true that
$\mathfrak{D}[A(t)^{1/2}]$ is independent of $t$ as long as $t$ is real. Thus it must be stated
that our knowledge is quite unsatisfactory regarding the case $\alpha=1/2$ .

Under these circumstances, it would be of some interest to consider the
problem in a finite-dimensional Hilbert space. Then there is no problem con-
cerning the domains of $A^{1/2}$ and $A^{*1/2}$ , but all the same we can ask whether
or not they are comparable. The answer turns out to be in the affirmative,
but the constants in the estimates apparently depend on the dimensionality
of the space. We have namely

THEOREM 5.2. Let $A$ be an accretive operator in a finite-dimensional Hilbert
space $\mathfrak{H},$ $\dim \mathfrak{H}=m<\infty$ . Then we have

(5.17) $\Vert A^{*1/2}u\Vert\leqq 2^{m}\Vert A^{1/2}u\Vert$ , $u\in \mathfrak{H}$ ,

and a similar inequality with $A$ and $A^{*}$ exchanged.
REMARK. It is not known whether the factor $2^{m}$ can be replaced by a

constant independent of $m$ . If this were possible, $A^{1/2}$ and $A^{*1/2}$ would be
comparable in the general infinite-dimensional case. Otherwise, it would follow
(by considering an appropriate direct sum of operators) that $A^{1/2}$ and $A^{*1/2}$ are
not necessarily comparable in the general case.

PROOF. Again we may assume that $A^{-1}$ exists; the general case can be
dealt with by considering $ A+\epsilon$ and going to the limit $\epsilon\rightarrow 0$ . Then $H_{1/2}^{-1}$

exists by the proof of Theorem 1.1 and $A^{1/2}=H_{1/2}+iK_{1/2}=(1+iB)H_{1/2}$ with
$B=K_{1/2}H_{1/2}^{-1}$ , where $\Vert B\Vert\leqq 1$ by (1.13). Now all the eigenvalues of $B$ are real,

for $B$ is the product of a symmetric operator $K_{1/Z}$ with a positive-definite
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symmetric operator $H_{1/2}$ . Hence $|\det(1+iB)|\geqq 1$ and (see Lemma 1 of Appendix
of Kato [10])
(5.18) $\Vert(1+iB)^{-1}\Vert\leqq\Vert 1+iB\Vert^{m-1}/|\det(1+iB)|\leqq 2^{m-1}$ .
Since $A^{*1/2}=(1-iB)H_{1/2}$ as above, we have $A^{*1/2}A^{-1/2}=(1-iB)(1+iB)^{-1}$ and
$\Vert A^{*1/2}A^{-1/2}\Vert\leqq\Vert 1-iB\Vert\Vert(1+iB)^{-1}\Vert\leqq 2^{m}$ , which is equivalent to (5.17).

Appendix

We collect here several lemmas to be used in the text, mostly concerned
with the fractional powers $A^{\alpha}$ of a linear operator $A$ in a Banach space $\mathfrak{X}$ .
Such a fractional power was defined, for example, in [9].

For convenience we begin with a brief summary of the results of [9]. A.
linear operator $A$ in $\mathfrak{X}$ is said to be of type $(\omega, M)$ if i) $A$ is densely defined
and closed, ii) the resolvent set of $-A$ contains the sector $|\arg\lambda|<\pi-\omega$ of
the complex plane and $\lambda(\lambda+A)^{-1}$ is uniformly bounded in each smaller sector
$|\arg\lambda|<\pi-\omega-\epsilon,$ $\epsilon>0$ , with $\Vert\lambda(\lambda+A)^{-1}\Vert\leqq M$ for $\lambda>0$ .

If ee is a Hilbert space, $A$ is of type $(\pi/2,1)$ if and only if $A$ is closed
and maximal accretive.

If $A$ is of type $(\omega, M)$ , the fractional power $A^{a},$ $0<a<1$ , can be defined
indirectly by

(A1) $(\lambda+A^{\alpha})^{-1}=\frac{\sin\pi\alpha}{\pi}\int_{0}^{\infty}\frac{\mu^{a}}{\lambda^{2}+2\lambda\mu^{\alpha}\cos\pi\alpha+\mu^{2\alpha}}(\mu+A)^{-1}d\mu$ ,

which is valid at least for $\lambda>0$ . $A^{a}$ is an operator of type $(\alpha\omega, M)$ . If
$\alpha\omega<\pi/2,$ $-A^{\alpha}$ is the infinitesimal generator of an analytic semi-group, that
is, the semi-group $T_{t,\alpha}=exp(-tA^{a})$ has an analytic continuation to the sector

$|\arg t|<-2--\alpha\omega\pi$ $T_{c,\alpha}$ and $tdT_{t,\alpha}/dt$ being uniformly bounded for $|\arg t|<$

$\pi$

$-2^{--\alpha\omega-\epsilon}’\epsilon>0$ .
If we make the additional assumption that $A^{-1}$ is bounded, (A1) is equi-

valent to the Dunford integral

(A2) $(\lambda+A^{a})^{-1}=--2\frac{1}{\pi i}\int_{c}(\lambda+z^{a})^{-1}(z-A)^{-1}dz$ ,

where the integration path $C$ runs in the resolvent set of $A$ from $\infty e^{-i\theta}$ to
$\infty e^{i\theta}$ , to $<\theta\leqq\pi$ , avoiding the negative real axis and $0$ . In this case (A1) and
(A2) are valid also for $\lambda=0$ , and various formulas of “ operational calculus”
can be deduced by the manipulation of Dunford integrals.

We now prove several lemmas that are not stated in [9]. In what follows
it is always assumed that $A$ is of type ( $\frac{\pi}{2}$, $M$) and that $0<\alpha<1$ . We note

that $ A+\epsilon$ is also of type $(-2\pi-,$ $M)$ if $\epsilon>0$ ; this is a direct consequence of
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the assumption.
LEMMA Al. For any $\epsilon>0$ we have

(A3) $\Vert(1+\epsilon A)^{-\alpha}\Vert\leqq M$ .
Note that $1+\epsilon A$ is also of type $(-2\pi-,$ $M)$ so that $(1+\epsilon A)^{\alpha}$ exists.

PROOF. Since $(1+\epsilon A)^{-1}$ is bounded, (A1) is valid for $\lambda=0$ if $A$ is replaced
by $1+\epsilon A$ . Since $(\mu+1+\epsilon A)^{-1}\leqq M(\mu+1)^{-1}$ , it follows that

$\Vert(1+\epsilon A)^{-}$ $\Vert\leqq\frac{\sin\pi\alpha}{\pi}\int_{0}^{\infty}\mu^{-\alpha}M(\mu+1)^{-1}d\mu=M$ .

LEMMA A2. We have $\mathfrak{D}[(A+\epsilon)^{\alpha}]=\mathfrak{D}[A^{\alpha}]$ and
\langle A4) $\Vert(A+\epsilon)^{\alpha}u-A^{\alpha}u\Vert\leqq c\epsilon^{\alpha}\Vert u\Vert$ , $u\in \mathfrak{D}[A^{\alpha}]$ ,

where the constant $c$ depends only on $\alpha$ and $M$.
PROOF. For brevity we write $ A_{-,\vee}=A+\epsilon$ in this proof. We have

$A_{e^{-\alpha}}A_{\epsilon^{-(1-\alpha)}}=A_{\epsilon^{-(1-\alpha)}}A^{-\alpha}\epsilon=A_{\epsilon^{-1}}$ ; this is a result of the “ operational calculus “

mentioned above (note that $A_{\epsilon^{-1}},$ $A_{e^{-\alpha}}$ etc. are bounded for $\epsilon>0$). Hence
follows that $A_{\epsilon^{-(1-\alpha)}}A_{\epsilon}\subset A_{\epsilon^{\alpha}}$ . Now (A1) is true for $\lambda=0$ if $A$ is replaced by
A.. Replacing $\alpha$ by 1–a and applying both members of (A1) to $A_{\epsilon}u$ where
$u\in \mathfrak{D}[A]$ , we thus obtain

(A5) $ A_{s^{c\iota}}u=\frac{\sin\pi\alpha}{\pi}\int_{0}^{\infty}\mu^{\alpha-1}(\mu+A_{\epsilon})^{-1}A_{\epsilon}ud\mu$ , $\epsilon>0$ , $u\in \mathfrak{D}[A]$ .

Subtracting from (A5) a similar expression with $\epsilon$ replaced by $\eta,$ $ 0<\eta<\epsilon$,

we have
$ A_{\rightarrow}^{a}- u-A_{\eta^{\alpha}}u=\frac{\sin\pi\alpha}{\pi}[\int_{0}^{\delta}\mu^{\alpha-1}(\mu+A_{\epsilon})^{-1}A_{\epsilon}ud\mu-\int_{0}^{\theta}\mu^{\alpha-1}(\mu+A_{\eta})^{-1}A_{\eta}ud\mu$

$+(\epsilon-\eta)\int_{\delta}^{\infty}\mu^{\alpha}(\mu+A_{\epsilon})^{-1}(\mu+A_{\eta})^{-1}ud\mu]$ .

Noting that $\Vert(\mu+A_{\epsilon})^{-1}A_{\epsilon}u\Vert\leqq(1+M)\Vert u\Vert$ and $\Vert(\mu+A_{\epsilon})^{-1}\Vert\leqq M\mu^{-1}$ , this gives

$\Vert A_{\epsilon^{\alpha}}u-A_{\eta^{\alpha}}u\Vert\leqq\frac{\sin\pi\alpha}{\pi}[2(1+M)\int_{0}^{\delta}\mu^{\alpha-1}d\mu+M^{2}(\epsilon-\eta)\int_{\delta}^{\infty}\mu^{\alpha-2}d\mu]\Vert u\Vert$

$=\frac{\sin\pi\alpha}{\pi}[2(1+M)\alpha^{-1}\delta^{\alpha}+M^{2}(\epsilon-\eta)(1-\alpha)^{-1}\delta^{\alpha-1}]\Vert u\Vert$ .

$4\Gamma aking\delta=(\epsilon-\eta)M^{2}/2(1+M)$, we obtain
$\Vert A_{\epsilon^{\alpha}}u-A_{\eta^{\alpha}}u\Vert\leqq c(\epsilon-\eta)^{\alpha}\Vert u\Vert,$ $0<\eta<\epsilon,$ $u\in \mathfrak{D}[A]$ ;

$c=2^{1-\alpha}M^{2\alpha}(1+M)^{1-\alpha}\sin\pi\alpha/\pi\alpha(1-\alpha)$ depends only on $\alpha$ and $M$. This shows
that $\lim_{\epsilon\rightarrow 0}A_{\epsilon^{\alpha}}u=Bu$ exists for $u\in \mathfrak{D}[A]$ , and that

(A6) 1 $ A_{\epsilon^{\alpha}}u-Bu\Vert\leqq c\epsilon^{\alpha}\Vert u\Vert$ , $\epsilon>0$ , $u\in \mathfrak{D}[A]$ .
Now $\mathfrak{D}[A]$ is a core of $A_{\epsilon^{\alpha}}$ ; by this we mean that the closure of the

restriction of $A_{e^{\alpha}}$ to $\mathfrak{D}[A]$ is $A_{\epsilon}$
’ itself. To see this, it suffices to note that,
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for any $v\in \mathfrak{D}[A_{\epsilon^{n}}]$ , the sequence $v_{n}=(1+n^{-1}A_{\epsilon})^{-1}v\in \mathfrak{D}[A_{\epsilon}]=\mathfrak{D}[A]$ has the
property that $v_{n}\rightarrow v$ and $A_{e}^{\alpha}v_{n}=(1+n^{-1}A_{\epsilon})^{-1}A_{e}^{\alpha}v\rightarrow A_{\epsilon}^{a}v,$ $ n\rightarrow\infty$ . Here we
used the relation $A_{\epsilon,\vee}^{a}(1+n^{-1}A_{\epsilon})^{-1}v=(1+n^{-\iota}A_{\epsilon})^{-1}A_{\epsilon^{a}}v$ . This follows from
$(1+n^{-1}A_{\epsilon})^{-1}A_{\epsilon^{-a}}w=A_{\epsilon^{-a}}(1+n^{-1}A_{\epsilon})^{-1}w$ with $w=A_{\epsilon^{C1}}v$ , and this is in turn a con-
sequence of the ” operational calculus“ (note that $A_{\epsilon}^{-\alpha}$ is bounded).

The fact that $\mathfrak{D}[A]$ is a core of $A_{c^{\alpha}}$ , combined with (A6), shows that the
closure $B^{**}$ of $B$ exists ( $B$ was defined only on $\mathfrak{D}[A]$) and has the same
domain with $A_{\epsilon^{\prime\lambda}}$ . At the same time the inequality (A6) is extended to all
$u\in \mathfrak{D}[B^{**}]$ , with $B$ replaced by $B^{**}$ . Thus $\mathfrak{D}[A_{\epsilon^{n}}]=\mathfrak{D}[B^{**}]$ is independent
of $\epsilon$ and $A_{\epsilon^{\alpha}}u\rightarrow B^{**}u$ uniformly for $\Vert u\Vert\leqq 1,$ $u\in \mathfrak{D}[B^{**}]$ . From this it follows
easily that $(B^{**}+\lambda)^{-1}$ exists as a bounded operator with domain $\mathfrak{H}$ for $\lambda>\theta$

and that $(A.’+\lambda)^{-1}\rightarrow(B^{**}+\lambda)^{-1}$ for $\epsilon\rightarrow 0$ in the uniform operator topology.
Since, however, we know that $(A_{\epsilon^{\alpha}}+\lambda)^{-1}\rightarrow(A^{a}+\lambda)^{-1}$ (see [9]), it follows that
$B^{**}=A^{a}$ . This completes the proof of Lemma A2.

LEMMA A3. $\mathfrak{D}[A]$ is a core of $A^{\alpha}$ .
PROOF. The proof is contained in the proof of Lemma A2, for $A^{\alpha}=B^{**}$

is the closure of $B$ and $B$ was the restriction of $B^{**}=A^{a}$ to $\mathfrak{D}[A]$ .
LEMMA A4. For each $u\in \mathfrak{D}[A]$ we have

(A7) $ A^{a}u=\frac{\sin\pi\alpha}{\pi}\int_{0^{\infty}}\lambda^{\alpha-1}A(\lambda+A)^{-1}ud\lambda$ ,

the integral being absolutely convergent.
PROOF. Since $\Vert A(A+\lambda)^{-1}\Vert\leqq 1+\Lambda_{i}T$, the integral is absolutely convergent

near $\lambda=0$ . If $u\in \mathfrak{D}[A],$ $\Vert A(A+\lambda)^{-1}u\Vert=\Vert(A+\lambda)^{-1}Au\Vert\leqq M\lambda^{-1}\Vert$ Au $\Vert$ so that
the integral is absolutely convergent also for $\lambda\rightarrow\infty$ . Furthermore, we know
that (A7) is valid if $A$ is replaced by $ A.\cdot=A+\epsilon$, see (A5). Thus (A7) follows
from (A5) by going to the limit $\epsilon\rightarrow 0$ , noting Lemma A2 and that $ A_{\epsilon}(\lambda+A_{\epsilon})^{-1}u\rightarrow$

$A(\lambda+A)^{-1}u$ (dominated convergence).

REMARK. The author does not know whether (A7) is true for all $u\in \mathfrak{D}[A^{a}]_{r}$

though it could be proved that it is true for $u\in \mathfrak{D}[A^{\beta}]$ with $a<\beta\leqq 1$ . But
the converse is true in a certain sense, as is seen from

LEMMA A5. Let ee be reflexive. If $u\in \mathfrak{X}$ is such that

(A8) $wea_{R}k\lim_{\rightarrow\infty}\int_{0^{R}}\lambda^{\alpha-1}A(\lambda+A)^{-1}ud\lambda=v$

exists, then $u\in \mathfrak{D}[A^{a}]$ and $v$ is equal to $\frac{\pi}{\sin\pi\alpha}A^{\alpha}u$ .
PROOF. If ee is reflexive, the adjoint $A^{*}$ of $A$ is an operator (in the

adjoint space $\mathfrak{X}^{*}$) of type $(-2\pi-,$ $M)$ , so that $A^{*\alpha}$ is defined and it is obvious,

from (A1) that $(\lambda+A^{*n})^{-1}=(\lambda+A^{n})^{-1*}$ for $\lambda>0$ . Hence

(A9) $A^{*n}=A^{a*}$ .
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Let $f\in \mathfrak{D}[A^{*}]$ . Then we have by Lemma A4 an expression of $A^{*\alpha}f$ given
by (A7) with $A$ and $u$ replaced by $A^{*}$ and $f$ respectively, so that

(A10) $(u, A^{*n}f)=\sin_{\pi}\pi a_{-\int_{0}^{\infty}\lambda^{\alpha-1}(u,A^{*}(\lambda+A^{*})^{-1}f)d\lambda}$

$=\frac{\sin\pi a}{\pi}\lim_{R\rightarrow\infty}\int_{0}^{R}\lambda^{\alpha-1}(A(\lambda+A)^{-1}u,f)d\lambda$

$=\underline{si}n_{\pi}\underline{\pi\alpha}_{(v,f)}$ .

Since $\mathfrak{D}[A^{*}]$ is a core of $A^{*}‘‘=A^{o*}$ by Lemma A3, (AIO) shows that $ u\in$

$\mathfrak{D}[A^{\alpha**}]=\mathfrak{D}[A^{c\iota}]$ and that $A^{\alpha}u=\frac{\sin\pi\alpha}{\pi}v$ .
The following lemmas are concerned with operators in a Hilbert space.
LEMMA A6. Let $A$ be a closed, maximal accretive operator in a Hilbert

space $\mathfrak{X}$ and let ${\rm Re}(Au, u)\geqq\delta(u, u)$ for some $\delta>0$ and all $u\in \mathfrak{D}[A]$ . Then
${\rm Re}(A^{\alpha}u, u)\geqq\delta^{\alpha}(u, u)$ for all $u\in \mathfrak{D}[A^{\alpha}]$ .

PROOF. It suffices to prove the assertion for $u\in \mathfrak{D}[A]$ , for $\mathfrak{D}[A]$ is a
core of $A^{\alpha}$ and, therefore, the result can be extended to all $u\in \mathfrak{D}[A^{\alpha}]$ by
continuity. If $u\in \mathfrak{D}[A]$ , we have the expression (A7) for $A^{\alpha}u$ . Thus it
suffices to show that
(All) ${\rm Re}(A(\lambda+A)^{-1}u, u)\geqq\delta(\lambda+\delta)^{-1}(u, u)$ .
Since $A(\lambda+A)^{-1}=1-\lambda(\lambda+A)^{-1}$ , (All) follows from ${\rm Re}((\lambda+A)^{-1}u, u)\leqq(\lambda+\delta)^{-1}(u, u)$ .
The last inequality is obvious since we have ${\rm Re}((\lambda+A)u, u)\geqq(\lambda+\delta)(u, u)$, which
implies $\Vert(\lambda+A)^{-1}\Vert\leqq(\lambda+\delta)^{-1}$ .

LEMMA A7. Let X, $\mathfrak{X}^{\prime}$ be two Hilbert spaces, let $H,$ $H^{\prime}$ be nonnegative selfadjoint
.operators acting in $\mathfrak{X},$

$\mathfrak{X}^{\prime}$ respectively and let $B_{\lambda}$ be a bounded linear operator on
ee to $\mathfrak{X}^{\prime}$ , depending on a parameter $\lambda>0$ continuously (in the strong sense, say)

and uniformly bounded by $\Vert B_{\lambda}\Vert\leqq M$. Then for any $u\in \mathfrak{D}[H^{\alpha}](0\leqq\alpha<1/2)$,

(A12) $w^{\prime}=strong\lim_{R\rightarrow\infty}\int_{1/R}^{R}\frac{H^{\prime 1/2}}{H+\lambda}B_{\lambda}\frac{H^{1/2}}{H+\lambda}u\lambda^{\alpha}d\lambda\in \mathfrak{X}^{\prime}$

exists and

(A13) $\Vert w^{\prime}\Vert\leqq(\frac{2}{\sin}\pi_{2}\frac{\alpha}{\pi\alpha})^{1/2}M\Vert H^{\alpha}u\Vert$ .

REMARK. If $\alpha>0,$ $\int_{1/}^{R_{R}}$ in (A12) may be replaced by $\int_{0}^{R}$ , for the integral

is absolutely convergent at $\lambda\rightarrow 0$ .
PROOF. For any $v^{\prime}\in \mathfrak{X}^{\prime}$ , we have

(A14) $|\int_{a^{b}}(\frac{H^{\prime 1/2}}{H+\lambda}B_{\lambda}\frac{H^{1/2}}{H+\lambda}u,$ $v^{\prime})\lambda^{\alpha}d\lambda|^{2}$

$\leqq M^{2}(\int_{a^{b}}||\frac{H^{1/2}}{H+\lambda}u\Vert^{2}\lambda^{2\alpha}d\lambda)(\int_{a^{b}}\Vert\frac{H^{J1/2}}{H’+\lambda}v^{\prime}\Vert^{2}d\lambda)$ .
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But it is easily seen that the last factor of (A14) does not exceed

$\int_{0}^{\infty}\Vert\frac{H^{\prime 1/2}}{H+\lambda}v^{\prime}|^{2}d\lambda=\Vert v^{\prime}\Vert^{2}$ . Hence

$\not\in(A15)$ $||\int_{a^{b}}\frac{H^{\prime 1/2}}{H+\lambda}B_{\lambda}\frac{H^{1/2}}{H+\lambda}u\lambda^{\alpha}d\text{\‘{A}}_{1_{1}}|^{2}\leqq\wedge^{\prime\rceil_{i}I^{2}\int_{a^{b}}\Vert_{H\overline{+^{\prime 2}\lambda}}^{H^{1}}}-u\Vert^{2}\lambda^{2\alpha}d\lambda$

$=M^{2}\int_{0}^{\infty}\chi_{l}d(E_{\mu}u, u)\int_{a^{b}}\frac{\lambda^{2\alpha}}{(\mu+\lambda)^{2}}d\lambda$

$=M^{2}\int_{0}^{\infty}\mu^{2\alpha}d(E_{\mu}u, u)\int_{a/}^{b/_{\mu^{\mu}}}\frac{\lambda^{2\alpha}}{(1+\lambda)^{2}}d\lambda$ ,

where $H=\int_{0}^{\infty}\mu dE_{J}$ is the spectral representation of $H$ Since $\int_{0}^{\infty}\frac{\lambda^{2\alpha}}{(\perp\pm\Lambda)^{A}}d\lambda=$

$\frac{2}{\sin}\frac{\alpha}{\pi\alpha}\pi_{2}<\infty$ for $0\leqq\alpha<1/2$ , it follows that the right member of $(A15)\rightarrow 0$

for $ b\geqq a\rightarrow\infty$ by bounded convergence, provided $u\in \mathfrak{D}[H^{a}]$ so that

$\int_{0}^{\infty}\mu^{2\alpha}d(E(\mu)u, u)=\Vert H^{\alpha}u\Vert^{2}<\infty$ . Similar results hold also for $0<a\leqq b\rightarrow 0$ .
This proves (A12). On letting $a\rightarrow 0,$ $ b\rightarrow\infty$ in (A15), and noting the estimates
given above, we obtain (A13).
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