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Mahlo, in his penetrating papers [5], [6] proposed an axiom of set
theory, assuring, roughly speaking, the existence of sets with very large
cardinals. Recently Lévy [3], [4] gave an elegant equivalent axiom, which
he called the axiom of strong infinity. Mahlo’s axiom can be also stated as
follows in making use of the concept of the super-complete model introduced
by Shepherdson [8] (We remind that a set « is called super-complete if and
only if

VaVy(xsa N(yExVyEx)—yEa);

and that a set ¢ is said to be a model of a set theory 7, if and only if the
theory holds, when all quantifiers of T are restricted on a.)

Let 7 be a function from sets to sets. A set « will be called a fixed point
of f, if and only if

Vi(xea—fx)Eaq).

A class A will be called dense, if and only if for every function there exists
a fixed point of this function which is an element of A. Then Mahlo’s axiom
means: The class of all the super-complete models of Bernays-Godel’s set
theory is dense.

To go further, let us denote with M° the Bernay-Goédel’s set theory. In
adding Mahlo’s axiom to M° we obtain a new set theory M?, with ‘much
more set’ than in M° More generally, a stronger set theory M®! is obtained
in adding the axiom: The class of all the super-complete models of M°® is
dense, to M? i=0,1,2,---. These M? will be called Mahlo’s set theories.

Let &(B) mean that B is the class of all the super-complete models of a
Mahlo’s set theory. &(A) (for a class A) will mean

IBINKB)AValae BAxSaNnxEa—ac A)).

Then we have easily
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1. &)

2. KGy,
where G, is the class of all the super-complete models of Bernays-
Godel’s set theory.

3. VAVB(R(A)NAES B R(B)).

4. VAV2(RA)— R((Ka)es ANxS a N x < a))),
where (Ko)W(e) means the class of sets satisfying W(e), i.e. {a| W)} in
the usual notation.

5. VARA)—*A is dense’).

6. If a closed formula 2 without & or ® is provable in this system, then
the class of all the super-complete models of A satisfies K.

Now we can make correspond to each function f from sets to sets, a
function F from sets to classes defined by

Fx)=(KbXf(x)€b).
A set o is then a fixed point of f, if and only if
(*) Vi(xear—ac Fx).

In the following a set ¢ will be called a fixed point of a function F from sets
to classes, if and only if () holds. Using this notion, 5 can be strengthened
into the following

5. Let F be a function from sets to classes such that Vx(&(F(x)), and B
the class of all the fixed points of F. Then we have §(B). Symbolically :

VANVxR(A {x}) — S(Ka)Va(x € a—a € A’{x}))),

where A”{x} means F(x) (cf. [I).

In adding a new predicate & satisfying 1, 2, 3, 4, 5/, 6 to Bernays-Godel’s
set theory, we obtain a theory 7T%®), which is stronger than any Mahlo’s
theory. We can now strengthen this in doing as follows.

Let a be a super-complete set and % a set of subsets of . The pair
<ka) is called a super-complete model of T%®), if and only if the theory
holds when every &(x) in T%®) is replaced by %<k and all quantifiers in
TYR) are restricted on ¢. The “Mahlo’s axiom for 7%8®)” will mean:

(Ka)dk(ka) is a super-complete model of T(&)) is dense.

In adding this axiom to T°(®), we obtain 7%(R) and in repeating this, T%R),
i=1,2,:--. Thus a new predicate &,, and a set theory T%(&, &,) will be obtained
from T%R), just as we have obtained & and 7°(R) from M°. In T%R, S, we have
axioms corresponding to axioms 1-6, 5" in T°%&). In particular 5’ becomes

VANV ,(A"{x}) — G (K ba))Va(x € a—a € DA {x})),
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where ® means “domain” (cf. [1]).

Beginning again from 7°(®,®,) we can define T4®,&,) i=1,2, -+, a new
predicate &,, a new set theory TYR,®,,®,) and so on.

In the next §1, we shall give a system of axioms of a set theory, which
is stronger than all these theories TR, &, ®,, ---). In §2 we give some pro-
perties of this system. It will be shown that our system contains ‘infinite
induction’ as an inference sheme. It has a role of an axiom of infinity, be-
cause it assures the existence of the super-compiete model of the system
without the infinite induction. In §3 we discuss the questions about relative
consistency of this system with a certain weaker system. We have not treated
the problem of relative consistency of Gédel’s V=L with our system, because
this seems to be very difficult. Finally we give in §4 still another system of
axioms of the same nature.

It seems to the author that our system cannot be strengthened any more
without introducing metamathematical concepts like the Goédel number into
the system. He is not quite sure of the consistency of the system.

He is grateful to Prof. Godel and Lévy for their kind discussions and
criticisms during his stay in the United States.

§1. Axioms and inferences.

We use the notations and notions in [1]. Other than basic symbols in
we use basic symbols K and .

The axioms fall into six groups. Groups A, D and E are the same as in
[1] Instead of Groups B and C we use the following Groups B’ and C’.

Group B’. VX;--VX,Vx, - Vx,Vx(x € K(u)W(u) — Ax)).

We shall consider the notations E, N, —, ®©, B, €ny, Cnv,, €nv, as the ade-
quate abbreviations expressed by basic symbols. (We use ~ instead of « in
[1], because we have to use - as the multiplication of integer. B(A) expresses
Vx A in [1])

Group C’ consists of C1, C2, C3 and C/4.

Cd, VAVxAWz(zey—ze ANzEX).

C’4 is Zermelo’s Aussonderungsaxiom and is weaker than C4 (axiom of replace-
ment). C4 follows, however, from C’4 and other axioms.
Group F.
1. 76(0).
2. ®&(B(H,), where H, is defined to be an abbreviation of (Ka)(VaVy(x € a A
(yExVyexr)—y<sa)Aa+0).

3. VAVBG(A) N A S B—&(B)).

4, YVAVx(E((A)— B(K<ba)) baye AN xS a A\ x=a))), where (K<ba))N(b,a)
is an abbreviation of (Kw)dbIa(u =<ba) N A, a)).



Axioms of infinity of set theory 223

5. YABA)—CUK badYXaX(T(A) N a) € b))).
6. VANVxSA”{x})— (K ba))Vx(xca—{ba) € A”{x}))).

Other than inferences in we use infinite induction and &-inference.
In order to state G-inference, we shall first define some notations. Let U be
a formula or a term and a be a set variable not contained in U. Then we
define U® from U by transforming all the quantifiers and M( ) in U as fol-
lows: VA, 3B, (Kx), W(T) to YAASa+— ), ABBSaAN ), Kx)xsaN ),
T* < a respectively.

Though deviating from [17], we define ¢ <b to be eSbANa<b. Then it
is easily seen that (VaB(x)* is Vax(x < a— FUx)).

(b/®) (substitution of » for &) is defined as follows. Let U be a formula
or a term. U(b/®) is obtained from U by transforming all the forms ¢(7") in
Uto Teb.

®&-inference. If A is a clossed formula which holds, then

SUK < ba))YA*Db/®))) also holds.
Infinite induction. If A() holds for every actually given integer
i(1=0, {0}, {0, {0}}, ---), then Viiew~—A\E) holds.

REMARK. The following axiom F5’ has a nicer form than F5:

F5. VYAGA)— S(Kba))A Nna> b))
F5 follows form F5’ (and other axioms) taking ¥V X ®©(A) in place of A.

But the author is afraid if it is “too strong”. It is to be noted that the
axiom of the form

A QUK (ba))A%b/®))

will lead to a contradiction by similar arguments as in with the aid of
¢ Godel number’. (See below.)

§ 2. Some properties of the system.

PROPOSITION 1. &(V).

Proor. This follows from F2 and F3.

PROPOSITION 2.

Va(x € c—GA"{x}) = S(Kba))Vx(x € c—ba) € A"{x})).
ProOOF. We define B by the following :

xsc— B {x}=A"{x},
xEc—B{x}=V.
We see clearly Va®(B”{x}). By F6 and F4 we have
S(Kba))Vxlxsa—<ba)y e B'{x}) AcSaAc<Ea),
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therefore, (K {bad)(Vx(xsc—<bad € B"{x}) Nc S a Nc < a)). Invirtue of this
and F3 we have the proposition.
As a special case of we have
PROPOSITION 3. &(A), §(B)— (A N B).
DEFINITION. Let Z(A) be a term. €(A4, 3, «) is defined to be
(Ka)VB(B"{0} = AANYB(B <a— B"{B+1} =Z(B{A}H)
AVBB=a AP e Ky—B'{B}=E)r(r <B+x< B"{r})—ac B"{a}).
The following proposition is familiar.
PRrROPOSITION 4. &(A4,Z,0H)=A4
€A, 3%, a+1)=I(E4, 3, a)
ae K;—»6(A, %, a)=KaVpB <a—acs €A ST, H)).
We have easily
PROPOSITION 5. G(A), VX(G(X) — GE(X))— Ya(GB(&(4, T, a))).
PROPOSITION 6. &(A), VX(G(X) - SE(X))
—>G(K<{ba>)Vala € a—ba) = €A, B, a))).
PrOOF. We define B as follows:
B'{x}=€(4,%,x) if x=0n,
B’{x} =7V otherwise.

Then we have the proposition by F6.

DEFINITION. (§°A) is an abbreviation of G(B(A)).

The following proposition is clear.

PROPOSITION 7.

7&%0).

GUHy).

VAYB(G(A) N A S B—&UB)).

VAVx(SB(A) — S ((Ka)as ANxS a N xE a)).

VANVxG(A{x})— G (Ka)Vxlx € a—a s A”{x})).

Va(x € c— @A {x}) — B (Ka)Va(x € c— a € A" {x})).

©&°(A), VX(GU(X) — G E (X)) — S (Ka)Va(a € a—a = &(A, T, a))).

G(A), YX(S(X) — B (X)) — Ya(G(E(A4, T, a))).

G°(A4), VX(SU(X) — G (Ka)l(a, X)) — G (Ka)Va(a € a—Wa, €(A4, T, a)))),

where F(X) is an abbreviation of (Ka)W(a, X).
PROPOSITION 8. &°(A), Fuc(F)— @ (Ka)as ANVx(xE a— F'x € a))).
Proor. We define B by the following :

Vx(B"{x} =Kaacs ANF'x=aq)).

By Proposition 7 we have Yx&°%(B”{x}). Hence follows the proposition from
Proposition 7.
PROPOSITION 9. &°(A), Valx € a— Fnc(B"{x}))
—G(KD)b e ANVYVy(xEa Ny € b—(B"{x})y € b)).

© 0N w N
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PrOOF. The proposition follows from Proposition 7 and Proposition 8.
We have axiom of replacement, that is,

PrROPOSITION 10. VxVAUn(A)— IyVu(u = y— o € x A {ur) € A))).
PROOF. In virtue of C’4, we have only to prove

VaVAQu(A) — IyVo(v e x— A'v € y)),

which is clear from Proposition 8.
DEFINITION. G, is an abbreviation of H, ~(Ka)N?® where %A is the con-
junction of the axiom A4 and axioms of Group C. Clearly we have &°G,).
The following proposition is clear.
PrOPOSITION 11.
1. bea,csa—{bc})* = {bc}.
2. aesGybea,cesa—((bey)r=<bc).
3. ASa,asG,—(BA) =axXA,
where a, b, ¢, and A are considered as variables.
PROPOSITION 12. If B(A) contains no G-symbol, VXB(X) is closed and
VA(G(A)— B(A)) holds, then YAB(A)— G ((Ka)Ban A))) holds.
Proor. From the hypothesis of the proposition and &-inference follows
®&(C), where C is an abbreviation of

(Kbay)as GoAVx(x S aNaXxs b—BYX))).
B is defined to be

(K bayYax(ANna)EDb).
We have only to prove

(bayeC,acs A, (ba) e B—>B“an A),
which is clear.
DEFINITION. Mo(A) is an abbreviation of

VE@nw(F)—dx(xcs ANxs H Ay € x— F'y e 1)),
which is called Mahlo’s formula for A and is essentially due to Mahlo ([5]
and [6]).
M(a, A) is an abbreviation of

Vix S a ANFnx)— Iy anANyE H AV22Ey—1x'2 € y))).

The following proposition is clear.
PROPOSITION 13.

a < Gy—(Mo(A)— M(a, A). (A is a variable.)
7 Mo(0).

VAVx(Mo(A) — Mo((Ka)a € AN x < a))).
VAVB(Mo(A) N A = B— Mo(B)).

Mo(A) has similar properties with G°(A).

= o
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PROPOSITION 14. Mo(A), Fnc(F)— Mo(Ka)Xa € A AVx(x € a— F'x € a))).
PrROOF. Mo(Ka)as ANVx(x= a— F'x < @))) is equivalent to

VH@Ew(H)— Ay (Kaae AANVx(x€a—F'x € a)
ANye H AVzzey—~Hz< ).
We have, therefore, only to prove
Mo(A), Fue(F), Fn(H)—I(ye ANy € H,
ANVx(xey—FxeyyA\Vzzey— Hz<y),
which is clear by introducing new function F, as follows:
Fi/x={Fx Hx}.
Moreover, we have the following proposition.
PROPOSITION 15. &°(A)— Mo(A). _
ProOF. The proposition is clear by Proposition 8.
However, the following example shows the difference between &°(A) and
Mo(A). We set
A = GO
and
B=Ea)Ix@Fum) AViViiCo ANjEw Ni<j—xi<tDANa=\Jx'i).

tSw

Then we see Mo(A), Mo(B) and A~ B=0.

PROPOSITION 16. &°(A)— G (Ka)M(a, A)).

PrRoOOF. This follows from Proposition 12 and 13.

PrOPOSITION 17. &%(A)— G (Ka)Va(a € a— M(a, (A, T, «)))), where F(X)
is an abbreviation of (Ka)M(a, X).

Proor. This follows from Propositions 15 and 7.

A term T(A, -, A,) is called elementary, if it is contructed just by E,
Ny —s D, B, Cny, Cnp,, Cnos, Ay, -+, An.

If a term 7 is elementary and closed, then we define Gédel number g(T')
of T as follows:
g(E)=3.
g(Tin T,) =2 « 38T o 5&T,
g(—T)=2%+ 38D,
gD(I) =2 3D,
gB(T) =2 - 32
g@np(T)) =2 « 35D,
g(@np, (1)) =26 « 35D,
. g@npy (1)) =27+ 38D,

By the familiar method we can define a term R(A)7satisfying the follow-
ing conditions:

0O N> W
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NB)=F.

asw,bew—o>N2 3% 5°)=Na) N\ ND).
a<saw—N22 . 3= —N(a).

a € w—N2% + 3% =TN(a)).

a € w— N2 3% =BH(a)).

a < w—N2 » 3%) = EnvN(a)).

a < w— N2« 3%) = Enp,(N(a)).

a < w— N2+ 3%) = Cno,(N(a)).

According to [17], a sequence of natural numbers #,, #,, #,, --- are called
“definable (in this system)” if and only if there exists a term 7'(}) satisfying
the following condition :

1. TG)=mn; for every i(:=0,1,2,--).

2. T(0) has no free variable.

A sequence A, A, N,, --- of closed formulas is called ‘““definable” if and
only if the sequence of usual Godel numbers of U, A, N,, -+ (not in the sense
g(T)) is definable.

We see clearly that if the sequence %, %, %, --- is definable, then the
sequence

PN AW

UKL ba)) Wb/ NasGy))  (=0,1,2,-)
is also definable.
Let %, A, %A, --- be a definable sequence of provable formulas. Then there
exists a term 7'(¥) such that

T =g(KCba))Xgb/@)NaeGy))  (E=0,1,2,-).
Then Vi(i € o — &SN(T(4)))). Therefore we have
SUK L ba)Vii € w—ba) € T GE))),

which we set as ®(A). Here A means the class of all the super-complete
inner models, in which %, %, %, --- and Bernays-Godel’s set theory hold.
Let %A, %A, %A, --- be a definable sequence of closed provable formulas and
B,, B, B,, --- be a definable sequence of all the axioms (which contains axioms
of equality other than A, B/, C/, D, E and F). Then we define €, ¢, €,, --- as
follows :
€, is A, ADB,.

Consr I8 GUKDa)XCox(b/G)NasGy) (=0,1,2,.).
@2n+2 is @0 VANRALIVAN @271—!—1 A slrnﬂ A EBn+1 (n - O: 1; 2: ) .

The sequence €,, €,, G,, --- is clearly definable and is called a derived sequence
of A, AL, A, ---.
The following proposition is proved by the familiar method.
PROPOSITION 18. If N—B is closed and is probable without infinite induc-
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tion or @-infevence or axioms A, B, C', D, E, F, then also
Ax(x < @), N(b/®)— Bb/G)

is provable without infinite induction or &-infevece or axioms A, B’, C’, D, E, F.

PROPOSITION 19. Let Ay, W, Wy, <+ be a definable sequence of closed probable
Sormulas and §,, €,,C,, - be a dervived sequence of Wy, N\, N, ---. If B is prova-
ble from N, W, W, -, axioms of equality, A, B’, C', D, E, F and G-inference
(but without infinite induction), then there exists €, such that €,— B is provable
without infinite induction or &-inference, or A, B, C’/, D, E, F.

Proor. We prove this by induction on the number of inferences to prove
B. Clearly we have only to prove this in the case where B is of the form

GUKbaX)E(b/®))
and there exists €, such that €,,— D is provable without infinite induction or
®-inference, or A, B/, C’/, D, E, F. By Proposition 18 we see easily that
(K<bay)D(b/®) 2 (K{ba))Cab/G) N a € Gy)

is provable without infinite induction or @-inference or A, B/, C/, D, E, F.
Hence follows the proposition.

§3. Inversion of (-inference.

In this section we shall consider the following inference as a basic infer-
ence :

Inversion of G-inference. If A is a closed formula and &K< ba>)YAXb/®)))
holds, then % also holds.

First we shall reduce axioms C’4, D and E to the following weaker axioms
C4/, D’ and E’.

C4'. VaVyIzVulusz—ucs x A\ ucy).

D/. Vx(7E€mx)— Iy(y € x A Cr(y, x))).

E. VaVuluex—u+OAVuVvlusxANvex A\ u+v—Cylu, v))

—AwWz(z € x— 3 ulu € z N\ y))).
PROPOSITION 20. C’4 to can be veduced C4’ under inversion of S-inference.
ProOF. We have only to prove §&°(B), where B is

(KaV2Vx(z S aNnx<a—Ty(y<aANVulu<a—(usSy—u<SxA\uc<z))).

Clearly Hy, & B under C4’ therefore we have the proposition.

PROPOSITION 21. D can be reduced to D' under inversion of G-inference.
PrROOF. We have only to prove G%B), where B is

(Ka)VzV¥zSaAnx<aAzxcz—Ty(y<aAyszANVulu<a—7uwszAucy))).

Clearly H,< B follows from D’, therefore we have the proposition.
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PROPOSITION 22. Axioms E can be reduced to £’ under inversion of -
inference.

Now we shall reduce Group B’ to Group B. To the end, we use the
method of [10]. As we use Gentzen’s sequence in [10], we shall explain
notations. We say ‘a closed formula o is an axiom of a system S’, if and
only if ‘—% is a beginning sequence of S’.

The system S, is obtained from our original system by adding the inver-
sion of G-inference.

Group B” is defied by

VX, VX, V%, -V, 3 Y Va(x € Y= WAx)).

S, is obtained from S by replacing Group B’ by Group B” and all the
axioms and inferences containing K other than Group B’ by an equivalent
axiom without K, e.g.

SUKba))A*(b/G))
is replaced by

VX(Vu(u € X Tba(u = {ba) A\ N(/®))— &(X)),

which we shall denote by o).

Though our system contains infinite induction, the method of is still
valid for our system. ((Ku)(u))* is defined as {X}Va(x € X+ A*(x)), while other
*.operations are defined similarly as in [10]. Then we have the following

LEMMA. Let N be a formula and T a term with only free variable A,, -+, A,.
Then the following sequences are provable simultaneously in S;:

acsH, A Sa,,A, S a—W0/G)— Nb/G)*;
aceH,A Sa, - ,A,Sa—>ASaN\T*(b/G)A)—(TYb/®)*(A).

Propositions 1-5 of [10] can be proved for our system by the literally same
proof and Proposition 6 of [10] can be proved for our system as follows:

PROPOSITION 6 OF [107], If I'— 4 is provable in S,, then I'* — 4% is provable
in S;.

Proor. Suppose I'— 4 be a beginning sequence. Then the proposition is
clear. Therefore we have only to prove the proposition under the hypothesis
‘that II*— A* is provable in S, for every upper sequence Il - A4 of '—4. We
have only to consider the following cases:

0 — A
— GK (ba A (b/S))

where I'—4 is —&(K{ba))U*b/®)). By the hypothesis we have —U*
therefore we have

— VX(Vu(u € X 3Ib3a(u = < ba > AW (D/B))) — G(X)),
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whence follows the proposition by the preceding Lemmal

—G(K<ba s31)91"@/ &)

where I'— 4 is — . This case is proved by the same way as in 1).

—A0) —A1) —AQ2) -
—VYx(x € 0 —Uk))

2)

3)

where I' - 4 is »Vx(x € o — WA(x)). By the hypothesis the following sequences
are provable in S;:
—AK0), —AXL), —-AX2), -,
therefore we have — Va(x € w — A*(x)), whence follows — (Vx(x € o — N(x)))*.
Therefore we can reduce S, to S;. Now we shall prove that Group B” can
be reduced to Group B. To the end, we have only to prove Vu(uz € A—N(x))
— ®&(A), where Wx) is

Ab3a(ue = {bad ANVz, - Vzu,¥%, V221 SEa N Nz SEanx,<aN - Nx,<a
—3y(y S aAValx<a—(x€y—=B)N))

and B does not contain . Clearly we have only to prove B(H,) & A, which
follows from Group B and the other axioms (mainly C’4).

Now, we shall reduce the inversion of @-inference. S, is obtained from S,
by excluding inversion of &-inference.

First we shall prove the following lemma.

LEMMA. Let 4, be a system of axioms and consistent with S,. If o(N) is
provable from 4, is S,, then W and 4, are consistent from W and 4, ave consistent
with S,.

ProOOF. We have only to prove that if I'—4 is provable from % and 4,
in S,, then A, I'— 4 is provable from 4, in S..

If '-»4 is »A or —»B, where B is an axiom of 4, or a beginning
sequence of S,, then W, I'— 4 is clearly provable from 4, in S,.

Therefore we have only to prove that %, I'— 4 is provable from 4, in S,
under the hypothesis that ¥, IT— A is provable from 4, in S, for every upper
sequence II - A of I'— 4.

We have only to prove the case where IT— A4 is —B and I'— 4 is — o(B).

From the hypothesis — oA —B) and — p(A) are provable from 4, in S,,
therefore — p(®B) is also provable from 4, in S,.

In virtue of this lemma we can easily see that the inversion of G-inference
holds in the maximal consistent system containing S,, which we can obtain by
the usual method.

ProOPOSITION 23. If A, B, C/, D, F, G-inference and infinite induction are
consistent, then the inversion of 8-infevence is consistent with our oviginal system.
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§$4. Another system of axioms.
In this section we shall give another system of set theory with strong
axioms of infinity, which is closely related to the former system.
The new system is obtained from the former system by the following
modifications :
1) Introduce new basic symbols J( ) and J( , ) and eliminate &.
2) Replace Group F and @-inference by the following Group H and 3-inference.
Group H.
1. 7730).
2. J(H,), where H, is defined to be an abbreviation of
(Ka)(Vax¥y(xcsaAN(yvexVySx)—ysa)ANa+0).
VYAVB(I(A) N A S B— J(B)).
VAV (J(A) — I(Ka)e e AN x<a)), where b<a is an abbreviation of
bSaANbea.
5 VANVsIA"{x}) — I(Ka)Vx(x € a—a = A" {x}))).
6. VaVAR(x, A)— I, x N A)).
7. VARKXA) — I(Ka)I(a, A))).
J-inference.
If A is a closed formula and holds, then J(K(«)A%) also holds.

- w

The following properties are also proved in the new system in the same
way as in the former system.

ProrosITION 1. J(V).

PROPOSITION 2. Vi(x € c— JI(A"{x})—=I(Ka)Vrs(x s c—a s A" {x})).

ProPOSITION 3. J(A), I(B)— I(AN B).

DEFNITION. Let 3(A) be a term. ©(A4, ¥, ) is defined to be

(Ka)VB(B"{0} = AAVB(B <a— B"{f+1} =Z(B"{B})

AVBB=aNBe Ky—B'{f} =Ex)NNr(G <p—x€ B {r})—ac B"{a}).
PROPOSITION 4. J(A), VX(X(X) — IEX))— JKa)Va(a € a—a s &(A, T, a)).
PROPOSITION 5. J(A), Fnc(F)— I(Ke)ac ANVx(x € a— F'x < a))).
PROPOSITION 6. J(A), Va(x = a+— Fuc(B”{x}))

—JUKDbE ANVIVyx s a Ny Eb— (B {x})y< b))
PrOPOSITION 7. YVaVAUn(A) —FyWulusy—Tow s x A<{uv) € A)).
PROPOSITION & If B(A) contains no free varviable other than A and
YA(I(A) — B(A)) holds, then YAI(A)— J(Ka)BYa A))) also holds.
PROOF. In virtue of J-inference follows J(C), where C is an abbreviation
of
(Ka)¥x(x S a N\ J(a, x)— B(x)).
B is defined to be (Ka)3(a, A). We have only to prove

asCacs B->8anA)),
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which is clear.

PrOPOSITION 9. J(A)— Mo(A).

ProPOSITION 10. JI(A)— J(Ka)M(a, A)).

PROPOSITION 11. 3(A)— J(Ke)Vala € a— M(a, (A, T, o)), where T(X) is
an abbreviation of (Ka)M(a, X).

I, is defined to be

(Ka)3xdy(a =< xy ) N 3(x, 3)) -
A term T(A, -, A,) is called elementary, if it is constructed just by E,
L, N, — D, B, Cuy, Guy,, Cnv,, A, -, A,.
If a term T is elementary and closed, then we define Godel number g(7)
of T in the same way as$ in § 2, adding the condition

glln)=T7.
We define a term R(A) in the same way as in §2, adding the condition
NH=1I,.

The concepts that a sequence of natural numbers and a sequence of closed
formulas are ‘definable’ are defined in the same way as in § 2.

Then for any definable sequence %,, %A, A, --- of provable formulas, there
exists a term 7'(7) such that

TG =g(Ka)QA¢ N a<Gy)).

By an analogous argument as in § 2, we have
JI(Ka)Vii € o—a s RTH))),

which we set as J(A). Here A means the class of all the complete inner
models, in which %, A, A, --- and Bernays-Godel’s set theory hold.

A derived sequence of a definable sequence of closed provable formulas is
defined in the same way as in §2, by replacing the axiom F there by the
axiom H.

PROPOSITION 12. Let Wy, N, Wy, - be a definable sequence of closed provable
Jormulas and &,, €, §,, --- be a derived sequence of Wy, W,, Wy, --- . If B is provable
Srom Wy, N, Wy, -+, axiom of equality, A, B’, C’, D, E, H, and I-inference (but
without infinite induction), then there exists €, such that €,—B is provable with-
out infinite induction ov J-infinite or A, B/, C/, D, E, H.

We shall further consider the following inference as a basic inference.

Inversion of J-inference.

If A is a closed formula and J(Ke)A*) holds, then % also holds.

PROPOSITION 13.  Under inversion of J-inference, C'4, D and E can be
reduced to C'4, D’ and E’, respectively.

Group B” is defined to be all the axioms of Group B and the following B9.
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B9. 3AVaVy(xy) € A J(x, ¥)).
ProposiTION 14. If A, B”, C’/, D/, H, J-inference and infinite induction

are consistent, then the inversion of I-inference are consistent with our oviginal
system.

Institute for Advanced Study,
Tokyo University of Education
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