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The purpose of this paper is to give a theory of the anti-hermitian forms.
over a $\mathfrak{p}$ -adic quaternion algebra $\mathfrak{D},$ $i$ . $e$ . the unique quaternion division algebra
over a given $\mathfrak{p}$ -adic number field. We shall determine in \S 2 the types (in the
sense of Witt) of such anti-hermitian forms, showing that the type of an
anti-hermitian form over $\mathfrak{D}$ is uniquely determined by the parity of the
number of variables and by its discriminant, and that these two invariants
can be given arbitrarily (Theorem 3). \S 3 is concerned with the ’ maximal
integral lattice’ ; we shall prove the Witt decomposition theorem for such
lattices, and using this, obtain some results on the structure of the group of
automorphisms (or of similitudes) of an anti-hermitian form over $\mathfrak{D}$, which
are quite analogous to those obtained by Tamagawa for other classical groups.
\S 1 is of preliminary nature and contains some definitions and known results
indispensable for our considerations.

\S 1. Quaternionic anti-hermitian forms and the associated sesquilinear
forms.

1.1. Let $k$ be a field of characteristic different from 2, and let $\mathfrak{D}$ be a quater-
nion division algebra over $k$ , i. e. a division algebra with a basis ( $\epsilon_{0},$ $\epsilon_{1},$ $\epsilon_{2},$

$\epsilon_{3}\rangle$

over $k$ such that
$\epsilon_{0}=identity$ element ,

$\epsilon_{1}^{2}=\epsilon_{0}c_{1}$ , $\epsilon_{2}^{2}=\epsilon_{0}c_{2}(c_{1}, c_{2}\in k)$ ,

$\epsilon_{1}\epsilon_{2}=-\epsilon_{2}\epsilon_{1}=\epsilon_{3}$ .
For $\xi=\sum_{i=0}^{8}\epsilon_{i}\xi_{i}\in \mathfrak{D}$, the canonical involution $\xi\rightarrow\overline{\xi}$ of $\mathfrak{D}$ is given by

$\overline{\xi}=\epsilon_{0}\xi_{0}-\sum_{i=1}^{3}\epsilon_{i}\xi_{i}$

and the reduced norm of $\xi$ from $\mathfrak{D}$ to $k$ , denoted by $n(\xi)$ , is equal to $\xi\overline{\xi}$ . We $\cdot$

$*)$ T. Tsukamoto died on August 9, 1960, at the age of 23, by an accident in the
mountain climbing. This paper was written originally in Japanese as a report to a
seminar led by Professor T. Tamagawa and published in provisional form in “ Sugaku “.
vol. 12 (1961). This English version was edited bv I. Satake.
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denote by $\mathfrak{D}^{-}$ the set of all ‘ pure quaternions ’, $i$ . $e$ . those elements $\xi$ in $\mathfrak{D}$

such that $\overline{\xi}=-\xi$ . We usually identify $k$ with $\epsilon_{0}k\subset \mathfrak{D}$ .
Let $V$ be a finite-dimensional right vector space over $\mathfrak{D}$ . A mapping $\Phi$

from $V\times V$ into $\mathfrak{D}$ is called a sesquilinear form on $V\times V$, if it satisfies the
4ollowing conditions:
(1) $\Phi(x,y+y^{\prime})=\Phi(x,y)+\Phi(x,y^{\prime})$ ,

(2) $\Phi(x,y\alpha)=\Phi(x,y)\alpha$ ,

(1) $\Phi(x+x^{\prime},y)=\Phi(x,y)+\Phi(x^{\prime},y)$ ,

(2) $\Phi(x\alpha,y)=\overline{\alpha}\Phi(x,y)$ ,

for any $x,$ $x^{\prime},y,y^{\prime}\in V,$ $\alpha\in \mathfrak{D}$ . It is called anti-hermitian if in addition it satisfies
the condition
(3) $\Phi(y, x)=-\overline{\Phi(x,y})$

for all $x,y\in V$. A mapping $H$ from $V$ into $\mathfrak{D}^{-}$ is called an anti-hermitian form
on $V$, if the following conditions are satisfied:

(4) $ H(x\alpha)=\overline{\alpha}H(x)\alpha$ .
There exists a sesquilinear form $\Phi$ on $V\times V$ such that

(5) $H(x+y)-H(x)-H(y)=\Phi(x,y)-\overline{\Phi(x,y)}$ .
PROPOSITION 1. For an anti-hermitian form $H$ on $V$ the sesquilinear form

$\Phi$ satisfying the condition (5) is uniquely determined.
PROOF. It is enough to show that $H=0$ implies $\Phi=0$ . If $H=0$ , we have

for any $x,$ $y\in V,$ $\lambda\in \mathfrak{D}$

$\Phi(x,y)\lambda-\overline{\Phi(x,y)\lambda}=H(x+y\lambda)-H(x)-H(y\lambda)=0$ .
Hence

$\Phi(x,y)\lambda=\overline{\lambda}\Phi\overline{(x,y})$ .
Putting $\lambda=1$ , we see that $\Phi(x,y)$ is in $k$ . If $\Phi\neq 0$, it would follow that $\lambda=\overline{\lambda}$

for all $\lambda\in \mathfrak{D}$, which is a contradiction. $q$ . $e$ . $d$ .
Since in (5) we may replace $\Phi(x,y)$ by $-\overline{\Phi(y,x)}$ , it follows that the ses-

quilinear form $\Phi$ in (5) is anti-hermitian, and since the characteristic is dif-
ferent from 2, we have $H(x)=\Phi(x, x)$ . Conversely, given an anti-hermitian
sesquilinear form $\Phi$ on $V\times V,$ $H(x)=\Phi(x, x)$ becomes an anti-hermitian form
on $V$. Thus the anti-hermitian forms on $V$ and the anti-hermitian sesquilinear
forms on $V\times V$ are in one-to-one correspondence. The sesquilinear form $\Phi$

satisfying the condition (5) (viz. anti-hermitian and such that $\Phi(x,$ $x)=H(x)$)

is called the sesquilinear form associated with $H$.
From now on we shall fix once for all an anti-hermitian form $H$ on $V$

(and the associated anti-hermitian sesquilinear form $\Phi$ on $V\times V$). With this
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structure, $V$ is called an anti-hermitian space over $\mathfrak{D}$ . The relation of orthogo-
nality is defined with respect to $\Phi$ . For a vector subspace $W$ of $V$, we denote
by $W^{\perp}$ the subspace formed of all the vectors in $V$ which are orthogonal to
$W$. We assume in the following that $\Phi$ is ‘ non-degenerate ‘, $i$ . $e$ . that $V^{\perp}=\{0\}$ .

PROPOSITION 2. $V$ has an orthogonal basis.
PROOF. By virtue of Proposition 1, there exists a vector $x_{1}$ in $V$ such that

$H(x_{1})\neq 0$ . Then, denoting by $\{x_{1}\}_{\mathfrak{D}}$ the subspace generated by $x_{L}$ over $\mathfrak{D}$ and
putting $V^{\prime}=\{x_{1}\}_{\mathfrak{D}}^{\perp}$ , we have

$V=\{x_{1}\}_{\mathfrak{D}}+V^{\prime}$ (orthogonal sum).

Since the restriction of $\Phi$ on $V^{\prime}\times V^{\prime}$ is again non-degenerate, the Proposition
follows by induction on the dimension of V. $q$ . $e$ . $d$ .

1.2. The following two propositions are special cases of Witt’s theorems. For
the proofs, we refer to Bourbaki [1] or Dieudonn\’e [2].

PROPOSITION 3. Let $W_{1},$ $W_{2}$ be two subspaces of V. Then any linear iso-
morpltism $\rho$ from $W_{1}$ onto $W_{2}$ such that $H(\rho(x))=H(x)$ for all $j\zeta j\in W_{1}$ can be
extended to an automorphism of the anti-hermitian space $V$.

PROPOSITION 4. $V$ can be decomposed in the following form:

(6) $V=V_{0}+\sum_{i=1}^{\nu}\{e_{i}, e_{i^{\prime}}\}_{\mathfrak{D}}$ (orth. sum),

$u’ here$

$H(e_{i})=H(e_{i^{\prime}})=0$ , $\Phi(e_{i}, e_{i^{\prime}})=1$ $(1 \leqq i\leqq\nu)$

and $V_{Q}$ is ‘ anisotropic ’ ( $i$ . $e$ . $x\in V_{0},$ $H(x)=0$ imply $x=0$). Moreover this decom-
position is unique up to an automorphism of the anti-hermitian space $V$.

The decomposition (6) is called a Witt decomposition and $\nu$ the index of $V$

(or of $H$). The (unique) isomorphism class of $V_{0}$ is called the type of $V$. We
write $V\sim V^{\prime}$ if $V,$ $V^{\prime}$ belong to the same type. We define an addition of types
by calling the type of the direct sum $V_{1}+V_{2}$ the sum of the types of $V_{1}$ and
$V_{2}$ ; the ‘ zero type’ is given by the type of the space of dimension $0$ , and
the inverse of the type of $V$ with the anti-hermitian fcrm $H$ is given by the
type of the same space $V$ with $-H$. Thus the set of all the types of the
anti-hermitian spaces over $\mathfrak{D}$ forms a commutative group, called the Witt group
and denoted by $Z$.

It is clear that, if $V$ is of dimension $n$ , the ‘ parity ’ of $n$ (viz. $(-1)^{n}$)

depends only on the type of $V$. We denote by $\sigma\tau^{+}$ the subgroup of 9 formed
of all the $\iota$ even ‘ types, $i$ . $e$ . the types of the spaces of even dimension.

1.3. We define the discriminant $\delta(V)$ of an anti-hermitian space $V$ as follows.
Let $(,Y_{1}, \cdots , x_{n})$ be a basis of $V$ over $\mathfrak{D}$ . Denoting by $N$ the reduced norm from
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$M_{n}(\mathfrak{D})^{*)}$ to $k$, we put

(7) $\delta(V)=(-1)^{n}N((\Phi(x_{i}, x_{j})))$ $(mod (k^{*})^{2})$ ,

where $k^{*}$ is the multiplicative group of the non-zero elements in $k$ . Clearly
$\delta(V)$ does not depend on the choice of the basis $(x_{\dot{t}})$ and actually depends only
on the type of $V$, as we have $\delta(V)=\delta(V_{0})$ . Also it is clear that

$\delta(V+V^{\prime})=\delta(V)\delta(V^{\prime})$

for the direct sum $V+V^{\prime}$ . Thus we have the following
PROPOSITION 5. The mapping $V\rightarrow\delta(V)$ is a homomorphism from the $TT/^{-}itF$

group $q$ into $k^{*}/(k^{*})^{2}$ .

\S 2. Determination of the types in the case of local fields.

2.1. Throughout this paper we keep the notations in \S 1. For $a,$
$a^{\prime}\in k^{*}$ , we

write $a\sim a^{\prime}$ if $a^{\prime}/a$ is a square in $k^{*}$ . In this section, $k$ is assumed to satisfy
the following condition:
(C) The local class field theory for quadratic extensions holds in $k;i$ . $e$ . there
exists $a$ one-to-one correspondence between the classes in $k^{*}/(k^{*})^{2}$ of the elements
$a\sqrt{}\cdot 1$ and the subgroups $1\psi$ of $k^{*}oJ$ index 2 by the relation $M=N(k(\sqrt{a})^{*}),$ $N$

denoting the norm from $h(\sqrt{a})$ to $k$ .
We exclude the trivial case where $k^{*}=(k^{*})^{2}$ . Then it can easily be shown
that there exists one and only one quaternion division algebra $\mathfrak{D}$ over $k$ (up
to an isomorphism) and that every element $a$ in $k^{*}$ is a square of some element
in $\mathfrak{D}$ . (If $a\sqrt{}\cdot 1,$ $a$ is a square of some element in $\mathfrak{D}^{-}.$) We distinguish two
cases.

Case (I): $[k^{*} : (k^{*})^{2}]=2$ . In this case, $k$ has a unique quadratic extension
$K$ and we have $n(\mathfrak{D}^{*})=N(K^{*})=(k^{*})^{2},$ $\mathfrak{D}*^{\prime}$ denoting the multiplicative group of
the non-zero elements in $\mathfrak{D}$ . ‘ Real closed fields ’ belong to this case.

Case (II): $[k^{*} : (k^{*})^{2}]>2$ . In this case, we have $n(\mathfrak{D}^{*})=k^{*}$ . ’ p-adic number
fields’ belong to this case.

LEMMA 1. Under the above assumptions, $\mathfrak{D}$ satisfies the following property.
(N) For non-zero elements $\xi,$

$\eta$ in $\mathfrak{D}^{-}$ , there exists an element $\alpha$ in $\mathfrak{D}^{*}suc/\iota\neg$

that $\eta=\overline{\alpha}\xi\alpha$ , if and only if $n(\xi)\sim n(\eta)$ .
PROOF. The ‘ only if ‘ part of (N) is trivial. To prove the ‘ if ‘ part, let

$\xi,$
$\eta$ be non-zero elements in $\mathfrak{D}^{-}$ such that $n(\eta)=n(\xi)a^{2}$ with $a\in k^{*}$ . Since

every element in $k^{*}$ is a square of some element in $\mathfrak{D}^{*}$ , there exists $\alpha\in \mathfrak{D}^{*}$

such that $a=\alpha^{2}$ . Then it follows that

$(\overline{\alpha}\xi\alpha)^{2}=-n(\overline{\alpha}\xi\alpha)=-n(\alpha)^{2}n(\xi)=-a^{2}n(\xi)=-n(\eta)=\eta^{2}$ ,

$*)$ For any ring $R,$ $M_{n}(R)$ denotes the ring of all $n\times n$ matrices with components
in $R$ .
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so that $k(\overline{\alpha}\xi\alpha),$ $k(\eta)$ are mutually isomorphic quadratic extensions of $k$ con-
tained in $\mathfrak{D}$ . Therefore they must be transformed to each other by an inner
automorphism of $\mathfrak{D}$ , i. e. there exists $\beta\in \mathfrak{D}^{*}$ such that $\overline{\alpha}\xi\alpha=\beta\eta\beta^{-1}$ or

$ n(\beta)^{-1}\overline{\alpha\beta}\xi\alpha\beta=\eta$ .
If $n(\beta)\in n(k(\eta))$ , then, by replacing $\beta$ by $\beta\eta$ with a suitable $\eta$ in $k(\eta)$ , we may
assume that $n(\beta)=1$ , finishing the proof. This is surely the case in Case (I).

In Case (II), every element in $k^{*}$ being a norm of some element in $\mathfrak{D}^{*}$ , we can
find $\alpha,$

$\alpha^{\prime}\in \mathfrak{D}^{*}$ such that $n(\alpha)=a,$ $n(\alpha^{\prime})=-a$ . Then quite similarly as above,

we see that there exist $\beta,$ $\beta^{\prime}\in \mathfrak{D}^{*}$ such that $\overline{\alpha}\xi\alpha=\beta\eta\beta^{-\iota},\overline{\alpha}^{\prime}\xi\alpha^{\prime}=\beta^{\prime}\eta\beta^{\prime-1}$ , and
that the Lemma holds if $n(\beta)$ or $n(\beta^{\prime})$ is in $n(k(\eta))$ . Therefore it remains only
to consider the case where $n(\beta),$ $n(\beta^{\prime})\not\in n(k(\eta))$ . In this case, we have, from
the local class field theory, $n(\beta)^{-1}n(\beta^{\prime})\in n(k(\eta))$ . On the other hand, we have

$n(\alpha)^{-1}\alpha\beta\eta(\alpha\beta)^{-1}=\xi=n(\alpha^{\prime})^{-1}\alpha^{\prime}\beta^{\prime}\eta(\alpha^{\prime}\beta^{\prime})^{-1}$ .
Hence, putting $\gamma=\beta^{-1}\alpha^{-1}\alpha^{\prime}\beta^{\prime}$ , we have

$n(\gamma)=-n(\beta)^{-1}n(\beta^{\prime})\in-n(k(\eta))$ ,

$\gamma^{-1}\eta\gamma=-\eta$ .
It follows that $(1, \eta, \gamma, \eta\gamma)$ forms a basis of $\mathfrak{D}$ over $k$ and that $\gamma^{2}$ , commuting
with both $\eta$ and $\gamma$ , belongs to $k$ . Hence $\gamma$ belongs to $\mathfrak{D}^{-}$ . But then we have
$\gamma^{2}=-n(\gamma)\in n(k(\eta))$ , contradicting the fact that $\mathfrak{D}$ is a division algebra. $q$ . $e$ . $d$ ,

2.2. Let $a_{1},$ $\cdots$ , $a_{n}$ be $n$ elements in $k^{*}$ such that $a_{i}’ 61$ and let $\alpha_{i}$ be $n$ ele-
ments in $\mathfrak{D}^{-}$ such that $\alpha_{i^{2}}=-n(\alpha_{i})=a_{i}(1\leqq j\leqq n)$ . Call $V$ an n-dimensional
anti-hermitian space over $\mathfrak{D}$ with an orthogonal basis $(x_{1}, \cdots , x_{n})$ such that
$H(x_{i})=\alpha_{i}$ . It follows from Lemma 1 that the structure of the anti-hermitian
space $V$ depends only on the classes of the $a_{i}$ modulo $(k^{*})^{2}$ . Hence we shall
write $V=V(a_{1}, \cdots, a_{n})$ . By Proposition 2 all anti-hermitian spaces are obtained
in this manner. It is clear from (7) that

(8) $\delta(V(a_{1}, \cdots, a_{n}))=a_{1}\cdot\cdots\cdot a_{n}$ .
We shall make a free use of these notations in the rest of this section.

THEOREM 1. If $k$ satisfies the condition (C), any anti-hermitian space over
$\mathfrak{D}$ of dimension $\geqq 4$ contains an isotropic vector ( $i$ . $e$ . a non-zero vector $x$ such
that $H(x)=0)$ .

PROOF. It is enough to consider the case $V=V(a_{1}, a_{2}, a_{3}, a_{4})$ . Then, since
the dimension of $\mathfrak{D}^{-}$ over $k$ is 3, we have, in the above notations, a non-
trivial linear relation $\sum_{i=1}^{4}\alpha_{i}l_{i}=0$ with $l_{i}\in k$ . As $n(\alpha_{i}l_{i})=n(\alpha_{i})l_{i^{2}}$ , there exist by

Lemma 1 $\lambda_{i}\in \mathfrak{D}(1\leqq i\leqq 4)$ such that $\alpha_{i}l_{i}=\overline{\lambda}_{i}\alpha_{i}\lambda_{i}$ . Then the $\lambda_{i}$ are not all zero
and we get $H(\sum_{i=1}^{4}x_{i}\lambda_{i})=\sum_{i=1}^{4}\overline{\lambda}_{i}\alpha_{i}\lambda_{i}=0$ . $q.e$ . $d$ .
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REMARK. As is seen from the above proof, Theorem 1 holds whenever $\mathfrak{D}$

satisfies the condition (N).

THEOREM 2. In Case (I), the Witt group 9’ is a group of order 2 consisting

of the zero type and the type of $V(c)$ wilh $c’/\cdot 1$ .
PROOF. Since $[k^{*} : (k^{*})^{2}]=2$ , there exists only one type of the space of

dimension 1. Hence by Proposition 4 it is enough to show that any anti-
hermitian space $V$ of dimension $\geqq 2$ contains an isotropic vector. Let $V=$

$V(a_{1}, a_{2})$ . Then, in the above notations, we have $a_{1}a_{2}=n(\alpha_{1})\cdot n(-\alpha_{\underline{\supset}})\sim 1$ , so
that by Lemma 1 there exists $\lambda$ in $\mathfrak{D}^{*}$ such that $H(x_{1}\lambda+x_{2})=\overline{\lambda}\alpha_{1}\lambda+\alpha_{2}=0$ .

$q$ . $e$ . $d$ .
LEMMA 2. In Case (II), the mapping $\delta$ is an isomorphism from EIZ“ $+$ onto

$k^{*}/(k^{*})^{2}$ .
PROOF. Let $V=V(a_{1}, a_{2})$ . If $\delta(V)=a_{1}a_{2}\sim 1$ , then $V$ is shown to contain

an isotropic vector just as in the proof of Theorem 2. This, combined with
Theorem 1, proves that $\delta$ is injective on $g+$ . On the other hand, since we
are in Case (II), $k^{*}/(k^{*})^{2}$ contains more than three elements. Hence, for any
$c\in k^{*}$ , we can find $a_{1},$ $a_{2}\in k^{*}$ such that $a_{i^{\prime}}\star 1(i=1,2)$ and $a_{1}a_{2}\sim c$ . We have
then $\delta(V(a_{1}, a_{2}))=a_{1}a_{2}\sim c$ . This proves that $\delta$ restricted on $\sigma^{+}$ is surjective.

$q$ . $e$ . $d$ .
THEOREM 3. In Case (II), the type of an anti-hermitian space $V$ over $\mathfrak{D}$ is

completely determined by the parity of $\dim V$ and by the discriminant $\delta(V)$ , which
can be prescribed arbitrarily. The list of all the anisotropic $anti- hermi[ian$ spaces
$V_{0}$ over $\mathfrak{D}$ is as follows:

$\underline{\frac{\dim V_{0}}{}\frac{2}{3}\frac{0}{1}\frac|_{\frac{c\prime\rho 1}{1}}^{\frac{\delta(,V_{0})}{1}}\frac\frac{c\star 1}{}}$

PROOF. The existence of $V$ of dimension 1 with given $\delta(V)_{2^{6}}1$ is obvious
and the corresponding statement for dimension 2 was shown in the proof of
Lemma 2. The existence of $V$ of dimension 3 with $\delta(V)=1$ is shown as fol-
lows. Call $V_{1},$ $V_{2}$ respectively the spaces of dimension 1 and 2 with $\delta(V_{1})=$

$\delta(V_{2})$, and put $V=V_{1}+V_{2}$ (direct sum). Then we have $\delta(V)=\delta(V_{1})\delta(V_{2})\sim 1$ .
Therefore, since the maximal anisotropic subspace of $V$ can not be of dimen-
sion 1, $V$ itself must be anisotropic. Finally, if $V,$ $V^{\prime}$ have the same parity
and discriminant, then, the type $V-V^{\prime}$ belonging to $\mathcal{J}^{+}$ and having the
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discriminant 1, we have $V\sim V^{\prime}$ by Lemma 2. $q$ . $e$ . $d$ .

\S 3. Maximal lattices in an anti-hermitian spaces over a $\mathfrak{p}$-adic quaternion
algebra.

3.1. In this section, $k$ is a p-adic number field. We denote by $\mathfrak{O},$ $\mathfrak{P}=\Pi \mathfrak{O}=$

$\mathfrak{O}\Pi$ the unique maximal order in $\mathfrak{D}$ and the unique prime ideal in $\mathfrak{O}$ , respec-
tively, $\Pi$ denoting a generator of $\mathfrak{P}$ . Then any ideal $\mathfrak{Q}$ in $\mathfrak{D}$ (with respect
to the maximal order $\mathfrak{O}$) is a power of 8 and thus two-sided and principal.
$0=\mathfrak{O}_{\cap}k,$ $\mathfrak{p}=\mathfrak{P}\cap k$ are the ring of $\mathfrak{p}$ -adic integers in $k$ and the unique prime
ideal in $0$ , respectively; we may write $\mathfrak{p}=\pi 0,$ $\pi=\Pi 2$ For $\alpha\in \mathfrak{D}^{*}$ (resp. $a\in h^{*}$).

we indicate that $\alpha \mathfrak{O}=\mathfrak{P}^{m}$ (resp. $ao=\mathfrak{p}^{m}$) by writing $ord_{\mathfrak{P}}\alpha=m$ (resp. $ord_{\mathfrak{p}}a=m$).

In the following, we fix once for all an ideal $\mathfrak{Q}=\mathfrak{P}^{m}=\omega \mathfrak{O}$ in $\mathfrak{D}$ and put $\mathfrak{Q}^{-}=$

$\{\xi-\overline{\xi}|\xi\in \mathfrak{Q}\}$ .
A subset $M$ of an anti-hermitian space $V$ over $\mathfrak{D}$ is called a lattice in $V$

if it is a right O-module with finite generators containing a basis of $V$ over
$\mathfrak{D}$ . A lattice $M$ is called Q-integral if we have

(9) $H(x)\in \mathfrak{O}^{-}$

for all $x\in M$. A lattice $M$ is called maximal $\mathfrak{Q}$ -integral if it is Q-integral and
maximal in the class of lattices with this property.

PROPOSITION 6. If $M$ is a Q-integral lattice in $V$, we have

(10) $\Phi(x,y)\in \mathfrak{Q}$

for all $x,y\in M$.
PROOF. As is seen from the formula

$H(x+y\lambda)-H(x)-H(y\lambda)=\Phi(x,y)\lambda-\overline{\lambda}\overline{\Phi(x,y)}$ ,

it is sufficient to show that the set ee defined by

$\mathfrak{X}=$ { $\xi|\xi\in \mathfrak{D},$
$\xi\lambda-\overline{\lambda\xi}\in \mathfrak{Q}^{-}$ for all $\lambda\in \mathfrak{O}$ }

is contained in Q. It is clear that $\mathfrak{X}$ is an ideal (with respect to O) contain-
ing Q. We shall first show that $\mathfrak{X}\cap k=\mathfrak{Q}\cap k$ . In fact, if $\xi\in \mathfrak{X}\cap k$ we have
$\xi\lambda-\xi\overline{\lambda}=\xi(\lambda-\overline{\lambda})\in \mathfrak{O}^{-}$ . As the residue class field $\mathfrak{O}/\mathfrak{P}$ is a quadratic extension
of $0/\mathfrak{p}$ , there exists $\lambda\in \mathfrak{O}$ such that $\lambda-\overline{\lambda}$ is a unit in $\mathfrak{O}$ . Therefore, we have
$\xi\in \mathfrak{Q}$ , as desired. In case $m$ is odd, this shows already that $\mathfrak{X}=\mathfrak{Q}$ . If $m$ is
even, we may write $m=2m^{\prime},$ $\mathfrak{Q}=\pi^{m^{\prime}}\mathfrak{O}$ , and it sufficies to show that $\pi^{m^{r}}\Pi^{-1}\not\in \mathfrak{X}$ .
If this were not the case, we would have $\pi^{m^{\prime}}\Pi^{-1}\lambda-\pi^{\overline{m_{\Pi^{-1}\lambda\in}^{f}}}\mathfrak{Q}^{-}$ for any $\lambda\in \mathfrak{O}$ ,

which means (for $\lambda=1$) that there exists an element $a$ in $k$ such that
$a+\pi^{m^{\prime}\Pi^{-1}}\in \mathfrak{Q}$ . Since $ord_{\mathfrak{P}}a$ is even and $ord_{\mathfrak{P}}(\pi^{m_{\Pi^{-i})}^{\prime}}$ is odd, we must have
$\pi^{m_{\Pi^{-}}^{\prime}}$ $\in \mathfrak{Q}$ , which contradicts $\mathfrak{Q}=\pi^{m^{\prime}}\mathfrak{O}$ . $q$ . $e$ . $d$ .

LEMMA 3. Let $M$ be an $\mathfrak{O}$ -sztbmodule in $Vgene7ated$ by a subset $S$ of $V$.
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Then, in order that $M$ be a $\mathfrak{Q}$ -integral lattice, it is necessary and sufficient that
the following conditions be satisfied:

1) $S$ contains a basis of $V$ over $\mathfrak{D}$,

2) $H(x)\in \mathfrak{Q}^{-}$ , $\Phi(x,y)\in \mathfrak{O}$ for all $x,y\in S$.
This is an immediate consequence of the formulas (4), (5) and Prop. 6.

3.2. THEOREM 4. If $V$ is anisotropic, the subset $M$ of $V$ defined by

(11) $M=\{x\in V|H(x)\in Q^{-}\}$

is a $\mathfrak{Q}$ -integral lattice in V. (Hence $M$ is a unique maximal Q-integral lattice
\’in $V.$)

PROOF. By Lemma 3 it is enough to show that $H(x),$ $H(y)\in \mathfrak{Q}^{-}$ imply
$\Phi(x,y)\in \mathfrak{Q}$ . Suppose that $\beta=\Phi(x,y)\not\in$ Q. Then, putting $H(x)=\xi-\sigma^{-}\leftarrow,$ $H(y)=$

$\eta-\overline{\eta}$ with $\xi,$ $\eta\in \mathfrak{Q}$ , we have

$ H(x+y\lambda)=(\xi-\overline{\xi})\theta(\beta\lambda-\overline{\beta\lambda})+\overline{\lambda}(\eta-\overline{\eta})\lambda$ .
Making a substitution $\lambda=-\beta^{-1}\xi+\lambda_{1}$ , we get

$H(x+y\lambda)=(\xi_{1}-\overline{\xi}_{1})+(\beta_{1}\lambda_{1}-\overline{\beta_{1}\lambda_{1}})+\overline{\lambda}_{1}(\eta_{1}-\overline{\eta}_{1})\lambda_{1}$ ,
where

$\xi_{1}=\overline{\beta^{-1}\xi}\eta\beta^{-1}\xi$ ,

$\beta_{1}=\beta-\overline{\beta^{-1}\xi}(\eta-\overline{\eta})\equiv\beta$ $(mod Q)$ .
Hence if we define $\xi_{i},$ $\beta_{i},$ $\lambda_{i}$ successively by

$\xi_{i}=\overline{\beta_{i-1}^{-1}\xi}_{i-1}\eta\beta_{i-1}^{-1}\xi_{i-1}$ ,

$\beta_{i}=\beta_{i-1}-\overline{\beta_{i-1}^{-1}\xi}_{i-1}(\eta-\overline{\eta})$ ,

$\lambda_{i}=\lambda_{i-1}+\beta_{i-1}^{-1}\xi_{i-1}$ ,

we have
$H(x+y\lambda)=(\xi_{i}-\overline{\xi}_{i})+(\beta_{i}\lambda_{i}-\overline{\beta_{i}\lambda_{i}})+\overline{\lambda}_{i}(\eta-\overline{\eta})\lambda_{i}$ ,

$\xi_{i}\in Q\mathfrak{P}^{2i}$ $\beta_{i}\equiv\beta$ $(mod Q)$ .
$\mathbb{H}ence$ putting $\lambda_{i}=0$ , we get

$H(x+y\mu_{i})=\xi_{i}-\overline{\xi}_{i}$ ,

where $\mu_{i}=-\beta^{-1}\xi-$ $-\beta_{i-1}^{-1}\xi_{i-1}$ . Making $i$ tend to infinity, we have $\xi_{i}\rightarrow 0$ ,
$\mu_{i}\rightarrow\mu\in \mathfrak{P}$ so that $H(x+y\mu)=0$ . Hence by the assumption, $ x=-y\mu$ . But
then we get $\beta=\Phi(x,y)=-\overline{\mu}H(y)\in Q$ , which is a contradiction. $q$ . $e$ . $d$ .

THEOREM 5. Let $V$ be an anti-hermitian space over $\mathfrak{D}$ with index $\nu$ and $M$

a maximal $\mathfrak{Q}$ -integral lattice in V. Then $M$ can be decomposed in the following

form:
(12) $M=M_{0}+\sum_{i=1}^{\nu}\{e_{i}, e_{i}‘\}$ (orthogonal sum) ,
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where $M_{0}$ is the unique maximal Q-integral lattice in a maximal anisotropic sub-
space $V_{0}$ of $V$ and the $e_{i},$

$e_{i^{\prime}}$ are such that

$H(e_{i})=H(e_{t^{\prime}})=0$ , $\Phi(e_{i}, e_{i}^{\prime})=\omega$ ,

and where $\{e_{i}, e_{i^{\prime}}\}_{\mathfrak{O}}$ denotes the $\mathfrak{O}$ -submodule generated by $\{e_{i}, e_{i^{\prime}}\}$ . Conversely,
any lattice decomposable in the form (25) with $M_{0},$ $e_{i},$ $e_{i^{\prime}}(1\leqq i\leqq\nu)$ as described
above is a maximal Q-integral lattice in $V$.

PROOF. We prove the Theorem by induction on $\nu$ . If $\nu=0$ , it is trivial.
Assume $\nu>0$ . Let $e_{i}$ be any ’ primitive ’ isotropic vector in $M$ (That $x\in M$

is primitive means that $\chi\Pi^{-1}\in\in M.$) Consider the set
$\{\Phi(e_{1}, x)|x\in M\}$ .

By Proposition 6 it is clear that this is an ideal contained in O. We shall
show that this is actually equal to $Q$ . Let $x_{1}$ be an element in $M$ such that
$\Phi(e_{1}, x_{1})$ generates this ideal. For any $x\in M$, putting $\alpha=\Phi(e_{1}, x_{1})^{-1}\Phi(e_{1}, x)\in \mathfrak{O}$ ,

we have $x=x^{\prime}+x_{1}\alpha,$ $\Phi(e_{1}, x^{\prime})=0$ . This shows that $M=(M_{\cap}\{e_{1}\}_{\mathfrak{D}}^{\perp})+\{x_{1}\}_{\mathfrak{O}}$ .
Hence, if $ord_{\mathfrak{P}}\Phi(e_{1}, x_{1})>m$ , the set $S=MU\{e_{1}\Pi^{-1}\}$ would satisfy the condition
of Lemma 3 and thus generate a Q-integral lattice containing $M$ and $e_{1}\Pi^{-1}$ ,

contradicting the maximality of $M$ This proves our assertion. It follows
that we may choose $x_{1}$ in such a way that $\Phi(e_{1}, x_{1})=\omega$ . Put $H(x_{1})=\xi_{1}-\overline{\xi}_{1}$ .
Then, putting $e_{1}^{\prime}=e_{1}\beta+x_{1},$ $\beta=\overline{\omega}^{-1}\xi_{1}\in \mathfrak{O}$, we get $H(e_{1}^{\prime})=\overline{\beta}\omega-\overline{\omega}\beta+H(x_{1})=0$ .
Thus we have proved that there exists in $M$ a pair of isotropic vectors $e_{1},$

$e_{1}^{\prime}$

such that $\Phi(e_{1}, e_{1^{\prime}})=\omega$ . Now, let $\{e_{1}, e_{1}^{\prime}\}$ be any such pair and put

$V^{\prime}=\{e_{1}, e_{1}^{\prime}\}_{\mathfrak{D}}^{\perp}$ , $M^{\prime}=M\cap V^{\prime}$ .
Then, as $M$ is maximal Q-integral in $V$, so is $M^{\prime}$ in $V^{\prime}$ . Any $x\in V$ can be
written uniquely in the form

$x=e_{1}\gamma+e_{1^{\prime}}\delta+x^{\prime}$ with $x^{\prime}\in V^{\prime}$ ,

where we have $\gamma=-\overline{\omega}^{-1}\Phi(e_{1}^{\prime}, x),$ $\delta=\omega^{-1}\Phi(e_{1}, x)$ . Hence $x\in M$, if and only if
$\alpha,$ $\beta\in \mathfrak{O},$ $x^{\prime}\in M^{\prime}$ . Thus we have

$M=\{e_{1}, e_{1}^{\prime}\}_{\mathfrak{O}}+M^{\prime}$ (orthogonal sum),

which proves, by the induction assumption on $M^{\prime}$ , that $M$ is decomposed in the
form (12). Conversely, if $M$ is of the form (12), $M$ is a Q-integral lattice by
Lemma 3 and $M^{\prime}=M_{\cap}V^{\prime}$ is a maximal Q-integral lattice in $V^{\prime}$ by the induc-
tion assumption. If $x$ is any element contained in a Q-integral lattice $\tilde{M}$

containing $M$, we get, in the above notation, $\gamma,$
$\delta\in \mathfrak{O}$ so that $x^{\prime}$ is in a Q-

integral lattice $\tilde{M}_{\cap}V^{\prime}$ containing $M^{\prime}$ , hence in $M^{\prime}$ itself by the maximality
of $M^{\prime}$ . Therefore we have $x\in M$, proving the maximality of $M$ This com-
pletes our proof by induction.

REMARK. From the above proof, we note that as $e_{1}$ we may take any



396 T. TSUKAMOTO

primitive isotropic vector in $M$ and that as $\{e_{1}, e_{1}^{\prime}\}$ we may take any pair of
isotropic vectors in $M$ satisfying the relation $\Phi(e_{1}, e_{1}^{\prime})=\omega$ . We call a decom-
position of $M$ of the form (12) a Witl decomposition of $M$ By Proposition 4
and Theorem 4, it is clear that the Witt decomposition of $M$ is unique up to
an automorphism of $M(i$ . $e$ . an automorphism of the anti-hermitian space $V$

leaving $M$ fixed). In particular, it follows from what we have stated above
that any two primitive isotropic vectors (resp. any two pairs of isotropic
vectors satisfying the above condition) are mutually conjugate with respect
to the automorphisms of $M$.

3.3. By a similitude of the anti-hermitian space $V$ over $\mathfrak{D}$ we mean a linear
transformation $\rho$ of $V$ over $\mathfrak{D}$ such that

(13) $H(\rho(x))=aH(x)$

for all $x\in V,$ $a$ denoting an element in $k^{*}$ depending only on $\rho$ , called the
‘ multiplicator ’ of $\rho$ . If $\rho$ is a similitude of $V$ with multiplicator $a$ , we have
from Proposition 1
(14) $\Phi(\rho(x), \rho(y))=a\Phi(x, y)$

for all $x,y\in V$.
We shall now determine the general form of a similitude of $V$ leaving

fixed an isotropic line.
LEMMA 4. Let $\{e_{1}, e_{1}^{\prime}\}$ be a pair of isotropic vectors in $V$ such that $\Phi(e_{1}, e_{1}^{\prime})=$

$\omega$ and let $V^{\prime}=\{e_{1}, e_{1}^{\prime}\}\frac{1}{\mathfrak{D}}$ . Then, for any similitude $\rho$ of $V$ with multiplicator a
leaving $\{e_{1}\}_{\mathfrak{D}}$ invariant, we have

(15) $\{\rho(X^{1,}\rho(e^{1})_{=}e_{1^{1}}r+e^{\prime}a\omega^{-1}\overline{a}^{-1}\omega+\rho(x_{-}o_{1})_{\Phi(x_{0},x^{\prime})}\rho(e)_{)}=_{=_{e^{1}\xi}^{e\alpha_{+\rho^{1}(x),\xi=\alpha^{\prime}\overline{\omega}}}}$

,

for $x^{\prime}\in V^{\prime}$ ,

where $\alpha,$ $\gamma\in \mathfrak{D},$ $x_{0}\in V^{\prime}$ satisfying the relation

(16) $ H(x_{0})=\overline{\omega}\alpha^{-1}\gamma-\overline{\alpha^{-1}\gamma}\omega$ ,

and where $\rho^{\prime}$ is a similitude of $V^{\prime}$ with multiplicator $a$ . Conversely, for any $\alpha$ ,
$\gamma\in \mathfrak{D},$ $x_{0}\in V^{\prime}$ and $\rho^{\prime}$ satisfying the above conditions, the linear transformation
$\rho$ of $V$ over $\mathfrak{D}$ defined by (15) is a similitude with multiplicator $a$ .

PROOF. Let $\rho$ be a similitude of $V$ with multiplicator $a$ such that $\rho(e_{1})=$

$ e_{1}\alpha$ and put
$o(e_{1}^{\prime})=e_{1}\gamma+e_{1}^{\prime}\delta+y_{0}$ ,

$\rho(x^{\prime})=e_{1}\xi+e_{i}^{\prime}\eta+\rho^{\prime}(x^{\prime})$ for $x^{\prime}\in V^{\prime}$

with $\gamma,$
$\delta,$ $\xi,$ $\eta\in \mathfrak{D},$

$y_{0},$
$\rho^{\prime}(x^{\prime})\in V^{\prime}$ . Then, from $\Phi(\rho(e_{1}), \rho(e_{1}^{\prime}))=a\Phi(e_{1}, e_{1}^{\prime})=a\omega$ ,

we obtain $\delta=a\omega^{-1}\overline{a}^{-1}\omega$ . From $\Phi(\rho(e_{1}), \rho(x^{\prime}))=a\Phi(e_{1}, x^{\prime})=0$ , we obtain $\eta=0$ .
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$a(\frac{}{\omega}\alpha\gamma-From_{-1}H^{\prime}\frac{(\rho(e_{1}}{\alpha^{-1}\gamma}\omega).Fro^{1}m\Phi(\rho(e_{1}))=aH(e^{\prime})=0,w,e_{)}obtain\overline{\gamma}\omega\delta-\overline{\omega\delta}\gamma+H(y_{0})=0,i.e\rho(x’))=a\Phi(e_{1}^{\prime}, x’)=0,weobtain$ $-\xi+H_{\frac{(y_{0}}{\omega\delta}}$

) $=$

$\Phi(y_{0},\rho^{\prime}(x^{\prime}))=0,$ $i$ . $e$ . $\xi=a^{-1}\alpha\overline{\omega}^{-1}\Phi(y_{0}, \rho^{\prime}(x^{\prime}))$ . From $H(\rho(x^{\prime}))=aH(x^{\prime})$, we see that
$\rho^{\prime}$ is a similitude with multiplicator $a$ (in particular, $\rho^{\prime}$ is non-singular). Putting
$x_{0}=\rho^{\prime-1}(y_{0})$, we obtain (15), (16). The converse is clear. $q$ . $e$ . $d$ .

LEMMA 5. The notations being as in Lemma 4, let $M$ be a maximal $\mathfrak{Q}\rightarrow$

integral lattice in $V$ containing $e_{1},$ $e_{1}$

‘ and put $M^{\prime}=M_{\cap}V^{\prime}$ . Then, for a $ simili\neq$

tude $\rho$ of $V$ with multiplicator a given by (15), we have $\rho(M)\subset M\alpha$ , if and only $\cdot$

if the folloning conditions are satisfied:
(17) $a\in n(\alpha)0$ , $\gamma\in\alpha \mathfrak{O}$ ,

$x_{0}\in M^{\prime}$ , $\rho(M^{\prime})\subset M^{\prime}\alpha$ .

PROOF. As in the proof of Theorem 5, we have the direct $decomposition_{t}$

$M=\{e_{1}, e_{1^{\prime}}\}_{\mathfrak{O}}+M^{\prime}$ .
Hence, if $\rho(M)\subset M\alpha$ , we obtain from (15)

$\gamma\in\alpha \mathfrak{O}$ , $a\omega^{-1}\overline{\alpha}^{-1}\omega\in\alpha \mathfrak{O}$ , $\rho^{\prime}(x_{0})\in M^{\prime}\alpha$ ,

$\xi\in\alpha \mathfrak{O}$ , $\rho^{\prime}(x^{\prime})\in M^{\prime}\alpha$ for $x^{\prime}\in M^{\prime}$ ,

whence we get $a\in n(\alpha)0,$ $\rho^{\prime}(M^{\prime})\subset_{-}V^{\prime}\alpha$ . Moreover we obtain from (15), (16)

$\Phi(x_{0}, x^{\prime})=\overline{\omega}\alpha^{-1}\xi\in \mathfrak{O}$ for $x^{\prime}=M^{f}$ ,

$H(x_{0})=\overline{\omega}\alpha^{-1}\gamma-\overline{\alpha^{-1}\gamma}\omega\in Q^{-}$

Hence, by Lemma 3 and by the maximality of $M^{\prime}$ we get $x_{0}\in M^{\prime}$ . The
converse is clear. $q$ . $e$ . $d$,

LEMMA 6. Any maximal Q-integral lattice $M$ of index $>0$ is generated by

isotrotic vectors contained in $M$.
PROOF. Take a pair of isotropic vectors $e_{1},$

$e_{1}^{\prime}$ in $M$ such that $\Phi(e_{1}, e_{1}^{\prime})=\omega_{-}$

Then any $x\in M$ can be written in the following form:

$x=e_{1}\alpha+e_{1}^{\prime}\beta+x^{\prime}$ , with $\alpha,$ $\beta\in \mathfrak{O},$ $x^{\prime}\in M^{\prime}$ .
Let $H(x^{\prime})=\xi^{\prime}-\overline{\xi}^{\prime}$ with $\xi^{\prime}\in \mathfrak{Q}$ and put $\gamma=\omega^{-1}\xi^{\prime}\in \mathfrak{O}$ . Then

$H(x^{\prime}+e_{1}-e_{1}^{\prime}\gamma)=H(x^{\prime})-\omega\gamma+\overline{\omega\gamma}=0$ .
Therefore, $M$ is generated over $\mathfrak{O}$ by isotropic vectors contained in M. $q.e$ . $d_{v}$

THEOREM 6. Let $M$ be a maximal $\mathfrak{Q}$-integral lattice in V. $(\mathfrak{Q}=\Pi^{m}\mathfrak{O})$ Then.
for any similitude $p$ of $V$ with multiplicator $a$ , there exists an automorphism $0$ of
$M$, a Witt decomposition

$M=M_{0}+\sum_{l=1}^{\nu}\{e_{i}, e_{i^{\prime}}\}$ $(\Phi(e_{i}, e_{i^{\prime}})=\Pi^{m})$

of $M$ and a system of rational integers $r_{i}(1\leqq i\leqq\nu)$ such that
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(18) $pv(e_{i})=e_{i}\Pi^{r_{i}}$ , $\rho_{t)}(e_{i^{\prime}})=e_{i^{\prime}}a\overline{\Pi}^{-r_{i}}$ $(1\leqq i\leqq\nu)$ ,

(19) $r_{1}\leqq r_{2}\leqq\ldots\leqq r_{\nu}\leqq ord_{\mathfrak{p}}a$ .
PROOF. The Theorem being vacant for $\nu=0$ , we assume that $\nu>0$ and

proceed by induction on $\nu$ . Since $V=\bigcup_{r\in Z}M\Pi^{\gamma}$, there exists the largest integer

$r_{1}$ such that $M\Pi^{\gamma_{1}}\supset p(M)$ . Then by Lemma 6 there exists a primitive isotropic
vector $e_{1}$ in $M$ which is contained in $\rho(M)\Pi^{-r_{1}}$ . Then $e_{1}$ is also primitive in
$\rho(M)\Pi^{-r_{1}}$ , so that $\rho^{-1}(e_{1})\Pi^{r_{1}}$ is primitive in $M$. Hence, by the remark after
Theorem 5, there exists an automorphism t) of $M$ such that $u(e_{1})=\rho^{-1}(e_{1})\Pi^{r_{1}}$ or
$p_{U}(e_{1})=e_{1}\Pi^{\gamma_{1}}$ . Taking any isotropic vector $e_{1}^{\prime}$ in $M$ such that $\Phi(e_{1}, e_{1^{\prime}})=\Pi^{m}$

and applying Lemma 4, 5 to $pu$ with $\alpha=\Pi^{r_{1}},$ $\omega=\Pi^{m}$, we get
$\rho u(e_{1}^{\prime})=e_{1}\gamma+e_{1}^{\prime}a\overline{\Pi}^{-r_{1}}+p^{\prime}(x_{0})$ ,

where $\gamma,$
$\cdots$ satisfy the condition (17); in particular, we have $ord_{\mathfrak{p}}a\geqq\gamma_{1}$ . Hence,

replacing $e_{1}^{\prime}$ by $e_{1}^{\prime}-e_{1}(\alpha^{-1}\gamma-\overline{\omega}^{-1}H(x_{0}))-x_{0}\in M$, we get from (15), (16)

$H(e_{1}^{\prime})=0$ , $\Phi(e_{1}, e_{1}^{\prime})=\Pi^{m}$ ,

$\rho u(e_{1}^{\prime})=e_{1}^{\prime}a\overline{\Pi}^{-r_{1}}$ .
Since pu $(M^{\prime})\subset M^{\prime}\Pi^{r_{1}}$ , we can apply the induction assumption on the restriction
of $\rho\iota$) on $M^{\prime}$ , and in doing so, we get $r_{1}\leqq r_{2}$ . This completes our proof by
induction on $\nu$ .

3.4. We now fixe a maximal Q-integral lattice $M$ in $V$ and put as follows:
$G=$ group of all automorphisms of $V$,
$\tilde{G}=$ group of all similitudes of $V$,
$U=$ group of all automorphisms of $M$ (viz. all automorphisms of $V$

leaving $M$ fixed),
$\tilde{U}=$ group of all similitudes of $V$ leaving $M$ fixed,

$\ovalbox{\tt\small REJECT}=$ group of all multiplicators of the similitudes belonging to $\tilde{G}$ .
With their natural topology, $G,\tilde{G}$ are locally compact topological groups, $U,\tilde{U}$

are open compact subgroups of $G,\tilde{G}$ , respectively, and we have $U=\tilde{U}_{\cap}G$ ;
we have also a canonical homomorphism from $\tilde{G}$ onto .-SZ whose kernel is $G$ .

LEMMA 7. Let $W_{1},$ $W_{2}$ be two non-isotropic subspaces of $V(i$ . $e$ . such that
$W_{i}\cap W_{i}^{\perp}=\{0\})$ . If there exists $\rho\in\tilde{G}$ such that $\rho(W_{1})=W_{2}$ , then there exists
$\rho^{\prime}\in G$ such that $\rho^{\prime}(W_{1})=W_{2}$ .

PROOF. If $a$ is the multiplicator of $p$ and if $r$ is the common dimension
of $W_{1}$ and $W_{2}$ , we have $\delta(W_{2})=a^{2r}\delta(W_{1})\sim\delta(W_{1})$ . Hence, by Theorem 3, $W_{1}$ ,
$W_{2}$ are isomorphic anti-hermitian spaces over $\mathfrak{D}$, and the Lemma follows from
Proposition 3. $q.e.d$ .

It follows, in particular, that for any $p\in\tilde{G}$ there exists $\rho^{\prime}\in G$ such that
$ f)^{\prime-1}\rho$ leaves invariant a given Witt decomposition of $V$. Therefore, if $V$ is
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$\# 1,$ $\ovalbox{\tt\small REJECT}$ coincides with the group of all multiplicators of the similitude of a
maximal anisotropic subspace $V_{0}$ of $V$. In this case, call $a_{0}$ an element of
$\mathscr{R}$ such that, for any $a\in\ovalbox{\tt\small REJECT},$ $ord_{\mathfrak{p}}a$ is a rational integral multiple of $ord_{\mathfrak{p}}a_{0}$ ,
and call $p_{0}$ a similitude of $V_{0}$ with multiplicator $a_{0}$ . In case $V\sim 1$ , we have
clearly .ff $=k^{*}$ , and so we put $ a_{0}=\pi$ .

Now let us fix furthermore a Witt decomposition

$M=M_{0}+\sum_{i=1}^{\nu}\{e_{i}, e_{i^{\prime}}\}_{\mathfrak{O}}$ $(\Phi(e_{i}, e_{i}^{\prime})=\Pi^{m})$

of $M$ ; any other Witt decomposition of $M$ is then given by

$M=u(M_{0})+\sum_{i=1}^{\nu}\{u(e_{i}), u(e_{i^{\prime}})\}_{\mathfrak{O}}$ with $0\in U$.

Call $\tilde{D}$ the group of all linear transformations of $V$ of the form

(20) $\left\{\begin{array}{l}p(e_{i})=e_{i}\Pi^{r_{i}},\\p(e_{i})=e_{i^{\prime}}a_{0}^{\gamma_{0}}\overline{\Pi}^{-r_{i}}\\p(x)=\rho_{0^{\gamma_{\Phi}}}(x) for\end{array}\right.$

$x\in V_{0}(1\leqq i\leqq\nu)$

,

where $a_{0},$ $p_{0}$ are as defined above. We denote the transformation (20) by
$\delta(r_{0}, r_{1}, \cdots , r_{\nu})$, which is clearly a similitude of $V$ with multiplicator $a_{0}$ . Put

$D=\{\delta(0, r_{1}, \cdots, r_{\nu})|*r_{i}\in Z\}=\tilde{D}\cap G$ .
Furthermore, denote by $N$ the group of all automorphisms $\rho$ of $V$ of the
following form:

(21)
$\left\{\begin{array}{l}p(e_{i})=\sum_{j<i}e_{j}\alpha_{ji}+e_{i\prime}\\\rho(e_{i})=\sum_{j=1}^{\nu}e_{j}\beta_{ji}+e_{i^{\prime}}+\sum_{gX}e_{j^{\prime}}\gamma_{ji}+y_{i}\\p(x)=\sum_{j=1}^{\nu}e_{j}\delta_{j}+x for x\in V_{0}.\end{array}\right.$

$(y_{i}\in V_{0})$ ,

Then we obtain the following theorem:
THEOREM 7. In the above notations, we have

(22) $\tilde{G}=\tilde{U}\tilde{D}\tilde{U}$ , $G=UDU$ ,
$\tilde{G}=\tilde{U}\cdot\tilde{D}N=\tilde{D}N\cdot\tilde{U}$ , $G=U\cdot DN=DN\cdot U$ .

PROOF. Let $\rho$ be any similitude of $V$. Then, by Theorem 6, there exist
$o,$

$t)^{\prime}\in U$ such that
$\rho uu^{\prime}(e_{i})=u^{\prime}(e_{i})\Pi^{r_{i}}$ ,

$\rho oo^{\prime}(e_{i^{\prime}})=\iota)^{\prime}(e_{i^{\prime}})a\overline{\Pi}^{-r_{i}}$ $(1\leqq i\leqq\nu)$ .
Hence, if $ord_{\mathfrak{p}}a=r_{0}\cdot ord_{\mathfrak{p}}a_{0},$ $u^{\prime\prime}=\delta(r_{0}, r_{1}, \cdots , r_{v})^{-1}0^{r-1}\rho ou^{\prime}$ is a similitude of $V$

with a multiplicator which is a unit of $\mathfrak{O}$ , leaving all $\{e_{i}, e_{i^{\prime}}\}_{\mathfrak{O}}$ fixed. Hence
$!J^{\prime\prime}$ leaves $V_{0}$ fixed and consequently, by Theorem 4, $0^{\prime\prime}$ leaves also $M_{0}$ fixed.
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Thus $0^{\prime\prime}\in\tilde{U}$ and we have $\tilde{G}=\tilde{U}\tilde{D}\tilde{U}$. If $\rho\in G$ , we have by the same reasorv
$0^{\prime\prime}=\delta(0, r_{1}, \cdots , r_{\nu})^{-1}0^{r-1}\rho oo^{\prime}\in U$, so that $G=UDU$.

Next we prove (23) by induction on $\nu$ . If $\nu=0$ , we have $N=\{1\}$ and the
proof is already contained in the above argument. Let $\nu>0$ and let $\rho$ be any
similitude of $V$ with multiplicator $a$ . Take $\gamma_{1}$ such that $\rho(e_{1})\Pi^{-r_{1}}$ is primitive
in $M$. Then there exists $ U_{1}\in\sigma$ such that $o_{1}^{-1}(e)=\rho(e_{1})\Pi^{-r_{1}}$ . From Lemma 4,
we have

$\left\{\begin{array}{l}o_{1}p(e_{1})=e_{1}\Pi^{r_{1}},\\o_{1}\rho(e_{1})=e_{1}*+e_{1}^{\prime}a\overline{\Pi}^{-r_{l}}+\tau^{\prime}(x_{0}),\\o_{1}\rho(x)=e_{1}*+\tau(x) for x^{\prime}\in V^{\prime}=\{e_{1},e_{1}^{\prime}\}_{\mathfrak{D}}^{\perp},\end{array}\right.$

where $x_{0}\in V^{\prime}$ and $\tau^{\prime}$ is a similitude of $V^{\prime}$ with multiplicator $a$ . Hence, if we $\cdot$

denote by $\tau$ a similitude of $V$ defined by

$\{\tau(e)\tau(x^{1^{1}})\tau(e_{/})=\tau^{1}(x)^{-r_{1}}=e_{1}\Pi^{r_{1}}=e^{\prime}a\Pi^{-}$ ,
for $x^{\prime}\in V^{\prime}$ ,

we have

$\left\{\begin{array}{l}\tau^{-1}v_{1}\rho(e_{1})=e_{1},\\\tau^{-1}o_{1}\rho(e_{1}^{\prime})=e_{1}*+e_{1}^{\prime}+x_{0},\\T^{-1}U_{1}\rho(x)=e_{1}*+x^{\prime},\end{array}\right.$

which is an automorphism belonging to $N$. Applying the induction assump-
tion on $\tau^{\prime}$ , we see that $\tau\in U.DN$ Therefore $\rho\in\tilde{U}\cdot\tilde{D}N$, as desired. If $\rho\in G_{\lambda}$

we have $\tau\in U.DN$ and so $p\in U\cdot DN$ Since $\tilde{D}$ normalizes $N$, we have $\tilde{D}N=$

$N\tilde{D},$ $DN=ND$ , so that we have $\tilde{G}=N\cdot\tilde{D}\cdot\tilde{U}=\tilde{D}N\cdot\tilde{U},$ $G=N\cdot D\cdot U=DN\cdot U$.
$q$ . $e$ . $d$ .

REMARK. It follows easiIy from (22) that $\tilde{U}$ (resp. $U$) is a maximal compact
subgroup of $\tilde{G}$ (resp. $G$) and from (23) that $N$ is a maximal ‘ unipotent ‘ sub-
group of $\tilde{G}$ and $G$ (viewed as linear algebraic groups over $k$).
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