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§ 0. Introduction.

Let x,(w), £ =0, be the symmetric stable process with exponent « and [ be
the open interval (—1,1). For any right continuous path function x,(w) start-
ing at some point x € I, let o(w) be the first time x,(w) leaves I. The absorb-
ing barrier stable process with exponent « is derived from x,(w) by killing it
at time o(w). This process, which proves to be Markovian, was investigated
by M. Kac [9] and J. Elliott [3] Kac discovered the formal expression of the
infinitesimal generator of the semi-group attached to this process and Elliott
determined the domain of the generator in case 0 <a <1. The first purpose
of this paper is to determine this generator for every a (0 <a <2), and this
will be done in §§1-2.

In §3 we shall compute the distribution of the first exit place x, and shall
obtain the following results
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These results have been obtained recently by H. Widom in a somewhat
different way. Our method consists in deriving the integro-differential equa-
tions governing these quantities and solving them.

In §4 we shall determine the generator of the semi-group of the stable
process on the space of continuous functions and shall also determine the
generator of the absorbing barrier stable process on [~ ={(—oc0,0).

Elliott determined the most general boundary conditions by which the
operator

Qu(x) = P}ljl %ﬁ%} dy

becomes a generator of a Markov process on [—1,1]. In §5 we extend this
result to the case with general . Our boundary conditions are obtained im-
mediately from Feller’s boundary conditions for the one-dimensional diffusion
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by replacing #*(—1) and #»~(1) with

elo0 6“5} ’
8,0 = lim AD=u1=¢)
W=l

respectively. We have the same boundary conditions at x=0 for the stable
process on the half line [-‘:(—oo, 0]. Now path functions of these processes
can be constructed from those of the ordinary stable process. The local time
of the “reflecting barrier process” on [~ at x=0 is defined and its inverse

function is a one-sided stable process of exponent —é— for any «.

In §6 we shall discuss the properties of the path functions of the stable
process. In particular, we shall prove that if Z(w) denotes the set of zero
points of the path function x(w), then, with probability one, Z(w)n(,¢]
is empty if 0<a =<1, while a non-countable Borel set of the Hausdorff-

Besicovitch dimension 1_}17 if l<a=s?

The auther wishes to express his hearty thanks to Prof. K. Ito and Prof.
N. Ikeda for their kind suggestions and encouragement.

§1. The semi-group on L,

The symmetric stable process with exponent a (0 <« <2) is a temporally
homogeneous Lévy process x,(w) (x,=0) with the characteristic function

(1. E(e#%) = g 451",

In the sequel, we shall assume that all path functions are right continuous,
as we can by taking an appropriate version. A stable process induces a Mar-
kov process if we define the probability law governing the path starting at x by

1.2) PB)=Plx+x(w)s B)".
Its semi-group is

(13) Tf 0= EL@)= [ F)pe 5=y ¢=0),
with

14 P, %)= %f_ie”fe‘“f‘“dﬁ = ~}1t—510wcos xEe ¥ dE.

Its resolvent operator is

1) Here B denotes a subset of the space of path functions.
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(15) Gif = e Tf(dt =~ Fesa—dy >0,
with
(16) )= “epte nar =1 [ BEae @+01>0).

Hereafter we shall consider T; as the semi-group of integral operators (1.3)
acting on L', and shall determine its infinitesimal generator.
First, if fe L}, then T,f L' and

an I T L= 111,
1.8) I T.f—fl,—0  (—0).
(1.7) is obvious and so we shall check (1.8) only. Estimating | 7.f—f|l, as

I Tr—rle=] 1 st Xt )—F )z | dx
<[ ot [ " I dx-dz

= _peaflrGra—r@ s a2 a2z,

taking ¢ sufficiently small and then letting # | 0, we obtain (1.8). Hence 7; is
a semi-group on L! in the Hille-Yosida sense.

THEOREM 1.1. The infinitesimal generator 2, of T, is given as follows.

_ da)  a 1
(1.9) Quun) =02 = Oy dy 1<a<?
i L@ 1 _
=tim 7 JADlog =ordy a=1
_da) d sgn(y— %y
=L I_w() et 0<a<l,
where
(1.10) o(a) = %F(a%—l) sin 47,
with the domain
(A1) DR)={u;uc L, ucs L'}, 0<a<2 a=+1
N N . 1
. . 13 1 - % - = e ]
={wsuelLelr lim— 2o [ uG)log = - dy=7()

in the distribution sense} , a=1.

REMARK. If we L1, j - 1 ;‘(ngy dy, 0 < B <1 is the sum of a bounded func-

tion and a function in L. So we can define dnn jw uy) dy in the distri-
dx™ J_ o |x—yls
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bution sense. Hence £, is always defined if < L, a=1.
PROOF. Suppose 1< a < 2, the proof of the other cases being similar. Put
u(x) =G, f(x) for f& L*. Taking the Fourier transforms of both sides, we have

20)= 74

(1.12)

1 1
!ﬂlzl—’ and Tz(x) = W.

Put T\(x)= %
Then E(&lfﬁ %Tl*u =Toxu (% : convolution).
Using the fact that Tz(G)I—?(%yl o |, we get
(Tyx 2, Y(0) = (Ty % u(x), ()P
= W), T, (F 3 = W), Toy(e =Y (5)))
= @), Tue o) = ), — 5 [ Lo 1" =)
= (~ ey 110 1% ¥(@) .

This, combined with (1.12), implies

c(a) d? 2
Au— ala—1) dx? Tixu=/,
namely
clay d* Toxu=f.

Au— ala—1) da

Thus we have 2,4 =Au—f < L', so that » belongs to D(£2,) by (L.11).
Conversely let # belong to D(£2,) defined by (1.11). Then f=2u—&&,# be-

longs to L' and if we define v(x) by v =G,f, we have lv—L2,v=f from the

fact obtained above. Put w=w#—». Then we L! and Aw—2,w=0. Taking

the Fourier transforms, we have as above
dw—2,0(0) = A+ 0 |De) =0..

Hence #(0) =0 i.e. w=0, this means that »=G,f. This proves the theorem.

2. The absorbing barrier process.

Let I be the open interval (—1,1). We consider the symmetric stable pro-

2) (T,¢) =T(¢) is the value of the functional T for a testing function ¢ € (S),
and ¢ is the Fourier transform of ¢ i.e. ¢(x) =j - e~ (s) do.
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cess starting at x = which is killed as soon as it leaves I. Then we have a
Markov process on I. We define o(w) by

.1 olw)=inf(¢; xw) s I).
Then transition probability of this process is given by
2.2) P(t, %, E) = P(x(w) € E, o(w) > £) xel, EcCI.

P(, x,E) is absolutely continuous with respect to Lebesgue measure:
(2.3) P(t,x BY={ p(t,x»)d” ECI

Define gy(x,y) by
@4) 2w )= [ Bt 5yt sel.

We often use the following lemma due to Pé6lya-Szegé [11].

LEMMA 2.1 (Pdlya-Szego). Let PXx) be the ultra-spherical polynomials de-
Sined by

(1*2xtlv+w2)" = P{P(x)+ PP (0w~ PP (x)w+ -+ +PPw"+ - .

Then if 0<a<2, a#l, x]

44

@5 [ Ly irCTIo— ay =2, )0, m=0,12,

where
« «a
2.6) A= r(y)ri-%) L Imta—1)
' " I'la—1) I'(m+1)
In particular, taking m=0
1 «@
@27 | x—y "0l —yD) 2 dy = —"— xel.
ar
-t Sin —"'2——

First we prove the following theorem which was proved by Elliott in
case 0 <a<1.

THEOREM 2.1. If o is defined by (2.1), then

@8) Bo=$c25, sl 0<as2.

PROOF.? Define u(x) by

3) B x,y) is defined to be zero if y & I.
4) In case a =2, the above proof does not apply but in this case the result is
well known.
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@2.9) () = S{(‘a—ﬁ?{)— 1] <1
=0 [x|=1.
From (2.7), we have
) @ ' wy) _
(2.10) oty g ) TeyErd=—1  (x]<D

while it is obvious that

(@) @ty )
@) A0 A =@ e ay (x> D).

Let F(x) be equal to —1 if |x|<1 and to the right side of (2.11) if |x|> 1.

Then F(x) isin L' and in order to prove that £,#=F in the distribution sense,

it is enough to prove that —; 5 [xug?)])“ —dy is continuous at x= +1. This
1

can be done by simple calculatlons so u < D(2,). Then we have

u(@)=G.Lu—FID = Ex({ "o [z~ Fw)ldt)
= B,({ " e L2y~ P dt) + Ee™ou(xs)

_ Ex< { Ode‘“{:lu(xt)—i— 1] dt>

since x, =7 for ¢t <o, and %, 1.
Now

Ey([ "etat) = Bo( [ "e Cautr)+11dt) S G |+ DES0) -
Letting A | 0, we have u(x) = E.(0).
LEMMA 2.2.
PG N=pCy %  Zx ) =28y %)

ProOOF. We prove this lemma by using the method of Hunt [4] and
Bochner’s theory of subordination.

Let W.(B,, P), W,(B,, P,) be two probability spaces and W(B, P) be their
product probability space. Let 6,(w,), w, = W,, be a temporally homogeneous
Lévy process (0,(w,)=0) with increasing paths given by

[44
E(ett)=¢% 2, £>0, t=0.
Let B/w,), w,<= W, be a Wiener process given by
E(e7#Bt) = g7tI612 E€R, t=0.

Then x,(w) = By,awpws), w=w,, w,) € W, gives a version of the symmetric stable
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process with exponent «.
Define B{w,), 0<s=t, by

B(w)=Bw)——;Bw) 0=s=t.

Then
(i) the process {B,w,)} is independent of B,(w,),

(ii) the process {B,(w,)} defined by

Bs/(wz) — Bt—s(wz) ’ 0=s=t¢
is a version of {B,(w,)}.
Now?®

Pl eE,0>H=Pxt+xlw)el 0=s=¢, xw)e E—Xx)
=P X Pz(x+Bos(w1)(w2) el, 0=s=¢, Bot(wﬁ(wz) € E—x)

= PetBowpw) €1, 0= s 218, Bpap(ws) = E—D)P(dwy)
1

= j-W ._fEPZ(x—I"Bﬁs(wv(wz)E[, 0=s= t, lBMwl)(wz) :y—x)pB(at(wl)’ x,y) dy.Pl(dwl)
1

=[Pt Boan@) =1, 0 = s =8, Buaun(ws) =3 —2)ps0wy), 5,9) Pildwr)-dy
1

_ (x—?
1

1l
2V nt
Hence we have by the definition of p(%, x, )

Where pB(t} X, y) —

P %)= fw Px+Byp, €1, 0=s=t| By =y—x)pp0: %, y)Pi(dw,)
1

Now using (i) and (ii), we..get
Px+Byp,cl, 0=s=t|Bs,=y—x)

:Pz(x_}_B_ﬂs_{_z—:Bot EI, O§s§t] BﬂL:y—x)

= Pt By, g (=D S [, 0=5 =] By =y—2)
= Pa+Bo+- 0 (y—m e, 0=520)

2
= 2(x+l§a,_as+g—:(y*x)el, 0=s=9

= P(y+ Boyo, ”t;fs G—nel 0=s=1)

== 2(3’"}‘30:-086[, O§S§l‘|303=x‘y)

5 E—x={y;y=z—x,z&E}.
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But the following equality holds in general®;
(2.12) E\(f10w)—0wy); 0=s=1¢])

=E(fl0i-s(wy); 0=s=t].
Thus we have

P x )=, PlatBa € 1, 05 55t By=y=2pa00 3, )Pdu0)
= P(y+Broo, €L 0=s=1|By,=5—3)pub0 % 9)Pidw)
1

= [ P(y+Bu, 1, 0=s=t|By=5—3)ps00 3 DP(duwy)
1

=p(t,y,%).
LEMMA 2.3

(2.13) ELe™;5,€ By=ce) | I}—fﬂ% dyde ECI.

PrOOF. Put zix, E)=E (e ;x, = E). We first prove that z,(x, E) is ab-
solutely continuous with respect to the Lebesgue measure.
The function #(x) in (2.9) belongs to D(2,), as we have seen above, and

satisfies (x)= | jlgl(x, D)+ dy. Now

2i(x—y) = 8%, y)+ Lcm(x, d&)gs—y)

holds for every x < I and almost every y. Then noting the symmetry of gi(x, »),
we have

u= ' 805 9o+ dx

= [ a—u@+Dar— [ {[ m d®)g(e—} Gui+Das.
On the other hand
u() = ea—3)au()— () dx.
Comparing these two equations, we get
§ = Yu@—Lau@de = ge—» | Gu+Drix de)ax.

Since the potential determines its measure uniquely, we have

6) It is easy to prove (2.12) if f is a tame function and then taking limits we
have (2.12).
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(&)~ L) dE = | Quulx)+mf, d&)dx -
Taking A to be —A| % |-+1>0, we see that m;(x, d¢) is absolutely continuous
with respect to Lebesgue measure dé. Hence we can wright
7r,1(x, d‘f) - n'-/l(xy E) d& .

Now?™ it is easy to see that if » € 9= {« = C?, with compact support} then

o) @ > uwly)
D= "3a—1) da? f Ta—y Y

e f_ww[%(y)—u(x)—(y_x)u/(x)] C(a) I_x—L;)lQHT .

For any element z of 9? such that #(x)=0 for x< I, we have

uw=| B )l )—= 2y dy+ | il u(€)de
=— f _llgm(x, )R,u(y) dy+ f i E)u(E)dE .
Hence if x =1,

0=—[ 20 »0ux)dy+ | i OYuEdE

So we have

§ mw Oue e = 2w »2uay

[ 2| O —u) =)W 1 S Pt dy

= [ 2| w1 P at ay

= [ oo | B av ae,

i.e.
i ©=ote) | 8% ay.

REMARK. It is natural to conjecture that if we put x,_:lilm %,— 1 then
Efe™®;x,.€F, ;€ F):f j' c(a)—g‘(x’—{zrldy dé. In fact this is true and we
F JE |y—&|
can see from this that ¢ and x, are independent under the condition that x,.
be given.

LEMMA 24. Let fe S, then

7) The following argument is due to N. Ikeda.
8) B()=<A{wu; bounded and measurable on I}.
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u(@)=Caf ()= | 2x () dy
belongs to CI)» and satisfies
2u(x)—2u(x) =1 (%)

where

5o c@) d (' uly) 10
2.14) Gu) = g j_llx_yla_] dy©, 1<a<?

1 a 1
R dxzj %(y)logmdy

1 d 1
(=7 g Bf_#y a=1
_ ) az ' uly)
T ala—1) dx? ‘j_l [r—y | dy
_ C(a) d sgn (y———x)
<__,,&___ ax ()Wdy>, O<a<l.

ProOF. From Lemmas and 2.3, we have

W) =Cuf M= &7 dx

=[_at-or@a{_dof [ FoOr sz

<1 ‘Z u [oz+1 182

[ ar@a—dwf se| IO .

<1 | 2— 2 [

The first term is continuous in y since f is bounded and g; is in L. As for

the second term, we have, by
|G| = il a—a®
so if we put F(z):c(a)j L(u)d |z|>1 then
i<t | z—w [**
F(z):()(——l—l) near |z|=1
(z|—1)*
:0<|Z%) near |z|=co

Now let y= I and y, tend to y. We may assume |y,|<1l—e for some ¢>0.
Then, since g4(x) is bounded and continuous in |x|>¢,

9) C({) =Au; bounded and continuous on I}.

10) The second derivative is understood in the Radon-Nikodyum sense or what is
the same in the distribution sense.
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lim flzl>lgx(z—yn)F (R)dz= flzl>1ga(z—y)F (2)dz

by Lebesgue convergence theorem. This proves that #(y) is continuous on I.
Now u(3)=G.f(3)=G,9(), Where

P(x) =) xel

= —a)f Cif @) gy yere.

lul<1 | X—u ]‘Hl

This equality holds for all y if we define #(y) to be 0 for y= . Since ¢ = L},
it follows from [Theorem 1.1 that » € D(£,) and satisfies

Au(x)—2,u(x) = ¢(x) .
In particular, we have on [
Au(x) — Qu(x) = (%) .
LEMMA 25. Let usC{U) and Qu=0 a.e. on I. Then u=0 on I
PROOF.D (i) Let %= LI, dm) where dm(y)=(1—y)% 'dy. For fe r?
define Kf by

k="' IO amy=[' LD _a i

alx—y ! la—y[*t

a1
Lemma 2.1 means that P, 2 )(x) m=20,1,2, -, form in _£% a complete orthogo-

nal system of eigenfunctions of the operator K. Since the eigenvalues are
bounded, K is a bounded symmetric operator on _[2.
(ii) Let fe.£? and Kf=0 in .2 Then?

Kf= S (Kf, P, Pa §<f,KP> = 320/, Pa) P =0.

m=0

Since 2, #0, (f, P)=0, m=0,1,2,---. This means f=0 in L2
(iii) Let # be such that «(x)(1— xz) T e r? and -{_1| u(;zfa rdy=0 on I.
Then #(x)=0 a.e. on L

If we put f(x)=wulx)(1— xz) , then fe 2 and

]

Kf@)=| 11%@:0 xeI. From (i) #(x)(1—x)'""2 =0 a.e.

on I. Hence #(x)=0 a.e. on I.

11) We prove this lemma only in the case o« #1. If ¢ =1, this lemma can be
proved easily using the theory of finite Hilbert transforms [13, pp. 178-179].

P

12) P, =
rSal

a 1)"
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(iv) Let w = C({) be such that for some @ and b

Yow(y)
j‘-l l X—y !az—1 dy—ax+b a.e. on /.
Then =0 on .

From we can take some @', b’ such that v(y)er(1—y2) 2 " '(a'y-+b")

satisfies j‘ 11 ,yz(ﬁdj dy = ax-+b.

Then if we put w(x) = u(x)—ov(x), w(x)(l—xz)l_"z’ e £? and

5!1 l yiiv_(%?‘@:l’ dy =0.

Hence from (iii), w(x)=0 on I: that is #(x)=wv(x) on I. On the other hand,
v(x) is bounded only when ¢’ =0"=0 and «(x) is bounded by assumption. So
we have o/ =0’ =0, u(x)=0 and a=b=0.

Now the lemma follows immediately from (iv).

LEMMA 26. Let usCU). If lu—Qu=0 on I then u=0.

PROOF. Put F(x)= 3}(—1yCu(x). Since |Gl <+ lull., this series

n=90

converges uniformly on any compact set in I. Hence F is bounded and con-
tinuous on 7/, and satisfies F(x)—2G,F(x) =u(x). Then, from Lemma 2.4, 2F=0.
This, in view of Lemma 2.5, implies F=0 on I. Hence =0 on I.

Now we can determine the generator & in the sense of [7] of the absorb-
ing barrier stable process:

8=Q@—G) : D®)=GCG(BU)— BID)/N
where = {f;G,f=0} [7].
THEOREM 2.2. The generator & of the absorbing barrvier stable process is
given by
Gu(x) = Qu(x)
where Qu(x) is defined in (2.14) with the domain

D(®)=D2 = {u;ucCl), Quc B}
and
R={f; f=0a.e. on I}.

PrROOF. Let w(x)=G,f(x) for f€ B(). From Lemma 24, u<C(I) and
Qu—Ru =f.

On the other hand, if » = D(2) we put v =G,(Au—2u). Then from Lemma
24, ve C() and Av—Qv = Au—Q2u. This means that w=u—v satisfies Qw=w
and from Lemma 2.6, w=0 on I: that is u=0v=G,QAu—Qu).

Finally if G,f=0, then f=2G/—2G,f=0 a.e. on I.

COROLLARY. If ue D(.é), then for some constant M >0
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|u(x) | < M(1—22)2  xe].
This follows immediately from Theorems 2.1 and B2

§3. Integro-differential equations for some quantities.
DEFINITION 3.1.
&)= Ee™; x, = [1, 00))
EL () =Ee™; %, € (—00, —17).
DEFINITION 3.2.

Ou) = Du()+- SO _uD) _, e(@) wu(=1)

a (Q—x a (Q+x*°
D)= {u s CUM, Gulx) € B} .
REMARK. If e C(J) and #' exists such that «’ < L(), then

f)u(x):aac_—l) d jl—ul(ﬂ—dy a+1

dx o [a—y |
— 1 pf W 4, a=1.
T -1 Yy—Xx
THEOREM 3.1. &X%), (resp. E2(x)), is the unique solution of
3.1 Au—Ou=0

with the boundary conditions u(—1)=0, u(1)=1, (resp. u(—1)=1, u(1)=0).

PROOF. It is easy to check that &X(x) is continuous on [ and &}(—1)=0,
E1)=1. We now prove that £%(x) is the weak solution of the equation (3.1).
From Lemma 2.3, we have

(- L CON 7€)
E= [ mn&de=7 [ FESdy.

)y 1

Denoting by 7'(x) the function ala—1) [x|*T

every ¢ € 9(I)'®,

in case a+1, we have for

@EKw, 9 = (L Taleh], ¢) =(T3[e0), ) =(EL T+9")

= (&, (Tx9)) =&} Go)= (LD [ T3, gy, Go()

13) C({) =<{u;bounded and continuous on I=[—1,1]}.
14) 9H{{I)=A¢;p=C> and S(¢) ©I}. Notethat P() C D(R). For fecd), we
define [ f] e L'(RY) by
[fl1=f on I

=0 on I¢
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) 1 = clay 1
_( o ~(1 ) ,Gﬁ?gﬁ(y)) ( « (1 y)a ,XGAQO(}’) ¢(y))

- ( o(@) a ly)a ,XGAqo(y)) ( o) =0 1 s ,¢(y))

a a
= Qi@ 9~ (A2 e 99) -
This proves that
R

:ZE/Kx)_ c(@) 1(1)‘ c(a) Eé(_l)

a (1—x" a (1+x)*"

i.e. Q&%) = 2E4x).

The Uniqueness follows immediately from
COROLLARY.
3.2) &%) = Py, € [1, 00)) =21 [ {(a)) :I j‘ (I—y5* i “dy.
3.3) ()= Puxs€(—o0, =1 =1-&,(x).

PROOF. &,(x) is the unique solution in D() of $u =0, with boundary con-
ditions #(—1)=0, »(1)=1. We can easily solve this equation using (2.7) and
obtain (3.2).

It is, in fact, possible to do more than the corollary and we can eobtain
the density #(x, &) of the measure P,(x, < d&).

THEOREM 3.2.

sin &%
1—x2 1

(3.4) €)= — 2 (325 a2 #el, gel

PROOF. From Lemma 23, n(x, &)= c(a) | TMdy. Hence (-, £) is the
unique solution in C{) of

Qu(x) = —c(e) leﬂwr .

Take, for instance, £ >1 and apply-
ing Cauchy’s theorem to the function
)= (ZZ__lZV (Z_]}-Cﬁ (real if z>1)
which is holomorphic in the domain
bounded by I'y,, I', and I, (Fig. 1), we
have

[ f@i+| r@a={ s,

Fig. 1.
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and also

sin -5~ f -y dy
T S| y—x[FT E—y

5. f(z)dz— —

27rz

__(@-DT
2mf J@ = =y

[, r@dz=—(+a—1m).

2m

From this we have

Sin 1
| x—y |*7*

a2y

ar
2 /1—pr\e 1

7 (Ezml ) i E—y

Using we can prove the following theorem which has been proved

recently by H. Widom [14].
THEOREM 3.3. The 0-th order Green function 3,(x,) is given by

— Q) s e = )a+1

B )=F(a—yD=[ _ ale OF( -y e

where
F(p)= ia 7%t 0<a<?2, a+l
2 cos —Z—F(a)
1 1 _
= log £l a=1
DEFINITION 3.3.
1-% =
35) )= — (”’?_ .
()] a-»
3.6 7-1(%) = 7,(—x)
1
37 7@ =m@—2{_ 8 nn(Hdy
1
(38) @) =72 [ 8w () dy -
THEOREM 34. For A=0
0 lim £5229). — a0
€ 5—2

gg(x, 1) ﬁil(x) .
€ 2

lim
elo
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@) If u) =] 305 DF )y, then

5,0 = lim M;flg.ﬁl

g2

exists and is given by

1
O\ = — f NS dy-
Simularly

b= tim MDD () r(y)ay.

cl0 c?

We can prove this theorem by deriving the integro-differential equation
forf 74»)dy and also even more directly by using a recent result of H.
-1

Kesten.'®

§4. The generator of the semi-group on C(R') and the half interval case.

In this section we consider the case of the half interval I==(—o00,0). First
of all, we determine the generator of the semi-group (1.3) of the symmetric
stable process acting on C(RY).*® It is easy to see that if f= C(RY), then T;f
e C(RY). Here the generator is the operator A—Gj

THEOREM 4.1. The generator is given as follows:

LRu(x) = Li{rl _dey @ f * Jgﬁ)—dy , uwe DD,

Data—1) dar) i Ta—y [F
where
D@=lwe CRY;¥A>0, [ D aye c(-a,4) and
2 A
‘Z{(CZE%)H gxz fﬁAl—x%%)l@qdy converges at every point x to a
Sunction f(x) € C(R") when A1 oo,}
and
N={f;Gf=0}t=1{0}.
PROOF.

Let u=G,f, f= CRY). We have for every A>0 and x [,=(—A4, A"

15) H. Kesten, Random walks with absorbing barriers and Toeplitz forms, Illinois
J. Math,, 5 (1961), 267-290.

16) C(RY) ={f; bounded and continuous on RL)}

17) 1If we consider the absorbing barrier process on I, we denote the generator,
green function, etc. as 24, Z#(x,), etc.
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u(x) = f_iga(x—y)f (Ndy
= f E(x, ) (y)dy+ f zﬁ‘(x, Eu(E)dé
lyl<a 13

= _gtenroat| d@f SNy e

[y—& [
_ - u(&)
=[ _BENOrtd| e dt)dy.
Just as the proof of [Theorem 3.1, we can show
@y - =@+ S erde, el

A
Hence f_A | ng/l])a—,l— dy e C¥*(A, A) and

im G 1) — ) & uly) _
lim 2 () =lim 2%, Wj Ty et dy =A@ —f ().
This proves that « € D(2) and Au—R2u—=4. In particular, if #=G,f=0 then
f=Au—LRu=0.
Conversely let # € D(2) and put f=Ax—Q2u. We first show that # satisfies
@l). If B>Aand x=1,

)= Bo) = 1=y s [ 13 e @

_ o) d* 4wy
=MD~ a1y d | Ty [

_ w(y)
e fA<|y1<le y [+ v,

letting B 1 oo, we have (4.1). Put

o= gt n(Fortaa| = "ara)dy  xel.

Then it is easy to see that »(x) is bounded and continuous on (—A, A). Also
it satisfies

M- Q0w =fO—c@f 1 Derde  on L.

Hence if we put w=u—v, we have lw—2,w =0 and in view of it
follows that w=90, i.e.

ww=o=[ "ot f O ragtay  tor el

Now if we put a(x):f mg,\(x——y)f(y)dy, then @ satisfies
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i =" pten{rorraf K e dstay.

Hence putting @ =u—1#, we have
A ~
N 4 w(E)
B =c@f gtunf e de
Then

|5) | = 1@ o) | * 2459 lANTy—:lglw dE = || .. B oap®

Letting A1 co, we have E, (¢ %4)—0, proving @ =0, namely

uD =)= g&—rGdy.
This proves the theorem.

LEMMA 4.1. Let u and f be in C(RY). Then uwe D(2) and Ru=f if and
only if

(42) (), 245 | D ty) = @ 90

for every ¢ € D1

ProoOF. First suppose that (4.2) holds for # and f in C(R'). Then by simple
caluculations, we have for every ¢ € &(—A4, A)
cla) (4 ulx) s — _ ux)
(atazty) sy et 9'() = UG, 9o~ (@ a5, 9(3)) -

lz1>a | X—y ¥

We see at once from this that

cl@ 4 uy) .
da ) T dy e C=A L and

: )  d* 4 u(y) _
LM aa—1) dr® f_Alx—y e & =S D).

Conversely suppose # € D(2) and 2u—=7. Then we have just as the proof
of Theorem 4.1,

) da? 5“4 u(x)
ala—1) dy*J_4|x—y|*!

Hence for o € 9(—A’, A"), A’ <A

(O [ 0 an, ) =+ (@ 1, Drr ax 20))

lz1>4 | Y—%
Letting A1 +oo

dx=fre@| MDoar ye(-4,4).

lai>a | y—x [

(00, 5255 | R dr) = (o)

—oo | X—y [*7

18) oa(w) = inf{¢; x; & L4}
19) D={p;¢p & C~, with compact support}.
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and since A’ is arbitrary we have (4.2).
Now let 7~ be the half line (—o0,0) and consider the absorbing barrier
process on /-. Then we can prove quite similarly as above the following :
THEOREM 4.2. The generator of the semi-group on C(I7) of the absorbing
barrier process on I~ derived from the symmetric stable process is given as follows :

() = lim — &9 L' M) 4y we D@

e Ala—1) dxt)_4]x—y|*?
where
- 0
D@ = (ue CU);YA> 0, | _Ale‘_—(;’l)a,l—dy & C(—A,0) and
2 0

a(igci)l) gxz j_AIxZgivl)““‘ dy converges to a function f(x)

e C(I™) at every point x= 17},
and

R={f;Gif=0}={r=0}.
In particular, it follows from this theorem that if #» € D(2-) and lu—2-u
=0 then 2 =0.
Corresponding to the we have
LEMMA 4.2. Let u and f be in CUI7). Then u< D(27) and 2 u=f if and
only if

“.3) (u(x), _a(ca((c—t—)l) _Ooo l x@:g}}’lgxil dy} =)

Sfor every ¢ & (1)
Now define D(£) by
~ - 0
D@ = (e Ci);va>0, [ —ED gy e (4,0 and

) a@ (°_  u) (@) _u(0)
ala—1) dx f—AIx—y &= dy+—, (—pF comverges to a

function f(x)e C(I™) on [-,}
and for u  D(@-), define @« by

.Q“u(x)zhim o)y d* jo wy) 4 -+ cla)  u(0)

e ala—1) d&* J_ [x—y|* " a (—x)* "
THEOREM 4.3. Define o~(w) by
4.4 o~ (w)=inf {¢; x(w) =17} .
Then
(4.5) Ex(x) = Eole™")

is the unique solution in D(Q‘) of

4.6) du—0 u=0
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with boundary condition u(0)=1.
The explicit formula of the 0-th order green function is obtained by D.

Ray [12]:
1

(-IN(-x) @ 4 oy
4D EEN= | &7 (E+ly—al) TaE.

[r(5)]

Put
(4.8) 7% = () —4 f_omgz (x, M) n(»)dy
where
1 L1 .

(4.9) (%) = (—x)®

THEOREM 4.4.

@ tim FED — ) 220

el0 672
(i) If FeCU™) and u=Gif,
WO —1(—e) _

€

du=lim
elo

- f_omf npdy  2>0.

§5. The boundary conditions for O and §-.

We determine the most general boundary conditions for £ and £~ under
which these operators become the infinitesimal generators of Markov processes.
Elliott determined them in the case @« =1 and obtained the correspond-
ing resolvent operators. This can be extended to the case with general « in
the same way. We consider also the construction of the path functions of
these processes.

For simplicity we assume the left boundary condition «#(—1)=0.
DEFINITION 5.1.220 For given constants 6 =0, p=0, y=0, and a given

measure 7(dx)=0 such that jl (1—x)_§"n(dx)< +oo, define 3 as the set of all
-1
u < Dy(?) for which

G.1) pu(l) :jI[u(x)—u(l)] 1(dx)— o Du(l)—1d.u .

THEOREM 5.1. The operator @ with the domain = is the infinitesimal gener-

ator of a contraction semi-group with range dense in CI) or in the subspace
defined by

20) Co(I) ={ueC),u(—1) =0}
21) Dy(R) ={ucCyI), QucCy(I)}.
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puD) = | L) —u(1)In(d)

accovding as o+r >0 or o+y=0.
Its resolvent is given by

(52) D)= BENdHEDR) 1> 0

where
f sz(x)n(dx)+of(1)+rf f(x)ni(x)dx

QN =
p+| A—e@yndn)+io+r - 8,6

Proor. Using Theorems 3.1, 3.4 and Lemma 2.1, proof can be done in the
same way as [2].

Similarly for the interval f‘:(—oo,O] we have the following boundary
condition for the operator $-:

G.3) pu®)= _O%[u(x)—u(O)] (dx)—o F-u(0)—7du

where
p=0, 0=0, =0 and »(dx) is a positive measure such that

f_ol(—x)% n(dx) < +oo and f_:n(dx) < +oo.

The corresponding resolvent is given by the similar formula as (5.2). In par-
ticular, if the boundary condition is reflecting, i.e.

(64 du=0
its resolvent is given by
(55) u) =G D= Cf W+ rmay,  1>0.

Now?? the path functions of this process can be constructed from those
of the ordinary symmetric stable process. Let M= (W, P,, R') be the symmetric
stable process defined in §1. For any path function x(w), w < W, define %(w)
by

(W) = x(w) t <o (w)
= xt(w)—ﬁgsp; Lxs(w) t =0 (w)

where o~(w) is defined in (4.4).
Put
P(B)=Pw;%w)s B for xci-.

22) This was suggested to me by Prof. K. Ito.
23) B is a (Borel) subset of the space of path functions.
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THEOREM 5.2. The process M=W,P,I 7) obtained in this way is a strict
Markov process and its resolvent coincides with (5.5), i.e. the process M is the
reflecting barrier process on I~ determined by 9= and (5.4).

PROOF. We can easily check the strict Markov property of M and so we
have only to prove that

Bo(f ertat) = Bo [ e (Gonat)

=G+ sy

Now

(et utw) = B[ et Gunde) + o § “etr (i at)
= G+ E(e [ e G ar)
= G+ B¢ Eupe ([ e (R0 at))

=GifW+EL B[ e (®)dt)

since if ¢ =0 the probability law of % with respect to P, is the same as that
with respect to P,. Hence it is enough to prove that

E(f, etrryar) = [ T fya.

Now
P=(t,x, E)= P, € E, 0= > 1)

o(% € E, Sup x; < 0.2

C=s=t
‘We have from this and the spatial homogeneity of the stable process, that

Pyx, € E, sup %< @)= P_,(x, € E—a, sup %, <0)
'<s<t
=P~(t, —a, E—a)
= jEﬁ“(t, —a,y—a)dy .

Hence, using the symmetry of p=(t, x, y)*®

24) For the rigorous justification, we may use below.
25) This can be proved in the same way as [Lemma 2.2
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.Po(xg > b) Po(xt_ Sup xs > b)

0=s=t

= Py(sup x; < x%,—b)
= [ bt ot vac

=" 5t &0,

Now if yu,n(%) is the characteristic function of the interval (b,0), b <0, then
we have

B[ “etronrd) = 20,0,

By this function of 4 is the unique solution in D(2-) of
lu—Qu=1.

On the other hand, putting u.(x)=

fg/\(—s,y)dy for ¢>0 we have,
I3 2
for any testing function ¢ in 9(/7), that

) °_ 9"y
(us(x) ala—1) J_.|x—y|*1 dy)

__ c(a) ¢ 9"(y)
Ce L) BT Cala—1) J_wx—y|*? dy}dx

B S G clay " ¢'(»
- 5% f_ocg/l( esx) (X(Oé—l) *oolx~y laz—l dydx

= 1 f gi(—e, 02 Y (x)dx

62

- Xg fo gi(—¢, x)xﬁ(x)derﬂ;ﬂ
ez 7" B

since Y(x) = Logo( »dy € D(2).

By an integration by parts, the last expression is equal to

\0( —e)

2 f_omﬁ(-e, y)dy - j_omqo(y)dyﬂ j )

62

Putting «(x) = liflol u(x) :5 O’h(y) dy

and noting f ’ Fi—e& »dy= 1;5}(“_5) ,
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we have, by letting ¢ ] 0, that

(00, 58 [ ED ) =06, [ v ta|’ uwear.

In view of Lemma 4.9, it follows that #(x) € D(2-) and satisfies

du—Q2-u=0¢&,.
Hence we have

0 0
G6) §_ziondy=se [ ua, ie

oo _ - 1 0
E({, e ron@dt) =5 m) - ron)dy-

Now from this we have for every bounded function f

E, ( jow e~ f (%) dt) = %flm(y)f (»dy

and the proof is complete.

Now we can define the local time at x=0 of this process.
First we require the following lemma.

LEMMA 5.1. If 2> 0, then

hme f gi(—e,»7(»)dy=0.

el

PROOF. Suppose ag%, then

f_owé“z (—e )9 dy = f*:éi (=& 9)n(y) dy+ f_olgfz(—e, yIn(y)dy

and the first term is bounded in ¢>0.
As for the second we have

[ Exemmrar—i - | BEED Ty

and this is also bounded in >0, since

c@) (° Zil—&y , _ e
w ) SS =ELe =L

The proof of the case of « <% is omitted.

From (4.8), (4.9) and this lemma we have

a

67 lim C) oM =lim 7(y)(— 9T =

r(r(s+y
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. fj) 7(Ndy ff (y)dy 1
(5.8) 151r101 S = 1:{1(‘)1 = T a N
v e [r(+1)]

Let g,(x,») be the density of the resolvent kernel @(x, dy) with respect to the
measure

G9) dm(s)=-5(—9)* " dy 20
Then we have from (5.5), (5.7) and
0 A~
G10) G0 =lim— [ Gman=— 1 D
e T [rCz0] ™

5i(x,0) is a 2-excessive function andalso bounded and continuous. Hence from
a theorem of H. Tanaka [6],>” there exists an additive functional s(#,w) such
that

(i) s, w) is continuous and increasing in =0
(i) st w)y=0 if <o (w)

Gity Eo( | Owe‘”ds(t, w)) = Z(x,0).

Now the inverse function #(u,w)=max{¢t;u—=s(t,w)} is a Lévy process
with respect to ﬁo.

THEOREM 5.3. #(u,w) is a one-sided stable process of exponent éA given by
E (e~ tamwy = e_r(%—+])\/7u ‘

PrROOF. We have from (iii)
Eyemrumy = ¢~ From " .

On the other hand, by (5.6)

o 1—FE_, . 1 0
‘f_wgl(_ef y)dy: l(e ) = 65,1 j» ﬂ&(y)dy .
Using (5.8) we have
1 . 1—FE_(e7%) 1 1
— 06, =lim ———F =5~ .
B X))
1

Hence 6&,=v'1 - , this, in view of (5.10), implies

r(5)

26) This is the invariant measure of the process M.
27) Also cf. H.P. McKean & H. Tanaka, Additive functionals of the Brownian
path. Mem. Fac. Sci. Univ. Kyoto Ser. A. Math., (1961).
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1

5,(0,0) = .
OO v

We can construct, for instance, the process determined by £~ and the
7u(0)

o 2
[r(3+1)]
multiplicative functional e~7%* (y > 0), cf. [8].

REMARK 1. We can construct the paths of the reflecting barrier process

on [ just as the case of Brownian motion but we do not discuss of it here.
We remark also that

boundary condition du = — by random killing defined by the

e I(@)
« 2
[7(3)]
is the invariant distribution of this process.
REMARK 2. There is another kind of the reflecting barrier process on I-
whose paths are defined as —| x,(w)| from the paths of the symmetric stable
process.?® This process, which is of course Markovian, has, as its invariant

measure, Lebesgue measure dx and local time at x=0 can be defined only in
the case 1< a =2 whose inverse function is a one-sided stable process with

(1—x2)'§“1dx

1 29)
exponent 1—7.

§6. Some properties of the path functions of the stable process.
Define for a closed set F,

op(w)=1nf { > 0; x(w) € F'} .
THEOREM 6.1. For x€l,=(—A, A)P*®

(6.1) Px(U(y)<UA):O 0<a§1
: A
6.2) Pooug < 0.)= éﬁag’,ﬁ l<a<?.

Proor. Noting Z¢(y,y) < +oo if and only if 1<« =<2, this theorem can
be proved using Hunt’s potential theory {57 and details are omitted.

It is known [10] that if 1=<a =<2, the process is recurrent. Using this
fact and letting A1 oo we have the following:

THEOREM 6.2. For x,y< R*

28) It is well known that if @« =2 these two processes coincide.
29) Cf. below.
30) ca=1Inf{t; x; & 14},
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(6.3) Poy < +00)=0 O<a=1l
6.9 Pyoy, < +o0)=1 l<a=2.

was proved by H.P. McKean [10].
Now consider a path x(w) of the symmetric stable process and let Z(w)

be the set of the zero points of x,(w).
means that for 7> 0

P(Zu)N O, T]I=¢=1 0O<a=1
P(Zw)yn©, T]+¢)=1 1<a=2.
THEOREM 6.3. With probability one, Z(w) (0, T is a non-countable Bovel
set of Hausdorff-Besicovitch dimension 1__6{1_ in the case 1< a=<2.
Proor. We define the local time of the symmetric stable process at x=0.
Put s.(¢, w)= %fotx(o,@(xt)dt for ¢ >0, then we can show that there exists some

sequence {¢,} tending to zero and a function s(f, w) such that
(6.5)  Py(se,(t, w)— s(¢, w) uniformly on any compact in [0, +oo))=1.
We give here the outline of the proof only.’® Put

enlty = Elsunlty )= ™ [ 'tls, s—)ds dy .

L
Then, noting the fact p(z, x) < Kt %, we can show that
[en(t, x)—e(t, x) | —0 m T co, uniformely on any compact
t
set in R'X[0, c0) where e(¢, x):J (s, x)ds .
0
Using this we can prove that s, (¢, w) converges in the mean, i.e. there exists

s(t,w) such that Els. (f, w)—s(, w)[?*—0 m T oo. Next, noting E(s. (T, w)| B;)
is a martingale, we can obtain (6.5).

s(¢,w) is continuous and non-decreasing in >0 and we can easily check
that if x,(w)=+0, then there exist #, ¢ <¢# such that s(t,w)=s{,w). Hence if
we put
tH(u, w)=max {¢; u=s{t, w)}

then x4, (w)=0. We can prove from this and the fact that s(#, w) is a addi-
tive functional that #(u, w) is a Lévy process with respect to P,. Its charac-
teristic function is given by

Eo(e—-/lt(u,w)) — e"g(%in‘

31) The following method was given by K. Sato in the case of the multi-dimen-
sional diffusion [6].
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where

_ Ll (ra _ 1 1~ dy
0= L] = L L

Hence #(u, w) is a one-sided stable process with exponent 1—7‘1?. Now we can

also check that (with probability one) if (#/,#")"Zw) is not empty then
s, w) < s@”,w), and from this we have

PZw)c {t;t=tu,w) or t =t(u—,w) for some ©=0})=1.

The theorem follows now from a theorem of Blumenthal-Getoor [1, Theorem 3.27.
Now consider the interval /~=(—o00,0) and ¢~(w) be defined by (4.4).
THEOREM 64. For 0<a <2 x&l”

P(#<o7,2-=0)=0.

Proor. The function 7(x)=lim vgjﬁ;;ff) in (4.9) isan exessive function
el0
for the absorbing barrier stable process on /= and
7(0)=+oo.

Since 5(x,) is a lower semi-martingale it is bounded on any interval 0S¢ T
with probability one and the theorem follows immediately from this.

This theorem means that, though in the case 1< a <2 particles of the
symmetric stable process hit a given point almost surely, they can not remain
in one of the half lines cut by the point up to this hitting time.

University of Kyoto
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