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Introduction

Following M. Obata [4], we denote by $M$ a manifold of even dimension $2n$

with an almost complex structure $F$, and by $H(x),$ $ x\in j\psi$, the homogeneous
holonomy group of $1\psi$ with respect to a natural connection, $i$ . $e.$ , an affine con-
nection with respect to which $F$ is covariant constant. $A(M)$ denotes the
group of all affine transformations of $1\psi$ onto itself and $A_{0}(M)$ the connected
component of the identity of $A(M)$ . $QL(l, R)$ denotes the real representation
of the quaternion linear group $QL(l, C)$ . We assume that $H(x)$ is irreducible
in $R$ . The following theorem was proved in [4].

THEOREM A. If $n$ is even, $n=21$, and $H(x)$ is not a subgroup of $QL(l, R)$ ,

or if $n$ is odd, then $A_{0}(M)$ preserves the almost complex structure. If $n$ is even,
$n=2l$, and $H(x)$ is a subgroup of $QL(l, R)$ , then $1\downarrow I$ has three independent almost
complex structure $F,$ $G$ and $H$ such that $FG=-GF=H,$ $GH=-HG=F,$ $HF$

$=-FH=G$ and they are all parallel. $A(lM)$ acts on the vector space spanned
by $F,$ $G$ and $H$ as a group of orthogonal transformations. Furthermore these
orthogonal transformations belong to $SO(3)$ in the vector space.

On the other hand, the notion of $\Pi$-structure on a differentiable manifold
of any dimension $m$ (not necessarily even) was introduced by D. C. Spencer
[6]. (The name ’ $\Pi$-structure ‘ was given by G. Legrand [1].) It is one of the
generalizations of the almost complex structure. Then the question arises if
$A(A/V)$ preserves the $\Pi$-structure. An answer to this question will be given
in \S 2.1 as Theorem 2.

In \S 1 we shall summarize briefly the known results on the $\Pi$-structure
and the $\Pi$ -connection. In \S 2, we shall prove the main result.

The author wishes to express his sincere thanks to Prof. S. Sasaki for his
kind assistance and encouragement and to Dr. S. Ishihara for his kindness to
read the original manuscript and to give many valuable advices.
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1. Preliminaries

Let $M$ be a connected (real) m-dimensional differentiable manifold of class
$C^{\infty}$ . We denote by $T_{x}$ the tangent vector space of $M$ at $x\in M$ and by $T_{x}^{c}$ its
complexification.

A $\Pi$-structure (or complex almost-product structure in the terminology of D. C.
Spencer) is defined on $M$ by giving two fields $T^{1}$ and $T^{2}$ , of class $C^{\infty}$ , of com-
plementary proper subspaces of $T_{x}^{c}$ . If we set $n_{1}=\dim T^{1}$ and $n_{2}=\dim T^{z}$,
then we have $n_{1}+n_{2}=m,$ $n_{1}\neq 0,$ $n_{2}\neq 0$ .

Let $P_{1}(resp. P_{2})$ be the projection of $T_{x}^{c}$ onto $T_{x^{1}}$ (resp. $T_{x^{2}}$) at every point
$x\in M$, where Tth (resp. $T_{x^{2}}$) denotes the value of $T^{1}$ (resp. $T^{2}$) at $x$ . Let $\lambda$ be
a complex constant which is not zero. If we set

(1.1) $Fv=\lambda(P_{1}-P_{2})v$ , $v\in T_{x}^{c}$ ,

then we have a linear operator $F$ on complex vector space $T_{x}^{c}$ such that

(1.2) $F^{2}=\text{{\it \‘{A}}}^{2}$ (Identity).

To the operator $F$ corresponds a complex tensor $(F_{j^{i}})$ defined by $(Fv)^{i}=F_{j^{?}}v^{j}$ .
From the relation (1.2) we have

(1.2) $F_{h}^{i}F_{j}^{h}=\lambda^{2}\delta_{j}^{i}$ , $F_{j}^{i}\neq\pm\lambda\delta_{j^{i}}$ .
Conversely we assume that a complex tensor field $(F_{J^{i}})$ of class $C^{\infty}$ is given

on $1M$ and that it satisfies the relation (1.2) with $\lambda\neq 0$ at every point of $JI$.
The linear operator $F$ on $T_{x}^{c}$ is defined by the tensor $(F_{j}^{i})$ at $x\in l\psi,$ $F$ has the
proper values $\lambda$ and $-\lambda$ . Let $T_{x^{1}}$ (resp. $T_{x^{2}}$) be a subspace of $T_{x}^{c}$ generated
by the proper vectors corresponding to the proper value $\lambda$ (resp. $-\lambda$). Then
$T^{1}$ and $T^{2}$ are obviously complementary. Thus $1\psi$ is given a $\Pi$-structure by
the operator $F$.

To the operator $F$ corresponds another complex tensor $F^{\prime}=-F=(-F_{j}^{i})$,

and we have (1.2) for this tensor. Obviously $F^{\prime}$ gives the same $\Pi$-structure
as $F$.

In particular, if the dimension $m$ of $M$ is even and if $T^{1}$ and $T^{2}$ are mutu-
ally complex conjugate, then $ j\psi$ has an almost complex structure by setting
$\lambda=\sqrt{-1}$

A base of $T_{x}^{c}$ is called a complex base relative to $x$ . The set $E^{c}(1M)$ of
complex bases relative to different points of $M$ admits a structure of a princi-
pal fibre bundle over $1\psi$ with structure group $GL(m, C)$ . An (infinitesimal)

connection in $E^{C}(M)$ is called a complex linear connection.
Let $M$ be a differentiable manifold with a $\Pi$-structure $(T^{1}, T^{2})$ . A base

$(e_{i})$ of $T_{x}^{c}$ such that $e_{\alpha}\in T_{x^{1}},$ $e_{1}\in\tau:(\alpha=1, \cdots , n_{1} ; \mu=n_{1}+1, \cdots , m)$ is called a
$\Pi$-adapted base relative to $x$ . Let $(e_{i})$ be a $\Pi$-adapted base relative to $x$. The
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set $E_{\Pi}(M)$ of $\Pi$-adapted bases relative to different points of $M$ admits a struc-
ture of a subbundle of $E^{C}(M)$ whose structure group is the subgroup $G(n_{1}, n_{2})$

of $GL(m, C)$ consisting of matrices

(1.3) $(_{0}^{A}B0)$ ,

where $A\in GL(n_{1}, C)$ and $B\in GL(n_{2}, C)$ . $G(n_{1}, n_{2})$ is isomorphic to $ GL(n_{1}, C)\times$

$GL(n_{2}, C)$ . A connection in $E_{\Pi}(M)$ is called a $\Pi$-connection. G. Legrand [1]

proved the following theorem. (cf. [3])

THEOREM 1. In order that a complex linear connection can be identified with
a $\Pi$-connection, it is necessary and sufficient that the tensor $(F_{j}^{i})$ is covariant
constant.

Let $\nabla$ be the operation of the covariant differentiation with respect to a
complex linear connection. A transformation $\varphi$ of $M$ onto itself is called affine
if it satisfies the equation

(1.4) $\varphi(\nabla t)=\nabla(\varphi t)$ ,

for any complex tensor field $t$ on M. $A(M)$ denotes the group of all affine
transformations of $M$ onto itself. It is a Lie group with respect to the natural
topology. $A_{0}(1M)$ denotes the connected component of the identity of $A(M)$ .

Let $\nabla$ be the operation of the covariant differentiation with respect to a
$\Pi$-connection and $F$ be the tensor field corresponding to the $\Pi$-structure $(T^{1}, T^{2})$ .
Then we have $\nabla F=0,$ $i$ . $e.,$ $F$ is parallel. If a transformation $\varphi$ is affine, then
we have

$\nabla(\varphi F)=\varphi(\nabla F)=0$ ,

hence $\varphi F$ is also parallel.
We shall denote by $P^{c}(r, s)$ the set of all parallel tensor fields of type $(r, s)$ on

$M$ for the $\Pi$-connection. $P^{C}(r, s)$ is obviously a vector space over $C$ . Since any
element of $P^{c}(r, s)$ is uniquely determined by its value at a point $x\in M,$ $P^{c}(r, s)$

is isomorphic with the subspace of the tensor space of type $(r, s)$ over $T_{x}^{c}$ con-
sisting of all tensors invariant under the holonomy group $H(x)$ of the $\Pi$ -con-
nection. It is easily shown that $A(M)$ leaves $P^{c}(r, s)$ invariant and acts on $P^{c}(r, s)$

as a group of automorphism. Hence we obtain a homomorphism $\mu$ of $A(M)$

into $GL(p, C)$ defined by $\mu(\varphi)t=\varphi t$ for any $t\in P^{c}(r, s)$ , where $p=\dim P^{c}(r, s)$ .

2. $\Pi$-connection and affine transformation

2.1. We consider a connected m-dimensional differentiable manifold $M$ with
a $\Pi$-structure $(T^{1}, T^{2})$ . Hereafter we shall assume that $1\psi$ satisfies the second
countability axiom, so that the principal fibre bundle over $M$ has always a
connection.

$M$ is called $\Pi$-irreducible if $H(x)$ is $\Pi$-irreducible in $C,$ $i$ . $e.$ , if $H(x)$ leaves
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$T_{x}^{i}(i=1,2)$ invariant and it is irreducible on $T_{x}^{i}(i=1,2)$ . Otherwise, it is
called $\Pi$-reducible. This notion is independent of the choice of $x$ .

PROPOSITION 2.1. Let $M$ be an m-dimensional manifold with a $\Pi$-structure
$(T^{1}, T^{2})$ . If $M$ is $\Pi$-irreducible and if $\dim T^{1}\neq\dim T^{2}$ , then the group $A(M)$ of
all affine transformations of $M$ preserves the $\Pi$-structure.

PROOF.*) Let $\varphi$ be an arbitrary element of $A(M)$ . For all $x\in M,$ $\varphi(T_{x}^{i})$

$\subset T_{\varphi}^{c_{(x)}}(i=1,2)$ . $\varphi(T_{x}^{i})(i=1,2)$ is non-trivial. We assume $\dim T^{1}>\dim T^{2}$ .
Let $P_{i}(i=1,2)$ be the projection of $T_{x}^{c}$ into $T_{x}^{i}(i=1,2)$ . Since the vector
space $P_{1}\circ\varphi(T_{x^{2}})$ is $H(\varphi(x))$-invariant, $P_{1}\circ\varphi(T_{x^{2}})$ is either the zero space or $T_{\varphi(x)}^{1}$ .
But $P_{1}\circ\varphi(T_{x^{2}})$ can not be $T_{\varphi(x)}^{1}$ . Hence $\varphi(T_{x^{2}})=T_{\varphi(x)}^{2},$ $i$ . $e.$ , the field $T^{2}$ is in-
variant by $\varphi$ .

On the other hand, since $P_{2}\circ\varphi(T_{x}^{1})$ is also $H(\varphi(x))$-invariant, it is either
the zero space or $T_{\varphi(x)}^{2}$ . We assume $P_{2}\circ\varphi(T_{x}^{1})=T_{\varphi(x)}^{2}$ . Let $S$ be the linear
subspace of $\varphi(T_{x}^{1})$ consisting of vectors $v$ such that $P_{2}v=0$ . Hence $S$ is an
$H(\varphi(x))$-invariant subspace of $T_{\varphi(x)}^{1}$ . We have, however, $0<\dim S=\dim T^{1}-$

$\dim T^{2}<\dim T^{1}$ . This is contrary to the assumption. Hence $P_{2}\circ\varphi(T_{x}^{1})$ is the
zero space. Hence we have $\varphi(T_{x}^{1})=T_{\varphi x}^{1}$ , i. e., the field $T^{1}$ is invariant by $\varphi$ .
Therefore $A(M)$ preserves the $\Pi$-structure $(T^{1}, T^{2})$ . $q$ . $e$ . $d$ .

Next we consider the case $\dim T^{1}=\dim T^{2}=n$ and $m=2n$ .
PROPOSITION 2.2. Let $M$ be a $2n$ -dimensional differentiable manifold with a

$\Pi$-structure $(T^{1}, T^{2})$ . Assume that $M$ is $\Pi$ -irreducible and that $n=\dim T^{1}=\dim T^{2}$ .
If there exists no isomorphism of $T$ ‘ onto $T^{2}$ commuting with the operations of
$H(x)$ at every point $x$ of $M$, then $A(M)$ preserves the $\Pi$ -structure.

PROOF. Suppose there exists an element $\varphi$ of $A(M)$ ($\varphi\neq identity$ of $A(M)$)

which does not preserve the given $\Pi$-structure $(T^{1}, T^{2})$ at $x\in M$. Since
$P_{2}\circ\varphi(T_{x}^{1})$ is $H(\varphi(x))$-invariant, $P_{2}\circ\varphi(T_{x}^{1})$ is either the zero space or $T_{\varphi(x)}^{2}$ .
Similarly we have $P_{1}\circ\varphi(T_{x^{2}})$ is either the zero space or $T_{\varphi(x)}^{1}$ . Since $\varphi$ does
not preserve the $\Pi$-structure at $x,$ $P_{2}\circ\varphi(T_{x}^{1})$ and $P_{1^{O}}\varphi(T_{x^{2}})$ can not be the zero
spaces at the same time.

So we have either $P_{2}\circ\varphi(T_{x}^{1})=T_{\varphi(x)}^{2}$ or $P_{1}\circ\varphi(T_{x^{2}})=T_{\varphi(x)}^{1}$ . In both cases, we
can easily construct the isomorphism of $T_{x}^{1}$ onto $T_{x^{2}}$ commuting with the
operations of $H(x)$ , which is contrary to hypothesis. $q$ . $e$ . $d$ .

From Propositions 2.1 and 2.2, follows:
THEOREM 2. Let $1\psi$ be an m-dimensional differentiable manifold with a $\Pi-$

structure $(T^{1}, T^{2})$ . Assume that $1M$ is $\Pi$-irreducible. If there exists no isomor-
phism of $T^{1}$ onto $T^{2}$ commuting with the operations of $H(x)$ at every point $x$ of
$M$, then $A(M)$ preserves the $\Pi$-structure.

2.2. We consider the case that there exists a differentiable field of isomor-

$*)$ This original proof of this proposition was simplified by a remark of the re-
feree. The author wishes to express his gratitude to the referee.
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phisms $\hat{S}$ of $T^{1}$ onto $T^{2}$ commuting with the operations of the holonomy group
of a $\Pi$-connection. This means that if we define a differentiable vector field
$v$ with $v(x)$ in $T_{x}^{c},\hat{S}v(x)$ belongs to $T_{x}^{c}$ and the vector field $Sv$ is also differ-
entiable.

The $\Pi$-adapted base $(e_{i})$ of $T_{x}^{c}$ is called a $\hat{S}$-adapted base if we have $e_{\alpha*}=\hat{S}e_{a}$

for $\alpha=1,$ $\cdots$ , $n;\alpha^{*}=\alpha+n$ . The set $E_{\hat{s}}(M)$ of $\hat{S}$-adapted bases relative to
different points of $M$ admits a structure of a subbundle of $E^{c}(M)$ whose struc-
ture group is subgroup $\Gamma_{0}(n)$ of $GL(2n, C)$ consisting of matrices

(2.1) $\left(\begin{array}{ll}A & 0\\0 & A\end{array}\right)$ , $A\in GL(n, C)$

$\Gamma_{0}(n)$ is isomorphic with $GL(n, C)$ .
PROPOSITION 2.3. Let $M$ be a $2n$-dimensional differentiable manifold with a

$\Pi$-structure $(T^{1}, T^{2})$ . Assume that $M$ is $\Pi$-irreducible and that $n=\dim T^{1}=\dim T^{2}$ ,

If there exists a differentiable field of isomorphisms $\hat{S}$ of $T^{1}$ onto $T^{2}$ commuting
with the operations of the holonomy group of a $\Pi$-connection, then $M$ has
three independent $\Pi$-structures $F,$ $G$ and $H$ such that $FG=-GF=-’-1\lambda H$,

$GH=-HG=-\sqrt{-1}\lambda F,$ $HF=-FH=-\sqrt{-1}\lambda G$ and they are all invariant
under $H(x)$ for every $x\in M$.

PROOF. We take an $\hat{S}$-adapted base as a $\Pi$-adapted one. Since $M$ has a
$\Pi$-structure $(T^{1}, T^{2})$ , there exists a linear operator $F$ satisfying (1.2). Further
there exists a tensor field $F$ satisfying (1.2). The value $F_{x}$ of $F$ at $x\in M$,

which is a tensor of type $(1,1)$ , is invariant under $H(x)$ for every $x\in M$. Hence
matrix $F_{x}$ commutes with the operations of $H(x)$ . Therefore $F_{x}$ is a com-
mutator of the representation of $H(x)$ .

In general, let $\Omega$ be a commutator algebra of the representation of $H(x)$ .
If K\in t\S , then $K$ has the form

(2.2) $K=\left(\begin{array}{ll}K_{1} & K_{2}\\K_{8} & K_{4}\end{array}\right)$ .
Since this is a commutator, we can get by Schur’s lemma

$K_{j}=\alpha_{j}I_{n}$ , $\alpha_{j}\in C$ ; $j=1,2,3,4$,

where $I_{n}$ is the unit $(n\times n)$ matrix. Hence

$\left(\begin{array}{ll}\lambda I_{n} & 0\\0 & \lambda I_{n}\end{array}\right)$ , $(^{\lambda I_{n}}0-\lambda I_{n}0)$ , $(_{\lambda I_{n}}0\lambda I_{n)}0$ $(_{-\sqrt{-1}^{0}\lambda I_{n}}\sqrt{-1}\lambda I_{n)}0$

forms a base of ge relative to the $\hat{S}$-adapted base, where $\lambda$ is a non-zero com-
plex number.

Let $P^{c}(1,1)$ be the vector space spanned by all parallel tensor fields of
type $(1,1)$ on $M$ and $\tilde{P}^{c}(1,1)$ the subset of all the elements $K^{\prime}$ of $P^{c}(1,1)$ such
that $K^{\gamma 2}=\lambda^{2}I_{2n},$ $K^{\prime}\neq\pm\lambda I_{zn}$ . We assign $K^{\prime}\in\tilde{P}^{c}(1,1)$ to the value $K_{x}^{\prime}$ of $K^{\prime}$
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at $x$ . $P^{c}(1,1)$ is isomorphic with the subspace of the tensor space of type
$(1,1)$ over $T_{x}^{c}$ consisting of all tensors invariant under the operations of $H(x)$,
$i.e.,$ $P^{c}(1,1)$ is isomorphic with the commutator algebra $\Omega$ . It is obvious that
$\tilde{P}^{c}(1,1)$ is isomorphic with the subset $\tilde{\theta}$ of ge consisting of the commutators
$K$ such that $K^{2}=\lambda^{2}I_{2n}(K\neq\pm\lambda I_{2n})$ . We denote by $F,$ $G$ and $H$ the parallel
tensor fields deduced from

$\left(\begin{array}{ll}\lambda I_{n} & 0\\0 & -\lambda I_{n}\end{array}\right)$ , $\left(\begin{array}{ll}0 & \lambda I_{n}\\\lambda I_{n} & 0\end{array}\right)$ , $(_{-\sqrt{-1}\lambda I_{n}}0\sqrt{-1}\lambda I_{n)}0$

respectively. Then we have $F^{2}=G^{2}=H^{2}=\lambda^{2}I_{2n}$ . Furthermore $FG=-GH$
$=-\sqrt{-1}\lambda H,$ $GH=-HG=-\sqrt{-1}\lambda F,$ $HF=-FH=-\sqrt{-1}\lambda G$ . Thus $\tilde{P}^{C}(1,1)$

consists of the tensor field K $=\alpha F+\beta G+\gamma Hsuchthat\alpha^{2}+\beta^{2}+\gamma^{2}=1(\alpha, \beta, \gamma\in C)$ .
A tensor field $F$ generates the two fields of spaces of proper vectors which

are identified with the given $\Pi$-structure $(T^{1}, T^{2})$ . $G$ and $H$ generate the fields
of spaces of proper vectors which define other $\Pi$-structures respectively.
These three $\Pi$-structures are all invariant under the operations of $H(x)$ for
every $x\in M$ and independent from each other. $q$ . $e$ . $d$ .

2.3. Let $M$ be a $2n$-dimensional differentiable manifold with a $\Pi$-structure
$(T^{1}, T^{2})$ with $\dim T^{1}=\dim T^{2}=n$ . We assume that there exists a differenti-
able field of isomorphisms $S$ of $T^{1}$ onto $\overline{T}^{2}$ commuting with the operations of
the holonomy group of a $\Pi$-connection, where $\overline{T}^{2}$ is the complex conjugate of
$T^{2}$ According to G. Legrand [2], the $\Pi$-adapted base $(e_{i})$ of $T_{x}^{c}$ is called an
S-adapted base if we have $\overline{e}_{\alpha}*=Se_{\alpha}$ for $\alpha=1$ , $\cdot$ . $n;\alpha^{*}=\alpha+n$ . The set $E_{s}(M)$

of S-adapted bases relative to different points of $1\psi$ admits a structure of the
subbundle of $E_{\Pi}(l\psi)$ whose structure group is the subgroup $\hat{\Gamma}(n)$ of $GL(2n, C)$

consisting of matrices

(2.3) $\left(\begin{array}{ll}A & 0\\0 & \overline{A}\end{array}\right)$ , $A\in GL(n, C)$ .

$\hat{\Gamma}(n)$ is isomorphic with $GL(n, C)$ .
Let $QL(l, C)$ be a quaternion linear group, i. e., a subgroup of $GL(2l, C)$

composed of all the matrices $A^{\prime}$ satisfying $A^{\prime}J_{l}=J_{l}A^{\prime}$ , where $J_{l}=\left(\begin{array}{ll}0 & -I_{\iota}\\I_{l} & 0\end{array}\right)$ .
M. Obata [4] proved the following Lemma.

LEMMA. Let $G$ be a subgroup of $GL(m, C)$ and $\overline{G}$ its complex conjugate.
Assume that $G$ is irreducible and is conjugate to $\overline{G}$ but is not conjugate to a sub-
group of $GL(m, R)$ . Then we have:

1) There exists a matrix $S_{0}\in GL(m, C)$ such that

(2.4) $L_{0}^{-1}AL_{0}=\overline{A}$ for all $A$ in $G$ ,

and $\overline{L}_{0}L_{0}=L_{0}\overline{L}_{0}=-I_{m}$ . A matrix $L\in GL(m, C)$ satisfies (2.4) if and only if $L$ is
written in the form $L=\alpha L_{0},$ $\alpha$ being a non-zero complex number.



Differentiable manifold with $\Pi$ -structure 347

2) $m$ is even, $m=2l$, and there exists a matrix $K\in GL(m, C)$ such that
$K^{-1}L_{0}\overline{K}=J_{\iota}$ .

3) $G$ is conjugate to a subgrotZp of $QL(l, C)$ .
The representation of $H(x)$ is a subgroup of $\hat{\Gamma}(n)$ and is identified with a

subgroup of $GL(n, C)$ . That $H(x)$ is a subgroup of $QL(l, C)$ means that the re-
presentation of $H(x)$ is a subgroup of $QL(l, C)$ under this identification.

PROPOSITION 2.4. Let $M$ be a $2n$-dimensional differentiable manifold with a
$\Pi$-structure $(T^{1}, T^{2})$ . Assume that $M$ is $\Pi$-irreducible and that $n=\dim T^{1}=\dim T^{z}$

and that there exists a differentiable field of isomorphisms $S$ of $T^{1}$ onto $\overline{T}^{2}$ commut-
ing with the operations of the holonomy group $H(x)$ of a $\Pi$-connection, where $\overline{T}^{z}$

is the complex conjugate of $T^{2}$ . If $n$ is even, $n=2l$, and $H(x)$ is not a subgroup

of $QL(l, C)$ , or if $n$ is odd, then $A(M)$ preserves the $\Pi$-structure. If $n$ is even,
$n=2l$, and $H(x)$ is a subgroup of $QL(l, C)$ , then Mhas three independent $\Pi$-struc-
tures $F,$ $J_{1}$ and $J_{2}$ such that $FJ_{1}=-J_{1}F=-\sqrt{-1}\lambda J_{2},$ $J_{1}J_{2}=-J_{2}J_{1}=-\sqrt{-1}\lambda F$

and $J_{2}F=-FJ_{2}=-\sqrt{-1}\lambda J_{1}$ and they are all invariant under $H(x)$ for every $x\in M$.
PROOF. We take an S-adapted base. Since an element $K$ of a commutator

algebra St of the representation of $H(x)$ has the form (2.2), we have, by a
method similar as in the proof of Proposition 2.3.,

$K_{1}A=AK_{1}$ , $K_{2}\overline{A}=AK_{2}$ , $K_{3}A=\overline{A}K_{3}$ , $K_{4}\overline{A}=\overline{A}K_{4}$ .
Since $M$ is $\Pi$-irreducible, we have

$K_{\iota}=\alpha_{i}I_{n}(\alpha_{i}\in C;i=1,4)$ ,

$K_{j}=0$ or $\det K_{j}\neq 0(j=2,3)$ .
If $\det K_{j}\neq 0(j=2,3)$ we have $K_{j}^{-1}AK_{j}=\overline{A}(j=2,3)$ . By Lemma, $n$ is even,
$n=2l$, and there exists a regular matrix $L$ such that $L_{j}^{-1}K_{j}\overline{L}_{j}=\alpha_{j}J_{l}(j=2,3)$ ,

where $\alpha_{j}(j=2,3)$ is a complex number. It should be noted that such $L_{j}$ can
shosen independently of the special choice of $K$ in $\mathfrak{X}$ .

Therefore, in case $K_{j}=0(j=2,3)$ , we have

(2.5) $K=\left(\begin{array}{ll}\alpha_{1}I_{n} & 0\\0 & \alpha_{4}I_{n}\end{array}\right)$ , $\alpha_{1},$
$\alpha_{4}\in C$ .

In case $\det K_{2}\neq 0$ and $\det K_{3}\neq 0$ , if we put $e_{\beta}^{\prime}=L_{2}e_{\beta},$ $e_{\beta*}^{\prime}=L_{3}e\rho*(\beta=1,$ $\cdots$ , $ni$

$\beta^{*}=n+1,$ $\cdots$ , $2n$), where $\{e_{\beta}, e_{\beta*}\}(\beta=1, \cdots , n;\beta^{*}=n+1, \cdots , 2n)$ is the S-adapted
base, $\{e_{\beta}^{\prime}, e_{\beta*}^{\prime}\}$ is another S-adapted base. Relative to this base $K$ has the form

(2.6) $K=\left(\begin{array}{ll}\alpha_{1}I_{n} & \alpha_{2}J_{l}\\\alpha_{3}J_{l} & \alpha_{4}I_{n}\end{array}\right)$ , $\alpha_{i}\in C(i=1,2,3,4)$ .

This implies that $H(x)$ is a subgroup of $QL(l, C)(n=2l)$ . Similarly, in case
$K_{2}=0$ and $\det K_{3}\neq 0,$ $K$ has the form

(2.7) $K=\left(\begin{array}{ll}\alpha_{1}I_{n} & 0\\\alpha_{8}J_{l} & \alpha_{4}I_{n}\end{array}\right)$ , $\alpha_{1},$ $\alpha_{3},$ $\alpha_{4}\in C$ ,



348 T. SAEKI

and in case $\det K_{2}\neq 0$ and $K_{3}=0$

(2.8) $K=\left(\begin{array}{ll}\alpha_{1}I_{n} & \alpha_{2}J_{\iota}\\0 & \alpha_{4}I_{n}\end{array}\right)$ , $\alpha_{1},$ $\alpha_{2},$ $\alpha_{4}\in C$ .

Conversely if $H(x)$ is a subgroup of $QL(l, C)$ , then matrices of the form (2.6),
(2.7) and (2.8) are commutators of $H(x)$ .

Assume that $n$ is even, $n=2l$, and $H(x)$ is not a subgroup of $QL(l, C)$ , or
$n$ is odd. The matrices of the form (2.5) are commutators of the representa-
tion of $H(x)$ . Hence ge is generated by

$\left(\begin{array}{ll}\lambda I_{n} & 0\\0 & \lambda I_{n}\end{array}\right)$ , $\left(\begin{array}{ll}\lambda I_{n} & 0\\0 & -\lambda I_{n}\end{array}\right)$

where $\lambda$ is a non-zero complex number.

Let $F$ be the tensor field corresponding to $\left(\begin{array}{ll}\lambda I_{n} & 0\\0 & -\lambda I_{n}\end{array}\right)$ . $\tilde{P}^{c}(1,1)$ consists

of the tensor fields $\pm F$. Hence we have $\mu(\varphi)F=\pm F$ for $\varphi\in A(M)$ . $F$ and
$-F$ correspond to the given $\Pi$-structure $(T^{1}, T^{2})$ .

Assume that $n$ is even, $n=2l$, and $H(x)$ is a subgroup of $QL(l, C)$ . $P^{c}(1,1)$

consists of the tensor fields $K=\alpha F+\beta J_{1}+\gamma J_{2}$ with $\alpha^{2}+\beta^{2}+\gamma^{2}=1(\alpha, \beta, \gamma\in C)$,
where $J_{1}$ and $J_{2}$ correspond to

( $-\sqrt{-1}^{0}\lambda J_{\iota}$ $-\sqrt{-1}\lambda J_{l}0$ ) and $\left(\begin{array}{ll}0 & \lambda J_{l}\\-\lambda J_{\iota} & 0\end{array}\right)$

respectively. And we have $J_{1}^{2}=I_{2}^{2}=\lambda^{2}I_{2n},$ $FJ_{1}=-J_{1}F=-\sqrt{-1}\lambda J_{2},$ $J_{3}J_{2}=-I_{2}I_{1}$

$=-\sqrt{-1}\lambda F$ and $J_{2}F=-FJ_{2}=-\sqrt{-1}\lambda J_{1}$ . $F$ corresponds to the given $\Pi-$

structure $(T^{1}, T^{2})$ . $J_{1}$ and $J_{2}$ correspond to other $\Pi$-structures. These three
$\Pi$-structures are all invariant under the operations of $H(x)$ for every $x\in M$ and
independent from each other. $q$ . $e$ . $d$ .

In particular, in a $2n$-dimensional differentiable manifold with the $\Pi$-struc-
ture, if $T^{1}$ and $T^{2}$ are mutually complex conjugate and if $\lambda^{2}=-1$ , the $\Pi-$

structure $(T^{1}, T^{2})$ determines an almost complex structure. In this case, the
matrices $F,$ $J_{1}$ and $J_{2}$ take the forms

$F=(\sqrt{-1}I_{n}0-\sqrt{}-\overline{1}I_{n}0)$ $J_{1}=\left(\begin{array}{ll}0 & J_{l}\\J_{l} & 0\end{array}\right)$ , $J_{2}=(_{-\sqrt{}}\frac{0}{-1}J_{l}\sqrt{-1}J_{l}0)$

respectively. These matrices are nothing but the matrices which define the
three independent almost complex structure in Theorem A. We can easily see
that these three almost complex structures form the quaternion structure.
Hence, in this case, Proposition 2.4 reduces partially to Theorem A described
in Introduction.

Iwate University, Morioka
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