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\S 1. Introduction

1. Let $D$ denote the open unit disk and $C$ the unit circle in the complex
plane. Further, let $S(e^{i\theta}, \alpha)$ denote the symmetric Stolz domain at $e^{i\theta}$ of open-
ing $ 2\alpha$ lying in $D$ . Eor certain classes of functions, holomorphic in $D$, results
are known concerning the order, or growth, of functions belonging to the
class. These results usually take two forms. One group of theorems gives a
type of global order. For example, if $f(z)$ is univalent and holomorphic in $D$

then Koebe’s distortion theorem gives that $|f^{\prime}(z)|\leqq\frac{(1+|z|)}{(1-|z|)^{3}}$ . However if we
restrict the choice of $z$ somewhat a better estimate on the order can be given.
Seidel and Walsh ([15], p. 338) showed that $|f^{\prime}(z)|(1-|z|)^{\frac{1}{2}}\rightarrow 0$ as $z$ tends to $e^{i\theta}$,
$z\in S(e^{i\theta}, \alpha)$ , for any $\alpha>0$ and almost all $0E[0,2z$). This type of result has
been called a “ statistical ” result on order by J. Lelong-Ferrand.

If $P(z)$ is any function, holomorphic in $D$ , which omits in $D$ the values $0$

and 1, then, as is well known, Schottky’s theorem gives a global order for

$P(z)$ to the effect that $|P(z)|\leqq e^{\overline{(1-}1\overline{zJ)}}A$ where $A$ is a positive constant depend-
ing on $P(O)$ . The main result in this paper will be to give a statistical theo-
rem concerning the order of $P(z)$ . In its simplest form the theorem states

that for almost all $\theta\in[0,2\pi$), any fixed $\mu>0$ and $\epsilon>0,$
$|P(z)|e\frac{-\mu}{(1-|z|)^{1/2+\epsilon}}$ tends

to $0$ as $z$ tends to $e^{i\theta}$ in any Stolz domain at $e^{t\theta}$ . Thus, as in the case of uni-
valent functions, a smaller estimate can be given for almost all $\theta\in[0,2\pi$), on
sequences approaching $e^{t\theta}$ within any Stolz domain at $e^{i\theta}$ .

In \S 2 we deduce the fundamental theorem used to prove the main theo-
rem. This fundamental theorem is similar in content to a result of Lelong-
Ferrand ([10], p. 23).

Some results are given in \S 3 on the order of functions holomorphic in $D$

for which information is known concerning the order of their Taylor coeffi-
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cients. From these theorems we derive in \S 4 estimates on the order of holo-
morphic functions which omit the values $\pm 2\pi in(n=0,1, \cdots)$ , which lead to
the result on functions omitting $0$ and 1 stated above.

\S 2. Fundamental Theorem

2. The method we use is essentially due to Lelong-Ferrand ([10], 20-23).
Let $\overline{D}=D\cup C$ ; and set, for $\rho>0,$ $z_{0}\in\overline{D},$ $D(z_{0}, \rho)=\{z\in D;|z-z_{0}|<\rho\}$ . In the
sequel set $z=x+iy=re^{i\theta}$ . Now define the following outer measure for sets in
the plane:

DEFINITION 1. Let $h(r)$ be a real-valued, non-decreasing, continuous func-
tion defined for $r\geqq 0$ , satisfying the conditions $h(O)=0,$ $h(r)>0$ , for $r>0$ ,
$h(\infty)>1$ . For any set $E$ in the plane and any $ 0<\rho<\infty$ let $h_{\rho^{*}}(E)$ denote the

greatest lower bound of the quantities $\sum_{\nu=1}^{\infty}h(r_{\nu})$ for all countable systems of

open circular disks $D_{\nu}$ , with radius $ 0<\gamma_{\nu}<\rho$ , which cover $E$ . Now define the
h-measure of the set $E$ to be the $\lim_{\rho\rightarrow 0}h_{\rho^{*}}(E)$ . We denote this value by $h^{*}(E)$ .
It is easy to show that this defines on the plane an outer measure in the
sense of Carath\’eodory2). In the case $h(r)=r^{k},$ $0<k<2$ , this defines the k-
dimensional outer measure.

We state now a lemma of Ahlfors, as formulated by Lelong-Ferrand ([10],

p. $20)^{3)}$ . This lemma is based on ideas of Sire, Boutroux, H. Cartan, and Bloch.
For references see ([13], p. 143).

LEMMA 1. Let $g(e)$ be a non-negative, countably additive set function (mass

distribution) defined for all measurable4) subsets of a measurable set $E$ in the
plane, such that $ g(E)=K<\infty$ . Let $\mu(z, r)$ denote the quantity of mass contained
in the intersection of the set $E$ and the open disk with center $z$ and radius 7’.

(Of course we take the mass of the empty set to be zero.) Let $A$ be a positive
number satisfying $AK<1$ . We then have, for all points of the plane,

$\mu(z, r)<\frac{h(r)}{A}$ ,

except possibly for a set of points $S$ which can be covered by a sequence of

2) $\mu$ is called an outer measure in the sense of Carath\’eodory if i) for every set

$A,$ $ 0\leqq\mu(A)\leqq\infty$ , ii) if $B\subset A$, then $\mu(B)\leqq\mu(A)$ , iii) if $A=\bigcup_{n=1}^{\infty}A_{n}$ then $\mu(A)\leqq\sum_{n=\iota}^{\infty}\mu(A_{n})$ ,

iv) if the distance between $A$ and $B$ is positive then $\mu(A\cup B)=\mu(A)+\mu(B)$ . Note
that the outer measure $h_{\rho}^{*}$ satisfies properties $(i)-(iii)$ , but not (iv). For a discussion
of these outer measures see, for example, ([12]).

3) The continuity of $h(r)$ is inadvertently omitted in the hypothesis.
4) By “ measurable ” we will mean Lebesgue-measurable unless otherwise stated.

All integrals used are to be considered as Lebesgue integrals also.
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circles $C_{\nu}$ , with radius $\gamma_{\nu}$ , such that $\sum_{\nu=1}^{\infty}h(r_{\nu})<6KA$ .
The lemma, as stated, gives no information concerning the size of the

radius $r_{\nu}$ . However, given a fixed $\rho_{0}>0$ , it is possible to choose the constant
$A$ so that the exceptional set $S$ is such that $h_{\rho_{\mathfrak{g}}}^{*}(S)<6KA$ . We indicate the
necessary modification to the proof as given by Lelong-Ferrand ([10], p. 20-23).

As usual, for each $r>0$ , set $\lambda_{1}(r)=l$. $u$ . $b$ . $(\mu(a, r))$ . Given $\rho_{0}>0$ , choose $A$

so that
i) $AK<h(\rho_{0})$ ;

(2.0)

ii) $AK<1$ .
For all sufficiently large $r$

(2.1) $h(r)>AK\geqq\lambda_{1}(r)A$ .
If (2.1) holds for all $r$ the lemma is proved and the exceptional set is vacuous.

Otherwise let $\gamma_{1}$ be the least upper bound of all values $\gamma$ for which $\lambda_{1}(r)\geqq\frac{l\iota(r)}{A}$ .
Now $r_{1}<\rho_{0}$ since for all $r\geqq\rho_{0},$ $h(r)\geqq h(\rho_{0})$ . The proof now follows exactly as
given by Lelong-Ferrand. Notice that the exceptional set $S$ is now covered

by a sequence of circles $C_{\nu}$ , with radius $\gamma_{\nu},$
$\gamma_{\nu}\leqq\gamma_{1}<\rho_{0}$ , such that $\sum_{\nu=1}^{\infty}h(r_{\nu})<6KA$ ;

hence $h_{\rho}^{*_{0}}(s)\leqq 6KA$ . The lemma now reads :
Let $g(e)$ be a non-negative, countably additive set function defined for all

measurable subsets of a measurable set $E$ in the plane such that $ g(E)=K<\infty$ .
Let $\mu(z, r)$ denote the quantity of mass contained in the intersection of the set $E$

and the open disk with center $z$ and radius $r$. Let $h(r)$ be any function satisfy-
ing Definition 1, and let $\rho_{0}>0$ be given. If we choose a positive constant $A$ so
that $AK<1$ and $AK<h(\rho_{0})$ then we have, for all points of the plane,

$\alpha(z, r)<\frac{h(r)}{A}$ ,

except possibly for a set of points $S$ such that $h_{\rho}^{*_{0}}(S)<6KA$ .

3. Applying the lemma in a manner analogous to Lelong-Ferrand although
in a slightly more general form, we have:

THEOREM 1. Let $h(r)$ be a function satisfying the conditions of Definition 1,
and let $U(z)$ be a real-valued, non-negative, measurable function defined in $D$

such that

(3.0) $\int\int_{D}U(z)dxdy<\infty$ .
We then have

$\lim_{\gamma\rightarrow 0}\frac{1}{h(r)}\int\int_{D(e^{t\theta},r)}U(z)dxdy=0$ ,
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except for at most a set of $e^{i\theta}$ of h-measure $0$ .
PROOF. This proof is patterned after the one given by Lelong-Ferrand

([10], p. 23), who did not use quite so general a function as $U(z)$ . We give the
proof since our basic lemma, Lemma 1, is slightly revised from the one used
by Lelong-Ferrand; and also since the proof that the exceptional set has h-
measure $0$ is not clear to the writer.

Define for $n=1,2,$ $\cdots$ ,

$\Omega_{n}=\{z\in D;1-\frac{1}{n}<|z|<1\}$ ,

and set

$\epsilon_{n}=\int\int_{\Omega_{n}}U(z)dxdy$ .

We note that condition (3.0) implies that

(3.1) $\lim_{n\rightarrow\infty}\epsilon_{n}=0$ ,

and since $U(z)$ is non-negative we also have that $\epsilon_{n}\geqq\epsilon_{n+1}$ for $n=1,2$ , . We
consider two cases:

Case i) $\epsilon_{n}=0$ for some $n=N_{0}$ . Then, for all $n\geqq N_{0},$ $\epsilon_{n}=0$ and the theo-
rem is trivially true.

Case ii) $\epsilon_{n}>0$ for all $n$ . Consider an arbitrary but fixed function $h(r)$ and

let $\rho_{0}>0$ be given. Choose $N_{0}$ so large that $\epsilon_{n}<1$ and $\sqrt{\epsilon_{n}}<h(\rho_{0})$ , for $n>N_{0}$ .
Restrict $n$ to be always greater than $N_{0}$ . We now apply Lemma 1, in its
second form, choosing $E=\Omega_{n}$ for a fixed value of $n>N_{0}$ . Define the mass
function in $\Omega_{n}$ as follows: for any measurable subset $e$ of $\Omega_{n}$ let

$g(e)=\int\int_{e}U(z)dxdy$ .

We then have $g(\Omega_{n})=K=\epsilon_{n}$ and take $A=^{1}\sqrt[-]{\overline{\epsilon_{n}}}$ . For this choice of $A,$ $AK$

$=\sqrt{\epsilon_{n}}<h(\rho_{0})$ for any $n>N_{0}$ . Applying the result in Lemma 1, we can write,
for all $\gamma>0$,

(3.2) $\frac{\mu(z,r)}{h(r)}<\sqrt{\epsilon_{n}}$ ,

except for a set $S_{n}$ of points $z$ such that $h_{\rho_{0}}^{*}(S_{n})<6\sqrt{\epsilon_{n}}$ . We shall show that,
except for at most a set of $e^{i\theta}$ of h-measure zero,

$\lim_{7\rightarrow 0}\frac{1}{h(r)}\int\int_{D(e^{i\theta},r)}U(z)dxdy=0$ .

Indeed, let a subsequence of natural numbers $\{n_{k}\}$ be chosen so that $n_{1}>N_{0}$ ,

$n_{k}\geqq n_{k+1}$ , for all $k$ and
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$\int\int_{\Omega_{n_{k}}}U(z)dxdy=\epsilon_{n_{k}}<\frac{1}{k^{4}}$,

which is possible because of (3.1). From the above and (3.2) it follows that,
for arbitrary $\Omega_{n_{k}}$ and all $r>0$ ,

$\frac{\chi_{l}(z,r)}{h(r)}<\sqrt{\epsilon_{n}}k<\frac{1}{k^{2}}$

except for a set $S_{n_{k}}$ such that

(3.3) $h_{\rho}^{*_{0}}(S_{n_{k}})<6\sqrt{\epsilon_{n_{k}}}<_{k^{6_{2^{-}}}}-$

Let $S$ be the set of $e^{i\theta}$ for which

$\lim_{r\rightarrow 0}\sup_{h(\overline{r)}}^{1}-\int r_{D’ e^{t?}.\gamma)}U(z)dxdy\equiv C_{\theta}>0$ .

This implies, for every fixed $e^{i\theta}\in S$ , the existence of a sequence $\{r_{j}\}$ , with
$\lim_{j\rightarrow\infty}r_{j}=0$ , such that

$\frac{1}{h(r_{i})}\int\int_{D(et9_{r_{j})}},U(z)dxdy>-\underline{C}_{2^{\theta}}$ .

Let the natural number $p$ be chosen so that $\sqrt{\epsilon_{n}}<p\frac{C_{\theta}}{2}$ We then have the
inequality
(3.4) $\frac{1}{h(r_{j})}\int\int_{D(ei9_{r_{j})}},U(z)dxdy>\sqrt{\epsilon_{n}}\geqq\sqrt{\epsilon_{n}}pk$

for $k\geqq p$ and all $j$ since $\{\epsilon_{n_{k}}\}$ is a non-increasing sequence of non-negative
numbers.

Recall that we applied lemma 1 by choosing $E=\Omega_{n}$ for any $n>N_{0}$ . If

we restrict $r$ so that $0\leqq r\leqq\frac{1}{n}$ , then, by our definition of the mass distribu-

tion in $\Omega_{n}$ , the quantity of mass, $\mu(e^{t\theta}, r)$ , contained in $D(e^{\iota\theta},r)$ is given by

$\int\int_{D(ei\theta_{7)}},U(z)dxdy$ .

Formulate (3.4) as follows : given any fixed $n_{k},$ $k>p$ ,

$\underline{\mu(}\frac{e^{i\theta},r_{j})}{h(r_{j})}>\sqrt{\epsilon_{n_{k}}}$

for all $r_{j}$ , such that $0<r_{j}\leqq\frac{1}{n_{k}}$ . This implies $e^{i\theta}\in S_{n_{k}},$ $k\geqq p$, hence $S\subset\bigcup_{k=m}^{\infty}S_{n_{k}}$

for every $m=1,2,$ $\cdots$ . By the subadditivity of the outer measure $h_{\rho}^{*_{0}}$ , and by
(3.3),

$h_{\rho_{0}}^{*}(S)\leqq\sum_{k=m}^{\infty}h_{\rho_{0}}^{*}(S_{n_{k}})<6\sum_{k=m}^{\infty}\frac{1}{k^{2}}$ .

This holds for every $m$ , hence $h_{\rho}^{*_{\phi}}(S)=0$ . Since $\rho_{0}$ was arbitrary $/\iota^{*}(S)$

$=\lim_{\rho-v}h_{\rho}^{*}(S)=0$ . This completes the proof of Theorem 1.
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\S 3. Applications to functions belonging to the class $A^{s}$

4. We apply Theorem 1 to obtain information on the growth of functions
holomorphic in $D$ and which satisfy the following condition:

DEFINITION2. Let f$(z)beholomorphicinD$ . Ifs $>-1,$ $wesaythatf(z)\in A^{s}$

if
$\int\int_{D}|f^{\prime}(z)|^{2}(1-|z|)^{s}dxdy<\infty$ .

Similar conditions on $f(z)$ we studied by Paley and Littlewood [see Zygmund
\langle $[17]$ , p. 210)], Lelong-Ferrand ([9], p. 49), Dufresnoy ([2], p. 395), and Flett
([3], p. 3).

In Theorem 2 we consider a slightly more general class of functions than
$A^{s}$ , and this theorem generalizes a result of Flett’s ([3], p. 3).

THEOREM 2. Let $f(z)$ be holomorphic in D. If, for $s>-1$ and $k>0$ ,

$\int\int_{D}|f^{\prime}(z)|^{k}(1-|z|)^{s}dxdy<\infty$ ,

then

$\lim_{z\rightarrow e^{i\theta}}\frac{|f^{\prime}(z)|^{k}(1-}{h(|z-e}i\theta\frac{z|)^{s+2}}{1)}|=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure zero.
REMARK 1. $h(r)$, of course, satisfies Definition 1, but in addition we re-

quire that
\langle 4.0) $h(\alpha r)\leqq C_{a}h(r)$ ,

for all $\alpha>0$ where $C_{\alpha}$ is a positive constant depending only on $\alpha$ . This pro-
perty is not essential in the following theorems. However the statement of
the theorems would become somewhat more complicated if this property were
not assumed. This property is satisfied, for example, in the case $h(r)=r^{k}$ .

REMARK 2. In the case $k=2$ , the theorem was proved in a similar manner
by Lelong-Ferrand ([9], p. 49). The applications of the theorem differ.

PROOF. Let $\zeta$ be an arbitrary point of $D$ and let $D(\zeta, r)\subset D$ . Recalling
that $|f^{\prime}(z)|^{k}$ , for $k>0$ , is subharmonic in $D$ , then

(4.1) $\pi r^{2}|f^{\prime}(\zeta)|^{k}\leqq\int\int_{D(\zeta,r)}|f^{\prime}(z)|^{k}dxdy$ .

If $z\in D(\zeta, (1-|\zeta|)t),$ $0<t<1$ , it is easy to show that

(4.2) $(1-|z|)^{s}\geqq C_{t,s}(1-|\zeta|)^{s}$ ,

where $C_{t,s}$ is a positive constant depending only on $t$ and $s$ .
Utilizing (4.1) and (4.2) gives

(4.3) $\pi|f^{\prime}(\zeta)|^{k}(1-|\zeta|)^{s+2}t^{2}C_{t.s}\leqq\int\int_{D(\zeta,(1-|\zeta\{)t)}|f^{\prime}(z)|^{k}(1-|z|)^{k}dxdy$ .
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Applying Theorem 1, with $U(z)=|f^{\prime}(z)|^{k}(1-|z|)^{s}$ , and $r=2|\zeta-e^{i\theta}|$ , yields

(4.4) $\lim_{\zeta\rightarrow e^{i\theta}}(_{\frac{\int\int_{D(e^{t\theta_{\underline{9}1}},\zeta-\ell iq_{1)}}|f^{\prime}(z)|^{k}(1-|z|)^{s}dxdy}{h(2|\zeta-e^{i\theta}|)}})=0$

,

except for at most a set of $e^{i\theta}$ of h-measure $0$ . Since $D(\zeta, (1-|\zeta|)t)\subset D(e^{i\theta}$,
$2|\zeta-e^{i\theta}|),$ $0<t<1,$ $(4.3)$ and (4.4) imply, for any fixed $s>-1$ , and $k>0$ ,

$\lim_{\zeta\rightarrow ei\theta}\frac{|f^{\prime}(\zeta)|^{k}(1-|}{h(|\zeta-e}i\theta\frac{\zeta 1)^{s+2}}{1)}=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ .
5. In the subsequent investigations we restrict ourselves to the class $A^{s}$ .

A result of Heywood ([8], p. 303) can be used to give a necessary and sufficient
condition on $f(z)$ that it belongs to the class $A^{s}$ . Thus we state:

THEOREM 3. Let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ be holomorphic in D. Then $f(z)\in A^{s}$ if and

only if $\sum\frac{|a_{n}|^{2}}{s-1}\infty<\infty$ .
$n=1$ $n$

Theorem 2, which gives information on the order of the first derivative
of a function belonging to the class $A^{s}$ , can be generalized to derivatives of
higher order. In customary fashion we let $\Gamma(x)$ and $B(x,y)$ denote the Gamma
and Beta function respectively. If $f(x)$ and $g(x)$ are two real-valued functions
defined for all $x\geqq A$ , where $A$ is some finite number, and $f(x)/g(x)\rightarrow 1$ as $ x\rightarrow\infty$

we write $f(x)\cong g(x)$ .
As before, let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ be holomorphic in $D$ . For any real number

$\beta$ let

$f^{(\beta)}(z)=\sum_{n=0}^{\infty}\frac{\Gamma(n+1)}{\Gamma(n+1-\beta)}a_{n}z^{n-\beta}$,

where $z^{-\beta}$ has its principal value. This definition originated with Riemann ([14],

353-356). Hadamard ([5], p. 154 ff.), and Hardy and Littlewood ([6], p. 409
ff.), among others, discussed properties of $f^{(\beta)}(z)$ . If $\beta$ is an integer then $f^{(\beta)}(z)$

becomes the ordinary derivative or integral of $f(z)$ according as $\beta>0$ or $\beta<0$ .
If $\Gamma(n+1-\beta)$ becomes infinite for any value of $n$ we let the corresponding
term of the series be zero. We further note that if $\beta$ is not an integer then,

of course, $f^{(\beta)}(z)$ is not single-valued, but $|f^{(\beta)}(z)|$ is.

For convenience let $a_{n}^{(\beta)}=\frac{\Gamma(n}{\Gamma(n+}1\frac{1)}{-\beta)}a_{n}$ ;$+$
then, by use of Stirling’s formula

(5.0) $a_{n}^{(\beta)}\cong n^{\beta}a_{n}$ .
With these preliminaries finished we are now ready to give a theorem esti-
mating the order for the generalized derivative of a function belonging to the
class $A^{s}$ .
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THEOREM 4. If $s+2\beta>1,$ $s>-1$ , and $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ belongs to $A^{s}$ then

$\lim_{z\rightarrow e^{i\theta}}\frac{|f^{(\beta)}(z)|(1-|z|)^{\underline{s+}_{2^{2\underline{\beta}}}}}{\sqrt{h(}1\overline{z-e}^{i\theta}\overline{|)}}=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0^{5)}$

PROOF. Let

$g(z)=\sum_{n=J}^{\infty}\frac{\Gamma(n+1)}{n\Gamma(n+1-\beta)}a_{n}z^{n}$ .

That $g(z)\in A^{s+2}\theta-2$ for $s+2\beta>1$ , can easily be deduced from (5.0) and Theorem
3. Hence, by Theorem 2,

(5.1) $\lim_{z\rightarrow e^{i\theta}}\frac{|z|)^{\underline{s+}2\underline{\beta}}2}{e^{i\theta}\overline{|)}}\underline{|g^{\prime}(z)}\underline{|}(1-\sqrt{h(|z-}=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ . This establishes the theorem
when we recall that $|g^{\prime}(z)|=|z^{\theta-1}f^{(\beta)}(z)|$ .

\S 4. Functions holomorphic in $D$ omitting $0$ and $1$

6. Theorems 3 and 4 can be used to give estimates of a statistical nature
on the order of certain other classes of functions holomorphic in $D$ for which
a global-type order is known.

Let
$Q(z)=\sum_{n=)}^{\infty}q_{n}z^{n}$ ;

(6.0) $R(z)=\sum_{n=0}^{\infty}r_{n}z^{n}$ ;

$P(z)=\sum_{n=0}^{\infty}p_{n}z^{n}$ ;

denote any function, holomorphic in $D$, which omits there the values $\pm 2\pi ni$

$(n=0,1,2, \cdots);-4\pi^{2}n^{2}(n=0,1, \cdots)$ ; and $0,1$ ; respectively. It is evident that
a necessary and sufficient condition for a function to be of the type $P(z)$ is
that it be of the form $e^{Q(z)}$ for some function $Q(z)$ ; and for a function to be
of the type $R(z)$ that if be of the form $(Q(z))^{2}$ . (For a discussion of the $pro\rightarrow$

perties of these functions, which we shall assume known, see Littlewood ([11],

p. 185 ff)).

Since $|q_{n}|\leqq A_{q_{0}}\log n,$ $n>1$ , where $A_{q_{0}}$ is a positive constant depending on
$Q(O)$ , then $\sum_{n=1}^{\infty}(\frac{|q_{n}|^{2}}{n^{1+}\vee})<\infty$ . Theorems 3 and 4 imply

5) For $\beta=1,2,$ $\cdots$ this was proved by Lelong-Ferrand ([9], p. 52) using somewhat
different methods.
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THEOREM 5. If $Q(z)$ is defined as in (6.1) then for any $\beta\geqq-1/2$ , and any
$e>0$ ,

$\lim_{\in D}\frac{|Q^{(\beta)}(z)|(1-|z|)^{1+\theta+s}}{\sqrt{h(|z-e^{i\theta}|)}}z_{z}\rightarrow et\theta=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ .
COROLLARY 1. If $R(z)$ is defined as in (6.0), then for any $\epsilon>0$ ,

$z\rightarrow e^{i\theta}\lim_{z\in D}\frac{|R(z)|(1-|}{h(|z-e^{t}}\theta\frac{1)^{2+e}}{1)}Z=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ .
PROOF. Since $|R(z)|=|Q(z)|^{2}$ , for some function $Q(z)$ , we can apply Theo-

rem 5 with $\beta=0$ .
REMARK. It is known that

$|Q(z)|\leqq\frac{A}{(1-|z|)}$ ;

$|R(z)|\leqq(\frac{B}{1-|z|)^{2}}$ ;

where $A$ and $B$ are positive constants depending only on $Q(O)$ and $R(O)$ respec-
tively. If, in the above results, we take $h(r)=r,$ $\beta=0$ , and $z\in S(e^{i\theta}, \alpha)$ , we
then have, for any $e>0$ ,

$\lim_{z\rightarrow ei\theta}|Q(z)|(1-|z|)^{1/z+\rightarrow}-=0$ ,

and
$\lim_{z\rightarrow ei\theta}|R(z)|(1-|z|)^{1+}-\vee\wedge=0$ ,

for almost all $0\in[0,2z$). Thus the radial order of $Q(z)$ and $R(z)$ , for almost
all radii, is smaller than the global order.

We now formulate our main result which gives a statistical type order
for functions $P(z)$ .

THEOREM 6. If $P(z)$ is holomorphic in $D$ and omits there the values $0$ and
1, then for any $\epsilon>0$ and $\mu>0$

$\lim_{z\rightarrow e^{i\theta}}|P(z)|\exp(\frac{-u\sqrt{h(|z-e^{t\theta}|)}}{(1-|z|)^{1+}\epsilon\vee})=0$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ .
PROOF. If the h-measure of the circumference $C$ is zero then the state-

ment of the theorem is vacuous; hence we assume that $h^{*}(C)>0$ . We know
that $P(z)=e^{Q(z)}$ for some function $Q(z)$ . In Theorem 5 let $e^{i\theta}$ be a point such
that

$\lim_{7\rightarrow ei\theta}\frac{Q(z)(1-|z|)^{1+}\vee\epsilon}{\sqrt{h(|z-e}i\theta\overline{|)}}=0$ .
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Given $\mu>0$ , there is a $\delta>0$ , such that, if $|z-e^{i\theta}|<\delta$ , then

(6.1) $ 0<\frac{Q(z)(1-|z|)^{1+S}}{\sqrt h(|z\overline{-e}^{i\theta}|)-}<\mu$ .

Since $0<|P(z)|\leqq\exp|Q(z)|,$ $(6.1)$ gives

(6.2) $\varlimsup_{z\rightarrow ei\theta}|P(z)|\exp[^{\underline{-\mu}\sqrt{}}\frac{|z}{z}\frac{i\theta\overline{|)}}{=}]\leqq 1$ ,

except for at most a set of $e^{i\theta}$ of h-measure $0$ . Finally to prove the theorem6)

apply logarithms to both sides of (6.2) and suppose that for some $\epsilon_{0}>0$ ,

(6.3) $-\infty<L_{9}\leqq\varlimsup_{m^{t\theta}}(\log|P(z)|-\frac{\mu\sqrt{h(|z-e^{i\theta}|)}}{(1-|z|)^{1+}=0})\leqq 0$

holds on a set $E_{0}$ of $e^{t\theta}$ of positive h-measure. Fix $\epsilon,$ $0<e<e_{0}$ . Let $E_{1}$ be the
set of all $e^{i\theta}$ for which

(6.4) $\varlimsup_{z\rightarrow e^{i\theta}}(\log|P(z)|-\frac{l^{l\sqrt{h(|z-e^{i\theta}|)}}}{(1-|z|)^{1+\rightarrow}--})\leqq 0$ .

On account of (6.2), $h^{*}(E_{1})=h^{*}(C)$ , and setting $E_{1}^{\prime}=C-E_{1},$ $h^{*}(E_{1}^{\prime})=0$ . In ad-
dition on the circumference $C$, if $h^{*}(C)>0$ , we have

(6.5) $z\rightarrow e^{i\theta}\lim_{z\in D}\frac{1-|z|}{\sqrt{h(|z-e^{i\theta}|)}}=0$ .

This follows immediately from Theorem 2 with $f(z)=z,$ $s=0$ , and the remark
that (6.5) is precisely the same for all points of $C$, hence if it holds at one
point of $C$ it holds at every point on $C$.

If we let $B=E_{0\cap}E_{1}$ , utilizing the subadditivity of the h-measure and the
fact that $h^{*}(E_{1}^{\prime})=0$ , gives $h^{*}(B)>0$ . Hence $B$ is a non-empty subset of both
$E_{0}$ and $E_{1}$ . If we notice that

$\log|P(z)|-\frac{\mu\frac{-i\theta}{h(|ze|)}}{(1-|z|)^{1+-}-}$

$=\log|P(z)|_{1-z|)^{1+}}^{\sqrt{h(z-e^{i\theta_{o}}|)}}-\frac{\prime\alpha}{(}\underline{\epsilon}+\frac{\mu\sqrt{h(|z-e}^{\ell\overline{\theta}}|)}{(1-|z|)^{1+- 0}}[1-\frac{1}{(1-|z|)^{\underline{\circ}-.0}-}]$ ,
$/h($ z-$-e^{i\theta}|)$

$L-$ $z|$$|)^{1+S_{O}}$

then (6.3) shows that, as $z\rightarrow e^{i\theta},$ $e^{i\theta}\in B$, the sum of the first two terms stays
away from $-\infty$ , while by (6.5), and the observation that $\epsilon-e_{0}<0$ , the third
term tends to $+\infty$ . Hence the whole expression tends to $+\infty$ . But this con-
tradicts (6.4) and the theorem is proved.

If we set $h(r)=r$, and let $z\in S(e^{i\theta}, \alpha)$, then, for any $\mu>0$ and $e>0$,

6) I am indebted to Prof. W. Seidel for showing that (6.2) can be improved to
give the final statement of the theorem.
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(6.6) $\lim_{z\rightarrow e\uparrow\theta}|P(z)|\exp(\frac{-\mu}{(1-|z|)^{1’ 2+}\sim})=0$

for almost all $\theta\in[0,2\pi$). Given a function of the type $P(z)$ , Schottky’s theorem
states that

$|P(z)|\leqq e^{\overline{(1-}1^{\frac{c}{z1)}}}$

where $C$ is a positive constant depending on $P(O)$ only, whereas (6.6) shows that
a better estimate of a statistical nature can be given for $P(z)$ .

University of Notre Dame and
The Pennsylvania State University
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