Abelian varieties attached to automorphic forms

By S. S. RANGACHARI

(Received Jan. 8, 1962)
(Revised Feb. 9, 1962)

Introduction.

Let G be a discontinuous group acting on the upper half-plane \mathfrak{X}. As a subgroup of $G L(2, \boldsymbol{R}), G$ admits a tensor representation M_{n} of degree n. One can then define the cohomology groups $H^{1}\left(M_{n}, G\right)$ after Eichler [1], and from Shimura [6], there exists a canonical isomorphism between $H^{1}\left(M_{n}, G\right)$ and the space $S_{n+2}(G)$ of cusp forms of degree $n+2$ with respect to G. Under certain "integrality" assumptions on G (for example, when $G=S L(2, \boldsymbol{Z})$, these conditions are satisfied), he defines a lattice in $H^{1}\left(M_{n}, G\right)$ and proves that the torus so obtained, admits a canonical structure of an abelian variety.

Suppose more generally, we have two discontinuous groups $G \subset G_{1}$ (G normal in G_{1} and $\left.\left(G_{1}: G\right)<\infty\right)$. Then, associated with a real representation R of G_{1} / G, we can define the cohomology groups $H^{1}\left(R \otimes M_{n}, G_{1}\right)$ and establish a canonical isomorphism between $H^{1}\left(R \otimes M_{n}, G_{1}\right)$ and the space $S_{n+2, R}\left(G_{1}\right)$ of vectors of cusp forms of degree $n+2$ with respect to G which remains invariant under the representation R (cf. Theorem 11). If then R is rational and G_{1} satisfies the "integrality" assumption [6], a lattice in $H^{1}\left(R \otimes M_{n}, G_{1}\right)$ can be defined, and as in the case of Shimura, this torus can be endowed with a canonical structure of an abelian variety (say) $A_{n+2, R}\left(G_{1}\right)$. In the special case G_{1} $=\Gamma(1), G=\Gamma_{1}(q)(q$, a prime) and $n=0$, these have been noticed by Hecke [4].

We note finally that these abelian varieties provide a decomposition of $A_{n+2}(H)$ for any subgroup H with $G \subset H \subset G_{1}$. Further in the special case G_{1} $=\Gamma(1), G=\Gamma_{1}(q)$, one can define Hecke operators τ_{r} (for r prime to q) as endomorphisms of these abelian varieties.

It is with great pleasure that the author records here his deep gratitude to Dr. C.S. Seshadri for his critical comments, to Professor G. Shimura for having gone through the manuscript, and to Professor K. G. Ramanathan for constant encouragement.

It was noticed by the author, after the preparation of the manuscript that Gunning has also proved Theorem 1 in [2], but however our proof is different.

Notations.

$$
\Gamma(1)=S L(2, \boldsymbol{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { with } a, b, c, d \text { integral and } a d-b c=1\right\}
$$

$\left.\Gamma_{\mathrm{o}}(q) \subset \Gamma(\subset)\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)\right.$ with $\left.c \equiv 0(\bmod q)\right\}$ for q, a prime.
$\Gamma_{1}(q)(\subset \Gamma(1))=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)\right.$ with $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(\bmod q)\right\}$. The tensor representation of $G L(2, \boldsymbol{C})$ is defined as follows: If $\binom{u}{v} \in \boldsymbol{C}^{2}$ and $\sigma \in G L(2, \boldsymbol{C})$, denote by $\binom{u_{1}}{v_{1}}=\sigma\binom{u}{v}$. Then if $\binom{u}{v}^{n}$ and $\binom{u_{1}}{v_{1}}^{n}$ denote respectively the vectors in \boldsymbol{C}^{n+1} with components $u^{n}, u^{n-1} v, \cdots, v^{n}$ and $u_{1}^{n}, u_{1}^{n-1} v_{1}, \cdots, v_{1}^{n}$, the tensor representation $\sigma \rightarrow M_{n}(\sigma)$ of degree n of $G L(2, \boldsymbol{C})$ is defined by $\binom{u_{1}}{v_{1}}^{n}=M_{n}(\sigma)\binom{u}{v}^{n}$.

For simplicity, we denote $M_{n}\left(\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)\right)$ by $L_{n}(z)$ for any complex variable z.
If s is a parabolic fixed point (cusp) of a discontinuous group G on the upper half plane \mathfrak{X}, the set of elements of G fixing s is an infinite cyclic group generated by $\tau \in G$ where $\tau=\rho\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \rho^{-1}$ with ρ, an element of $S L(2, \boldsymbol{R})$ such that $\rho(\infty)=s$ and in fact $\rho=\left(\begin{array}{cc}-s & 1 \\ -1 & 0\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ according as s is real or ∞, and h is a positive real number. [We then denote $e^{2 \pi i z / h}$ by q.] The set of all such parabolic transformations of G, i. e. $(\sigma \in G ; \sigma(s)=s$ for a parabolic fixed point s of G) is denoted by $Y(G)$.

§ 1. $\boldsymbol{R} \otimes \boldsymbol{M}_{n}$-forms and $\boldsymbol{R} \otimes \boldsymbol{M}_{n}$-vectors.

Let G be a discrete subgroup of $\operatorname{SL}(2, \boldsymbol{R})$ such that $S L(2, \boldsymbol{R}) / G$ has finite total volume. Let G_{1} be another discrete subgroup of $\operatorname{SL}(2, \boldsymbol{R})$ containing G (and in which G is normal and of finite index). Further, let $\sigma \rightarrow R(\sigma)$ be a real representation of the finite group G_{1} / G. If $\sigma \rightarrow M_{n}(\sigma)$ is the tensor representation of degree n of G_{1}, we shall be concerned with the representation $\sigma \rightarrow\left(R \otimes M_{n}\right)(\sigma)$ in the sequel. Restricted to the subgroup G, this is nothing but $M_{n}(\sigma)$ repeated m times, if m is the dimension of the representation $R(\sigma)$.

DEFINITION. A column vector of $(n+1) m$ elements $\omega=\left(\begin{array}{c}\omega_{01} \\ \vdots \\ \omega_{n 1} \\ \vdots \\ \omega_{0 m} \\ \vdots \\ \omega_{n m}\end{array}\right)$ is an $R \otimes M_{n}$-form with respect to G_{1}, if the following conditions are satisfied.
a) Each component $\omega_{i k}$ is a meromorphic differential form on \mathfrak{X}.
b) For every $\sigma \in G_{1}, \omega \circ \sigma=\left(R \otimes M_{n}\right)(\sigma) \circ \omega$.
c) For every parabolic cusp s of G, the functions $f_{i j}(q)$ defined by the vector form

$$
\left(E \otimes L_{n}(z)\right)^{-1}\left(E \otimes M_{n}(\rho)\right)^{-1} \omega \circ \rho=\left(\begin{array}{c}
f_{01}(q) d q \\
\vdots \\
f_{n 1}(q) a ̈ q \\
\vdots \\
f_{n m}(q) d q
\end{array}\right)
$$

are meromorphic at $q=0$.
If they are holomorphic at $q=0$, and if $\omega_{i k}$ are holomorphic, we say that ω is a cusp $R \otimes M_{n}$-form.

One can define $R \otimes M_{n}$-vectors in a similar way.
Definition. A column vector of $(n+1) m$ elements $\mathfrak{g}=\left(\begin{array}{c}g_{01} \\ \vdots \\ g_{0 m} \\ \vdots \\ g_{n m}\end{array}\right)$ is an $R \otimes M_{n^{-}}$ vector with respect to G_{1}, if it satisfies the following conditions.
a) Each component $g_{i k}$ is a meromorphic function on \mathfrak{X}.
b) For every $\sigma \in G_{1}$, we have $\boldsymbol{g} \circ \sigma=\left(R \otimes M_{n}\right)(\sigma) \boldsymbol{g}$.
c) For every parabolic cusp s of G, the functions $F_{i j}(q)$ defined by the vector

$$
\left(E \otimes L_{n}(z)\right)^{-1}\left(E \otimes M_{n}(\rho)\right)^{-1} \boldsymbol{g} \circ \rho=\left(\begin{array}{c}
F_{01}(q) \\
\vdots \\
F_{n_{1}}(q) \\
\vdots \\
F_{n m}(q)
\end{array}\right)
$$

are meromorphic at $q=0$.
If the components $g_{i k}$ are holomorphic and if the above defined functions $F_{i j}(q)$ are holomorphic and vanish at $q=0$, then g is defined to be a cusp $R \otimes M_{n}$-vector. We now deduce the following analogue of Theorem 1 in [5].

Proposition 1. Let n and ν be even, $n>0,-(n-2) \leqq \nu \leqq n+2$ and $\mu=\frac{n+2-\nu}{2}$. Then, if $\left(f_{i}\right)$ is a vector whose components are automorphic forms of degree ν with respect to G with the property $\left(\left(f_{i}\right) \circ \sigma\right) J(\sigma, z)^{\nu}=R(\sigma)\left(f_{i}\right)$ for $\sigma \in G_{1}$ (if $\left.\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), J(\sigma, z)=(c z+d)^{-1}\right)$, then the vector form $\omega=\left(E \otimes L_{n}(z)\right)\left(\begin{array}{c}\mathfrak{g}_{1} \\ \vdots \\ \mathfrak{g}_{m}\end{array}\right) d z$ (where each \mathfrak{g}_{i} is an $(n+1)$ vector defined by $\mathfrak{g}_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \alpha_{0} f_{i} \\ \vdots \\ \alpha_{\mu} f_{i}^{(\mu)}\end{array}\right)$ with certain constants α_{i} and $f_{i}^{\prime}, f_{i}^{\prime \prime}, \cdots, f_{i}^{(\mu)}$ denote $\left.\frac{d f_{i}}{d z}, \cdots, \frac{d^{\mu} f_{i}}{d z^{\mu}}\right)$ is an $R \otimes M_{n}$-form with respect to G_{1}. In order that ω be a cusp $R \otimes M_{n}$-form, it is necessary and sufficient that the f_{i} are cusp forms of degree ν, with respect to G.

Proof. From Theorem 1 of [5], we have, for elements $\sigma \in G, \omega \circ \sigma$
$=\left(E \otimes M_{n}\right)(\sigma) \omega$. We need consider only $\sigma \in G_{1}$ and $\notin G$. Then

$$
\omega \circ \sigma=\left(E \otimes L_{n}(z)\left(\begin{array}{c}
\mathfrak{g}_{1} \\
\vdots \\
\mathfrak{g}_{m}
\end{array}\right) \cdot d z\right) \circ \sigma=\left(E \otimes L_{n}(\sigma(z))\left(\begin{array}{c}
\mathfrak{g}_{1} \circ \sigma \\
\vdots \\
\mathfrak{g}_{m} \circ \sigma
\end{array}\right) \cdot J^{2} d z\right)
$$

(here $J=J(\sigma, z)$).
We now require the following lemma:
Lemma. If $\boldsymbol{f}=\left(\begin{array}{c}\mathfrak{g}_{1} \\ \vdots \\ \mathfrak{g}_{m}\end{array}\right)$ (as in Proposition 1) and if $\omega=\left(E \otimes L_{n}(z)\right) \boldsymbol{f} d z$, then $\omega \circ \sigma=\left(R \otimes M_{n}\right)(\sigma) \omega$ for $\sigma \in G_{1}$ if and only if

$$
(\boldsymbol{f} \circ \sigma) J^{2}=R(\sigma) \otimes M_{n}\left(\left(\begin{array}{ll}
J & 0 \\
c & J^{-1}
\end{array}\right)\right) \boldsymbol{f} .
$$

Proof. From the relation $L_{n}(\sigma(z))^{-1} M_{n}(\sigma) L_{n}(z)=M_{n}\left(\left(\begin{array}{ll}J & 0 \\ c & J^{-1}\end{array}\right)\right)$ by tensoring with $R(\sigma)$, we have

$$
\left(E \otimes L_{n}(\sigma(z))^{-1}\right)\left(R(\sigma) \otimes M_{n}(\sigma)\right)\left(E \otimes L_{n}(z)\right)=R(\sigma) \otimes M_{n}\left(\left(\begin{array}{ll}
J & 0 \\
c & J^{-1}
\end{array}\right)\right)
$$

and this gives the required.
For proving the proposition, in view of the lemma, we need verify only the following:

$$
\left(\boldsymbol{g}_{i} \circ \sigma\right) J^{2}=M_{n}\left(\left(\begin{array}{ll}
l & 0 \\
c & J^{-1}
\end{array}\right)\right) \sum_{j=1}^{m} r_{i j} \boldsymbol{g}_{j}=\sum_{j=1}^{m} r_{i j} M_{n}\left(\left(\begin{array}{ll}
J & 0 \\
c & J^{-1}
\end{array}\right)\right) \cdot \boldsymbol{g}_{j}
$$

where $R(\sigma)=\left(r_{i j}\right)$.
For automorphic forms $h_{i}(1 \leqq i \leqq m, m=\operatorname{dim} R(\sigma))$ of degree ν with respect to G, satisfying the relation, $\left(h_{i} \circ \sigma\right)(J(\sigma, z))^{\nu}=\sum_{j=1}^{m} r_{i j} h_{j}$ (for $\sigma \in G_{1}$), holds the identity :

$$
\left(h_{i}^{(k)} \circ \sigma\right) J^{2}=\sum_{j=1}^{m} r_{i j} \sum_{l=0}^{k}\binom{k}{l}\binom{\nu+k-1}{l} l!c^{l} J^{l+2-2 k-\nu} h_{j}^{(k-l)}
$$

for $\sigma \in G_{1}$. (The proof is by induction.) Using this identity and computing $M_{n}\left(\left(\begin{array}{ll}J & 0 \\ c & J^{-1}\end{array}\right)\right)$ explicitly [5], we obtain the required relation and the proof of Proposition 1 is complete.

We have then an analogous result for cusp $R \otimes M_{n}$ vectors as well. Now if for a vector (f_{i}) of automorphic forms of degree ν with respect to G with the property that $\left(\left(f_{i}\right) \circ \sigma\right) J^{\nu}=R(\sigma)\left(f_{i}\right)$ for $\sigma \in G_{1}$, we denote by ω and \boldsymbol{f}, the associated cusp $R \otimes M_{n}$-form and $R \otimes M_{n}$-vector respectively, then by Theorem 5 in [5], we have $d \boldsymbol{f}=\mu(n-\mu+1) \omega$.

If we denote by $\Im_{n, R}\left(G_{1}\right)$ the space of all cusp $R \otimes M_{n}$-forms, with respect to G_{1}, we have the following analogue of Theorem 2 in [5].

PROPOSITION 2. $\Im_{n, R}\left(G_{1}\right)=\sum_{\nu=2}^{n+2} ভ_{\nu, R}^{n}\left(G_{1}\right)(\nu$ even $)$ where $\Im_{\nu, R}^{n}\left(G_{1}\right)$ is the space of
cusp $R \otimes M_{n}$ forms associated to the space of vectors $\left(f_{i}\right)$ of automorphic cusp forms of degree ν with respect to G, as in Proposition 1 .

Proof : Denote by $S_{\nu, R}\left(G_{1}\right)$, the space of vectors (f_{i}) of automorphic cusp forms of degree ν with respect to G and such that $\left(\left(f_{i}\right) \circ \sigma\right) J^{\nu}=R(\sigma)\left(f_{i}\right)$. Then, from Proposition (1), $S_{\nu, R}\left(G_{1}\right)$ is canonically isomorphic to $\Xi_{\nu, R}^{n}\left(G_{1}\right)$ by the mapping $\left(f_{i}\right) \rightarrow \omega$.

Now, we have $\sum_{\nu=2}^{n+2} \Phi_{\nu, R}^{n}\left(G_{1}\right) \subset \Im_{n, R}\left(G_{1}\right)$. Conversely, from Theorem 2 in [5], we deduce that any vector in $\Im_{n, R}\left(G_{1}\right)$ can be written as a sum of vectors of the form $\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{m}\end{array}\right)$ (g_{i} again as defined in Proposition 1). We need only show that these summands belong to $\mathbb{S}_{\nu, R}^{n}\left(G_{1}\right)$ respectively.

If

$$
\begin{aligned}
\omega=\sum_{\nu=2}^{n+2} \omega_{\nu}, \omega \circ \sigma=\sum_{\nu=2}^{n+2} \omega_{\nu} \circ \sigma & =\left(R \otimes M_{n}\right)(\sigma) \omega \\
& =\left(R \otimes M_{n}\right)(\sigma)\left(\sum_{\nu=2}^{n+2} \omega_{\nu}\right) \\
& =\sum_{\nu}\left(R \otimes M_{n}\right)(\sigma) \omega_{\nu}
\end{aligned}
$$

i. e. $\sum_{\nu=1}^{n+2}\left(\omega_{\nu} \circ \sigma-\left(R \otimes M_{n}\right)(\sigma) \omega_{\nu}\right)=0$ and this sum being a direct sum, $\omega_{\nu} \circ \sigma=$ $\left(R \otimes M_{n}\right)(\sigma) \omega_{\nu}$ or $\omega_{\nu} \in \mathbb{\Xi}_{\nu, R}^{n}\left(G_{1}\right)$ for $\nu=2,4, \cdots, n+2$.

Similarly, we can obtain the decomposition of the space of cusp $R \otimes M_{n}{ }^{-}$ vectors.

Note. If R is irreducible and if κ_{ν} denotes the multiplicity of the irreducible representation R in the representation of the group G_{1} / G in the space of cusp forms of degree ν with respect to G, then $S_{\nu, R}\left(G_{1}\right)$ and hence $\mathbb{S}_{\nu, R}\left(G_{1}\right)$ is a complex vector space of dimension κ_{ν}. This can be computed explicitly and hence $\operatorname{dim}_{C} \Im_{n, R}\left(G_{1}\right)=\sum_{\nu=2}^{n+2} \kappa_{\nu}$ can be computed.

§ 2. Cohomology group.

We may now define the cohomology group $H^{1}\left(R \otimes M_{n}, G_{1}\right)$. We call \mathfrak{x}, a parabolic cocycle, a map $\mathfrak{x}: G_{1} \rightarrow \boldsymbol{R}^{k}(k=(n+1) m)$ with the following properties. (We shall denote hereafter $R \otimes M_{n}$ by M)
a) $\mathfrak{x}(\sigma \tau)=\mathfrak{x}(\sigma)+M(\sigma) \mathfrak{r}(\tau)$ for every $\sigma, \tau \in G_{1}$.
b) For each $\tau \in Y\left(G_{1}\right)$, there exists a vector $\mathfrak{a} \in \boldsymbol{R}^{k}$ with $\mathfrak{x}(\tau)=\mathfrak{a}-M(\tau) \cdot \mathfrak{a}$.

We denote by $Z^{1}\left(M, G_{1}\right)$, the parabolic cocycles and by $B^{1}\left(M, G_{1}\right)$ the coboundaries, i.e. cocycles $\mathfrak{x} \in Z^{1}\left(M, G_{1}\right)$ with the property that, for all $\sigma \in G_{1}$, $\mathfrak{x}(\sigma)=\mathfrak{b}-M(\sigma) \cdot \mathfrak{b}$ (for some \mathfrak{b}). The space $Z^{1}\left(M, G_{1}\right) / B^{1}\left(M, G_{1}\right)$ shall be denoted by $H^{1}\left(M, G_{1}\right)$.

Now, every cocycle \mathfrak{x} of G_{1} when restricted to G gives a cocycle of G and
in fact a parabolic cocycle of G_{1} gives rise to a parabolic cocycle of G, since $Y(G) \subset Y\left(G_{1}\right)$. So, we have a map : $Z^{1}\left(M, G_{1}\right) \rightarrow Z^{1}(M, G)$ in which $B^{1}\left(M, G_{1}\right)$ goes to $B^{1}(M, G)$ so that we have a map: $H^{1}\left(M, G_{1}\right) \rightarrow H^{1}(M, G)$. It can then be shown that this is injective; for, choose a system of coset representatives τ_{i} of G_{1} modulo G. Then, if $\mathfrak{x} \in Z^{1}\left(M, G_{1}\right)$ and in $B^{1}(M, G)$, i. e. if $\mathfrak{x}(\sigma)=M(\sigma) \cdot \mathfrak{a}-\mathfrak{a}$ for $\sigma \in G$ and $\mathfrak{a} \in \boldsymbol{R}^{\boldsymbol{k}}$, it follows that $\mathfrak{d}\left(\sigma_{1}\right)=M\left(\sigma_{1}\right) \cdot \mathfrak{b}-\mathfrak{b}$, for every $\sigma_{1} \in G_{1}$ and $\mathfrak{b}=\frac{1}{\left(G_{1}: G\right)}\left[\sum_{i} M\left(\tau_{i}\right) \mathfrak{x}\left(\tau_{i}^{-1}\right)+\sum_{i} M\left(\tau_{i}\right) \cdot \mathfrak{a}\right]$. In other words, $\mathfrak{x} \in B^{1}\left(M, G_{1}\right)$.

§ 3. Periods of Integrals.

Let $\omega \in \Im_{n, R}\left(G_{1}\right)$. Then, with a fixed point $z_{0} \in \mathfrak{X}$, set $\boldsymbol{f}(z)=\int_{z_{0}}^{z} R e(\omega)$. We have then $\boldsymbol{f}(\sigma(z))=M(\sigma) \boldsymbol{f}(z)+\mathfrak{x}(\sigma)$ where \mathfrak{x} is a cocycle of $G_{1}(\S 2) . \mathfrak{x}$ is in fact, a parabolic cocycle of G_{1}; for the same, we note that it is enough to prove that $\underset{\text { in } \mathfrak{刃}_{1}}{\stackrel{L t}{\rightarrow}} s_{I_{1}}^{z} \int_{2_{0}}^{z} R e \omega<\infty$ where s_{1} is any parabolic cusp of G_{1} and \Im_{1} is a fundamental domain of G_{1} in \mathfrak{X}. We can then denote this limit by $\boldsymbol{f}\left(s_{1}\right)$ and if $\tau \in Y\left(G_{1}\right)$ fixes $s_{1}, \mathfrak{x}(\tau)=(E-M(\tau)) \cdot \boldsymbol{f}\left(s_{1}\right)$ and hence \mathfrak{x} is a parabolic cocycle.

Now, if $\omega=\left(\omega_{i}\right)(1 \leqq i \leqq m)$ with each $\omega_{i} \in \Im_{n}(G)$ we know from condition c) of the definition in $\S 1$, that $\underset{\text { in } z}{\stackrel{L t}{\rightarrow}} s \int_{z_{0}}^{z} R e\left(\omega_{i}\right)<\infty$ for every parabolic cusp s of G and \mathfrak{F} is a fundamental domain of G in \mathfrak{X}. Since $\Im_{1} \subset \mathfrak{J}$ and the inequivalent cusps of G_{1} are contained in the inequivalent cusps of G, we have the required. This parabolic cocycle \mathfrak{x} is determined only upto a coboundary, for, if we change $\boldsymbol{f}(z)$ by an additive constant, $\mathfrak{z}(\sigma)$ changes by a coboundary. Hence to every vector form ω, we have associated the class $\overline{\mathfrak{r}} \in H^{1}\left(M, G_{1}\right)$ in a unique manner. We shall show that this map $\varphi: \omega \rightarrow \overline{\mathrm{y}}$ is surjective i.e. for every class $\overline{\mathfrak{x}} \in H^{1}\left(M, G_{1}\right)$, there exists $\omega \in \Im_{n, R}\left(G_{1}\right)$ such that $\varphi(\omega)=\overline{\mathfrak{x}}$. Now, $\overline{\mathfrak{z}}$ induces a class $\ell(\bar{z}) \in H^{1}(M, G)$ and since $H^{1}(M, G)=\sum_{i=1}^{m} H^{1}\left(M_{n}, G\right)$ (m copies), to the class $c(\bar{\S})$ by Theorem 1] in [6] corresponds a vector (f_{i}) of cusp forms of degree $n+2$ with respect to G, i.e. $f_{i} \in S_{n+2}(G)$. We shall show that $\left(f_{i}\right) \in S_{n+2, R}\left(G_{1}\right)$ so that the associated vector form ω (from Proposition (1)) is in $\Im_{n, R}\left(G_{1}\right)$ with $\varphi(\omega)=\overline{\mathfrak{c}}$.

If ω_{i} is the vector form in $\Im_{n}(G)[5]$ associated to $f_{i} \in S_{n+2}(G)$, then $\omega=\left(\omega_{i}\right)$ $(1 \leqq i \leqq m)$. Consider now the vectors $\eta=\left(E \otimes M_{n}\left(\tau^{-1}\right)\right) \omega \circ \tau$ and $\eta^{*}=(R(\tau) \otimes E) \cdot \omega$, with $\tau \in G_{1}$. If $\eta=\left(\eta_{i}\right)$ and $\eta^{*}=\left(\eta_{i}^{*}\right)(1 \leqq i \leqq m)$, then $\eta_{i}, \eta_{i}^{*} \in \Im_{n}(G)$, for, $\eta_{i} \circ \sigma$ $=M_{n}\left(\tau^{-1}\right) \omega_{i} \circ \tau \sigma=M_{n}\left(\tau^{-1}\right) M_{n}\left(\tau \sigma \tau^{-1}\right) \omega_{i}{ }^{\circ} \tau=M_{n}(\sigma) \cdot \eta_{i}$ and $\eta^{*} \circ \sigma=(R(\tau) \otimes E)\left(E \otimes M_{n}(\sigma)\right) \omega$ $=\left(E \otimes M_{n}(\sigma)\right)(R(\tau) \otimes E) \omega$ implies that $\eta_{i}^{*} \circ \sigma=M_{n}(\sigma) \eta_{i}^{*}$.

If \bar{x}_{i}, \bar{y}_{i} and \bar{y}_{i}^{*} denote the cohomology classes in $H^{1}\left(M_{n}, G\right)$ attached to the vector forms ω_{i}, η_{i} and η_{i}^{*} respectively, denote by $\bar{x}=\left(\bar{x}_{i}\right), \bar{y}=\left(\bar{y}_{i}\right)$ and $\bar{y}^{*}=\left(\bar{y}_{i}^{*}\right)$ $(1 \leqq i \leqq m)$. Then, from the definition, it follows that $\bar{y}(\sigma)=\left(E \otimes M_{n}\left(\tau^{-1}\right)\right) \bar{x}\left(\tau \sigma \tau^{-1}\right)$
and $\bar{y}^{k}(\sigma)=(R(\tau) \otimes E) \bar{x}(\sigma)$. We shall now prove that $\bar{y}(\sigma)=\bar{y}^{k}(\sigma)$ for every $\sigma \in G$, for,

$$
\begin{aligned}
x\left(\tau \sigma \tau^{-1}\right) & =\left(R \otimes M_{n}\right)(\tau) x\left(\sigma \tau^{-1}\right)+x(\tau) \\
& =\left(R \otimes M_{n}\right)(\tau)\left[\left(E \otimes M_{n}(\sigma)\right) x\left(\tau^{-1}\right)+x(\sigma)\right]+x(\tau)
\end{aligned}
$$

so that $y(\sigma)-y^{*}(\sigma)$ is cohomologous to

$$
\begin{aligned}
& \left(E \otimes M_{n}\left(\tau^{-1}\right)\right) x\left(\tau \sigma \tau^{-1}\right)-(R(\tau) \otimes E) x(\sigma) \\
& \quad=\left(R(\tau) \otimes M_{n}(\sigma)\right) x\left(\tau^{-1}\right)+\left(E \otimes M_{n}\left(\tau^{-1}\right)\right) x(\tau) \\
& \quad=\left(E \otimes M_{n}(\sigma)-E\right)(R(\tau) \otimes E) x\left(\tau^{-1}\right)=\left(E-E \otimes M_{n}(\sigma)\right) \cdot \mathfrak{b}
\end{aligned}
$$

where $\mathfrak{b}=-(R(\tau) \otimes E) x\left(\tau^{-1}\right)$. In other words $\bar{y}(\sigma)=\bar{y}^{*}(\sigma)$. From Theorem 6 in [5], this means that the vector forms $\eta_{i}-\eta_{i}^{*}$ lie in $\varsigma_{\nu}^{n}(G)$ for $\nu<n+2$. But, by definition they lie in $\mathbb{S}_{n+2}^{n}(G)$ and since these spaces are orthogonal, $\eta_{i}=\eta_{i}^{*}$ or $\eta=\eta^{*}$ in other words $\omega \circ \tau=\left(R(\tau) \otimes M_{n}(\tau)\right) \omega$ or $\omega \in \Im_{n, R}\left(G_{1}\right)$, and in fact $\omega \in \Im_{n+2, R}^{n}\left(G_{1}\right)$. If $\bar{c}_{1}=\varphi(\omega) \in H^{1}\left(M, G_{1}\right), \iota\left(\overline{\mathfrak{x}}_{1}\right)=\bar{x}=\iota(\overline{\mathfrak{x}})$ and ι being injective (§ 2), $\overline{\mathfrak{k}}_{1}=\overline{\mathfrak{\imath}}$.

From the decomposition of $\Im_{n, R}\left(G_{1}\right)$ in Proposition 2 and from the fact that for $\nu<n+2, \omega \in \mathbb{S}_{\nu, R}^{n}\left(G_{1}\right)$ are exact differentials $\left(\omega=d \boldsymbol{f}\right.$ for a cusp $R \otimes M_{n}$ vector \boldsymbol{f}) we have $\bar{\varepsilon}=0$ for classes $\bar{\imath}=\varphi(\omega)$. Hence we have in fact a surjective homomorphism $\varphi: S_{n+2, R}\left(G_{1}\right) \rightarrow H^{1}\left(M, G_{1}\right)$. We shall prove later in §4, that φ is also one-one, so that φ will then be an isomorphism. We have then

THEOREM 1. The homomorphism $\varphi: S_{n+2, R}\left(G_{1}\right) \rightarrow H^{1}\left(M, G_{1}\right)$ is an isomorphism.
If R is irreducible and if κ is the multiplicity of the representation R in the representation of G_{1} / G in $S_{n+2}(G)$, then from Theorem 1, we have $\operatorname{dim}_{R} H^{1}\left(M, G_{1}\right)=2 \kappa$.

From Theorem 1, we can further deduce the following
Proposition 3. If $\Re_{n, R}\left(G_{1}\right)$ denotes the space of form vectors in $\Im_{n, R}\left(G_{1}\right)$ whose associated cocycles are coboundaries, then $\Im_{n, R}\left(G_{1}\right) / \Re_{n, R}\left(G_{1}\right)$ is canonically isomorphic to $S_{n+2, R}\left(G_{1}\right)$.

Proof. We need only to show that $\Re_{n, R}\left(G_{1}\right)$ is isomorphic to $\sum_{\nu=2}^{n} S_{\nu, R}\left(G_{1}\right)$, for, then from Proposition 2, it would follow that $\Im_{n, R}\left(G_{1}\right) / \Re_{n, R}\left(G_{1}\right)$ is canonically isomorphic to $S_{n+2, R}\left(G_{1}\right)$. Now if $\omega \in \Im_{n, R}\left(G_{1}\right)$ with $\varphi(\omega)=0$, then from Theorem 1, in the decomposition (as in Proposition 2) of ω, the ($n+2)^{\text {th }}$ component is zero, so that $\Re_{n, R}\left(G_{1}\right) \subset \sum_{\nu=2}^{n} \mathbb{S}_{\nu, R}^{n}\left(G_{1}\right)$. But $\sum_{\nu=2}^{n} \Phi_{\nu, R}^{n}\left(G_{1}\right) \subset \Re_{n, R}\left(G_{1}\right)$, since $\omega \in \sum_{\nu=2}^{n} \mathbb{S}_{\nu, R}^{n}\left(G_{1}\right)$ implies that $\omega=c . d \boldsymbol{f}$ with a non zero constant c and a cusp $R \otimes M_{n}$-vector \boldsymbol{f}. Hence $\Re_{n, R}\left(G_{1}\right)=\sum_{\nu=2}^{n} \mathbb{S}_{\nu, R}^{n}\left(G_{1}\right)$ which in turn is canonically isomorphic to $\sum_{\nu=2}^{n} S_{\nu, R}\left(G_{1}\right)$.

§ 4. Petersson Metric.

We observe that there exists a positive symmetric matrix H with the property that $R(\sigma)^{\prime} H R(\sigma)=H$ for all $\sigma \in G_{1}$. (We can take for example $\left.H=\sum_{\bar{\sigma} \in G_{1} / G} R(\bar{\sigma})^{\prime} R(\bar{\sigma})\right)$. We have further a matrix P_{n} with $M_{n}(\sigma)^{\prime} P_{n} M_{n}(\sigma)=P_{n}[\mathbf{6}]$, so that we have if $M(\sigma)=\left(R \otimes M_{n}\right)(\sigma),(M(\sigma))^{\prime}\left(H \otimes P_{n}\right) M(\sigma)=H \otimes P_{n}$.

Now, if $f=\left(f_{i}\right) \in S_{n+2, R}\left(G_{1}\right)$ and $g=\left(g_{i}\right) \in S_{n+2, R}\left(G_{1}\right)$, we can define (f, g) $=\sum_{i, j} \int_{\mathfrak{v}_{1}} f_{i} h_{i j} \bar{g}_{j} y^{n+2} d v$. Then $(f, g)=\overline{(g, f)}$ and $(f, f) \geqq 0$ and $=0$ if and only if $f=0$, since H is positive definite.

On the otherhand, if ω and η are the vector forms in $\Im_{n, R}\left(G_{1}\right)$ associated to f and g respectively, we have $\omega^{\prime} \cdot H \otimes P_{n} \circ \eta=-(2 i)^{n+1} \sum_{i, j} f_{i} \cdot h_{i j} \bar{g}_{j} y^{n+2} d v$ so that if we define as in [6], $\Lambda(f, g)=2^{n-1} i[(f, g)-(g, f)]$, then (f, g) is skew symmetric R-bilinear and $\Lambda(f$, if $)$ is positive definite hermitian. Further one sees that

$$
\Lambda(f, g)=(-1)^{n / 2+1} \int_{\mathfrak{\mho}_{1}}(R e \omega)^{\prime}\left(H \otimes P_{n}\right)(R e \eta)
$$

If $\boldsymbol{f}(z)=\int_{z_{0}}^{z} R e \omega$ and $\mathrm{g}(z)=\int_{z_{0}}^{z} \operatorname{Re}(\eta)$, then we have $\Lambda(f, g)=(-1)^{n / 2+1} \int_{\partial \hat{s}_{1}} \boldsymbol{f}^{\prime}\left(H \otimes P_{n}\right) d \mathrm{~g}$ and from (19) of [6] this can be expressed in terms of the parabolic cocycles x and y associated to ω and η.

We can now prove that $\varphi: S_{n+2, R}\left(G_{1}\right) \rightarrow H^{1}\left(M, G_{1}\right)$ is one-one, for, if $f \in S_{n+2, R}\left(G_{1}\right)$ whose associated class is zero, we can choose \boldsymbol{f} such that the parabolic cocycle itself is zero, which means that $\Lambda(f, g)=0$ for every $g \in S_{n+2, R}\left(G_{1}\right)$ and in particular, $\Lambda(f, i f)=0$, but this implies that $f=0$.

§ 5. Abelian varieties attached to $\boldsymbol{S}_{n+2, R}\left(\boldsymbol{G}_{1}\right)$.

For defining abelian varieties associated with the representation $M=R \otimes M_{n}$, we assume that G_{1} satisfies the integrality assumption (A) of [6], namely that there exists a non-singular real matrix U such that $U^{\prime-1} P_{n} U^{-1}$ and $U M_{n}(\sigma) U^{-1}$ are integral for all $\sigma \in G_{1}$. We may assume without loss of generality that P_{n} and $M_{n}(\sigma)$ are integral for all $\sigma \in G_{1}$ (for, if \boldsymbol{f} is an M_{n}-form, $U \boldsymbol{f}$ is an $U M_{n}(\sigma) U^{-1}$-form). For example, this is satisfied if $G_{1} \subset S L(2, \boldsymbol{Z})$. We shall further assume that $R(\sigma)$ is rational for all $\sigma \in G_{1}$. Then $R(\sigma)$ being the representation of a finite group, has an equivalent representation $R_{0}(\sigma)$ with integral elements [7], On taking R to be this R_{0} we have ($R \otimes M_{n}$) (σ) integral for all $\sigma \in G_{1}$.

Under this hypothesis, we define integral cocycles and we denote the group of parabolic integral cocycles as $\tilde{Z}^{1}\left(M, G_{1}\right)$ and the integral coboundaries as
$\tilde{B}^{1}\left(M, G_{1}\right)$. Then the group $\widetilde{Z}^{1} / \widetilde{B}^{1}=\widetilde{H}^{1}\left(M, G_{1}\right)$ is a lattice in $H^{1}\left(M, G_{1}\right)$ of maximal rank. Under the isomorphism $\varphi: S_{n+2, R}\left(G_{1}\right) \rightarrow H^{1}\left(M, G_{1}\right)$ the inverse image $\varphi^{-1}\left(\widetilde{H}^{1}\left(M, G_{1}\right)\right)$ is a lattice in $S_{n+2, R}\left(G_{1}\right)$ and from (19) of [6], the Petersson metric takes rational values for form vectors in this lattice so that $\lambda \Lambda(f, g)$ (for a constant λ) gives a Riemann form on this torus and hence it is an abelian variety, which we denote by $A_{n+2, R}\left(G_{1}\right)$. From Theorem 1, we see that the dimension of this abelian variety is κ, where κ is the sum of multiplicities κ_{i} of the irreducible representations R_{i} (contained in R) in the representation of G_{1} / G by cusp forms of degree $n+2$ with respect to G.

§ 6. Applications.

We shall obtain in this section, a decomposition of the abelian varieties $A_{m^{\prime}}(H)$ associated with an even integer m^{\prime} and a subgroup H with $G \subset H \subset G_{1}$ in terms of the abelian varieties $A_{m^{\prime}, R}\left(G_{1}\right)$ of $\S 5$.

We have now the following relation between induced characters of subgroups and rational characters namely, that if $G \subset H \subset G_{1}$ and if ψ_{1} denotes the identity character of H and $\chi_{\psi_{1}}$, the induced character of G_{1} / G, then $\chi_{\psi_{1}}=\sum_{j=1}^{t} c_{j} \chi_{j}=\sum_{i=1}^{s} c_{i} \Xi_{i}$, where Ξ_{i} are rational characters (composed of conjugate characters χ_{j}) and c_{i}, non-negative integers, and in fact, the same is true of the induced representation $R_{x_{\psi_{1}}}$, namely that it is equivalent to a direct sum of the rational representations $R_{\Xi_{i}}$ each with multiplicity c_{i}.

We have then the following decomposition of the cohomology groups; $H^{1}\left(R_{\gamma \psi_{1}}, G_{1}\right)=\sum_{i=1}^{s} c_{i} H^{1}\left(R_{\Xi_{i}}, G_{1}\right)$ and the same holds good also for the lattices, so that we have an isogeny

$$
H^{1}\left(R_{\chi \psi_{1}}, G_{1}\right) / \widetilde{H}^{1}\left(R_{\chi \psi_{1}}, G_{1}\right) \cong \prod_{i=1}^{s}\left(A_{m^{\prime}, R_{\Xi}}\left(G_{1}\right)\right)^{c_{i}}
$$

(meaning thereby c_{i} copies of $A_{m^{\prime}, R_{E_{i}}}\left(G_{1}\right)$).
We shall see that $H^{1}\left(R_{x_{\psi_{1}}}, G_{1}\right)$ and $H^{1}\left(R_{\psi_{1}}, H\right)$ are isomorphic and the same holds for the lattices, so that it would follow from the above that there is an isogeny

$$
A_{m^{\prime}}(H) \cong \prod_{i=1}^{s}\left(A_{m^{\prime}, R_{\Xi}}\left(G_{1}\right)\right)^{c_{i}}
$$

Proposition 4: $H^{1}\left(R_{x_{\psi_{1}}}, G_{1}\right)$ and $H^{1}\left(R_{\psi_{1}}, H\right)$ are isomorphic.
Proof: From the Theorem 1, there corresponds to a class $\bar{x} \in H^{1}\left(R_{\psi_{1}}, H\right)$ an automorphic form f of degree m^{\prime} belonging to H. Let $G_{1}=\bigcup_{i=1}^{p} H \sigma_{i}$ be a coset decomposition of G_{1} modulo H. Then the vector of forms $\left(f \circ \sigma_{i}\right) J\left(\sigma_{i}, z\right)^{m \prime}$ belongs to the induced representation $R_{X \psi_{1}}$ so that it corresponds to a class $\bar{y} \in H^{1}\left(R_{X \phi_{1}}, G_{1}\right)$.

This is a monomorphism, for if $\bar{y}=0$, then from the isomorphism theorem, $f \circ \sigma_{i}=0$ which implies $f=0$ or $\bar{x}=0$. We shall prove that it is an epimorphism by showing that they are of the same dimension. Now, from $\chi_{\psi_{1}}=\sum_{i=1}^{s} c_{i} \Xi_{i}$ we have

$$
\begin{aligned}
\operatorname{dim}_{R} H^{1}\left(R_{x \psi_{1}}, G_{1}\right) & =\sum_{i=1}^{s} c_{i} \cdot \operatorname{dim}_{\boldsymbol{R}} H^{1}\left(R_{\Xi_{i}}, G_{1}\right) \\
& =\sum_{i=1}^{s} c_{i} 2 \kappa_{i} \text { where } \kappa_{i} \text { is the sum of }
\end{aligned}
$$

multiplicities ρ_{j} of the primitive characters χ_{j} (contained in Ξ_{i}) in the representation M of G_{1} / G by $S_{m}(G)$. If μ is the character of M, then $\mu=\sum_{j=1}^{t} \rho_{j} \chi_{j}$ and $\kappa_{i}=\sum_{\chi_{j} \subset E_{i}} \rho_{j}$. Let $\chi_{j} / H=\sum_{k=1}^{l} \lambda_{j k} \psi_{k}$, where ψ_{k} are all the primitive characters of H / G and $\psi_{1}=1$, so that $\mu / H=\sum_{j=1}^{t} \rho_{j} \chi_{j} / H=\sum_{j=1}^{t} \rho_{j}\left(\sum_{k=1}^{\prime} \lambda_{j k} \psi_{k}\right)$. Now, $\operatorname{dim}_{R} H^{1}\left(R_{p_{1}}, H\right)$ $=2$ (multiplicity of 1 in $\mu / H)=2 \sum_{j=1}^{t} \rho_{j} \lambda_{j 1}$, and $\lambda_{j_{1}}=$ multiplicity of ψ_{1} in χ_{j} / H $=$ multiplicity of χ_{j} in $\chi_{\psi_{1}}=c_{j}$ and is the same for all conjugate χ_{j}. Hence

$$
\begin{aligned}
\operatorname{dim}_{R} H^{1}\left(R_{\psi_{1}}, H\right)=2 \sum_{j=1}^{t} \rho_{j} \lambda_{j 1} & =2 \sum_{i=1}^{s} c_{i}\left(x_{\chi_{j} \subset \Xi_{i}} \rho_{j}\right) \\
& =2 \sum_{i=1}^{s} c_{i} \kappa_{i} \\
& =\operatorname{dim}_{R} H^{1}\left(R_{\chi_{\varphi_{1}}}, G_{1}\right)
\end{aligned}
$$

Corollary 1. 1) If $H=G$, then $c_{i}=\chi_{i}(1)$ so that there is an isogeny

$$
A_{m^{\prime}}(G) \cong \prod_{i=1}^{s}\left(A_{m^{\prime}, R_{\Xi_{i}}}\left(G_{1}\right)\right)^{x_{i}(1)} .
$$

When $m^{\prime}=2, \quad G_{1}=\Gamma(1), G=\Gamma_{1}(7)$, we have $s=1$ and $\chi(1)=3$, so that $A_{2}(G)$ is isogenous to a product of three copies of the elliptic curve corresponding to $Q(\sqrt{ }-7)$.
2) In the case $G=\Gamma_{1}(q), H=\Gamma_{0}(q), G_{1}=\Gamma(1)$ we have $\chi_{\psi_{1}}=\chi_{1}+\chi_{q}, \chi_{q}$ being the character of the q-dimensional representation of $\Gamma(1) / \Gamma_{1}(q)$. Then there is an isogeny:

$$
A_{m^{\prime}}\left(\Gamma_{0}(q)\right) \cong A_{m^{\prime}}(\Gamma(1)) \times A_{m^{\prime}, R_{x_{q}}}(\Gamma(1)) .
$$

When $m^{\prime}=2,4,6,8,10, A_{m^{\prime}}(\Gamma(1))=0$, so that $A_{m}\left(\Gamma_{0}(q)\right) \cong A_{m^{\prime}, R_{\chi_{q}}}(\Gamma(1))$ and for $q=11,17,19$, they are elliptic curves without complex multiplications [4].

Note. If H / G is a cyclic subgroup of order t, generated by $\rho \in G_{1} / G$ then in the decomposition,

$$
\chi_{\psi_{1}}=\sum_{i=1}^{s} c_{i} \Xi_{i}, c_{i}=\frac{1}{t p_{i}} \sum_{v=1}^{t} \Xi_{i}\left(\rho^{\nu}\right)
$$

where p_{i} is the order of the primitive characters contained in Ξ_{i}.

§ 7. Examples.

In the following, we shall restrict our attention to the case $G_{1}=\Gamma(1)$ and $G=\Gamma_{1}(q)$. Then the absolutely irreducible representations of G_{1} / G are of dimensions $1, q, \frac{q+1}{2}, \frac{q-1}{2}, q+1$ and $q-1$. All of them are real except those of dimension $\frac{q-1}{2}($ when $q \equiv 3(\bmod 4)$) in which case the two complex representations are conjugates [3].

There is only one representation of dimension 1 and only one of dimension q and both are rational. The representations of dimension $\frac{q+1}{2}$ are 2 in number, which are conjugate to each other over $Q(\sqrt{q})$ so that the direct sum of these two representations is rational. The representations of dimension $\frac{q-1}{2}($ when $q \equiv 3(\bmod 4))$ are conjugates over $Q(\sqrt{-q})$ and their direct sum is again rational. About dimension $q+1$, for every divisor $t / \frac{q-1}{2}(t>2)$ there are $\frac{1}{2} \varphi(t)$ conjugate representations over the real field $Q\left(\rho+\rho^{-1}\right)$ (ρ being a primitive $t^{\text {th }}$ root of unity) so that the direct sum of these is again a rational representation. The same is true of dimension $q-1$, but t runs over divisors of $\frac{q+1}{2}(t>2)$.

In all the above mentioned cases, associated with these rational representations, we obtain abelian varieties $A_{m^{\prime}, R}(\Gamma(1))$ of the appropriate dimension. In the case $m^{\prime}=2$, these have been indicated by Hecke [4].

§ 8. Endomorphisms of the abelian varieties $\boldsymbol{A}_{n+2, R}\left(\boldsymbol{G}_{1}\right)$.

We shall continue to consider the case when $G_{1}=\Gamma(1)$ and $G=\Gamma_{1}(q)$. Then every element $\tau \in G_{1}$ induces an endomorphism of $A_{n+2, R}\left(G_{1}\right)$ as follows: If $\bar{x} \in H^{1}\left(M, G_{1}\right)$, we define $\bar{y}=\bar{x}^{-}$where $\bar{y}(\sigma)=M\left(\tau^{-1}\right) \bar{x}\left(\tau \sigma \tau^{-1}\right)$. It is easily seen that if \bar{x} is associated to a vector $\left(f_{i}\right) \in S_{n+2, R}\left(G_{1}\right)$, then \bar{y} is associated to $R\left(\tau^{-1}\right)\left(\left(f_{i}\right) \circ \tau\right) J(\tau, z)^{n+2} \in S_{n+2, R}\left(G_{1}\right)$. The map $\bar{x} \rightarrow \bar{y}$ takes $\widetilde{H}^{1}\left(M, G_{1}\right)$ into itself so that τ induces an endomorphism of $A_{n+2, R}\left(G_{1}\right)$.

Now, we shall consider the Hecke operators. Let ρ be a (2,2) integral matrix of determinant r prime to q. Then we can decompose $G \rho G=\bigcup_{\mu} G \rho_{\mu}$ where the representatives ρ_{μ} can be chosen in a canonical way.

We may then define, after Shimura [6], for $\left(f_{i}\right) \in S_{n+2, R}\left(G_{1}\right)$

$$
\left(g_{i}\right)=\left(\left(f_{i}\right) \cdot \tau_{r}\right)=r^{n+1} \sum_{\mu=1}^{s}\left(f_{i}\left(\rho_{\mu}(z)\right) J\left(\rho_{\mu}, z\right)^{n+2} \quad(i=1, \cdots, m)\right.
$$

It can then be shown that $g_{i} \in S_{n+2}(G)$, but $\left(g_{i}\right) \notin S_{n+2, R}\left(G_{1}\right)$. On the other hand,
for $\sigma \in G_{1}$,

$$
\left(g_{i}\right) \circ \sigma=\left(f_{i}\right) \circ \tau_{r} \sigma=\left(f_{i}\right) \circ \sigma_{r} \tau_{r}=R\left(\sigma_{r}\right)\left(\left(f_{i}\right) \circ \tau_{r}\right) J(\sigma, z)^{-(n+2)}
$$

where $\rho_{\mu} \sigma=\sigma_{r} \rho_{\kappa(\mu)}$ and $\sigma_{r} \in G_{1}$ is independent of μ and $\mu \rightarrow \kappa(\mu)$ is a permutation of $(1, \cdots, s)$.

Then, under our hypothesis on G, G_{1} and R, it follows from [3] that $R\left(\sigma_{r}\right)$ is equivalent to $R(\sigma)$ i. e. $R\left(\sigma_{r}\right)=A_{r} R(\sigma) A_{r}^{-1}$ with A_{r} rational. If we denote by $\left(h_{i}\right)=B_{r}\left(f_{i}\right) \circ \tau_{r}$ where $B_{r}=\lambda A_{r}^{-1}$ is integral (for a suitable integer λ), and if x is a cocycle attached to $\left(f_{i}\right)$ and y, to $\left(h_{i}\right)$, it can be verified as in [6] that

$$
y(\sigma)=r^{n}\left(\sum_{\mu} B_{r} \otimes M_{n}\left(\rho_{\mu}^{-1}\right) x\left(\sigma_{r}\right)\right)+t(\sigma),
$$

where

$$
t(\sigma)=(M(\sigma)-E) \cdot \mathfrak{b} \quad \text { with } \quad \mathfrak{b}=r^{n} \sum_{\mu}\left(B_{r} \otimes M_{n}\right) \rho_{\mu}^{-1}\left(\boldsymbol{f}_{i}\left(\rho_{\mu}\left(z_{0}\right)\right)\right)
$$

(\boldsymbol{f}_{i} being the integral attached to x_{i} and z_{0} is a fixed point of \mathfrak{X}), $t(\sigma)$ is a coboundary. Hence the map $\bar{x} \rightarrow \bar{y}$ gives an endomorphism of $A_{n+2, R}\left(G_{1}\right)$, since it takes $\widetilde{H}^{1}\left(M, G_{1}\right)$ into itself. Consequently, we have the following

Proposition 5. The characteristic roots of τ_{r} as an endomorphism of $A_{n+2, R}\left(G_{1}\right)$ are algebraic integers belonging to a field of degree $\leqq 2 \kappa$ (where κ $\left.=\operatorname{dim} A_{n+2, R}\left(G_{1}\right)\right)$.

One can also define the transpose endomorphism τ_{r}^{*} as in [6] and then show that τ_{r} and τ_{r}^{*} are conjugate with respect to the Riemann form and if $\tau_{r}=\tau_{r}^{*}$, the characteristic roots of τ_{r} are totally real and belong to a field of degree $\leqq \kappa$.

> Tata Institute of Fundamental Research, Bombay

References

[1] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957), 267-298.
[2] R.C. Gunning, The Eichler cohomology groups and automorphic forms, Trans. Amer. Math. Soc., 100 (1961), 44-62.
[3] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung II, Math. Ann., 114 (1937), 316-351.
[4] E. Hecke, Grundlagen einer Theorie der Integralgruppen und der Integralperioden bei den Normalteilern der Modulgruppe, Math. Ann., 116 (1939), 469-510.
[5] M. Kuga and G. Shimura, On vector differential forms attached to automorphic forms, J. Math. Soc. Japan, 12 (1960), 258-270.
[6] G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan, 11 (1959), 291-311.
[7] A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, Birkhäuser Verlag, 1956, Satz 188, p. 207.

