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This paper is devoted to the study of dimension-theoretical structure of
locally compact groups and their factor spaces. Montgomery-Zippin [9] proved
that every finite-dimensional, locally compact group is a generalized Lie group
and finally Yamabe [17] proved that every locally compact group is also a
generalized Lie group. These are the most important results not only for
the group-theoretical structure of locally compact groups but also for the
dimension-theoretical structure of such groups. Montgomery [7] had proved
also, before his fundamental theorem cited above was established, that the
invariance theorem of a domain is true in finite-dimensional, locally connected,
locally compact, separable metric groups. P. Alexandroff conjectured that the
covering dimension of any locally compact group coincides with its inductive
dimension. Recently this conjecture has been solved in the affirmative by
Pasynkov [15]. His result will be generalized in \S 2, after some preliminaries
of \S 1, for factor spaces of finite-dimensional locally compact groups by
connected compact subgroups. It will also be proved that $\dim G=\dim H$

$+\dim G/H$, where $\dim$ denotes the covering dimension, for any locally com-
pact group $G$ and any closed subgroup $H$ of it. Montgomery-Zippin [8],

Yamanoshita [18] and others have considered the dimension of factor spaces
of locally compact groups and obtained the equality for some special cases.
Our theorem seems to be a complete answer for the problem concerning the
covering dimension of factor spaces of locally compact groups. In \S 3 the
decomposition theorem for locally compact groups will be proved. Both Pasyn-
kov’s theorem cited above and the author’s decomposition theorem show that
there are some analogy between the dimension-theoretical structure of locally
compact groups and that of Euclidean spaces. In \S 4 we shall point out a dif-
ference between the two by proving that the invariance theorem of a domain
is not true in any finite-dimensional, locally compact, metric group which is
not locally connected. Combining this with Montgomery’s invariance theorem
mentioned above, we know that a finite-dimensional, locally compact, metric
group is locally connected (or equivalently a Lie group) if and only if the
invariance theorem is valid in it.

In this paper a topological group means a $T_{1}$ -group. Hence a locally
compact group and its factor space by a closed subgroup are always normal
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Hausdorff spaces (cf. Lemma 1.1 below). A homomorphism means a continu-
ous one and an isomorphism means a homeomorphic one. A coset and a
factor space mean respectively a left coset and a left factor space. Through-
out this paper $n$ and $m$ denote integers which are not less than $-1$ . We use
three notions of dimension of a normal Hausdorff space $R$ defined as follows.
$R$ has the covering dimension $\leqq n,$ $\dim R\leqq n$ , if every finite open covering of
$R$ can be refined by an open covering whose order is at most $n+1$ , where the
order of a covering is the greatest number $r$ such that $r$ elements of it have
a non-empty intersection. $IndR$ and ind $R$ denote respectively the large and
the small inductive dimension of $R$ : For the empty set $\phi$ , let $Ind\phi=ind\phi$

$=-1$ . We call $IndR\leqq n$ , if for any pair $F\subset D$ of a closed set $F$ and an open
set $D$ there exists an open set $E$ with $F\subset E\subset D$ such that $Ind(\overline{E}-E)\leqq n-1$ .
We call ind $R\leqq n$ , if for any point $x$ of $R$ and any open set $D$ with $x\in D$

there exists an open set $E$ with $x\in E\subset D$ such that ind $(\overline{E}-E)\leqq n-1$ . When
$d$ is any one of $dim,$ $Ind$ , ind, we call $dR=n$ , if $dR\leqq n$ is true and $dR$

$\leqq n-1$ is false. It is well known that for any separable metric space $R$ the
equalities $\dim R=IndR=indR$ are valid [6].

\S 1. Preliminaries.

LEMMA 1.1. Let $G$ be a locally compact group and $H$ a closed subgroup of $G$ .
Then the factor space $G/H=K$ is paracompact.

PROOF. Let $\mathfrak{V}=\{V\}$ be the system of all neighborhoods of the identity
of $G$ . For any point $k$ of $K$ let

$U_{V}(k)=\rho(V\cdot\rho^{-1}(k))$ ,

where $\rho;G\rightarrow G/H=K$ is the natural projection. Then $\{U_{V} ; V\in \mathfrak{V}\}$ forms a
uniform structure which agrees with the preasigned natural topology of $K$.
This is verified by a straight-forward computation and its proof is left to
the reader. Let $V$ be a compact neighborhood of the identity, $k$ an arbitrary
point of $K$ and $g$ an element of $G$ with $\rho(g)=k$ . Since $U_{V}(k)=\rho(V\cdot\rho^{-1}(k))$

$=\rho(VgH)=\rho(Vg),$ $U_{V}(k)$ is compact. Thus $K$ is uniformly locally compact.
Hence $K$ is paracompact by Morita [11].

REMARK 1.2. If a topological space $R$ admits a locally finite open cover-
ing $\{D_{\delta};\delta\in\Delta\}$ such that $\overline{D}_{\delta}$ is compact for every $\delta\in\Delta$ , then $R$ is the sum
of mutually disjoint open sets each of which is $\sigma$ -compact ( $i$ . $e$ . expressible as
the sum of a countable number of compact sets).

PROOF. Since $\{D_{\delta};\delta\in\Delta\}$ is locally finite, $\{\overline{D}_{\delta};\delta\in\Delta\}$ is locally finite.
Suppose that $\{\overline{D}_{\delta} ; \delta\in\Delta\}$ is not star-finite. ( $\{\overline{D}_{\delta} ; \delta\in\Delta\}$ is called star-finite if
for any $\delta\in\Delta$ , the number of indices $\delta^{\prime}$ with $\overline{D}_{\delta}\cap\overline{D}_{\delta},$ $\neq\phi$ is finite.) Then it is
easy to find an index $\delta\in\Delta$ and sequences $\{\delta_{i};\delta_{i}\in\Delta\}$ and $\{p_{i}\}$ such that i)
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$p_{i}\in\overline{D}_{\delta\cap}\overline{D}_{\delta_{i}}$ , ii) $\delta_{i}\neq\delta_{j}$ if $i\neq j$ , iii) $p_{i}\neq p_{j}$ if $i\neq j$ . Since $\overline{D}_{\delta}$ is compact, there
exists an accumulating point $p$ of $\{p_{i}\}$ . Then $\{\overline{D}_{\delta} ; \delta\in\Delta\}$ cannot be locally
finite at $p$, which is a contradiction. The assertion of the remark is a trivial
consequence of the star-finiteness of $\{\overline{D}_{\delta} ; \delta\in\Delta\}$ .

LEMMA 1.3 (Montgomery-Zippin [10, Theorem, p. 237]). A locally compact
group $G$ with $\dim G=n$ has a small neighborhood of the identity which is the
direct product of a local Lie group $L$ with $\dim L=n$ and a compact group $N$

with $\dim N=0$ .
LEMMA 1.4. Let $G$ be a non-empty locally compact group and $N$ a compact

normal subgroup of $G$ with $\dim N=0$ . If the factor group $G/N$ is a Lie group
with $\dim G/N=n$ , then there exists a neighborhood of the identity which is the
direct product of a local Lie group $L$ with $\dim L=n$ and $N$.

PROOF. Let $f$ be the natural projection of $G$ onto $G/N$ and $g^{*}(t)$ an
arbitrary one-parameter subgroup of $G/N$. Then there exists a one-parameter
subgroup $g(t)$ of $G$ such that $f(g(t))=g^{*}(t)$ by Montgomery-Zippin [10, Theorem
1, p. 192]. Hence the method of the proof of Pontrjagin [16, Theorem 69]

can be applied with no modification and we have the lemma.
LEMMA 1.5 (Nagami [14] or C. H. Dowker [3]). If every point of a para-

compact Hausdorff space $R$ has its neighborhood whose covering dimension is at
most $n$ , then we have $\dim R\leqq n$ .

LEMMA 1.6 Let $G$ be a non-empty locally compact group with $\dim G=n$

and $H$ a closed subgroup of $G$ with $\dim H=m^{2)}$ Then every point of $G/H$ has
a neighborhood which is homeomorphic to the direct product of an $(n-m)$-dimen-
sional Euclidean cube and a compact Hausdorff space whose covering dimension
is $0$ .

PROOF. It suffices to construct a neighborhood of $\rho(e)$ satisfying the con-
ditions of the lemma, where $\rho$ is the natural projection of $G$ onto $G/H$ and
$e$ is the identity of $G$ . Let $D$ be an arbitrary open neighborhood of $\rho(e)$ . By
Lemma 1.3 $\rho^{-1}(D)$ contains a neighborhood of $e$ which is the direct product
of a connected local Lie group $L_{1}$ with $\dim L_{1}=n$ and a compact subgroup
$N$ with $\dim N=0$ such that i) $L_{1}=L_{1}^{-1}$ , ii) ($L_{1}\overline{N)^{2}}-$ is compact. Let $P=H_{\cap}N$

and $G_{0}=(L_{1}N)^{\infty}(=\bigcup_{i-1}^{\infty}(L_{1}N)^{i})$ . Then $G_{0}$ is an open subgroup of $G$ and $N$ is

a normal subgroup of $G_{0}$ . Hence $H_{0}=H_{\cap}G_{0}$ is a relatively open subgroup
of $H$ and $P$ is a normal subgroup of $H_{0}$ . By Lemmas 1.1 and 1.5 we have

$\dim H_{0}=\dim H=m$ .

1) This lemma generalizes the last half of Montgomery-Zippin [10, Theorem, $p$ .
239], the first half of which will also be generalized in Theorem 2.1 below.

2) Since $H$ is closed, we have $n\geqq m$ at once.
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Since $\overline{(L_{1}N)^{2}}$ is compact, both $H_{0}$ and $H_{0}N$ are $\sigma$ -compact and locally compact.
Hence by Pontrjagin [16, G), \S 20] $H_{0}/P$ is isomorphic to $H_{0}N/N$. Let $\rho_{1}$ be
the natural projection of $G_{0}$ onto $G_{0}/N$. Since $H_{0}N$ is closed in $G_{0}$ and $H_{0}N/N$

$=G_{0}/N-\rho_{1}(G_{0}-H_{0}N)$ , we know that $H_{0}N/N$ is a closed subgroup of $G_{0}/N$.
Since $G_{0}/N$ is evidently a Lie group, $H_{0}N/N$ is a Lie group and hence $H_{0}/P$

is so.
By Lemma 1.3 there exists a connected, compact, local Lie group $M_{1}$ with

$\dim M_{1}=m$ such that
i) $M_{1}P$ is a relative neighborhood of the identity in $H_{0}$ ,

ii) $1\psi_{1}P$ is the direct product of $M_{1}$ and $P$,

iii) $1\psi_{1}P\subset L_{1}N$.
Since $M_{1}$ is connected and $N$ is totally disconnected, we have $M_{1}\subset L_{1}$ . Since
$M_{1}$ is compact, $M_{1}$ is a closed local subgroup of $L_{1}$ . Therefore there exist
subsets $L$ of $L_{1}$ and $1\psi$ of $M_{1}$ with $\dim L=n$ and $\dim M=m$ such that we
can introduce into $L$ a canonical coordinate system of the second kind which
has the following properties:

i) $L$ is the totality of points whose coordinates are of the form

$(t_{1}, \cdots, t_{n})$ , $|t_{i}|\leqq 1$ ,

ii) $1\psi$ is the totality of points whose coordinates are of the form

$(0, \cdots, 0, t_{n-m+1}, \cdots, t_{n})$ , $|t_{i}|\leqq 1$ .

Let $\Lambda$ be the totality of points whose coordinates are of the form

$(t_{1}, \cdots, t_{n-m}, 0, \cdots, 0)$ , $|t_{i}|\leqq 1$ .
Here we notice that every element of $LN$ can be expressed as $\lambda\mu\nu,$ $\lambda\in\Lambda$ ,
$\mu\in M,$ $\nu\in N$, and every element of $l\psi P$ can be so as $\mu p,$ $\mu\in M,$ $p\in P$. We
continue to use this notion in the following of the present proof. Let $W_{1}$ be
the totality of points whose coordinates are of the form

$(t_{1}, \cdots, t_{n})$ , $|t_{i}|\leqq\epsilon$ , $0<\epsilon<1$ ,

such that $W_{1}^{-1}W_{1}\subset L$ . We set $W=W_{1}N$. Let $\lambda_{1}\mu_{1}\nu_{1}$ and $\lambda_{2}\mu_{2}\nu_{2}$ be two points
of $W$ which are contained in the same coset by $H$ ; then there exists a point
$\mu p$ of $MP$ such that $\lambda_{1}\mu_{1}\nu_{1}=\lambda_{2}\mu_{2}\nu_{2}\mu p$ . Hence we have $\lambda_{1}=\lambda_{2}$ . Since $\mu_{1}\nu_{1}$

$=\mu_{2}\nu_{2}\mu p=\mu_{2}\mu\nu_{2}p$, we have $\mu_{1}=\mu_{2}\mu$ and hence $\nu_{1}=\nu_{2}p$ . Conversely if $\lambda_{1}\mu_{1}\nu_{1}$

and $\lambda_{2}\mu_{2}\nu_{2}$ of $W$ satisfy $\lambda_{1}=\lambda_{2}$ and $\nu_{2}^{-1}\nu_{1}\in P$, then these two points are contained
in the same coset by $H$ Thus we know that $\lambda_{1}\mu_{1}\nu_{1}$ and $\lambda_{2}/\ell_{2}\nu_{2}$ of $W$ fall in
the same coset by $H$ if and only if $\lambda_{1}=\lambda_{2}$ and $\nu_{2}^{-1}\nu_{1}\in P$.

Let $f$ be the natural projection of $N$ onto $N/P$ and $g$ the mapping of
$\rho(W)$ onto the product space $(W_{1}\cap\Lambda)\times(N/P)$ defined in such a way that

$g(\rho(\lambda\mu\nu))=(\lambda,f(\nu))$ ;
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then it can easily be seen by the above observation that $g$ is a homeomor-
phism. Let A. be the totality of points whose coordinates are of the form

$(t_{1}, \cdots, t_{n-m}, 0, \cdots, 0)$ , $|t_{i}|\leqq\epsilon$ .
Then $\rho(\Lambda_{\epsilon}N)$ is a neighborhood of $\rho(e)$ which is homeomorphic to $A.\times(N/P)$ .
$N/P$ is a compact Hausdorff space with $\dim N/P=0$ by Pontrjagin [16, A),

\S 48] and the lemma is proved.
LEMMA 1.7. Let $G$ be a non-empty, locally compact, projective limit of Lie

groups with $\dim G=n$ , and $H$ a compact subgroup of G. Then the factor space
$G/H=K$ is the projective limit of $(n-m)$-manifolds $K_{a},$ $\alpha\in A$ , accompanied by
the mappings $\omega_{\alpha\beta}$

; $K_{\alpha}\rightarrow K_{\beta},$ $\beta<\alpha$ , which are open continuous and locally homeo-
morphic.

PROOF. Let $G_{\alpha},$ $\alpha\in A_{1}$ , be Lie groups and $\pi_{a\beta}$
; $G_{\alpha}\rightarrow G_{\beta},$ $\beta<\alpha$ , open homo-

morphism of $G_{\alpha}$ onto $G_{\beta}$ such that the projective limit of $\{G_{\alpha}, \pi_{\alpha\beta} ; \alpha\in A_{1}\}$ is
$G$ . Let $\pi_{a},$ $\alpha\in A_{1}$ , be (open) homomorphism of $G$ onto $G_{\alpha}$ . Let $N_{a}^{\beta},$ $\beta<\alpha$ , be
the kernel of $\pi_{\alpha\beta}$ and $N_{\alpha}$ the kernel of $\pi_{a}$ . Since $G$ is locally compact, we
can assume without loss of generality that every $N_{\alpha}$ and every $N_{\alpha}^{\beta}$ are
compact. We set

$\dim G_{a}=n(\alpha)$ .
Since any small $n(\alpha)$-cell in $G_{\alpha}$ can be lifted to $G$ by Montgomery-Zippin [10,

p. 194], we have
$n(\alpha)\leqq\dim G=n$ .

Let
$\max\{n(\alpha);\alpha\in A_{1}\}=n_{1}$

and $\alpha_{0}$ an element of $A_{1}$ such that $\dim G_{a_{0}}=n_{1}$ . Let $\beta$ be an arbitrary index
with $\alpha_{0}<\beta$ . Since $G_{\alpha_{0}}$ and $G_{\beta}$ are Lie groups, it is well known that $\dim G_{\beta}$

$=\dim G_{\alpha_{0}}+\dim N_{\beta^{0}}^{a}$ . Thus we have $\dim G_{\beta}=n_{1}$ and $\dim N_{\beta^{0}}^{\alpha}=0$ . Since $N_{\beta^{0}}^{a}$

is a O-dimensional compact Lie group, it is a finite group. Since $N_{\alpha_{0}}$ is iso-
morphic to the projective limit of $\{N_{\beta^{0}}^{\alpha}, \pi_{r\beta} ; \alpha_{0}\leqq\beta<\gamma\}$ , we have $\dim N_{\alpha_{0}}=0$ .
Therefore there exists a neighborhood of the identity of $G$ which is the direct
product of a local Lie group $L$ with $\dim L=n_{1}$ and $N_{\alpha_{0}}$ by Lemma 1.4. By
Morita [12] we have $\dim LN_{\alpha_{0}}\leqq\dim L+\dim N_{\alpha_{0}}=n_{1}$ . Since $G$ is, by Lemma
1.1, paracompact, we have $n=\dim G\leqq\dim LN_{\alpha_{0}}=n_{1}$ by Lemma 1.5. Therefore
we have $n=n_{1}$ . Let

$A=\{\alpha;\alpha_{0}\leqq\alpha\}$ ;

then we have $\dim G_{\alpha}=n$ and $\dim N_{\alpha}=0$ for any $\alpha\in A$ and $G$ is the projec-
tive limit of

$\{G_{\alpha} ; \alpha\in A\}$ .
Let $\dim H=m$ . Then $m\leqq n$ . Let $H_{a},$ $\alpha\in A$ , be the image of $H$ under $\pi_{\alpha}$ .

Since $N_{\alpha}$ is compact, $HN_{\alpha}$ is a closed subgroup of $G$ . Since $H_{\alpha}=G_{\alpha}-\pi_{a}$
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$(G-HN_{\alpha}),$ $H_{\alpha}$ is a closed subgroup of $G_{\alpha}$ . Hence we know that $H_{\alpha}$ is a Lie
group.

Let $p_{\alpha}$ be the natural projection of $H$ onto $H/H_{\cap}N_{\alpha}$ and define $p_{a_{l}3}$ :
$H/H_{\cap}N_{\alpha}\rightarrow H/H_{\cap}N_{\beta},$ $\beta<\alpha$ , as follows:

$p_{\alpha\beta}(r_{\alpha})=p_{\beta}p_{\overline{\alpha}^{1}}(r_{\alpha})$ , $r_{\alpha}\in H/H_{\cap}N_{\alpha}$ .
Let

$q_{\alpha}(r_{a})=\pi_{\alpha}p_{\overline{\alpha}^{1}}(r_{\alpha})$ , $r_{\alpha}\in H/H_{\cap}N_{n}$ .
Since $H$ is compact, $q_{\alpha}$ is an isomorphism of $H/H_{\cap}N_{\alpha}$ onto $H_{n}$ . Thus we
obtain the following diagram:

$H$

$p_{\alpha}/$ $\backslash \pi_{\alpha}$

$\swarrow$
$q_{\alpha}$

$\searrow$

$H/H_{\cap}N_{\alpha}\rightarrow H_{\alpha}=HN_{\alpha}/N_{\alpha}$

$ p_{\alpha\beta}\downarrow$

$q_{\beta}$

$\downarrow\pi_{\alpha\beta}$

.
$H/H\cap N_{\beta}\rightarrow H_{\beta}=HN_{\beta}/N_{\beta}$

It is almost evident that $\{H/H_{\cap}N_{\alpha},p_{\alpha\beta} ; \alpha\in A\}$ forms a spectrum. Let $\tilde{H}$ be
the projective limit of $\{H/H_{\cap}N_{\alpha},p_{\alpha\beta} ; \alpha\in A\}$ and define $p:H\rightarrow\tilde{H}$ as follows:

$ p(h)=\langle p_{\alpha}(h);\alpha\in A\rangle$ , $h\in H$ .
Then $p$ is an isomorphism of $H$ onto $\tilde{H}$ by Gleason [4]. Since $q_{n}p_{a}=\pi_{n}$ , we
know that $H^{3)}$ is the projective limit of $\{H_{\alpha}, \pi_{\alpha\beta}\}$ . Since $\dim H_{\cap}N_{\alpha}=0$ , we
have

$\dim H_{\alpha}=\dim H=m$ , $\alpha\in A$ ,

as in the preceding argument.
Let $\rho_{\alpha}$ be the natural projection of $G_{\alpha}$ onto $K_{\alpha}=G_{\alpha}/H_{\alpha}$ . For any pair

$\beta<\alpha$ define $\omega_{\alpha\beta}$ : $K_{\alpha}\rightarrow K_{\beta}$ in such a way that

$\omega_{\alpha\beta}(k_{\alpha})=\rho_{\beta}\pi_{a\beta}\rho_{\overline{\alpha}^{1}}(k_{\alpha})$ , $k_{\alpha}\in K_{\alpha}$ .
Then we obtain the following diagram:

$G_{a}\rightarrow^{\rho_{\alpha}}K_{\alpha}=G_{\alpha}/H_{\alpha}$

$\pi_{\alpha\beta}\downarrow$

$\rho_{\beta}$

$\downarrow\omega_{\alpha\beta}$

$G_{\beta}\rightarrow K_{\beta}=G_{\beta}/H_{\beta}$

Let $g_{\alpha}$ and $g_{\alpha^{\prime}}$ be arbitrary elements of $\rho_{\overline{\alpha}^{1}}(k_{\alpha})$ ; then $g_{\overline{\alpha}^{1}}g_{\alpha^{\prime}}\in H_{\alpha}$ and hence
$\pi_{\alpha\beta}(g_{\alpha})^{-1}\cdot\pi_{\alpha\beta}(g_{\alpha^{\prime}})\in\pi_{a\beta}(H_{\alpha})=H_{\beta}$ , which implies $\rho_{\beta}\pi_{\alpha\beta}(g_{\alpha})=\rho_{\beta}\pi_{a\beta}(g_{\alpha^{\prime}})$ . Thus $\omega_{\alpha_{1}9}$

is a mapping of $K_{\alpha}$ into $K_{\beta}$ . It is almost evident that i) $\omega_{\alpha\beta}$ is an open con-

3) When $H$ is not compact but $\sigma$-compact, we can also conclude that $H$ is the pro-
jective limit of Lie groups, since qct are also isomorphisms in this case by virtue of
Pontrjagin [16, G), \S 20].
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tinuous onto mapping, ii) $\{K_{\alpha}, \omega_{\alpha\beta} ; \alpha\in A\}$ forms a spectrum, iii) the equality

$\omega_{\alpha\beta}\rho_{\alpha}=\rho_{\beta}\pi_{\alpha\beta}$

holds for any pair $\beta<\alpha$ .
Let $\rho$ be the natural projection of $G$ onto $G/H$ and define mappings

$\omega_{\alpha}$ : $G/H=K\rightarrow G_{\alpha}/H_{\alpha}=K_{a},$ $\alpha\in A$ , as follows:
$\omega_{\alpha}(k)=\rho_{\alpha}\pi_{\alpha}\rho^{-1}(k)$ , $k\in K$ .

Let $g$ and $g^{\prime}$ be arbitrary elements of $G$ with $g^{\leftarrow 1}g^{\prime}\in H$ ; then $\pi_{\alpha}(g)^{-1}\cdot\pi_{a}(g^{\prime})$

$\in H_{\alpha}$ and hence $\omega_{\alpha}$ is well defined. Thus we have the following diagram:

$G\rightarrow^{\rho}K=G/H$

$\pi_{\alpha}\downarrow$ $\rho_{\alpha}\downarrow\omega_{\alpha}$

$\pi_{\alpha\beta}\downarrow G_{\alpha}\rightarrow K_{\alpha}=_{\beta}G_{\alpha}/H_{\alpha}\rho_{\beta}\downarrow\omega_{a}$

$G_{\beta}\rightarrow K_{\beta}=G_{\beta}/H_{\beta}$

It is almost evident that i) $\omega_{\alpha}$ is an open continuous onto mapping for any
$\alpha\in A$ , ii) the equality

$\omega_{\beta}=\omega_{a\beta}\omega_{\alpha}$

holds for any pair $\beta<\alpha$ .
Let $\tilde{K}$ be the projective limit of $\{K_{\alpha}, \omega_{\alpha\beta} ; \alpha\in A\}$ and let

$\omega(k)=\langle\omega_{\alpha}(k);\alpha\in A\rangle$ , $k\in K$ .
Since $\omega_{\alpha\beta}\omega_{a}(k)=\omega_{\beta}(k)$ for any pair $\beta<\alpha,$ $\omega$ is a mapping of $K$ into $\tilde{K}$. Let
us prove that $\omega$ is a homeomorphism of $K$ onto $\tilde{K}$. Since $\omega_{\alpha}$ is continuous
for any $\alpha\in A,$ $\omega$ is evidently continuous.

To prove that $\omega$ is one-to-one, let $k$ and $k_{1}$ be different elements of $K$.
Let $g$ and $g_{1}$ be elements of $G$ such that $gH=\rho^{-1}(k)$ and $g_{1}H=\rho^{-1}(k_{1})$ ; then
$g^{-1}g_{1}\in H$ Since $H$ is the projective limit of $\{H_{\alpha}\}$ , there exists an index $\alpha$

with $\pi_{\alpha}(g^{-1}g_{1})\not\in H_{a}$ . Then $\pi_{\alpha}(g)H_{a\cap}\pi_{\alpha}(g_{1})H_{\alpha}=\emptyset$ and $\rho_{\alpha}\pi_{\alpha}(g)\neq\rho_{\alpha}\pi_{a}(g_{1})$ . Hence
$\omega_{a}(k)\neq\omega_{\alpha}(k_{1})$ and we have $\omega(k)\neq\omega(k_{1})$ . Therefore $\omega$ is one-to-one.

To prove that $\omega$ is onto, let $\tilde{\omega}_{\alpha},$ $\alpha\in A$ , be the projections of $\tilde{K}$ onto $K_{\alpha}$

and $\tilde{k}$ an arbitrary element of $\tilde{K}$. For any $\alpha\in A,$ $\pi_{\alpha}^{-1}\rho_{\alpha}^{-1}\tilde{\omega}_{\alpha}(\tilde{k})$ is a coset of $G$ by
the compact subgroup $HN_{\alpha}$ and hence a compact subset of $G$ . It is obvious
that $\{\pi_{\overline{\alpha}}^{1}\rho_{\overline{\alpha}^{1}}\tilde{\omega}_{\alpha}(\tilde{k});\alpha\in A\}$ is the family of compact subsets of $G$ which has the
finite intersection property. Hence $\cap\{\pi_{a}^{-1}\rho_{\alpha}^{-1}\tilde{\omega}_{\alpha}(\tilde{\kappa});\alpha\in A\}$ is not empty and
contains a point $g$ . The image of $\rho(g)$ under $\omega$ is $\tilde{\kappa}$. Therefore $\omega$ is onto.

To show that $\omega$ is open let $k$ be an arbitrary point of $K,$ $D$ an arbitrary
open neighborhood of $k$ and $g$ an element of $G$ with $\rho(g)=k$ . Then there
exist an index $\alpha$ and an open neighborhood $D_{1}$ of $g$ such that $\pi_{\overline{a}}^{1}\pi_{\alpha}(D_{1})$

$\subset\rho^{-1}(D)$ . $E=\tilde{\omega}_{\alpha}^{-1}\rho_{\alpha}\pi_{\alpha}(D_{1})$ is an open neighborhood of $\omega(k)$ . We have $\pi_{\overline{a}}^{1}\rho_{\overline{\alpha}^{1}}\tilde{\omega}_{\alpha}(E)$
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$=\pi_{\overline{a}}^{1}\rho_{\overline{a}^{1}}\rho_{\alpha}\pi_{\alpha}(D_{1})=\pi_{\overline{\alpha}}l(\pi_{a}(D_{1})H_{a})=\pi_{\alpha}^{-1}(\pi_{\alpha}(D_{1})\pi_{a}(H))=\pi_{\overline{\alpha}}^{1}\pi_{a}(D_{1}H)=D_{1}HN_{\alpha}$

$=(\pi_{\overline{\alpha}}^{1}\pi_{\alpha}(D_{1}))H\subset\rho^{-1}(D)H=\rho^{-1}(D)$ . $Letg_{1}$ be an element ofGwith $\rho(g_{1})\in\omega^{-1}(E)$ .
Then $\rho_{\alpha}\pi_{a}\rho^{-1}\rho(g_{1})=\rho_{\alpha}\pi_{a}(g_{1}H)=\rho_{\alpha}(\pi_{a}(g_{1})H_{a})=\rho_{\alpha}\pi_{\alpha}(g_{1})$ is an element of $\tilde{\omega}_{a}(E)$

$=\tilde{\omega}_{\alpha}\tilde{\omega}_{\overline{a}^{1}}\rho_{\alpha}\pi_{\alpha}(D_{1})=\rho_{\alpha}\pi_{a}(D_{1})$ . Hence $g_{1}$ is an element of $\pi_{\overline{\alpha}}^{1}\rho_{\overline{\alpha}^{1}}\rho_{\alpha}\pi_{a}(D_{1})=D_{1}HN_{\alpha}$ .
Therefore we have $\omega^{-1}(E)\subset\rho(D_{1}HN_{\alpha})\subset D$ and know that $\omega$ is open.

By the above observation $\omega$ is a homeomorphism of $G/H=K$ onto $\tilde{K}$.
Recall that $\dim H_{\alpha}=m$ for any $\alpha\in A$ . Hence we have

$\dim K_{\alpha}=n-m$

for any $\alpha\in A$ .
Finally let us show that the local restriction of $\omega_{a\beta}$ is a homeomorphism.

Let $\beta<\alpha$ be an arbitrary ordered pair and $k_{\alpha}$ an arbitrary element of $K_{n}$ ,

Let $k$ be an element of $K$ with $\omega_{a}(k)=k_{\alpha}$ and $g$ an element of $G$ with $\rho(g)$

$=k$ . Let $LN_{\beta}$ be a neighborhood of the identity of $G$ which is the direct
product of a local Lie group $L$ with $\dim L=n$ and $N_{\beta}$ such that $L$ is the
totality of points of the form $(t_{1}, \cdots , t_{n}),$ $|t_{i}|\leqq 1$ , in some canonical coordinate
system $\Sigma$ of the second kind. For any number $\delta$ with $0<\delta<1$ , let $\Lambda_{\delta}$ be the
totality of points of the form

$(t_{1}, \cdots, t_{n-m}, 0, \cdots, 0)$ , $|t_{i}|\leqq\delta$ ,

in $\Sigma$ and $M_{\delta}$ the totality of points of the form
$(0, \cdots, 0, t_{n-m+1}, \cdots, t_{n})$ , $|t_{i}|\leqq\delta$ ,

in $\Sigma$ . Let $P_{\beta}$ be the intersection of $H$ and $N_{\beta}$ . By the same argument as in
the proof of Lemma 1.5 there exists a positive number $\xi<1$ such that

i) $M_{\text{\’{e}}}P_{\beta}$ is a relative neighborhood of the identity in $H$ which is the
direct product of M. and $P_{\beta}$ ,

ii) $\Lambda_{e}M_{\epsilon}N_{\beta}\cap H=M_{e}P_{\beta}$ ,
iii) $(\Lambda_{\epsilon}M_{e}N_{\beta})^{-1}\Lambda_{\epsilon}M_{\epsilon}N_{\beta}\subset LN_{\beta}$ .

Let $\lambda_{1}$ and $\lambda_{2}$ be two elements of $A_{\epsilon}$ and consider two elements $\rho_{a}\pi_{a}(g\lambda_{1})$ and
$\rho_{\alpha}\pi_{\alpha}(g\lambda_{2})$ of $K_{\alpha}$ . Suppose that $\omega_{\alpha\beta}\rho_{\alpha}\pi_{\alpha}(g\lambda_{1})=\omega_{\alpha\beta}\rho_{\alpha}\pi_{a}(g\lambda_{2})$ . Then $\rho_{\beta}\pi_{a\beta}\pi_{a}(g\lambda_{1})$

$=\rho_{\beta}\pi_{\alpha\beta}\pi_{\alpha}(g\lambda_{2})$ and hence $\rho_{\beta}\pi_{\beta}(g\lambda_{1})=\rho_{\beta}\pi_{\beta}(g\lambda_{2})$ . We have $\pi_{\beta}(g\lambda_{2})^{-1}\cdot\pi_{\beta}(g\lambda_{1})$

$=\pi_{\beta}(\lambda_{2}^{-1}\lambda_{1})\in H_{\beta}$ and hence $\lambda_{2}^{-1}\lambda_{1}\in HN_{\beta}$ . On the other hand $\lambda_{2}^{-1}\lambda_{1}\in\Lambda_{e}^{-1}\Lambda_{\epsilon}\subset L$

and hence $\lambda_{2}^{-1}\text{{\it \‘{A}}}_{1}\in HN_{\beta}\cap LN_{\beta}\subset M_{\epsilon}N_{\beta}$ . Therefore there exist an element $\mu$ of
M\’e and an element $\nu$ of $N_{\beta}$ such that $\lambda_{1}=\lambda_{2}\mu\nu$ . Since this expression is
unique, we have $\lambda_{1}=\lambda_{2}$ . Thus we can conclude by the compactness of $g\Lambda_{\epsilon}$

that $\rho_{\alpha}\pi_{\alpha}(g\Lambda_{\epsilon})$ and $\rho_{\beta}\pi_{\beta}(g\Lambda_{\epsilon})$ are the homeomorphic image of $g\Lambda_{\epsilon}$ under the
mapping $\rho_{a}\pi_{\alpha}$ and $\rho_{\beta}\pi_{\beta}$ respectively and that $\rho_{\beta}\pi_{\beta}(g\Lambda_{\epsilon})$ is the homeomorphic
image of $\rho_{\alpha}\pi_{\alpha}(g\Lambda_{\epsilon})$ under the mapping $\omega_{\alpha\beta}$ . Let $\Lambda_{\epsilon}^{\prime}$ be the totality of points
of the form $(t_{1}, t_{n-m}, 0, \cdot.. 0),$ $|t_{i}|<\epsilon$, in $\Sigma$ . If we replace A. with $\Lambda_{\epsilon}^{\prime}$ , then
the above statements with this replacement is also valid. Since $g\Lambda_{\epsilon}^{\prime}$ is homeo-
morphic to an $(n-m)$-Euclidean space and $K_{\alpha}$ and $K_{\beta}$ are $(n-m)$-manifolds,
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we know that $\rho_{\alpha}\pi_{\alpha}(g\Lambda_{\epsilon}^{\prime})$ and $\rho_{\beta}\pi_{\beta}(g\Lambda_{\epsilon}^{\prime})$ are open sets of $K_{\alpha}$ and $K_{\beta}$ $re$ .
spectively, by a famous Brouwer’s invariance theorem of a domain. $\rho_{\alpha}\pi_{\alpha}(g\Lambda_{\epsilon}^{\prime})$

contains $\rho_{\alpha}\pi_{\alpha}(g)=\omega_{\alpha}\rho(g)=\omega_{a}(k)=k_{\alpha}$ . Thus the proof is completely finished
COROLLARY 1.8 A $\sigma$ -compact closed subgroup of a locally compact group

which is the projective limit of Lie groups is also the projective limit of Lie groups,
Cf. the footnote 3).

COROLLARY 1.9 A locally compact group $G$ has a $\sigma$ -compact open subgroup
which is the projective limit of Lie groups.

PROOF. By Glushkov [5] there exists an open subgroup $G_{1}$ of $G$ which
is the projective limit of Lie groups. Let $U$ be a symmetric open neigh-
borhood of the identity of $G$ such that i) $\overline{U^{2}}$ is compact and ii) $\overline{U^{2}}\subset G_{1}$ . Then
$U^{\infty}$ is a $\sigma$ -compact open subgroup with $U^{\infty}\subset G_{1}$ . By Corollary 1.8 $U^{\infty}$ is also
the projective limit of Lie groups and the corollary is proved.

COROLLARY 1.10. Let $G$ be a locally compact group with $\dim G=n$ and $H$

a connected compact subgroup of $G$ with $\dim H=m$ . Then $K=G/H$ is the pro-
jective limit of $(n-m)$-manifolds $K_{\alpha}$ accompanied with projections $\omega_{\alpha\beta}$ which are
open continuous and locally topological.

PROOF. By Glushkov [5] there exists an open subgroup $G_{0}$ of $G$ which
is the projective limit of Lie groups. Decompose $G$ into cosets $g_{\xi}G_{0},$ $\xi\in\Xi$ ,

such that $G=U\{g_{\xi}G_{0} ; \xi\in\Xi\}$ and $ g_{\xi_{1}}G_{0}\cap g_{\xi_{2}}G_{0}=\phi$ for any $\xi_{1}$ and $\xi_{2}$ of $\Xi$ with
$\xi_{1}\neq\xi_{2}$ . For any $g\in G$ and any $g_{0}\in G_{0}$ we have $gG_{0}\supset gg_{0}H$ by virtue of the
connectedness of $H$ Therefore $\rho(g_{\xi_{1}}G_{0})\cap\rho(g_{\xi_{2}}G_{0})=\phi$ whenever $\xi_{1}\neq\xi_{2}$ , where
$\rho$ is the natural projection of $G$ onto $G/H=K$ If we set

$\varphi_{\xi}(k)=\rho(g_{\xi}\cdot\rho^{-1}(k))$ , $k\in\rho(G_{0})$ ,

we have a mapping $\varphi_{\xi}$ of $\rho(G_{0})$ into $\rho(g_{\xi}G_{0})$ . By a straight-forward argument
it can easily be seen that $\varphi_{\xi}$ is a homeomorphism of $\rho(G_{0})$ onto $\rho(g_{\xi}G_{0})$ . Thus
$K$ is the sum of mutually disjoint open sets $\rho(g_{\xi}G_{0}),$ $\xi\in\Xi$ , any of which is
homeomorphic to $\rho(G_{0})$ .

By Lemma 1.7 we can consider $G_{0}/H$ as the projective limit of $(n-m)-$

manifolds $K_{\alpha}^{0},$ $\alpha\in A$ , accompanied with open continuous mappings $\omega_{\alpha\beta}^{0}$ : $K_{a}^{0}$

$\rightarrow K_{\beta}^{0},$ $\beta<\alpha$ , which are locally topological. For any $\xi\in\Xi$ and any $\alpha\in A$ ,
let $K_{\alpha}^{\xi}$ be a copy of $K_{\alpha}^{0}$ (as a topological space) and $\varphi_{\alpha}^{\xi}:K_{a}^{0}\rightarrow K_{\alpha}^{\xi}$ a copy-
mapping. For any $\xi\in\Xi$ and any pair $\beta<\alpha$ let $\omega_{\alpha^{\xi}\beta}$ : $K_{\alpha}^{\xi}\rightarrow K_{\beta}^{\hat{\sigma}}$ be a mapping
defined by

$\omega_{\alpha\beta}^{\xi}=\varphi_{p}^{\xi}\omega_{\alpha\beta}^{0}(\varphi_{\alpha}^{\xi})^{-1}$ .
Then it is evident that $\{K_{\alpha}^{\xi}, \omega_{\alpha}^{\xi_{\beta}} ; \alpha\in A\}$ forms a spectrum. For any $\alpha$ let
$K_{\alpha}$ be the disjoint sum of $K_{\alpha}^{\xi},$ $\xi\in\Xi$ , whose topology is defined as follows:

4) Corollaries 1.8 and 1.9 were proved by Pasynkov [15].
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A subset $D_{a}$ of $K_{a}$ is open if and only if $D_{a}\cap K_{\alpha}^{\xi}$ is open for every $\xi\in\Xi$ . For
any pair $\beta<\alpha$ let $\omega_{\alpha\beta}$ : $K_{n}\rightarrow K_{\beta}$ be a mapping defined as follows: The restric-
tion of $\omega_{\alpha\beta}$ to $K_{\alpha}^{\xi}$ coincides with $\omega_{\alpha\beta}^{\xi}$ for any $\xi$ . It is almost evident that
{ $K_{a},$

$\omega_{a\beta}$ ; a $\in A$ } forms a spectrum which has the following properties:
i) For any a $\in A,$ $K_{\alpha}$ is an $(n-m)$-manifold.

ii) For any pair $\beta<\alpha,$
$\omega_{n\beta}$ is an open continuous mapping which is

locally topological.
iii) The projective limit of $\{K_{\alpha}\}$ is homeomorphic to $G$ .

Thus the corollary is essentially proved.
LEMMA 1.11 (Pasynkov’s criterion [15, Lemma 3]). Let a locally compact

Hausdorff space $K$ be the projective limit of the spectrum $\{K_{\alpha}, \omega_{a\beta}\}$ which satisfies
the following conditions:

i) For any $\alpha$ , the sum theorem for the large inductive dimension is valid.
ii) For any $\alpha,$ $IndK_{a}\leqq r$.

iii) For any pair $\beta<\alpha,$
$\omega_{n\beta}$ is locally topological.

iv) $K$ is covered by a countable number of compact sets $F_{i},$ $i=1,2,$ $\cdots$ , with
$IndF_{i}\leqq r$ for any $i$ .
Then we have $IndK\leqq r$.

\S 2. Dimension of factor spaces.

THEOREM 2.1. Let $G$ be a locally compact group and $H$ a closed subgroup

of G. Then
$\dim G=\dim H+\dim G/H^{5)}$

PROOF. First we consider the case when $\dim G<\infty$ . Let $\dim G=n$ and
$\dim H=m$ . By Lemma 1.6 an arbitrary point $k$ of $G/H$ has a neighborhood
$U$ which is homeomorphic to the direct product of an $(n-m)$-dimensional
Euclidean cube $E$ and a compact Hausdorff space $C$ with $\dim C=0$ . By Morita
[12] we have $\dim E\times C\leqq n-m$ . On the other hand $E\times C$ contains a closed
subset which is homeomorphic to $E$. Hence we have $\dim E\times C\geqq n-m$ . Since
$G/H$ is paracompact by Lemma 1.1, we have $\dim G/H\leqq n-m$ by Lemma 1.5.
Since $E\times C$ is compact and hence $U$ is closed in $G/H$, we have $\dim G/H$

$\geqq\dim U=n-m$ . Thus we have $\dim G/H=n-m$ and the equality $\dim G$

$=\dim H+\dim G/H$ is valid.
Next we consider the case when $\dim G=\infty$ . When $\dim H=\infty$ , the e-

quality $\dim G=\dim H+\dim G/H$ is trivially true. Hence we consider the
case when $\dim H<\infty$ . Let $\dim H=m$ . In this case we shall prove that $\dim$

5) The author’s colleague Dr. Y. Katuta proved this equality for the case when
$G$ is a compact group.
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$ G/H=\infty$ , which is not trivial at all.
Let $r$ be an arbitrary positive integer. By Corollary 1.9 there exists an

open o-compact subgroup $G_{0}$ of $G$ which is the projective limit of a spectrum
$\{G_{a}, \pi_{\alpha\beta} ; \alpha\in A\}$ where $G_{\alpha}$ are Lie groups. Let $\pi_{a}$ : $G_{0}\rightarrow G_{\alpha}$ be the projections.
If

$\sup\{\dim G_{\alpha} ; \alpha\in A\}=r_{1}$

is finite,
$A_{1}=\{\alpha;\dim G_{\alpha}=r_{1}\}$

is equifinal in $A$ . Hence it can easily be seen that the kernel $N_{\alpha}$ of some $\pi_{\alpha}$

is of coverning dimension $0$ . By Lemma 1.4 there exists a neighborhood $U$

of the identity in $G_{0}$ which is the direct product of a Euclidean $l_{1}^{\prime}$ -cube $E$

and $N_{\alpha}$ . Since
$\dim U=\dim E\times N_{a}\leqq\dim E+\dim N_{\alpha}=r_{1}+0$

by Morita [12], we have $\dim G=\dim G_{0}\leqq r_{1}$ by Lemma 1.5, which is a con-
tradiction. Hence there exists a compact normal subgroup $N$ of $G_{0}$ such that

i) $\dim G_{0}/N>r+m$ ,

ii) $G_{0}/N$ is a Lie group.
Since $H_{\cap}G_{0}$ is o-compact and $(H_{\cap}G_{0})N$ is closed, we know that $(H_{\cap}G_{0})N/N$

$=Q$ is isomorphic to $H_{\cap}G_{0}/H_{\cap}N$ by Pontrjagin [16, G), \S 20]. Since every
small cell of $H_{\cap}G_{0}/H_{\cap}N$ can be lifted to $H_{\cap}G_{0}$ by Montgomery-Zippin
[10, p. 194], we have

$\dim Q=\dim H_{\cap}G_{0}/H\cap N\leqq\dim H_{\cap}G_{0}=\dim H=m$ .
Let $\pi$ be the natural projection of $G_{0}$ onto $G_{0}/N=P$ and let

$\dim P=p$ .
Let $g_{1}(t),$

$\cdots,$ $g_{p}(t),$ $|t|\leqq\delta_{1}$ , be one-parameter subgroups of $P$ which generate
a canonical coordinate system of the second kind of $P$ such that $g_{p-q+1}(t),$ $\cdots$ ,
$g.(t)$ generate a canonical coordinate system of the second kind of $Q$ , where

$q=\dim Q$ .

By Montgomery-Zippin [10, Theorem 1, p. 192], we can find one-parameter
subgroups $g_{1}^{*}(t)$ , $\cdot$ .. $g_{p}^{*}(t),$ $|t|\leqq\delta_{2}(\leqq\delta_{1})$ , of $G_{0}$ such that

i) $\pi(g_{i}^{*}(t))=g_{i}(t)$ for any $t$ with $|t|\leqq\delta_{2}$ and $i=1,$ $\cdots$ , $p$ ,

ii) $g_{p-q+1}^{*}(t),$ $\cdots,$
$g_{p}^{*}(t)$ are in $H_{\cap}G_{0}$ ,

iii) $\pi(LL^{-1}L)\subset\{g_{1}(t_{1})\cdots g_{p}(t_{p});|t_{i}|\leqq\delta_{1}\}$ , where

$L=\{g_{1}^{*}(t_{1})\cdots g_{p}^{*}(t_{p});|t_{i}|\leqq\delta_{2}\}$ ,

$\Lambda=\{g_{1}^{*}(t_{1})\cdots g_{p-q}^{*}(t_{p-q});|t_{i}|\leqq\delta_{2}\}$ ,

$M=\{g_{p-q+1}^{*}(t_{p-q+1})\cdots g_{p}^{*}(t_{p}) ; |t_{i}|\leqq\delta_{2}\}$ .
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Let $\lambda_{1}\mu_{1}$ and $\lambda_{2}\mu_{2}$ be two elements of $L$ , where $\lambda_{1},$ $\lambda_{2}\in\Lambda$ and $\mu_{1},$ $\mu_{2}\in M$

If $\lambda_{1}\mu_{1}$ and $\lambda_{2}\mu_{2}$ are elements of the same coset by $H_{\cap}G_{0}$ , then we have
$\pi(\lambda_{2})^{-1}\cdot\pi(\lambda_{1})\in\pi(H_{\cap}G_{0})=Q$ . Hence we have $\lambda_{1}=\lambda_{2}^{6)}$ Conversely if $\lambda_{1}=\lambda_{2}$

$\in\Lambda$ and $\mu_{1},$ $\mu_{2}$ be arbitrary elements of $M$, then $(\lambda_{2}\mu_{2})^{-1}\cdot\lambda_{1}\mu_{1}=\mu_{2}^{-1}\mu_{1}\in M^{-1}M$

$\subset H_{\cap}G_{0}$ . Thus we know that $\Lambda$ is homeomorphic to $\pi(\Lambda)$ under $\pi$ . Since $\pi(\Lambda)$

is homeomorphic to a Euclidean $(p-q)$-cube, we have
$\dim\Lambda=p-q$ .

Similarly we can know that $\Lambda$ is homeomorphic to $\rho_{0}(\Lambda)$ , where $\rho_{0}$ is the
natural projection of $G_{0}$ onto $G_{0}/H_{\cap}G_{0}$ . Hence

$\dim\rho_{0}(\Lambda)=p-q$ .
Let $\rho$ be the natural projection of $G$ onto $G/H$ ; then $G_{0}/H_{\cap}G_{0}$ is homeomor-
phic to $\rho(G_{0})$ under the mapping $\rho\rho_{0}^{-1}$ . We have $\dim G/H=\dim\rho(G_{0})$ by
Lemmas 1.1 and 1.5. Thus we have

$\dim G/H\geqq\dim\rho(\Lambda)=\dim\rho_{0}(\Lambda)=p-q>r+m-m=p^{\prime}$ .
Since $r$ was an arbitrary positive integer, we have $\dim G/H=\infty$ and the
theorem is completely proved.

THEOREM 2.2. Let $G$ be a locally compact group with $\dim G=\uparrow\iota$ and $H$ a
connected compact subgroup of $G$ with $\dim H=m$ . Then

$\dim G/H=IndG/H=indG/H=n-m$ .

PROOF. By Lemma 1.6 any point $k$ of $G/H$ has a neighborhood $U(k)$ which
is homeomorphic to the direct product of a Euclidean $(n-m)$ -cube $E$ and a
compact Hausdorff space $C$ with $\dim C=0$ . Hence we have

$\dim U(k)=n-m$

as we see in the proof of Theorem 2.1. Since $G/H$ is paracompact by Lemma
1.1, we have

$\dim G/H=n-m$
by Lemma 1.5.

Since $n-m=indE\leqq indU(k)\leqq indG/H$, we have

ind $G/H\geqq n-m$ .
In general it can easily be seen by an easy induction on $IndR$ that $IndR\times S$

$\leqq IndR$ for compact Hausdorff spaces $R$ and $S$ with $IndS=0$ . Hence we have
$IndU(k)\leqq n-m$ .

On the other hand $n-m=IndE\leqq IndU(k)$ . Therefore we have

$IndU(k)=n-m$ .

6) Cf. Pontrjagin [16, A), \S 44].
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By Lemma 1.9 there exists an open $\sigma$ -compact subgroup $G_{0}$ of $G$ which
is the projective limit of Lie groups. Since $H$ is connected, we have $G_{0}\supset H$

Since $G_{0}/H$ is $\sigma$ -compact, $G_{0}/H$ is covered by a countable number of compact
sets $F_{i}$ with $IndF_{i}=n-m,$ $i=1,2,$ $\cdots$ .

By Lemma 1.7 $G_{0}/H$ is the projective limit of $\{K_{\alpha}, \omega_{\alpha\beta}\}$ where $K_{\alpha}$ are
$(n-m)$-manifolds and $\omega_{\alpha\beta}$ are open continuous and locally topological. Since
$G_{0}/H$ is a-compact and hence $K_{\alpha}$ are $\sigma$ -compact, $K_{\alpha}$ are separable metric.
Hence for any $\alpha$

$\dim K_{\alpha}=IndK_{\alpha}=n-m$ .
Thus all conditions in Lemma 1.11 are satisfied and we conclude that

$IndG_{0}/H\leqq n-m$ .
Since $n-m=IndF_{i}\leqq IndG_{0}/H$, we have

$IndG_{0}/H=n-m$ .
Since $G/H$ is, by an analogous argument as in the proof of Corollary 1.10, the
sum of mutually disjoint open sets each of which is homeomorphic to $G_{0}/H$,
we conclude that

$IndG/H=IndG_{0}/H=n-m$

by an easy induction on $IndG_{0}/H$ Since ind $G/H\leqq IndG/H$, we have also

ind $G/H=n-m$ .
Thus the proof is completed.

COROLLARY 2.3. Let $G$ be a locally compact group with $\dim G=n$ which is
the projective limit of Lie groups and $H$ a compact subgroup of $G$ with $\dim H$

$=m$ . Then
$\dim G/H=IndG/H=indG/H=n-m$ .

PROOF. There exists an open subgroup $G_{0}$ which is $\sigma$ -compact. Then
$G_{1}=G_{0}H$ is also an open subgroup which is $\sigma$ -compact. By an analogous
argument to the proof of Theorem 2.2, we have

$\dim G/H=indG/H=IndG_{1}/H=IndG/H=n-m$ ,

which proves the corollary.

\S 3. Decomposition theorem.

THEOREM 3.1. Let $G$ be a locally compact group with $\dim G=n$ . Then there
exist $n+1$ subspaces $B_{i},$ $i=1,$ $\cdots$ , $n+1$ , such that for any $iB_{i}$ is a paracompact
space with $\dim B_{i}\leqq 0$ .

PROOF. Let $V$ be an open symmetric neighborhood of the identity of $G$

such that $\overline{V^{2}}$ is compact. Let $G_{0}=V^{\infty}$ ; then $G_{0}$ is an open $\sigma$ -compact sub-
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group of $G$ . By Lemma 1.3 there exists an open neighborhood of the identity
of $G$ which is the direct product of a local Lie group $L$ and a compact group
$N$ such that

i) $LN\subset V$,
ii) $L$ is homeomorphic to a Euclidean n-space,

iii) $\dim N=0$ .
Let $W$ be a relatively open neighborhood of the identity in $L$ such that

i) the closure of $W$ in $L$ , say $F$, is homeomorphic to a Euclidean n-cube,
ii) $FF^{-1}F\subset L$ .

Let $x_{1},$ $x_{2}$ , be a sequence of points of $G_{0}$ and $t(1),$ $t(2)$ , $\cdot$ .. be a sequence of
positive integers which satisfies the following conditions:

i) $ 1\leqq t(1)\leqq t(2)\leqq\ldots$

ii) $x_{\dot{t}}\in\overline{V^{m}}$ for $i=1,$ $\cdots,$ $t(m),$ $m=1,2,$ $\cdots$ .
iii) $x_{i}\in E\overline{V^{m}}$ for $i>t(m),$ $m=1,2,$ $\cdots$ .
iv) $U\{x_{i}WN;i=1, --, t(m)\}\supset\overline{V^{m}},$ $m=1,2,$ $\cdots$ .

Then $\{x_{i}WN;i=1,2, --\}$ is a star-finite open covering of $G_{0}$ . $\{x_{i}FN;i=1,2, \cdots\}$

is therefore a star-finite closed covering of $G^{7)}$ Since $F$ is separable metric,
there exist $n+1$ subsets $F_{i},$ $i=1,$ $\cdots$ , $n+1$ , of $F$ with $\dim F_{i}=0$ for any $i$ (cf.

Hurewicz-Wallman [6]).

We set

$H=x_{1}F_{i}NU(\bigcup_{j=2}^{\infty}(x_{j}F_{i}N-\bigcup_{k<j}x_{k}FN))$ , $i=1,$ $\cdots$ , $n+1$ .

It is evident that $G_{0}=\bigcup_{i=1}^{n^{\lrcorner}1}H_{i}$ . Let us prove that every $H_{i}$ is paracompact. Set
for every $i$

$H_{i1}=x_{1}F_{i}N$ ,

$H_{ij}=x_{j}F_{i}N-\bigcup_{k<j}x_{k}FN$ , $j=2,3,$ $\cdots$ ;

the $nH_{i}=\bigcup_{j-1}^{\infty}H_{ij}$ and $\bigcup_{j-1}^{k}H_{\dot{t}j}$ is relatively closed in $H_{i}$ for $k=1,2,$ $\cdots$ Set

$I_{j}=\{k;x_{j}FN_{\cap}x_{k}FN\neq\phi\}$ , $j=1,2,$ $\cdots$ ;

then $J_{j}$ is a finite set of indices from the star-finiteness of $\{x_{i}FN;i=1, 2, \}$ .
It is evident that

$x_{j}^{-}x_{k}FNcFF^{-1}FN\subset LN$ for any $k\in J_{j},$ $j=1,2,$ $\cdots$ .

Therefore if we set
$E_{ij}=U\{H_{ik} ; k\in J_{j}\}$ , $i=1,$ $\cdots$ , $n+1,$ $j=1,2,$ $\cdots$ ,

then we have $x_{j}^{-1}E_{cj}cLN$ for $i=1,$ $\cdots,$ $n+1,$ $j=1,2,$ $\cdots$ .

7) Cf. the argument in the proof of Remark 1.2.
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Write an element of $LN$ as the product of $\lambda\in L$ and $\nu\in N$ and define a
mapping $\pi$ of $LN$ onto $L$ in such a way that

$\pi(\lambda\nu)=\lambda$ .
Now let us prove the equalities:

$x_{j}^{-1}E_{ij}=\pi(x_{j}^{-1}E_{ij})N$ , $i=1,$ $\cdots$ , $n+1,$ $j=1,2,$ $\cdots$ .
Evidently $x_{J}^{-1}E_{ij}c\pi(x_{j}^{-1}E_{ij})N$. To show that $x_{j}^{-1}E_{ij}\supset\pi(x_{j}^{-1}E_{ij})N$, let $\lambda$ be an
arbitrary element of $\pi(x_{j}^{-1}E_{ij})$ . Then there exists an index $k\in J_{j}$ such that
$\lambda\in\pi(x_{j}^{-1}H_{ik})$ , and hence $\lambda\in\pi(x_{j}^{-1}x_{k}F_{i}N-U\{x_{j}^{-l}x_{k},FN;k^{f}<k\})$ . Therefore we have

$\lambda N\subset\pi(x_{j}^{-1}x_{k}F_{i}N-U\{x_{j}^{-1}x_{k},FN;k^{\prime}<k\})N$

$=\pi(\pi(x_{j}^{-1}x_{k}F_{i})N-\pi(U\{x_{j}^{-1}x_{k},F;k^{\prime}<k\})N)N$

$=\pi(\pi(x_{j}^{-1}x_{k}F_{i})-\pi(U\{x_{j}^{-1}x_{k},F;k^{\prime}<k\})N)N$

$=(\pi(x_{j}^{-1}x_{k}F_{i})-\pi(U\{x_{j}^{-1}x_{k},F;k^{\prime}<k\}))N$

$=\pi(x_{j}^{-1}x_{k}F_{i})N-\pi(U\{x_{j}^{-1}x_{k},F;k^{\prime}<k\})N$

$=x_{j}^{-1}x_{k}F_{i}N-U\{x_{j}^{-1}x_{k},FN;k^{\prime}<k\}$

$=x_{j}^{-1}(x_{k}F_{i}N-U\{x_{k},FN;k^{\prime}<k\})$

$=x_{j}^{-1}H_{ik}\subset x_{j}^{-1}E_{ij}$ .

Thus we know that $E_{ij}$ is homeomorphic to the product space of $\pi(x_{j}^{-1}E_{ij})$ and
$N$. Since $\pi(x_{j}^{-1}E_{ij})$ is separable metric and $N$ is compact (Hausdorff), the pro-
duct space $\pi(x_{j}^{-1}E_{ij})\times N$ is paracompact by Dieudonne’ [2]. Therefore we can
conclude that $E_{ij}$ is paracompact.

Since
$H_{ij}\subset x_{j}FN_{\cap}H_{i}\subset H_{i}-U\{x_{k}FN;k\not\in J_{j}\}$

$=(U\{H_{ik} ; k\in J_{j})U(U\{H_{ik} ; k\not\in J_{j}\})-U\{x_{k}FN;k\not\in J_{j}\}$

$\subset U\{H_{ik} ; k\in J_{j}\}=E_{ij}$ ,

the relative closure of $H_{ij}$ in the space $H_{i}$ , say $\tilde{H}_{ij}$ , is contained in $x_{j}FN_{\cap}H_{i}$

and hence in $E_{ij}$ . Since $\tilde{H}_{ij}$ is considered as the relative closure of $H_{ij}$ in the
space $E_{ij},\tilde{H}_{ij}$ is paracompact by the paracompactness of $E_{ij}$ . Since $\tilde{H}_{ij}cx_{j}FN$

for $j=1,2,$ $\cdots$ ,
$\{\tilde{H}_{ij} ; j=1,2, \cdots\}$

is as can easily be seen a locally finite relatively closed covering of H.. Hence
the paracompactness of $H_{i}$ is established by Morita [13].

Next let us prove that $\dim H_{i}\leqq 0$ for $i=1$ , $\cdot$ .. , $n+1$ . Since $F$ is compact,
there exists a sequence of open sets $D_{r},$ $\gamma=1,2$ , $\cdot$ .., of $L$ such that

$F=\bigcap_{i-1}^{\infty}D_{i}$ .



394 K. NAGAMI

We set
$H_{ijr}=x_{j}F_{i}N-U\{x_{k}D_{r}N;k<j\}$ , $i=1,$ $\cdots$ , $n+1$ , $j=1,2,$ $\cdots$ ,

$r=1,2,$ $\cdots$ ;

then $H_{ijr}$ is relatively closed in $H_{i}$ and contained in $H_{ij}$ . Since $\{\tilde{H}_{ij} ; j=1,2, \cdots\}$

is locally finite in the space $H_{i}$ ,

$\{H_{ijr} ; j=1,2, \cdots\}$

is also locally finite in the space $H_{i}$ . Hence

$K_{ir}=\bigcup_{j=1}^{\infty}H_{ijr}$

is relatively closed in $H_{i}$ . Since $H_{ijr}$ is a relatively closed subset of a para-
compact space $x_{j}F_{i}N$, we have

$\dim H_{ijr}\leqq\dim x_{j}F_{i}N=\dim F_{i}N=\dim F_{i}\chi N\leqq\dim F_{i}+\dim N=0$ .
Hence by the sum theorem we have

$\dim K_{i\gamma}\leqq 0$ .

Since it is almost evident that $H_{i}=\bigcup_{\tau=1}^{\infty}K_{ir}$, we have

$\dim H_{i}\leqq 0$ , $i=1,$ $\cdots$ , $n+1$ ,

by the sum theorem again.
Let $\{g_{\xi}G_{0} ; \xi\in\Xi\}$ be a collection of all cosets by $G_{0}$ such that $g_{\xi}G_{0}\cap g_{\eta}G_{0}$

$=\phi$ whenever $\xi$ and $\eta$ are different indices of $\Xi$ . Setting

$B_{i}=U\{g_{\xi}H_{i};\xi\in\Xi\}$ , $i=1,$ $\cdots,$ $n+1$ ,

$B_{i}$ is evidently a paracompact space with $\dim B_{i}\leqq 0$ for every $i$ . Thus the
theorem is completely proved.

REMARK 3.2. It is to be noted that $B_{i},$ $i=1,$ $\cdots$ , $n+1$ , constructed above
satisfy the following condition: If $I=\{i_{1}, , i_{j}\}$ is any subset of $\{1, \cdots , n+1\}$ ,

then $U\{B_{i} ; i\in I\}$ is a paracompact space with $\dim U\{B_{i};i\in I\}\leqq j-1$ .

\S 4. Invariance theorem of a domain.

LEMMA 4.1 (Alexandroff-Hopf [1, Theorem IV’, p. 121]). A compact metric
space $R$ with $\dim R=0$ which has no isolated point is homeomorphic to a Cantor
discontinuum.

THEOREM 4.2. The invariance theorem of a domain does not hold in any
locally compact, metric group $G$ with $\dim G<\infty$ which is not locally connected.

PROOF. Let $\dim G=n$ ; then by Lemma 1.3 there exists an open neigh-
borhood of the identity of $G$ which is the direct product of a local Lie group
$L$ which is homeomorphic to a Euclidean n-space and a compact metric group
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$N$ with $\dim N=0$ . Since $G$ is not locally connected, $N$ must be infinite. Hence
we can consider $N$ as the projective limit of a spectrum { $N_{i},$

$\pi_{ij}$ ; $N_{i}\rightarrow N_{j}$ ;
$i=1,2,$ $\cdots$ } such that

i) $N_{i}$ is a finite group for every $i$,
ii) $\pi_{ij}$ are onto homomorphisms,

iii) for any $i$ the order of the kernel of $\pi_{i+1,i}$ is not less than 3.
Set $M_{1}=N_{1}$ . By an easy application of the induction we can construct a

sequence of finite subsets $M_{i}$ of $N_{i},$ $i=1,2,$ $\cdots$ , such that

$|\pi_{i+I,i}^{-1}(\mu)_{\cap}M_{i+1}|=2$ for any $\mu\in M_{t},$ $i=1,2,$ $\cdots$ .
Let $M$ be the projective limit of $\{M_{i}, \pi_{ij}\}$ . Since both $N$ and $M$ are compact
metric spaces with $\dim N=\dim M=0$ which have no isolated point, there
exists by Lemma 4.1 a homeomorphism $\varphi$ of $N$ onto $M$

Here we notice that $M$ contains no non-empty open set of $N$. Suppose
that a non-empty open set $D$ of $N$ is contained in $M$ ; then there exist a point
$x$ of $D$ and a positive integer $i$ such that $\pi_{i}^{-1}\pi_{i}(x)\subset D$, where $\pi_{j}$ is the projec-
tion of $N$ onto $N_{j},$ $j=1,2,$ $\cdots$ . We have

$|\pi_{i+1}\pi_{i}^{-1}\pi_{i}(x)|\geqq 3$ .
Since $\pi_{i}(x)\in M_{i}$ and $\pi_{\tau+1}\pi_{i}^{-1}\pi_{i}(x)=\pi_{i+1,i}^{-1}\pi_{\dot{t}}(x)$ , we have

$|\pi_{i+1}\pi_{i}^{-1}\pi_{i}(x)_{\cap}M_{i+1}|=2$ .
Since $\pi_{i+1}\pi_{i}^{-1}\pi_{i}(x)\subset\pi_{i+1}(M)=M_{i+1}$ , we have

$|\pi_{i+1}\pi_{i}^{-1}\pi_{i}(x)_{\cap}M_{i+1}|=|\pi_{i+1}\pi_{i}^{-1}\pi_{i}(x)|\geqq 3$ ,

which is a contradiction. Thus $M$ contains no non-empty open set of $N$.
Define a mapping $\psi$ : $LN\rightarrow LM$ in such a way that

$\psi(yx)=y\cdot\varphi(x)$ , $y\in L,$ $x\in N$ .
Then $\psi$ is a homeomorphism of $LN$ onto $LM$. To prove that $LM$ contains
no non-empty open set of $G$ , assume the contrary. Then there exist a non-
empty open set $L_{1}$ of $L$ and a non-empty open set $N_{1}$ of $N$ such that $L_{1}N_{1}$

$\subset LM$ Define a mapping $f:LN\rightarrow N$ in such a way that

$f(yx)=x$ , $y\in L,$ $x\in N$ .
Then $f$ is an open continuous mapping. Hence $f(L_{1}N_{1})=N_{1}$ is open in $N$ and
is contained in $f(LM)=M$, which is a contradiction. Thus we know that the
invariance theorem of a domain does not hold in $G$ and the proof is completed.

Ehime University, Matsuyama
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