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Introduction. Let R be a commutative ring with a unit element. Them
the space of prime ideals of R with the Zariski topology is called the prime
spectrum of R which is denoted by spec(R), and the subspace of spec(R) of
all maximal ideals of R is called the maximal spectrum of R which is denoted
by m-spec(R). The dimension of such a space is the supremum of the lengths
of chains of irreducible closed subsets. (See and [10].) For brevity, we
shall call a ring weakly noetherian if m-spec(R) satisfies the descending chain
condition on closed subsets. Our main objective in this paper is to prove

THEOREM. If R is a weakly noetherian ring and dim (m-spec(R)) is finite,
then any projective R-module is a divect sum of finitely gemervated projective R-
modules.

From this we can easily deduce that, over a commutative indecomposable:
semilocal ring?, any projective module is free®.

Now let R be a commutative ring, M an R-module. Then M is called
Sfaithfully flat if M satisfies any one of the following equivalent conditions.
(see §6.4 p. 57):

(@) A sequence of R-modules N'— N— N’/ is exact if and only if MQN"
—>M(§)N—&M(§)N” is exact. *

(b) M is flat and, for any R-module N, the relation MQN=(0) implies
N=(0). ?

(c) M is flat and, for any homomorphism v: N— N’ of R-modules, the
relation 1,,®v=0 implies v =0 where 1, is the identity automorphism of M.

(d) M is flat and, for any maximal ideal m of R, mM # M.
To prove the main theorem, we shall prove that, if R is an indecomposable
weakly noetherian ring, any projective module (3 (0)) is faithfully flat.

We shall always be dealing with rings with unit element and unitary
modules. Further, unless the contrary is stated, “ module” means “left

module”. A denotes a ring (not always commutative) and R denotes a com-
mutative ring.

1) A ring is called indecomposable if it has no non-trivial idempotents. A com-
mutative ring is called semilocal if the number of the maximal ideals is finite.

2) See [7]
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1. Some basic lemmas and known results on projective modules.

We begin with a well-known

LEmMMA 1.1 (Nakayama). Let A be a ving, J the Jacobson radical of A, M
a finitely generated module and M’ a submodule of M. If M'+JM=M, M'=M.

Now the following lemma is trivial and well-known.

LEMMA 1.2. Let L, M, N be modules over a ving such that LOMDN. If
N is a divect summand of L, them N is a divect summand of M.

The following lemma is a generalization of Lemma 5 of [10].

LEMMA 13 ([7]). Let P be a projective module over a rving A and p an
element of P. If p &« mP for any maximal vight ideal m of A, then Ap is a direct
summand of P and p is a free basis of Ap, wheve mP is the image of mQP— P
by the natural map. ®

LMMA 143 For a projective module P(+ (0)) over a ring A, we have JP+ P,
where J is the Jacobson radical of A.

ProOPOSITION 1.5 (Eilenberg [9]). Let P be a projective module over A.
Then there exists a free module I such that FEQP is free.

REMARK. In this proposition, if R is a polynomial ring over a field and
P is finitely generated, we may take a finitely generated free module as an
F (Proposition 10 of [107]).

As a corollary we have

LEMMA 1.6. Let A be a ring, P a projective module over A and p any ele-

ment of P. Then there exists an integer m(=0) such that (% PAYPP,(A; = A),
i=1

contains a finitely generated free divect summand containg p.

Proor. By virtue of Lemma 1.5, there exist free modules U, F' such that
U=F®@P. Let

{u;} be a free basis of U,

{13} a free basis of F,

= the projection from U to F,
Ge, if ue U, u=r+p', fF, p’ = P, then n(u)=f),

n
p:ZITLu'L: 7’1'6 A’ 2:11 e,
iz
mg
”(Mi)zzlsijfj, Si; € Ai=1,2,--,7=1,-,my,
j=
m=max (my, -, My,).

Put F/'=S@Rf, P'=F' &P, U'=3 ®Ru;, Then pe U/'CP'CU and U’
=1 i=1

3) This is proposition 2.7 of [H. Bass, Finitistic dimension and a homological
generalization of semi-primary rings, Trans. Amer. Math. Soc., 95 (1960), 466-488].
simple proof is found in [7].
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is a direct summand of U, hence of P’ by This completes the
proof.

THEOREM 1.7 (Kaplansky [81). Let A be a ring, M a A-module which is a
divect sum of (any number of ) countably genevated A-modules. Then any divect
summand of M is likewise a direct sum of countably genevated A-modules.

From this we deduce easily

CoroLLARY 1.8 (Kaplansky [8]). Amny projective module over a ring is a
divect sum of countably generated projective modules.

LEMMA 1.9 (Kaplansky [81). Let A be any ring, M a countably generated
A-module. Assume that any divect summand N of M has the following property :
any element of N can be embedded in a free (resp. finitely generated) dirvect
summand of N. Then M is free (vesp. a divect sum of finitely generated modules)..

2. Support of a module.

Let R be a commutative ring, S a multiplicatively closed set not contain-
ing 0 of R. As usual we denote by Rs the ring of quotient with respect to
S, and if S=R—) for a prime ideal p of R, we write R, for Rp, Similarly,
for an R-module M, we denote by Mg the module of quotient with respect to
S and we write M, for Mg, if p is a prime ideal. We know that Mg—= M(% R

and that there exists a canonical map ¢ : M — My and the kernel of this map
is the S-component of (0) in M:Ker ¢ = {m & M| there exists s& S such that
sm=0}.

Let M, M’ be R-modules, such that M D M’. Then we use the following
notation :

(M’ : M)=the set of elements x = R such that aMC M.

Let M be an R-module. Then the set of all maximal ideals m of R such
that M, # (0) is called the support of M and denoted by Supp(M).

LemMmA 2.1 (§1.7 of [5]). Let M be an R-module. Then M=(0) if and only
if Supp(M)=¢.

For: if M, =(0) for every maximal ideal m of R,(0:sm) is contained in no
maximal ideals of R, for any m € M, hence (0:m)=R, i.e.,, m=0.
- LEMMA 2.2 (§1.7 of [5]). If an R-module M is a sum of a family of sub-
modules {M,}, we have Supp(M)= \})Supp(MA).

LEMMA 23 (§1.7of [5]). If Mis a finitely generated R-module, Supp(M) is
the set of maximal ideals containing ((0): M).

LEMMA 24. Let R be a commutative ring, m a maximal ideal of R, P a
brojective module and M a submodule of P which is contained in a finitely
generated submodule M’ of P. Then we have M+mP= Pif and only if (P/M)n
=(0), i.e., me Supp(P/M).
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ProOOF. Let N be any module. Then we have
Nu/mN,, = (N(% Rm)g%(Rm/mRm) = N(%)(R/m) = N/mN .
Therefore, we have
M+mP= P < P/mP=M+mP)/mP
< Py/mPy = (My+mPy)/mPy,
<> Mup+mP,=P,=>Ml+mP, =P, .
‘We shall prove that
My+mP, = P, < (P/M),=(0).

Now P, is a projective module over a local ring R,, hence P, is free.
Let {u;} be a free basis for P, over R,. Then there exists an integer #» such

that M{ncil@Rmui. Put f}@Rmui:P’. Then P’ is a direct summand of
i= i=1

P,, hence there exists a submodule P” such that P,=P’'@P”. The above
relation M, +mP, =P, implies that P'@P”"=P, =P +mP, = P ®mP”.
‘Therefore, we have mP” = P”. By Lemma 1.4 we have P”=(0). Therefore
P, =P’ is finitely generated over R,. By Lemma 1.1 we have (P/M)

= P,/M, =(0). The converse implication is obvious. Thus we have completed
the proof.

3. Maximal spectrum with the Zariski topology.

To a commutative ring R, we associate a topological space m-spec(R)
{maximal spectrum of R): m-spec(R) is the set of maximal ideals in R with
the Zariski topology.

We shall constantly use the following notations:

X =m-spec(R),

V(a)=the set of elements ¢ < X such that yDa where a is an ideal of R,
D(o)=X—W(),

() =the set of elements ¢ € R such that there exists an element.s€ R

satisfying set, sc=0 where ¢ is an element of X,
¢(X)= N ) where X is a subset of X.
rex

LEMMA 3.1 (cf. §1.1, p. 80 [5]). We have the following properties:
D VO)=X, V(R)=¢.

i1) The relation a Cb implies V(o) D V(b).

iii) For any family of ideals {a;} of R, V(Klj al):[l\ Viay.

iv) @) is an ideal of R and 2 (x).
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v) ¥ 1( gszg)c V(e(X)).

vi) The sets of the form V(a),a ranging over the set of ideals of R, are
the closed sets with vespect to the Zariski topology of X.

A closed set ¥ of X is called irreducible if it is not empty and is not a
finite union of proper closed subsets. We define A4$) for a closed set § of
X as follows: if § is irreducible, 4#(F) is the (possibly infinite) supremum of
all integers » for which there is a strictly increasing chain

F=TCqFC - CBa
of irreducible closed sets &; of X; in general #(%) is the infimum of the
heights of the irreducible closed subsets of § if F#¢; At{p)=oco. We also

write dim X =sup 4¢($%), where & ranges over the non-empty closed sets in X.
If every closed set & in X is a finite union of irreducible closed sets, §=\U%i

we call X a decomposition space. We see easily that there is then such a
decomposition, unique up to order, for which no &; is in the union of the
remaining $;; the ; in this decomposition are called the components of .
It is well known, and elementary, that a noetherian space is a decomposition
space.

We know that a closed set § is irreducible if and only if (%T is a prime
fe

ideal and that, if an irreducible set & is contained in a union of closed sets
GUH, T is contained in @ or in H. (Cf. and [5].

LEMMA 3.2. Let R be a commutative ving. Then X=m-spec(R) is a noe-
therian space if and only if, for any closed set T = V(0), theve is a finitely gen-
ervated ideal a CY of R such that F = V{(a).

Proor. If @, is any element of b, we have (a,)Cb, hence V((a))D V().
If V{(a)# V(b), there is an element r< X such that ¢ V{(a)), & V(b), i.e,
tD(a),t Db Let a, be any element of b such that r®ea, Then we have
(a) C(ay, ay) b, V(@) 2 V((a,, @,)) D V(). In this way, we have a descending
sequence of closed sets V({(e2) 2 V(a, a,)2 --- D V(). If X is noetherian,
there exists an integer » such that V{(ay, -, @)= V(0).

Conversely, let D%, D - DD -+ be a descending chain of closed sets
of X. Let a; be finitely generated ideals such that V(a,)=;. Put bh=aq,
~+ -+ +a;. We have that V(b,)=7F; and that F=\F: = V(Vb). By assump-
tion there is a finitely generated ideal b such that &= V(b), b Jb,. Thus

b Obi for a suitable #%, hence § = V(b)= V(C) b)) = fn\ %= Fn. This completes
i=1 i=1 i=1

the proof.
The following Lemma 3.3 is Lemma 4 of [10] and Lemma 3.1 of [1].

LEMMA 3.3 (Chinese Remainder Theorem). If M is an R-module, 3; dis-
tinct elements of X, and m, s M,i=1,---,n, then there is an element m< M
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for which m=m,; (mod. x;,M).

Let P be an R-module and p,, -+, p, elements of P. If p,, .-+, p, are linearly
independent mod. P over R/x, (i.e., p,, -+, P, are a free basis mod.yP over R/x
of a direct summand of P/tP), we say p,, -+, p. are free (or a free basis) at
r in P. The set X of all = X at which p,, -, p, are not a free basis is called
the singular set of p,,---,p, in P.

Now the following lemma is Lemma 3 in [10], and the proof is the same
as in [10]

LEMMA 34. Let p,, -+, b, be elements of a projective R-module P. Thew
the singular set of p., -+, pDn is closed in X.

ProofF. Let F be a free R-module such that F=PPQ, {#;} a free basis.
of F. Assume that

m
pi:jfisijuj, Zzl,"',ﬂ.

Then p,, -+, p, are free at ¢ if and only if the rank of the » X m matrix (s;;)
=S is #» mod.z. Let S, ---,S, be the set of # X minors of S. Then the

singular set is equal to ift\l V((det(Sy)) = V((det(S)), ---, det(Sy))). Therefore, the:

singular set is closed.

4. TFaithfully flat modules.

Let R be an indecomposable commutative ring. Then we know that any
finitely generated projective module is faithfully flat (cf. Lemma 4.2 of [4.])
and that, if R is an integral domain, any projective module is faithfully flat.

Now we recall the

DEFINITION. A commutative ring R is called weakly noetherian if the
maximal spectrum X =m-spec(R) is a noetherian space.

The following theorem is a direct consequence of Theorem 5.1 of the
next section, but we give another proof here.

THEOREM 4.1. Let R be a weakly noetherian ring. Then every projective
module P(+ (0)) is faithfully flat if and only if the ring R is indecomposable.

PROOF. Let F=P®Q, {;} a free basis of F,u;=pita, p,-:é Sufthy Q.
=({s;;}) the ideal generated by the set {s;;;i=1,2,--,7=12,--,n;}. It is
evident that a is the smallest ideal such that aP=P. Put M={me X|
mP=P}, ®={ne X|nP+P}. Then we have that M\ N=¢, MUN=X
and that (M) =0). For: ceM)N\«(R) implies (0:¢)dr for each
maximal ideal ¢ of R, hence (0:¢)=R, i.e, c=0. Now we have () Da.
For: let s;; be an element of the set of generators {s;;} of a. Then
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pi:késikuk- If meM mP=P. Therefore, P, =(0). Hence there exists an

element s;& m such that s{p,=0. Therefore, s{s;;=0. This implies that ¢(9N)
Da. Now we have, if neM, nDda. For: nDaq implies nPDaP=P, a contra-
diction. Therefore, we have n D (), for all neN.

Thus M is a closed set, M= V(M) = V(a). Therefore by
there is a finite set of elements {a,, ---,a,} of a such that M= V{(ay, -+, @)
Then there is an integer m such that (a,,--,a,)C{ss;i=1,--,m,j=1,--,

n;})="5 Let P'= i}Rpi and m any element of M. Then there is an element

s of R such that s&m and sP’=(0) since P’ is finitely generated. Let n be
an element of M. Then we have n Db since M= V(). Hence P’ & nF, i.e,
P’ cunP. Let p. be an element of P’ such that p.&nP. Then the image
@(p) of pnin P. by the canonical map ¢ : P—P. is a free basis of @(Rpn)
which is a direct summand of P, by Now sP’=(0) implies spa
=0, hence Y(s)p(p.)=0 in P, where  is the canonical map: R— R.. Since
@(pn) is a free basis of ¢(Rp«), we have Y(s)=0in R.. Therefore, there is an
element s. of R such that s. & nand s.s=0. This implies that s ¢(n) for any
element 1 of N. Hence we have s & f“\c(n): ¢(M). Since s & m, we have m D c(R).

This holds for any element m of M. Therefore, we have proved that ()
+c(M) = R and that (D)~ «(N)=(0). Thus we have ((M)P (N)=R. Now gen-
erally we have R+ ¢. If not, we have M = X and tP= P for any r= X. This
implies P; =(0) for any te X, i.e.,, P=(0) by Lemma 2.1 If M+ ¢, (M) and
¢«(N) are proper ideals, i.e.,, # R and +(0), since (M) ¢ n for any n= N and
(M am for any me M. Therefore, if R is indecomposable, M must be void,
i.e., P must be faithfully flat. Since the converse is obvious, we have com-
pleted the proof.

5. Weakly noetherian rings.

DEFINITION. Let R be a commutative ring, P a projective module which
is not finitely generated over R and M a finitely generated submodule of P.
An element r of X (=m-spec(R)) is said to be redundant with respect to M
for P if M+xP=P. If there exists no such a submodule, ¢ is said to be
irvedundant for P.

NoOTATION. Let P be a projective module and M a submodule of P. Then.
we write

&M, Py={se X| M+P+ P},
I(M, P)={r= X| M+tP=P},
&(P)=the set of all irredundant elements of X,
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I(P)=the set of all redundant elements of X.

THEOREM 5.1. Let R be a weakly noetherian ring and P a projective module
which is not finitely genevated. Then there exists a finitely genevated submodule
M of P such that S(M, P)=&(P) and I(M, P)=3I(P) and the set S(P) (resp.
T(P) of all irvedundant (rvesp. redundant) elements for P of X is open and
closed. Furthermore, we have S(P)= V((&(P))), I(P)= V(c(Z(P))).

Proor. For brevity, we assume that P is countably generated. Let F be
a free module such that F=PPHQ; {u;},i=1,2,---, a free basis for F;n the
projection from F to P (i.e., if feF, f=p+q, p P, g=Q, then nf=p); mwu;

:pi,pi:}]lls“-uj, s;; € R In this proof, we fix the free basis {;}.
i

Now let M be a finitely generated submodule of P, {m,,---,m,} a system
m

of generators for M, m; =) s{u;i=1,2,--,n,si; R and at least one of {s{,,
j=1

-+, S} not zero. Then we write F(M)=3( Ru,, M=F(M)A Pand M= 3 Rp,.
i=1 i=1
Now we have that !
McMcM,

&(M, P) D&(M, P) D&M, P) D&(P),

(M, P)C (M, P)C X(M, P)C X(P).
Put aM)=({s;;:i1=1,2,---,j=m+1, m+2, - ,mn;}). Let s;; be any element of
the system of generators {s;;:j >m} of the ideal a(}M/). Then we have m-+1
Sisu, pi= i}sikuk. Now let m be any element of (M, P), then we have

k=1

M+mP= P, hence (P/M),,=(0) by Lemma 2.4 since M is finitely generated
and contains M. Therefore there exists an element s; of R such that s; & m,

sipie M. Thus we have s;p; :kf) SiSutts € MC X @ Ru;. This implies that
=1 j=1

88 =0 for k=m-=+1,---,n. Thus, if j>m and meI(M, P),s;; = (m). Thus
we have proved that a(M)C N m)=«3W, P)C (N m. Now of course

meg (i, P) jez(ﬁ,m
we have F(M)+a(M)FD P and this implies that M-+a(M)P=P. ‘ Therefore,
if me V(a(M)), we have J-\;l+mP: P ie,me i(]TJ, P), ie., m& @5(]:\4, P). Thus
'we have

T(M, P) D V(a(M)) D V(Z(M, P) D (M, P),
&(M, P) C D(a(M)) C &(M, P)C &(M, P).

By Lemma 3.2, there exists a finitely generated ideal a’ = (a4, -+, @) contained
in a(M) such that V(a’)= V(a(M)). Assume that o’ C({s;;:i=1,-,¢,j=m+1,

<, 1;}), max (ny, -, n)=m’'. Put N:ﬁ‘ Rp;. Let m be any element of I(M,P).
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"Then we have (P/M),=(0), hence (M+N)/M),=(0). Therefore, there
exists an element s< R such that s&m, sNC M, i.e, sp,e M for i=1,2, -, ¢
If v & V(a'), there exists an s;; such that 1<:i<¢ m+1<j=m’/, s;;&1r. Now

ng _ m
we have p, = > Sitn, sPi € M C 2 @D Ruy. Therefore, we have that ss;;=0 for
k=1 k=1

i=1,-,t,j=m+1, ---,m', hence s € c«(x) since s;; & 1. Thus we have s € «(D(a")),
hence m D «(D@)) if meI(M, P). Therefore, (M, P)~ V(c(D(a"))) = ¢, hence
V(D)) &(M, P). Thus we have proved that @(Z\:/[, Py Dla(M))  V(e(D(a
WD) C &(M, P).

Let M, be a finitely generated submodule of P. Then we have

&(M,, P)D&(M,, P) D (M, P)DS(P).

1f @(Z\:ﬂ, P) +&(P), @(]1241, P) contains an element r € X such that there exists
a finitely generated submodule M7 satisfying M{+yP=P. Then we have that,
if we put M,= M,+M{, M,+rP=P and that &M, P) 2 &M, P)DS(P). In
this way, we may make an ascending sequence of finitely generated sub-
modules M, & M, < M, < --- and a descending sequence of closed subsets of X

V(DM 2 V(D)) 2 - DE(P).

Since X is a noetherian space, there exists an integer w such that V{c(D(a(M,))))
= V(«(Da(My)))) if w' =zw. If we put M*=DM,, then we have &(M*, P)
= V{c(D@M*#*))))=&S(P) and T(M*, P)= V(a(M*))=23(P). Thus &P)and I(P)
are open and closed since S(P)NT(P)=¢ and SP)VUI(P)=X. Now we
have that

I(P)= V(«(I(M*, P))=3(M*, P).
Thus we have 3(P)= V(«(T(P))). Similarly we have

&(P) = D(a(M*#)) = V(c(D(a(M*)))) -

Thus we have &(P)= V(«(&(P))). Therefore, we have completed the proof.

Now we can restate in a stronger form.

COROLLARY 5.2. Let R be a weakly noethevian rving and P a projective
module which is not finitely generated. Then the set T(P) of all redundant ele-
ments of X for P is void if R is indecomposable.

ProoF. By Theorem 5.1, we have &(P)= V(«(&(P))), T(P)= V((Z(P))).
While we have «(&(P)+c«(F(P)=R. For: let m be any maximal ideal of R.
Then me &(P) or € I(P). If me &(P), we have m D «(T(P)). If me I(P), we
have m D «(&(P)). Further, (&(P)) N «(Z(P))=(0) since S(P)VI(P)=X. Thus
‘we have

R=«(&(P)D(T(P)).

Since R is indecomposable we have «(&(P))=(0) or «(Z(P))=(0). But «(Z(P))
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can not be the zero ideal. For: if «(Z(P))=(0), T(P)= V(P =V({(0)=X.
By [Theorem 5.1, there exists a finitely generated submodule M of P such that
IM, P)=3I(P)=2X, i.e, (P/M),=(0) for every element m of X, and this
implies that (P/M)=(0) by Lemma 2.1, i.e., P=M. But this contradicts our
assumption that P is not finitely generated. Thus «(€P))=(0) and &(P)
= V((&(P)))= X, hecce I(P)=¢. This completes the proof.

6. Preliminaries for the main theorem.

The following lemma is obvious but, for the completeness, we give the
proof.

LEMMA 6.1. A weakly noethevian ving is a divect sum of a finite number
of indecomposable weakly noetherian rings.

Proor. First we note that R/a is weakly noetherian for any ideal a of
R, hence any direct summand of R is weakly noetherian. Let © be the set
of ideals consisting of all ideals a(# R) such that R/a is not a direct sum of
a finite number of indecomposable subrings. Let a be an element of & such
that V{(a) is minimal in the set {V(a),a =€ &}. By assumption R/a is decom-
posable, i.e., there exist proper ideals b,¢ in R such that b={(e, a), ¢ ={(e, a),
b+c=R,b¢c=a where e,e, are orthogonal idempotents mod.a. Now there
exist maximal ideals my, m,, such that m, D¢, m, Db, then we have m, e, m,
Pe,, Thus we have that V(6) & V(a), V()& V(a), hence b, c&S. Thus R,
=b/a and R,=c/a are direct sums of a finite number of indecomposable sub-
rings. This is a contradiction since R=R/a=R,P R, This completes the
proof.

The following theorem is essentially due to Serre [10] and Bass [1].
Deleting the finiteness assumption in Theorem 4 of [1] and in Theorem 2 of
[10], we have

THEOREM 6.2 (Serre). Let R be a weakly noetherian ving for which dim (m-
spec(R)) is finite. Let P be a projective module and M a submodule of P such
that dim (M~+xP)/tP:R/x)=o0 at all t= X. We are given the data:

i) & @ closed set in X.

i) 1, - ,t, distinct elements of .

i) vy, -, 0, with voe M,i=1, -, n.

iv) pu, -, pne P which ave free outside .

v) Awn integer k=0.

Then there exist p= M and a closed set §' in X such that

(a) p=wv; (mod.y;P),i=1, -, n.

(D) Py, Pw P ave free outside F\JF'.

(© h(F)z=kE.
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‘We prove this theorem for the completeness.

PrOOF. We proceed by induction on 4.

k=0. Take § =X. Then (b) is vacuous and (a) can be accomplished by

k=1. By inductive assumption, there exist z = M and a closed set @ in
X such that

@) wu=v; (mod.y,P), i=1,--,nm;

(") py, -, Dny u are free outside FUSG.

@) m@)z=k—-1.
There is no loss in assuming that §=@,\V --- U@, where the @&, are the
components of the singular set of p,, -+, p,, # Which are not contained in F.
(Note, if 8=¢, m=0.) With this done, we may choose "?wE@w‘(‘}q{ Gp) Y T,

o

a=1,-,m. Since dim((M+rP)/tP:R/t)=oc at all x = X by assumption, we
may choose w, = M so that

1) Py, Puutwy are free at y,, =1, -, m.

We now apply induction again, this time to

H FYE,

i) 1y, -+, %n D1, -+, b Which are distinct elements of FUG,

iii) 0,---,0 (» zeros of P) and wy, -+, wy,

iv) py, o+, pr,u Which are free outside FU G,

v) k—1.

We obtain t€ M and 9 a closed set in X such that

@”) t=0 (mod.y;P), t=w, (mod.v,P), i=1,--,n, a=1,-,m,

(") py, -+, bn w, t are free outside FUYG I D,

) n(®)zk—-1
As before, we may assume =9,V -.- U9, with the y’s the components of
the singular set of py, -+, p», %, ¢ not contained in FYS. (If D=¢,d=0.) Then
we may choose 33 € 9p—( T%@’)U% U@, f=1,--,d, whereon

@) py, -, pnu are free at 35, =1, ,d.

Now since £y, ***,Zns Y1 *** » Yms 31 ***» 3¢ are distinct we may choose f& R,

by so that
=0 (mod.y,), i=1--,n,
f=1 (mod.y,), a=1,---,m,
S=0 (mod.3p), AB=1--,d.

Finally we set p =u-+f¢ and take for ¥ the union of the components of the
singular set of p,, -+, ps p not contained in . Then p= M and (b) is auto-
matic and (a) is verified by the computation :

p=ut+ft=v; (mod.y;P), i=1,-,n.
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To establish (¢), we first note the obvious fact that if p,, ---, py, p=u-+ft are
not free at r, then neither are p,, ---, pu, %, ¢. Hence, the singular set of p,, -,
P, P is contained in that of p,, -+, pu, #, ¢ the latter being contained in FYS
U9, by (b”). Therefore F CFYGYH; but, by our choice of §’, it follows
that F c GV 9, and from this it follows that 2H(F)=k—1. If F =¢ we are
done, so we assume ¥ # ¢ and we must show A#H(F)+ k—1. If not, let & be
a component of ¢’ of height #—1. Then clearly & must be a component of
either & or 9, i.e., R =some @, or some 3. Therefore, some y, € & or some
g ®. But y,=F contradicts (1) and 33 € F’ contradicts (2). Thus we have
completed the proof.

LEMMA 6.3. Let R be an indecomposable weakly noetherian ving for which
dim (m-spec(R)) is finite. Let P be a projective module which is not finitely
genervated, u any element of P and M a submodule of P such that Ru-+M=P.
Then there exists an element m< M such that R(u-+m) is a divect summand of
P and u-+m is a free basis of R(u-+m).

Proor. Let § be the singular set of #, () =+~ and F=F. Y .- UF,
where the §, are the components of F. Select 1, < %w#(ﬁg Tp)y a=1,--,n.

Since R is indecomposable, any maximal ideal of R is irredundant for P, by
Corollary 5.2. Therefore, dim (P/tP: R/r)= oo, hence dim (M+rP/tP: R/x)= oo
for any element ¢ of X since Ru+M=P. Thus we may choose w,= M so
that

Q) utw, is free at t,a=1, -, n.

Now we have the data:

i) & a closed set in X,

i) 1z, --+,%, Which are distinct elements of ,

i) wy, -, w, with wyeM, i=1, -, n,

iv) # which is free outside %,

v) k'=dim X-+1.
By Theorem 6.2, we obtain t= M and $ a closed set in X such that

(a) t=w, (mod.L.P), a=1, - ,n,

(b) u,t are free outside F'\J D,

(c) ht(D)=Fk, (hence =¢).
We set u, =u-+¢ and take for ¥’ the singular set of #,. If #, is not free at
¢, then neither are %, ¢, the latter being contained in &, by (b) and (c). There-
fore ' C &, and from this it follows that 4#(F)=k. If F =¢ we are done,
so we assume U #¢ and we show AHF)+# k. If not, let & be a component
of § of height 2. Then & must be a component of F; i.e, R =some F,.
Therefore, some g, =®. But r,= & contradicts (1). Thus 24(%) =%-+1 and
m, =t M. Inductively we have elements m,, m,, --- of M and the singular
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sets F¥ of u;,=wut+ X m; such that A(FP)=k+i. If iz=k'—k, W(FO)=k+i
=1 .
>k’, therefore, §”=¢. Thus, if we set m:kzkmj, we have me M, and
j=1

p=wu-+m is free at all & X. Thus Rp is a direct summand of P and p is a
free basis of Rp by This completes the proof.

7. The main theorem.

We rewrite our main theorem.

THEOREM 7.1. Let R be a weakly noetherian ring for which dim (m-spec(R))
is finite and let P be a projective R-module. Then P is a divect sum of finitely
generated projective modules.

Proor. By Lemma 6.1, R is a direct sum of a finite number of indecom-
posable rings: R=R, P ---PR,. Then R,Pis R and R-projective and P

:‘5 B R,P and R; is weakly noetherian. Therefore, we may assume that R
i=1

is indecomposable without loss of generality.

Now, by virtue of Corollary 1.8 and Lemma 1.9, the following Lemma 7.2
suffices to complete the proof of our theorem?.

LEMMA 7.2. Let R be an indecomposable weakly noetherian ving for which
dim(m-spec(R)) is finite. Let P be a projective R-module and p any element of
P. Then p can be embedded in a finitely generated divect summand of P.

Proor. We may assume that P is not finitely generated. By Lemma 1.6,
there exists an integer m such that

P'=S@ROGP=K DK, K>5p

where f}, -+, fn» are independent variables and K, is a finitely generated pro-
jective module. Under these conditions, we shall prove that there exists a
finitely generated projective module K, such that

P'=(L®RAHGP=KOK, K>p.
Now we have
P =RHDP'"=KPK;, P"NnK/ =2p.

Let z be the projection from P’ to K{,zf,=u and zP” =M. Then we have
Ru+M= K/ and K] is a projective module which is not finitely generated.
Thus by Lemma 6.3, there exists an element m of M such that R(u+m) is a
direct summand of K{. Let np”=m. Then we have

P'=R(fi+p")DP" =K D Ru+tmDU

4) This method of the proof is the same as in [8]
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where U is a submodule of K{. Let #’ be the projection from P’ to U. Then
we have n’P”=U. For: let ' be any element of U, s =vr(f,+p")+q, vy = R,
g P”, then v’ = nu’ =r(u+m)+rnqg=n'r(u+m)+n'ng=rn’q. Therefore, we have
an exact sequence

’

00— Ky—— P’ —— U—— 0.

‘This sequence splits since U is projective. K,= P” N (K, D R(u+m)) since K,
={p"eP”|n'p’” =0} and n’p’’’ =0 if and only if p’"/ € K; P R(u+m). Now
K, is a direct summand of P”, hence of P/, and contained in K, R(u+m)
which is finitely generated. Thus K, is a direct summand of K, @ R(x-+m) by
hence K, is a finitely generated projective module. Now p is
contained in P” K, hence in P” N (K, P R(u+m))=K,. Thus we have proved
that p is contained in K, which is a finitely generated projective direct sum-
mand of P”. Repeating this process, we get a finitely generated direct sum-
mand K of P which contains p. Thus we have completed the proof.

REMARK. Seshadri proved that, if R is a principal ideal ring, any finitely
generated projective module over R[X] is free (Proposition 9 of [10]). Com-
bining this with our [Theorem 7.1, we can delete the finiteness assumption in
Seshadri’s theorem. For example, let R=Fk[ X, Y] where %2 is a field. Then
any projective module over R is free.

Kantd Gakuin University
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