Projective modules over weakly noetherian rings

By Yukitoshi HINOHARA

(Received May 31, 1962)

Introduction. Let R be a commutative ring with a unit element. Then the space of prime ideals of R with the Zariski topology is called the *prime spectrum* of R which is denoted by $\operatorname{spec}(R)$, and the subspace of $\operatorname{spec}(R)$ of all maximal ideals of R is called the *maximal spectrum* of R which is denoted by $\operatorname{m-spec}(R)$. The dimension of such a space is the supremum of the lengths of chains of irreducible closed subsets. (See [1] and [10].) For brevity, we shall call a ring *weakly noetherian* if $\operatorname{m-spec}(R)$ satisfies the descending chain condition on closed subsets. Our main objective in this paper is to prove

THEOREM. If R is a weakly noetherian ring and $\dim(m\text{-spec}(R))$ is finite, then any projective R-module is a direct sum of finitely generated projective R-modules.

From this we can easily deduce that, over a commutative indecomposable semilocal ring¹⁾, any projective module is free²⁾.

Now let R be a commutative ring, M an R-module. Then M is called *faithfully flat* if M satisfies any one of the following equivalent conditions (see § 6.4 [5] p. 57):

- (a) A sequence of R-modules $N' \to N \to N''$ is exact if and only if $M \underset{R}{\bigotimes} N' \to M \underset{R}{\bigotimes} N \to M \underset{R}{\bigotimes} N''$ is exact.
- (b) M is flat and, for any R-module N, the relation $M \underset{R}{\otimes} N = (0)$ implies N = (0).
- (c) M is flat and, for any homomorphism $v: N \to N'$ of R-modules, the relation $1_M \otimes v = 0$ implies v = 0 where 1_M is the identity automorphism of M.
- (d) M is flat and, for any maximal ideal \mathfrak{m} of R, $\mathfrak{m}M \neq M$. To prove the main theorem, we shall prove that, if R is an indecomposable weakly noetherian ring, any projective module $(\neq (0))$ is faithfully flat.

We shall always be dealing with rings with unit element and unitary modules. Further, unless the contrary is stated, "module" means "left module". Λ denotes a ring (not always commutative) and R denotes a commutative ring.

¹⁾ A ring is called indecomposable if it has no non-trivial idempotents. A commutative ring is called semilocal if the number of the maximal ideals is finite.

²⁾ See [7].

76 Y. Hinohara

1. Some basic lemmas and known results on projective modules.

We begin with a well-known

LEMMA 1.1 (Nakayama). Let Λ be a ring, J the Jacobson radical of Λ , M a finitely generated module and M' a submodule of M. If M'+JM=M, M'=M. Now the following lemma is trivial and well-known.

LEMMA 1.2. Let L, M, N be modules over a ring such that $L \supset M \supset N$. If N is a direct summand of L, then N is a direct summand of M.

The following lemma is a generalization of Lemma 5 of [10].

LEMMA 1.3 ([7]). Let P be a projective module over a ring Λ and p an element of P. If $p \in mP$ for any maximal right ideal m of Λ , then Λp is a direct summand of P and p is a free basis of Λp , where mP is the image of $m \bigotimes_{R} P \rightarrow P$ by the natural map.

LMMA 1.4.3 For a projective module $P(\neq (0))$ over a ring Λ , we have $JP \neq P$, where J is the Jacobson radical of Λ .

PROPOSITION 1.5 (Eilenberg [9]). Let P be a projective module over Λ . Then there exists a free module F such that $F \oplus P$ is free.

REMARK. In this proposition, if R is a polynomial ring over a field and P is finitely generated, we may take a finitely generated free module as an F (Proposition 10 of [10]).

As a corollary we have

LEMMA 1.6. Let Λ be a ring, P a projective module over Λ and p any element of P. Then there exists an integer $m(\geq 0)$ such that $(\sum_{i=1}^{m} \bigoplus \Lambda_i) \bigoplus P$, $(\Lambda_i \cong \Lambda)$, contains a finitely generated free direct summand containg p.

PROOF. By virtue of Lemma 1.5, there exist free modules U, F such that $U = F \oplus P$. Let

 $\{u_i\}$ be a free basis of U,

 $\{f_i\}$ a free basis of F,

 π the projection from U to F,

(i.e., if $u \in U$, u = f + p', $f \in F$, $p' \in P$, then $\pi(u) = f$),

$$p = \sum_{i=1}^{n} r_i u_i, r_i \in \Lambda, i = 1, \dots, n,$$

$$\pi(u_i) = \sum_{j=1}^{m_i} s_{ij} f_j, s_{ij} \in \Lambda, i = 1, 2, \dots, j = 1, \dots, m_i,$$

$$m = \max(m_1, \dots, m_n).$$

Put
$$F' = \sum_{i=1}^m \bigoplus Rf_i$$
, $P' = F' \bigoplus P$, $U' = \sum_{i=1}^n \bigoplus Ru_i$. Then $p \in U' \subset P' \subset U$ and U'

³⁾ This is proposition 2.7 of [H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95 (1960), 466-488]. simple proof is found in [7].

is a direct summand of U, hence of P' by Lemma 1.2. This completes the proof.

Theorem 1.7 (Kaplansky [8]). Let Λ be a ring, M a Λ -module which is a direct sum of (any number of) countably generated Λ -modules. Then any direct summand of M is likewise a direct sum of countably generated Λ -modules.

From this we deduce easily

COROLLARY 1.8 (Kaplansky [8]). Any projective module over a ring is a direct sum of countably generated projective modules.

LEMMA 1.9 (Kaplansky [8]). Let Λ be any ring, M a countably generated Λ -module. Assume that any direct summand N of M has the following property: any element of N can be embedded in a free (resp. finitely generated) direct summand of N. Then M is free (resp. a direct sum of finitely generated modules).

2. Support of a module.

Let R be a commutative ring, S a multiplicatively closed set not containing 0 of R. As usual we denote by R_S the ring of quotient with respect to S, and if $S = R - \mathfrak{p}$ for a prime ideal \mathfrak{p} of R, we write $R_{\mathfrak{p}}$ for $R_{R-\mathfrak{p}}$. Similarly, for an R-module M, we denote by M_S the module of quotient with respect to S and we write $M_{\mathfrak{p}}$ for $M_{R-\mathfrak{p}}$, if \mathfrak{p} is a prime ideal. We know that $M_S = M \underset{R}{\bigotimes} R_S$ and that there exists a canonical map $\varphi: M \to M_S$ and the kernel of this map is the S-component of (0) in $M: \operatorname{Ker} \varphi = \{m \in M \mid \text{there exists } s \in S \text{ such that } sm = 0\}$.

Let M, M' be R-modules, such that $M \supset M'$. Then we use the following notation:

(M':M) = the set of elements $x \in R$ such that $xM \subset M'$.

Let M be an R-module. Then the set of all maximal ideals \mathfrak{m} of R such that $M_{\mathfrak{m}} \neq (0)$ is called the support of M and denoted by $\operatorname{Supp}(M)$.

LEMMA 2.1 (§ 1.7 of [5]). Let M be an R-module. Then M = (0) if and only if $Supp(M) = \phi$.

For: if $M_m = (0)$ for every maximal ideal m of R, (0:m) is contained in no maximal ideals of R, for any $m \in M$, hence (0:m) = R, i.e., m = 0.

LEMMA 2.2 (§ 1.7 of [5]). If an R-module M is a sum of a family of submodules $\{M_{\lambda}\}$, we have $Supp(M) = \bigcup Supp(M_{\lambda})$.

LEMMA 2.3 (§ 1.7 of [5]). If M is a finitely generated R-module, Supp(M) is the set of maximal ideals containing ((0): M).

LEMMA 2.4. Let R be a commutative ring, \mathfrak{m} a maximal ideal of R, P a projective module and M a submodule of P which is contained in a finitely generated submodule M' of P. Then we have $M+\mathfrak{m}P=P$ if and only if $(P/M)_{\mathfrak{m}}=(0)$, i. e., $\mathfrak{m} \in \operatorname{Supp}(P/M)$.

Proof. Let N be any module. Then we have

$$N_{\mathfrak{m}}/\mathfrak{m}N_{\mathfrak{m}} = (N \underset{R}{\otimes} R_{\mathfrak{m}}) \underset{R\mathfrak{m}}{\otimes} (R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}) = N \underset{R}{\otimes} (R/\mathfrak{m}) = N/\mathfrak{m}N.$$

Therefore, we have

$$M + \mathfrak{m}P = P \Leftrightarrow P/\mathfrak{m}P = (M + \mathfrak{m}P)/\mathfrak{m}P$$

$$\Leftrightarrow P_{\mathfrak{m}}/\mathfrak{m}P_{\mathfrak{m}} = (M_{\mathfrak{m}} + \mathfrak{m}P_{\mathfrak{m}})/\mathfrak{m}P_{\mathfrak{m}}$$

$$\Leftrightarrow M_{\mathfrak{m}} + \mathfrak{m}P_{\mathfrak{m}} = P_{\mathfrak{m}} \Rightarrow M_{\mathfrak{m}} + \mathfrak{m}P_{\mathfrak{m}} = P_{\mathfrak{m}}.$$

We shall prove that

$$M_{\mathfrak{m}} + \mathfrak{m} P_{\mathfrak{m}} = P_{\mathfrak{m}} \Leftrightarrow (P/M)_{\mathfrak{m}} = (0)$$
.

Now $P_{\mathfrak{m}}$ is a projective module over a local ring $R_{\mathfrak{m}}$, hence $P_{\mathfrak{m}}$ is free. Let $\{u_i\}$ be a free basis for $P_{\mathfrak{m}}$ over $R_{\mathfrak{m}}$. Then there exists an integer n such that $M'_{\mathfrak{m}} \subset \sum_{i=1}^{n} \bigoplus R_{\mathfrak{m}} u_{i}$. Put $\sum_{i=1}^{n} \bigoplus R_{\mathfrak{m}} u_{i} = P'$. Then P' is a direct summand of $P_{\mathfrak{m}}$, hence there exists a submodule P'' such that $P_{\mathfrak{m}} = P' \oplus P''$. The above relation $M'_{\mathfrak{m}} + \mathfrak{m} P_{\mathfrak{m}} = P_{\mathfrak{m}}$ implies that $P' \oplus P'' = P_{\mathfrak{m}} = P' + \mathfrak{m} P_{\mathfrak{m}} = P' \oplus \mathfrak{m} P''$. Therefore, we have $\mathfrak{m} P'' = P''$. By Lemma 1.4 we have P'' = (0). Therefore $P_{\mathfrak{m}} = P'$ is finitely generated over $R_{\mathfrak{m}}$. By Lemma 1.1 we have $(P/M)_{\mathfrak{m}} = P_{\mathfrak{m}}/M_{\mathfrak{m}} = (0)$. The converse implication is obvious. Thus we have completed the proof.

3. Maximal spectrum with the Zariski topology.

To a commutative ring R, we associate a topological space m-spec(R) (maximal spectrum of R): m-spec(R) is the set of maximal ideals in R with the Zariski topology.

We shall constantly use the following notations:

$$X = m$$
-spec (R) ,

 $V(\mathfrak{a})=$ the set of elements $\mathfrak{x}\in X$ such that $\mathfrak{x}\supset\mathfrak{a}$ where \mathfrak{a} is an ideal of R, $D(\mathfrak{a})=X-V(\mathfrak{a})$,

 $c(\mathfrak{x})=$ the set of elements $c\in R$ such that there exists an element $s\in R$ satisfying $s\in \mathfrak{x}$, sc=0 where \mathfrak{x} is an element of X,

 $\mathfrak{c}(\mathfrak{X}) = \bigcap_{x \in \mathfrak{X}} \mathfrak{c}(x)$ where \mathfrak{X} is a subset of X.

LEMMA 3.1 (cf. § 1.1, p. 80 [5]). We have the following properties:

- i) $V((0)) = X, V(R) = \phi$.
- ii) The relation $\mathfrak{a} \subset \mathfrak{b}$ implies $V(\mathfrak{a}) \supset V(\mathfrak{b})$.
- iii) For any family of ideals $\{a_{\lambda}\}\$ of R, $V(\bigcup_{\lambda} a_{\lambda}) = \bigcap_{\lambda} V(a_{\lambda})$.
- iv) $c(\mathfrak{x})$ is an ideal of R and $\mathfrak{x} \supset c(\mathfrak{x})$.

- v) $\mathfrak{X} \subset V(\bigcap_{\mathfrak{x} \in \mathfrak{X}} \mathfrak{x}) \subset V(\mathfrak{c}(\mathfrak{X})).$
- vi) The sets of the form $V(\mathfrak{a})$, \mathfrak{a} ranging over the set of ideals of R, are the closed sets with respect to the Zariski topology of X.

A closed set \mathfrak{F} of X is called irreducible if it is not empty and is not a finite union of proper closed subsets. We define $ht(\mathfrak{F})$ for a closed set \mathfrak{F} of X as follows: if \mathfrak{F} is irreducible, $ht(\mathfrak{F})$ is the (possibly infinite) supremum of all integers n for which there is a strictly increasing chain

$$\mathfrak{F} = \mathfrak{F}_0 \subset \mathfrak{F}_1 \subset \cdots \subset \mathfrak{F}_n$$

of irreducible closed sets \mathfrak{F}_i of X; in general $ht(\mathfrak{F})$ is the infimum of the heights of the irreducible closed subsets of \mathfrak{F} if $\mathfrak{F} \neq \phi$; $ht(\phi) = \infty$. We also write $\dim X = \sup ht(\mathfrak{F})$, where \mathfrak{F} ranges over the non-empty closed sets in X. If every closed set \mathfrak{F} in X is a finite union of irreducible closed sets, $\mathfrak{F} = \bigcup_i \mathfrak{F}_i$, we call X a decomposition space. We see easily that there is then such a decomposition, unique up to order, for which no \mathfrak{F}_i is in the union of the remaining \mathfrak{F}_j ; the \mathfrak{F}_i in this decomposition are called the components of \mathfrak{F} . It is well known, and elementary, that a noetherian space is a decomposition space.

We know that a closed set \mathfrak{F} is irreducible if and only if $\bigcap \mathfrak{f}$ is a prime ideal and that, if an irreducible set \mathfrak{F} is contained in a union of closed sets $\mathfrak{G} \cup \mathfrak{H}$, \mathfrak{F} is contained in \mathfrak{G} or in \mathfrak{H} . (Cf. [1] and [5]).

LEMMA 3.2. Let R be a commutative ring. Then X=m-spec(R) is a noetherian space if and only if, for any closed set $\mathfrak{F}=V(\mathfrak{b})$, there is a finitely generated ideal $\mathfrak{a} \subset \mathfrak{b}$ of R such that $\mathfrak{F}=V(\mathfrak{a})$.

PROOF. If a_1 is any element of \mathfrak{b} , we have $(a_1) \subset \mathfrak{b}$, hence $V((a_1)) \supset V(\mathfrak{b})$. If $V((a_1)) \neq V(\mathfrak{b})$, there is an element $\mathfrak{x} \in X$ such that $\mathfrak{x} \in V((a_1)), \in V(\mathfrak{b})$, i. e., $\mathfrak{x} \supset (a_1), \mathfrak{x} \supset \mathfrak{b}$. Let a_2 be any element of \mathfrak{b} such that $\mathfrak{x} \supset a_2$. Then we have $(a_1) \subset (a_1, a_2) \subset \mathfrak{b}$, $V((a_1)) \supseteq V((a_1, a_2)) \supset V(\mathfrak{b})$. In this way, we have a descending sequence of closed sets $V((a_1)) \supseteq V((a_1, a_2)) \supseteq \cdots \supset V(\mathfrak{b})$. If X is noetherian, there exists an integer n such that $V((a_1, \cdots, a_n)) = V(\mathfrak{b})$.

Conversely, let $\mathfrak{F}_1 \supset \mathfrak{F}_2 \supset \cdots \supset \mathfrak{F}_n \supset \cdots$ be a descending chain of closed sets of X. Let \mathfrak{a}_i be finitely generated ideals such that $V(\mathfrak{a}_i) = \mathfrak{F}_i$. Put $\mathfrak{b}_i = \mathfrak{a}_1 + \cdots + \mathfrak{a}_i$. We have that $V(\mathfrak{b}_i) = \mathfrak{F}_i$ and that $\mathfrak{F} = \bigcap \mathfrak{F}_i = V(\bigcup \mathfrak{b}_i)$. By assumption there is a finitely generated ideal \mathfrak{b} such that $\mathfrak{F} = V(\mathfrak{b})$, $\mathfrak{b} \subset \bigcup \mathfrak{b}_i$. Thus $\mathfrak{b} \subset \bigcup_{i=1}^n \mathfrak{b}_i$ for a suitable n, hence $\mathfrak{F} = V(\mathfrak{b}) = V(\bigcup_{i=1}^n \mathfrak{b}_i) = \bigcap_{i=1}^n \mathfrak{F}_i = \mathfrak{F}_n$. This completes the proof.

The following Lemma 3.3 is Lemma 4 of [10] and Lemma 3.1 of [1]. Lemma 3.3 (Chinese Remainder Theorem). If M is an R-module, \mathfrak{x}_i distinct elements of X, and $m_i \in M$, $i = 1, \cdots$, n, then there is an element $m \in M$

for which $m \equiv m_i \pmod{\mathfrak{x}_i M}$.

Let P be an R-module and p_1, \dots, p_n elements of P. If p_1, \dots, p_n are linearly independent mod $\mathfrak{x}P$ over R/\mathfrak{x} , (i. e., p_1, \dots, p_n are a free basis mod $\mathfrak{x}P$ over R/\mathfrak{x} of a direct summand of $P/\mathfrak{x}P$), we say p_1, \dots, p_n are free (or a free basis) at \mathfrak{x} in P. The set \mathfrak{X} of all $\mathfrak{x} \in X$ at which p_1, \dots, p_n are not a free basis is called the singular set of p_1, \dots, p_n in P.

Now the following lemma is Lemma 3 in [10], and the proof is the same as in $\lceil 10 \rceil$.

LEMMA 3.4. Let p_1, \dots, p_n be elements of a projective R-module P. Then the singular set of p_1, \dots, p_n is closed in X.

PROOF. Let F be a free R-module such that $F = P \oplus Q$, $\{u_i\}$ a free basis of F. Assume that

$$p_i = \sum_{j=1}^m s_{ij}u_j, \quad i = 1, \dots, n.$$

Then p_1, \dots, p_n are free at \mathfrak{x} if and only if the rank of the $n \times m$ matrix $(s_{ij})^n = S$ is $n \mod \mathfrak{x}$. Let S_1, \dots, S_t be the set of $n \times n$ minors of S. Then the singular set is equal to $\bigcap_{i=1}^t V((\det(S_i))) = V((\det(S_1), \dots, \det(S_t)))$. Therefore, the singular set is closed.

4. Faithfully flat modules.

Let R be an indecomposable commutative ring. Then we know that any finitely generated projective module is faithfully flat (cf. Lemma 4.2 of [4.]) and that, if R is an integral domain, any projective module is faithfully flat.

Now we recall the

DEFINITION. A commutative ring R is called *weakly noetherian* if the maximal spectrum X=m-spec(R) is a noetherian space.

The following theorem is a direct consequence of Theorem 5.1 of the next section, but we give another proof here.

THEOREM 4.1. Let R be a weakly noetherian ring. Then every projective module $P(\neq (0))$ is faithfully flat if and only if the ring R is indecomposable.

PROOF. Let $F = P \oplus Q$, $\{u_i\}$ a free basis of F, $u_i = p_i + q_i$, $p_i = \sum_{j=1}^{n_i} s_{ij}u_j$, $\mathfrak{a} = (\{s_{ij}\})$ the ideal generated by the set $\{s_{ij}; i=1,2,\cdots,j=1,2,\cdots,n_i\}$. It is evident that \mathfrak{a} is the smallest ideal such that $\mathfrak{a}P = P$. Put $\mathfrak{M} = \{\mathfrak{m} \in X \mid \mathfrak{m}P \neq P\}$. Then we have that $\mathfrak{M} \cap \mathfrak{N} = \phi$, $\mathfrak{M} \cup \mathfrak{N} = X$ and that $\mathfrak{c}(\mathfrak{M}) \cap \mathfrak{c}(\mathfrak{N}) = (0)$. For: $c \in \mathfrak{c}(\mathfrak{M}) \cap \mathfrak{c}(\mathfrak{N})$ implies $(0:c) \oplus \mathfrak{x}$ for each maximal ideal \mathfrak{x} of R, hence (0:c) = R, i.e., c = 0. Now we have $\mathfrak{c}(\mathfrak{M}) \supset \mathfrak{a}$. For: let s_{ij} be an element of the set of generators $\{s_{ij}\}$ of \mathfrak{a} . Then

 $p_i = \sum_{k=1}^{n_i} s_{ik} u_k$. If $\mathfrak{m} \in \mathfrak{M}$, $\mathfrak{m} P = P$. Therefore, $P_{\mathfrak{m}} = (0)$. Hence there exists an element $s_i' \in \mathfrak{m}$ such that $s_i' p_i = 0$. Therefore, $s_i' s_{ij} = 0$. This implies that $\mathfrak{c}(\mathfrak{M}) = 0$. Now we have, if $\mathfrak{n} \in \mathfrak{N}$, $\mathfrak{n} \ni \mathfrak{a}$. For: $\mathfrak{n} \supset \mathfrak{a}$ implies $\mathfrak{n} P \supset \mathfrak{a} P = P$, a contradiction. Therefore, we have $\mathfrak{n} \ni \mathfrak{c}(\mathfrak{M})$, for all $\mathfrak{n} \in \mathfrak{N}$.

Thus \mathfrak{M} is a closed set, $\mathfrak{M} = V(\mathfrak{c}(\mathfrak{M})) = V(\mathfrak{a})$. Therefore by Lemma 3.2 there is a finite set of elements $\{a_1, \dots, a_n\}$ of a such that $\mathfrak{M} = V((a_1, \dots, a_n))$. Then there is an integer m such that $(a_1, \dots, a_n) \subset (\{s_{ij}; i=1, \dots, m, j=1, \dots, m\})$ $n_i\})=\mathfrak{b}.$ Let $P'=\sum_{i=1}^m Rp_i$ and m any element of $\mathfrak{M}.$ Then there is an element s of R such that $s \in \mathfrak{m}$ and sP'=(0) since P' is finitely generated. Let \mathfrak{n} be an element of \mathfrak{N} . Then we have $\mathfrak{n} \supset \mathfrak{b}$ since $\mathfrak{M} = V(\mathfrak{b})$. Hence $P' \subset \mathfrak{n}F$, i.e., $P' \subset \mathfrak{n}P$. Let $p_{\mathfrak{n}}$ be an element of P' such that $p_{\mathfrak{n}} \in \mathfrak{n}P$. Then the image $\varphi(p_n)$ of p_n in P_n by the canonical map $\varphi: P \to P_n$ is a free basis of $\varphi(Rp_n)$ which is a direct summand of P_n by Lemma 1.3. Now sP'=(0) implies sp_n =0, hence $\psi(s)\varphi(p_n)=0$ in P_n where ψ is the canonical map: $R\to R_n$. Since $\varphi(p_{\pi})$ is a free basis of $\varphi(Rp_{\pi})$, we have $\psi(s)=0$ in R_{π} . Therefore, there is an element s_n of R such that $s_n \in n$ and $s_n s = 0$. This implies that $s \in c(n)$ for any element $\mathfrak n$ of $\mathfrak N$. Hence we have $s \in \bigcap \mathfrak c(\mathfrak n) = \mathfrak c(\mathfrak N)$. Since $s \in \mathfrak m$, we have $\mathfrak m \supset \mathfrak c(\mathfrak N)$. This holds for any element m of \mathfrak{M} . Therefore, we have proved that $\mathfrak{c}(\mathfrak{M})$ $+\mathfrak{c}(\mathfrak{N})=R$ and that $\mathfrak{c}(\mathfrak{M})\cap\mathfrak{c}(\mathfrak{N})=(0)$. Thus we have $\mathfrak{c}(\mathfrak{M})\oplus\mathfrak{c}(\mathfrak{N})=R$. Now generally we have $\mathfrak{N} \neq \phi$. If not, we have $\mathfrak{M} = X$ and $\mathfrak{p} = P$ for any $\mathfrak{x} \in X$. This implies $P_{\mathfrak{x}}=(0)$ for any $\mathfrak{x}\in X$, i.e., P=(0) by Lemma 2.1. If $\mathfrak{M}\neq \phi$, $\mathfrak{c}(\mathfrak{M})$ and $\mathfrak{c}(\mathfrak{N})$ are proper ideals, i.e., $\neq R$ and $\neq (0)$, since $\mathfrak{c}(\mathfrak{M}) \subset \mathfrak{n}$ for any $\mathfrak{n} \in \mathfrak{N}$ and $c(\mathfrak{N}) \subset \mathfrak{m}$ for any $\mathfrak{m} \in \mathfrak{M}$. Therefore, if R is indecomposable, \mathfrak{M} must be void, i. e., P must be faithfully flat. Since the converse is obvious, we have completed the proof.

5. Weakly noetherian rings.

DEFINITION. Let R be a commutative ring, P a projective module which is not finitely generated over R and M a finitely generated submodule of P. An element \mathfrak{x} of X (=m-spec(R)) is said to be redundant with respect to M for P if $M+\mathfrak{x}P=P$. If there exists no such a submodule, \mathfrak{x} is said to be irredundant for P.

NOTATION. Let P be a projective module and M a submodule of P. Then we write

$$\mathfrak{S}(M,P) = \{\mathfrak{x} \in X \mid M+\mathfrak{x}P \neq P\} \ ,$$

$$\mathfrak{T}(M,P) = \{\mathfrak{x} \in X \mid M+\mathfrak{x}P = P\} \ ,$$

$$\mathfrak{S}(P) = \text{the set of all irredundant elements of } X,$$

 $\mathfrak{T}(P)$ = the set of all redundant elements of X.

THEOREM 5.1. Let R be a weakly noetherian ring and P a projective module which is not finitely generated. Then there exists a finitely generated submodule M of P such that $\mathfrak{S}(M,P)=\mathfrak{S}(P)$ and $\mathfrak{T}(M,P)=\mathfrak{T}(P)$ and the set $\mathfrak{S}(P)$ (resp. $\mathfrak{T}(P)$) of all irredundant (resp. redundant) elements for P of X is open and closed. Furthermore, we have $\mathfrak{S}(P)=V(\mathfrak{C}(\mathfrak{S}(P)))$, $\mathfrak{T}(P)=V(\mathfrak{C}(\mathfrak{T}(P)))$.

PROOF. For brevity, we assume that P is countably generated. Let F be a free module such that $F = P \oplus Q$; $\{u_i\}, i = 1, 2, \cdots$, a free basis for F; π the projection from F to P (i. e., if $f \in F$, f = p + q, $p \in P$, $q \in Q$, then $\pi f = p$); $\pi u_i = p_i, p_i = \sum_{i=1}^{n_i} s_{ij}u_j, s_{ij} \in R$. In this proof, we fix the free basis $\{u_j\}$.

Now let M be a finitely generated submodule of P, $\{m_1, \cdots, m_n\}$ a system of generators for M, $m_i = \sum\limits_{j=1}^m s'_{ij}u_j$, $i=1,2,\cdots$, n, $s'_{ij} \in R$ and at least one of $\{s'_{im},\cdots,s'_{nm}\}$ not zero. Then we write $F(M) = \sum\limits_{j=1}^m \bigoplus Ru_j$, $\overline{M} = F(M) \cap P$ and $\overline{\overline{M}} = \sum\limits_{j=1}^m Rp_j$. Now we have that

$$M \subset \overline{M} \subset \overline{\overline{M}}$$
, $\mathfrak{S}(M,P) \supset \mathfrak{S}(\overline{M},P) \supset \mathfrak{S}(\overline{M},P) \supset \mathfrak{S}(P)$, $\mathfrak{T}(M,P) \subset \mathfrak{T}(\overline{M},P) \subset \mathfrak{T}(\overline{M},P) \subset \mathfrak{T}(P)$.

Put $\mathfrak{a}(M) = (\{s_{ij} : i = 1, 2, \cdots, j = m+1, m+2, \cdots, n_i\})$. Let s_{ij} be any element of the system of generators $\{s_{ij} : j > m\}$ of the ideal $\mathfrak{a}(M)$. Then we have m+1 $\leq j \leq n_i, p_i = \sum\limits_{k=1}^{n_i} s_{ik} u_k$. Now let \mathfrak{m} be any element of $\mathfrak{T}(\overline{M}, P)$, then we have $\overline{M} + \mathfrak{m}P = P$, hence $(P/\overline{M})_{\mathfrak{m}} = (0)$ by Lemma 2.4 since \overline{M} is finitely generated and contains \overline{M} . Therefore there exists an element s_i of R such that $s_i \notin \mathfrak{m}$, $s_i p_i \in \overline{M}$. Thus we have $s_i p_i = \sum\limits_{k=1}^{n_i} s_i s_{ik} u_k \in \overline{M} \subset \sum\limits_{j=1}^{m} \oplus R u_j$. This implies that $s_i s_{ik} = 0$ for $k = m+1, \cdots, n_i$. Thus, if j > m and $\mathfrak{m} \in \mathfrak{T}(\overline{M}, P)$, $s_{ij} \in \mathfrak{c}(\mathfrak{m})$. Thus we have proved that $\mathfrak{a}(M) \subset \bigcap_{\mathfrak{m} \in \mathfrak{T}(\overline{M}, P)} \mathfrak{c}(\mathfrak{m}) = \mathfrak{c}(\mathfrak{T}(\overline{M}, P)) \subset \bigcap_{\mathfrak{m} \in \mathfrak{T}(\overline{M}, P)} \mathfrak{m}$. Now of course we have $F(M) + \mathfrak{a}(M)F \supset P$ and this implies that $\overline{\overline{M}} + \mathfrak{a}(M)P = P$. Therefore,

$$\mathfrak{T}(\overline{\overline{M}},P)\supset V(\mathfrak{a}(M))\supset V(\mathfrak{c}(\mathfrak{T}(\overline{M},P)))\supset \mathfrak{T}(\overline{M},P)$$
, $\mathfrak{S}(\overline{\overline{M}},P)\subset D(\mathfrak{a}(M))\subset \mathfrak{S}(\overline{M},P)\subset \mathfrak{S}(M,P)$.

if $\mathfrak{m} \in V(\mathfrak{a}(M))$, we have $\overline{M} + \mathfrak{m}P = P$, i. e., $\mathfrak{m} \in \mathfrak{T}(\overline{M}, P)$, i.e., $\mathfrak{m} \notin \mathfrak{S}(\overline{M}, P)$. Thus

we have

By Lemma 3.2, there exists a finitely generated ideal $\alpha' = (a_1, \dots, a_{t'})$ contained in $\mathfrak{a}(M)$ such that $V(\alpha') = V(\mathfrak{a}(M))$. Assume that $\alpha' \subset (\{s_{ij} : i = 1, \dots, t, j = m+1, \dots, n_i\})$, max $(n_1, \dots, n_t) = m'$. Put $N = \sum_{i=1}^{t} Rp_i$. Let m be any element of $\mathfrak{T}(\bar{M}, P)$.

Then we have $(P/\bar{M})_{\mathfrak{m}} = (0)$, hence $((\bar{M}+N)/\bar{M})_{\mathfrak{m}} = (0)$. Therefore, there exists an element $s \in R$ such that $s \notin \mathfrak{m}, sN \subset \bar{M}$, i. e., $sp_i \in \bar{M}$ for $i=1,2,\cdots,t$. If $\mathfrak{x} \notin V(\mathfrak{a}')$, there exists an s_{ij} such that $1 \leq i \leq t$, $m+1 \leq j \leq m'$, $s_{ij} \notin \mathfrak{x}$. Now we have $p_i = \sum_{k=1}^{n_i} s_{ik} u_k$, $sp_i \in \bar{M} \subset \sum_{k=1}^{m} \bigoplus Ru_k$. Therefore, we have that $ss_{ij} = 0$ for $j=1,\cdots,t, j=m+1,\cdots,m'$, hence $s \in \mathfrak{c}(\mathfrak{x})$ since $s_{ij} \notin \mathfrak{x}$. Thus we have $s \in \mathfrak{c}(D(\mathfrak{a}'))$, hence $\mathfrak{m} \supset \mathfrak{c}(D(\mathfrak{a}'))$ if $\mathfrak{m} \in \mathfrak{T}(\bar{M},P)$. Therefore, $\mathfrak{T}(\bar{M},P) \cap V(\mathfrak{c}(D(\mathfrak{a}'))) = \phi$, hence $V(\mathfrak{c}(D(\mathfrak{a}'))) \subset \mathfrak{S}(\bar{M},P)$. Thus we have proved that $\mathfrak{S}(\bar{M},P) \subset D(\mathfrak{a}(M)) \subset V(\mathfrak{c}(D(\mathfrak{a}'))) \subset \mathfrak{S}(\bar{M},P)$.

Let M_1 be a finitely generated submodule of P. Then we have

$$\mathfrak{S}(M_1,P) \supset \mathfrak{S}(\bar{M}_1,P) \supset \mathfrak{S}(\bar{\bar{M}}_1,P) \supset \mathfrak{S}(P)$$
.

If $\mathfrak{S}(\overline{M}_1,P)\neq\mathfrak{S}(P)$, $\mathfrak{S}(\overline{M}_1,P)$ contains an element $\mathfrak{x}\in X$ such that there exists a finitely generated submodule M_1' satisfying $M_1'+\mathfrak{x}P=P$. Then we have that, if we put $M_2=\overline{M}_1+M_1'$, $M_2+\mathfrak{x}P=P$ and that $\mathfrak{S}(\overline{M}_1,P)\supsetneq\mathfrak{S}(M_2,P)\supset\mathfrak{S}(P)$. In this way, we may make an ascending sequence of finitely generated submodules $M_1\subsetneq M_2\subsetneq M_3\subsetneq \cdots$ and a descending sequence of closed subsets of X

$$V(\mathfrak{c}(D(\mathfrak{a}(M_1)))) \supseteq V(\mathfrak{c}(D(\mathfrak{a}(M_2)))) \supseteq \cdots \supset \mathfrak{S}(P)$$
.

Since X is a noetherian space, there exists an integer w such that $V(\mathfrak{c}(D(\mathfrak{a}(M_w)))) = V(\mathfrak{c}(D(\mathfrak{a}(M_w))))$ if $w' \geq w$. If we put $M^{\sharp} = \overline{M}_w$, then we have $\mathfrak{S}(M^{\sharp}, P) = V(\mathfrak{c}(D(\mathfrak{a}(M^{\sharp})))) = \mathfrak{S}(P)$ and $\mathfrak{T}(M^{\sharp}, P) = V(\mathfrak{a}(M^{\sharp})) = \mathfrak{T}(P)$. Thus $\mathfrak{S}(P)$ and $\mathfrak{T}(P)$ are open and closed since $\mathfrak{S}(P) \cap \mathfrak{T}(P) = \phi$ and $\mathfrak{S}(P) \cup \mathfrak{T}(P) = X$. Now we have that

$$\mathfrak{T}(P) = V(\mathfrak{c}(\mathfrak{T}(M^{\sharp}, P))) = \mathfrak{T}(M^{\sharp}, P).$$

Thus we have $\mathfrak{T}(P) = V(\mathfrak{C}(\mathfrak{T}(P)))$. Similarly we have

$$\mathfrak{S}(P) = D(\mathfrak{a}(M^*)) = V(\mathfrak{c}(D(\mathfrak{a}(M^*)))).$$

Thus we have $\mathfrak{S}(P) = V(\mathfrak{c}(\mathfrak{S}(P)))$. Therefore, we have completed the proof. Now we can restate Theorem 4.1 in a stronger form.

COROLLARY 5.2. Let R be a weakly noetherian ring and P a projective module which is not finitely generated. Then the set $\mathfrak{T}(P)$ of all redundant elements of X for P is void if R is indecomposable.

PROOF. By Theorem 5.1, we have $\mathfrak{S}(P) = V(\mathfrak{c}(\mathfrak{S}(P)))$, $\mathfrak{T}(P) = V(\mathfrak{c}(\mathfrak{T}(P)))$. While we have $\mathfrak{c}(\mathfrak{S}(P)) + \mathfrak{c}(\mathfrak{T}(P)) = R$. For: let \mathfrak{m} be any maximal ideal of R. Then $\mathfrak{m} \in \mathfrak{S}(P)$ or $\mathfrak{T}(P)$. If $\mathfrak{m} \in \mathfrak{T}(P)$, we have $\mathfrak{m} \supset \mathfrak{c}(\mathfrak{T}(P))$. If $\mathfrak{m} \in \mathfrak{T}(P)$, we have $\mathfrak{m} \supset \mathfrak{c}(\mathfrak{S}(P))$. Further, $\mathfrak{c}(\mathfrak{S}(P)) \cap \mathfrak{c}(\mathfrak{T}(P)) = (0)$ since $\mathfrak{S}(P) \cup \mathfrak{T}(P) = X$. Thus we have

$$R = \mathfrak{c}(\mathfrak{S}(P)) \oplus \mathfrak{c}(\mathfrak{T}(P))$$
.

Since R is indecomposable we have $\mathfrak{C}(P) = (0)$ or $\mathfrak{C}(P) = (0)$. But $\mathfrak{C}(P)$

84

can not be the zero ideal. For: if $c(\mathfrak{T}(P))=(0)$, $\mathfrak{T}(P)=V(c(\mathfrak{T}(P)))=V((0))=X$. By Theorem 5.1, there exists a finitely generated submodule M of P such that $\mathfrak{T}(M,P)=\mathfrak{T}(P)=X$, i.e., $(P/M)_{\mathfrak{m}}=(0)$ for every element \mathfrak{m} of X, and this implies that (P/M)=(0) by Lemma 2.1, i.e., P=M. But this contradicts our assumption that P is not finitely generated. Thus $c(\mathfrak{S}(P))=(0)$ and $\mathfrak{S}(P)=V(c(\mathfrak{S}(P)))=X$, hecce $\mathfrak{T}(P)=\phi$. This completes the proof.

6. Preliminaries for the main theorem.

The following lemma is obvious but, for the completeness, we give the proof.

Lemma 6.1. A weakly noetherian ring is a direct sum of a finite number of indecomposable weakly noetherian rings.

PROOF. First we note that R/\mathfrak{a} is weakly noetherian for any ideal \mathfrak{a} of R, hence any direct summand of R is weakly noetherian. Let \mathfrak{S} be the set of ideals consisting of all ideals $\mathfrak{a}(\neq R)$ such that R/\mathfrak{a} is not a direct sum of a finite number of indecomposable subrings. Let \mathfrak{a} be an element of \mathfrak{S} such that $V(\mathfrak{a})$ is minimal in the set $\{V(\mathfrak{a}), \mathfrak{a} \in \mathfrak{S}\}$. By assumption R/\mathfrak{a} is decomposable, i. e., there exist proper ideals $\mathfrak{b},\mathfrak{c}$ in R such that $\mathfrak{b}=(e_1,\mathfrak{a}),\mathfrak{c}=(e_2,\mathfrak{a}),\mathfrak{b}+\mathfrak{c}=R,\mathfrak{b}\cap\mathfrak{c}=\mathfrak{a}$ where e_1,e_2 are orthogonal idempotents mod. \mathfrak{a} . Now there exist maximal ideals $\mathfrak{m}_1,\mathfrak{m}_2$, such that $\mathfrak{m}_1\supset\mathfrak{c},\mathfrak{m}_2\supset\mathfrak{b}$, then we have $\mathfrak{m}_1\ni e_1,\mathfrak{m}_2\ni e_2$. Thus we have that $V(\mathfrak{b})\subsetneq V(\mathfrak{a}),\ V(\mathfrak{c})\subsetneq V(\mathfrak{a}),\ \text{hence }\mathfrak{b},\mathfrak{c}\in\mathfrak{S}$. Thus $\overline{R}_1=\mathfrak{b}/\mathfrak{a}$ and $\overline{R}_2=\mathfrak{c}/\mathfrak{a}$ are direct sums of a finite number of indecomposable subrings. This is a contradiction since $\overline{R}=R/\mathfrak{a}=\overline{R}_1\oplus\overline{R}_2$. This completes the proof.

The following theorem is essentially due to Serre [10] and Bass [1]. Deleting the finiteness assumption in Theorem 4 of [1] and in Theorem 2 of [10], we have

THEOREM 6.2 (Serre). Let R be a weakly noetherian ring for which dim (m-spec(R)) is finite. Let P be a projective module and M a submodule of P such that dim $((M+\chi P)/\chi P:R/\chi)=\infty$ at all $\chi\in X$. We are given the data:

- i) \mathfrak{F} a closed set in X.
- ii) $\mathfrak{x}_1, \dots, \mathfrak{x}_n$ distinct elements of \mathfrak{F} .
- iii) v_1, \dots, v_n with $v_i \in M, i = 1, \dots, n$.
- iv) $p_1, \dots, p_h \in P$ which are free outside \mathfrak{F} .
- v) An integer $k \ge 0$.

Then there exist $p \in M$ and a closed set \mathfrak{F}' in X such that

- (a) $p \equiv v_i \pmod{x_i P}, i = 1, \dots, n$.
- (b) p_1, \dots, p_h, p are free outside $\mathfrak{F} \cup \mathfrak{F}'$.
- (c) $ht(\mathfrak{F}') \geq k$.

We prove this theorem for the completeness.

PROOF. We proceed by induction on k.

k=0. Take $\mathfrak{F}'=X$. Then (b) is vacuous and (a) can be accomplished by Lemma 3.3.

 $k \ge 1$. By inductive assumption, there exist $u \in M$ and a closed set $\mathfrak G$ in X such that

- (a') $u \equiv v_i \pmod{x_i P}, i = 1, \dots, n$;
- (b') p_1, \dots, p_n, u are free outside $\mathfrak{F} \cup \mathfrak{G}$.
- (c') $ht(\mathfrak{G}) \geq k-1$.

There is no loss in assuming that $\mathfrak{G} = \mathfrak{G}_1 \cup \cdots \cup \mathfrak{G}_m$ where the \mathfrak{G}_{α} are the components of the singular set of p_1, \cdots, p_h , u which are not contained in \mathfrak{F} . (Note, if $\mathfrak{G} = \phi$, m = 0.) With this done, we may choose $\mathfrak{h}_{\alpha} \in \mathfrak{G}_{\alpha} - (\bigcup_{\beta \neq \alpha} \mathfrak{G}_{\beta}) \cup \mathfrak{F}$, $\alpha = 1, \cdots, m$. Since $\dim((M + \mathfrak{p}P)/\mathfrak{p}P : R/\mathfrak{p}) = \infty$ at all $\mathfrak{p} \in X$ by assumption, we may choose $w_{\alpha} \in M$ so that

(1) $p_1, \dots, p_h, u+w_{\alpha}$ are free at $y_{\alpha}, \alpha=1, \dots, m$.

We now apply induction again, this time to

- i) $\mathfrak{F} \cup \mathfrak{G}$,
- ii) $\mathfrak{x}_1, \dots, \mathfrak{x}_n, \mathfrak{y}_1, \dots, \mathfrak{y}_m$ which are distinct elements of $\mathfrak{F} \cup \mathfrak{G}$,
- iii) $0, \dots, 0$ (n zeros of P) and w_1, \dots, w_m
- iv) p_1, \dots, p_h, u which are free outside $\mathfrak{F} \cup \mathfrak{G}$,
- v) k-1.

We obtain $t \in M$ and \mathfrak{D} a closed set in X such that

- (a") $t \equiv 0 \pmod{x_i P}, t \equiv w_{\alpha} \pmod{y_{\alpha} P}, i = 1, \dots, n, \alpha = 1, \dots, m$
- (b") p_1, \dots, p_h, u, t are free outside $\mathfrak{F} \cup \mathfrak{G} \cup \mathfrak{H}$,
- (c") $ht(\mathfrak{H}) \geq k-1$.

As before, we may assume $\mathfrak{H} = \mathfrak{H}_1 \cup \cdots \cup \mathfrak{H}_d$ with the \mathfrak{H}_{β} 's the components of the singular set of p_1, \cdots, p_h, u, t not contained in $\mathfrak{F} \cup \mathfrak{G}$. (If $\mathfrak{H} = \phi, d = 0$.) Then we may choose $\mathfrak{H}_{\beta} \in \mathfrak{H}_{\beta} - (\bigcup_{r \neq \beta} \mathfrak{H}_r) \cup \mathfrak{F} \cup \mathfrak{G}$, $\beta = 1, \cdots, d$, whereon

(2) p_1, \dots, p_h, u are free at $\mathfrak{z}_{\beta}, \beta = 1, \dots, d$.

Now since $\mathfrak{x}_1, \dots, \mathfrak{x}_n, \mathfrak{y}_1, \dots, \mathfrak{y}_m, \mathfrak{z}_1, \dots, \mathfrak{z}_d$ are distinct we may choose $f \in R$, by Lemma 3.3, so that

$$f \equiv 0 \pmod{\mathfrak{x}_i}, \quad i = 1, \dots, n,$$
 $f \equiv 1 \pmod{\mathfrak{y}_{\alpha}}, \quad \alpha = 1, \dots, m,$
 $f \equiv 0 \pmod{\mathfrak{z}_{\beta}}, \quad \beta = 1, \dots, d.$

Finally we set p=u+ft and take for \mathfrak{F}' the union of the components of the singular set of p_1, \dots, p_h, p not contained in \mathfrak{F} . Then $p \in M$ and (b) is automatic and (a) is verified by the computation:

$$p = u + ft \equiv v_i \pmod{x_i P}, i = 1, \dots, n$$
.

To establish (c), we first note the obvious fact that if p_1, \dots, p_h , p = u + ft are not free at \mathfrak{x} , then neither are p_1, \dots, p_h, u, t . Hence, the singular set of p_1, \dots, p_h, p is contained in that of p_1, \dots, p_h, u, t the latter being contained in $\mathfrak{F} \cup \mathfrak{G} \cup \mathfrak{F}$, by (b"). Therefore $\mathfrak{F}' \subset \mathfrak{F} \cup \mathfrak{G} \cup \mathfrak{F}$; but, by our choice of \mathfrak{F}' , it follows that $\mathfrak{F}' \subset \mathfrak{G} \cup \mathfrak{F}$, and from this it follows that $ht(\mathfrak{F}') \geq k-1$. If $\mathfrak{F}' = \phi$ we are done, so we assume $\mathfrak{F}' \neq \phi$ and we must show $ht(\mathfrak{F}') \neq k-1$. If not, let \mathfrak{K} be a component of \mathfrak{F}' of height k-1. Then clearly \mathfrak{K} must be a component of either \mathfrak{G} or \mathfrak{F} , i. e., $\mathfrak{K} = \text{some } \mathfrak{G}_{\alpha}$ or some \mathfrak{F}_{β} . Therefore, some $\mathfrak{F}_{\alpha} \in \mathfrak{K}$ or some $\mathfrak{F}_{\beta} \in \mathfrak{K}$. But $\mathfrak{F}_{\alpha} \in \mathfrak{F}'$ contradicts (1) and $\mathfrak{F}_{\beta} \in \mathfrak{F}'$ contradicts (2). Thus we have completed the proof.

LEMMA 6.3. Let R be an indecomposable weakly noetherian ring for which $\dim(m\text{-spec}(R))$ is finite. Let P be a projective module which is not finitely generated, u any element of P and M a submodule of P such that Ru+M=P. Then there exists an element $m \in M$ such that R(u+m) is a direct summand of P and u+m is a free basis of R(u+m).

PROOF. Let \mathfrak{F} be the singular set of $u, ht(\mathfrak{F}) = k$ and $\mathfrak{F} = \mathfrak{F}_1 \cup \cdots \cup \mathfrak{F}_n$ where the \mathfrak{F}_{α} are the components of \mathfrak{F} . Select $\mathfrak{F}_{\alpha} \in \mathfrak{F}_{\alpha} - (\bigcup_{\beta \neq x} \mathfrak{F}_{\beta}), \ \alpha = 1, \cdots, n$. Since R is indecomposable, any maximal ideal of R is irredundant for P, by Corollary 5.2. Therefore, $\dim(P/\mathfrak{F}P:R/\mathfrak{F}) = \infty$, hence $\dim(M+\mathfrak{F}P/\mathfrak{F}P:R/\mathfrak{F}) = \infty$ for any element \mathfrak{F} of X since Ru+M=P. Thus we may choose $w_{\alpha} \in M$ so that

(1) $u+w_{\alpha}$ is free at \mathfrak{x}_{α} , $\alpha=1,\dots,n$.

Now we have the data:

- i) \mathfrak{F} a closed set in X,
- ii) $\mathfrak{x}_1, \dots, \mathfrak{x}_n$ which are distinct elements of \mathfrak{F} ,
- iii) w_1, \dots, w_n with $w_i \in M$, $i = 1, \dots, n$,
- iv) u which is free outside \mathfrak{F} ,
- v) $k' = \dim X + 1$.

By Theorem 6.2, we obtain $t \in M$ and \mathfrak{F} a closed set in X such that

- (a) $t \equiv w_{\alpha} \pmod{\mathfrak{x}_{\alpha}P}$, $\alpha = 1, \dots, n$,
- (b) u, t are free outside $\mathfrak{F} \cup \mathfrak{H}$,
- (c) $ht(\mathfrak{H}) \geq k'$, (hence $\mathfrak{H} = \phi$).

We set $u_1 = u + t$ and take for \mathfrak{F}' the singular set of u_1 . If u_1 is not free at \mathfrak{F} , then neither are u, t, the latter being contained in \mathfrak{F} , by (b) and (c). Therefore $\mathfrak{F}' \subset \mathfrak{F}$, and from this it follows that $ht(\mathfrak{F}') \geq k$. If $\mathfrak{F}' = \phi$ we are done, so we assume $\mathfrak{F}' \neq \phi$ and we show $ht(\mathfrak{F}') \neq k$. If not, let \mathfrak{R} be a component of \mathfrak{F}' of height k. Then \mathfrak{R} must be a component of \mathfrak{F} ; i.e., $\mathfrak{R} = \text{some } \mathfrak{F}_{\alpha}$. Therefore, some $\mathfrak{F}_{\alpha} \in \mathfrak{R}$. But $\mathfrak{F}_{\alpha} \in \mathfrak{R}$ contradicts (1). Thus $ht(\mathfrak{F}') \geq k+1$ and $m_1 = t \in M$. Inductively we have elements m_1, m_2, \cdots of M and the singular

sets $\mathfrak{F}^{(i)}$ of $u_i = u + \sum_{j=1}^i m_j$ such that $ht(\mathfrak{F}^{(i)}) \geq k+i$. If $i \geq k'-k$, $ht(\mathfrak{F}^{(i)}) \geq k+i$ $\geq k'$, therefore, $\mathfrak{F}^{(i)} = \phi$. Thus, if we set $m = \sum_{j=1}^{k'-k} m_j$, we have $m \in M$, and p = u + m is free at all $\mathfrak{x} \in X$. Thus Rp is a direct summand of P and p is a free basis of Rp by Lemma 1.3. This completes the proof.

7. The main theorem.

We rewrite our main theorem.

THEOREM 7.1. Let R be a weakly noetherian ring for which dim (m-spec(R)) is finite and let P be a projective R-module. Then P is a direct sum of finitely generated projective modules.

PROOF. By Lemma 6.1, R is a direct sum of a finite number of indecomposable rings: $R = R_1 \oplus \cdots \oplus R_n$. Then R_iP is R_i - and R-projective and P = $\sum_{i=1}^n \bigoplus R_iP$ and R_i is weakly noetherian. Therefore, we may assume that R is indecomposable without loss of generality.

Now, by virtue of Corollary 1.8 and Lemma 1.9, the following Lemma 7.2 suffices to complete the proof of our theorem⁴.

LEMMA 7.2. Let R be an indecomposable weakly noetherian ring for which $\dim(m\text{-spec}(R))$ is finite. Let P be a projective R-module and p any element of P. Then p can be embedded in a finitely generated direct summand of P.

PROOF. We may assume that P is not finitely generated. By Lemma 1.6, there exists an integer m such that

$$P' = (\sum_{i=1}^{m} \bigoplus Rf_i) \bigoplus P = K_1 \bigoplus K'_1, K_1 \supseteq p$$

where f_1, \dots, f_m are independent variables and K_1 is a finitely generated projective module. Under these conditions, we shall prove that there exists a finitely generated projective module K_2 such that

$$P'' = (\sum_{i=2}^{m} \bigoplus Rf_i) \bigoplus P = K_2 \bigoplus K'_2, \quad K_2 \ni p.$$

Now we have

$$P' = Rf_1 \oplus P'' = K_1 \oplus K'_1, \quad P'' \cap K_1 \ni p.$$

Let π be the projection from P' to $K'_1, \pi f_1 = u$ and $\pi P'' = M$. Then we have $Ru + M = K'_1$ and K'_1 is a projective module which is not finitely generated. Thus by Lemma 6.3, there exists an element m of M such that R(u+m) is a direct summand of K'_1 . Let $\pi p'' = m$. Then we have

$$P' = R(f_1 + p'') \oplus P'' = K_1 \oplus R(u+m) \oplus U$$

⁴⁾ This method of the proof is the same as in [8].

where U is a submodule of K_1' . Let π' be the projection from P' to U. Then we have $\pi'P''=U$. For: let u' be any element of $U, u'=r(f_1+p'')+q$, $r\in R$, $q\in P''$, then $u'=\pi u'=r(u+m)+\pi q=\pi'r(u+m)+\pi'\pi q=\pi'q$. Therefore, we have an exact sequence

$$0 \longrightarrow K_2 \longrightarrow P'' \xrightarrow{\pi'} U \longrightarrow 0$$
.

This sequence splits since U is projective. $K_2 = P'' \cap (K_1 \oplus R(u+m))$ since $K_2 = \{p''' \in P'' \mid \pi'p''' = 0\}$ and $\pi'p''' = 0$ if and only if $p''' \in K_1 \oplus R(u+m)$. Now K_2 is a direct summand of P'', hence of P', and contained in $K_1 \oplus R(u+m)$ which is finitely generated. Thus K_2 is a direct summand of $K_1 \oplus R(u+m)$ by Lemma 1.2, hence K_2 is a finitely generated projective module. Now p is contained in $P'' \cap K_1$ hence in $P'' \cap (K_1 \oplus R(u+m)) = K_2$. Thus we have proved that p is contained in K_2 which is a finitely generated projective direct summand of P''. Repeating this process, we get a finitely generated direct summand \bar{K} of P which contains p. Thus we have completed the proof.

REMARK. Seshadri proved that, if R is a principal ideal ring, any finitely generated projective module over R[X] is free (Proposition 9 of [10]). Combining this with our Theorem 7.1, we can delete the finiteness assumption in Seshadri's theorem. For example, let R = k[X, Y] where k is a field. Then any projective module over R is free.

Kantō Gakuin University

References

- [1] H. Bass, Projective modules over algebras, Ann. of Math., 73 (1961), 532-542.
- [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, 1956.
- [3] M. Chadeyras, Sur les anneaux semi-principaux ou de Bezout, C. R. Acad. Sci., 251 (1960), 2116-2117.
- [4] O. Goldman, Determinants in projective modules, Nagoya Math. J., 15 (1961), 27-36.
- [5] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Pub. Math. I. H. E. S., N° 4 (1960).
- [6] Y. Hinohara, Note on finitely generated projective modules, Proc. Japan Acad., 37 (1961), 478-481.
- [7] Y. Hinohara, Projective modules over semilocal rings, Tôhoku Math. J., 14 (1962), 205-211.
- [8] I. Kaplansky, Projective modules, Ann. of Math., 68 (1958), 372-377.
- [9] I. Kaplansky, Homological dimension of rings and modules, Univ. of Chicago, 1959, (mimeographed notes).
- [10] J. P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, no. 23, (1958).