Classification of SO(n)-bundles over the quaternion projective plane

By Seiya SASAO and Itiro TAMURA

(Received Aug. 12, 1962)

Let Ω be the quaternion projective plane and let SO(n) be the rotation group of (n-1)-sphere S^{n-1} . It is well known that the equivalence classes of SO(n)-bundles over Ω are 1-1 correspondence with the homotopy classes of maps of Ω into the classifying space B_n of SO(n), therefore the classification of SO(n)-bundles over Ω reduces to the computation of the homotopy classes of maps $f: \Omega \to B_n$. Since the cases n=1,2 are trivial we are interested in cases $n \ge 3$. We denote by $\Omega(n)$ the set of the equivalence classes of SO(n)-bundles over Ω .

We shall prove

THEOREM. $\Omega(3)$ is in 1-1 correspondence with the pairs $(m, \mu(m)Z_2)$ such that $\frac{m(m-1)}{2} \equiv 0 \pmod{12}$, where $\mu(m)=0$ if m is even, $\mu(m)=1$ if m is odd.

 $\Omega(4)$ is in 1-1 correspondence with the triples $(m,l,\bar{\mu}_1Z_2+\bar{\mu}_2Z_2)$ such that $\frac{m(m-1)}{2}\equiv 0$, $\frac{l(l-1-2m)}{2}\equiv 0$ (mod 12), where $\bar{\mu}_1$, $\bar{\mu}_2$ are functions of m,l such that

$$ar{\mu}_1 = ar{\mu}_2 = 0$$
 if m, l are both even, $ar{\mu}_1 = 1$, $ar{\mu}_2 = 1$ if m is odd, l is even, $ar{\mu}_1 = 1$, $ar{\mu}_2 = 0$ if m is even, l is odd, $ar{\mu}_1 = 1$, $ar{\mu}_2 = 0$ if m, l are both odd.

If $n \ge 5$, $n \ne 8$ $\Omega(n)$ is in 1-1 correspondence with the pair (r, s) of integers. $\Omega(8)$ is in 1-1 correspondence with the triple (r, s, t) of integers.

The proof is given in the Section 1. In the Section 2 we shall consider characteristic classes of SO(n)-bundles over Ω .

1. \mathcal{Q} has the cell decomposition, $S^4 \overset{\nu}{\cup} e^8$, where ν denotes the Hopf map: $S^7 \to S^4$. Thus the above computation is equivalent to the computation of the homotopy classes of extensions of extendable maps: $S^4 \to B_n$, over \mathcal{Q} . As is well-known, we have $\pi_4(B_3) \cong Z$, $\pi_4(B_4) \cong Z + Z$, $\pi_4(B_n) \cong Z$. We denote by $\bar{\alpha}_n$, (n=3,4), $\bar{\beta}_n$, $(n \ge 4)$ generators of $\pi_4(B_n)$. Let $A_n : \pi_k(B_n) \to \pi_{k-1}(SO(n))$ be the boundary homomorphism of the homotopy exact sequence of the universal bundle of SO(n). Then we can take $\bar{\alpha}_n$ and $\bar{\beta}_n$ such that $A_4(\bar{\alpha}_4) = \alpha_3$, $A_4(\bar{\beta}_4) = \beta_3$,

 $\Delta_{s}(\bar{\alpha}_{3}) = \{\rho\}, \Delta_{n}(\bar{\beta}_{n}) = i_{n*}(\beta_{3}),$ where i_{n*} denotes the induced homomorphism by the injection $i_{n}: SO(4) \rightarrow SO(n)$ and $\alpha_{3}, \beta_{3}, \{\rho\}$ have the same meanings as in § 22 of [2]. The following equalities hold

$$(m\bar{\alpha}_k+n\bar{\beta}_k)\circ
u=(m\bar{\alpha}_k)\circ
u+(n\bar{\beta}_k)\circ
u+\lfloor m\bar{\alpha}_k, n\bar{\beta}_k \rfloor,$$
 $(m\bar{\alpha}_k)\circ
u=m(\bar{\alpha}_k\circ
u)+rac{m(m-1)}{2}\lceil \bar{\alpha}_k, \bar{\alpha}_k \rceil,$
 $(n\bar{\beta}_k)\circ
u=n(\bar{\beta}_k\circ
u)+rac{n(n-1)}{2}\lceil \bar{\beta}_k, \bar{\beta}_k \rceil,$

where [,] denotes the Whitehead product.

The following Lemma 1 is an immediate consequence of these equalities. LEMMA 1. $(m\bar{\alpha}_k + n\bar{\beta}_k) \circ \nu$

$$= m(\bar{\alpha}_k \circ \nu) + n(\bar{\beta}_k \circ \nu) + \frac{m(m-1)}{2} [\bar{\alpha}_k, \bar{\alpha}_k]$$
$$+ \frac{n(n-1)}{2} [\bar{\beta}_k, \bar{\beta}_k] + mn[\bar{\alpha}_k, \bar{\beta}_k],$$

where m=0 if $k \ge 5$ and n=0 if k=3.

Now $S^3 \to S^7 \xrightarrow{\nu} S^4$ is considered as a principal bundle with the structure group S^3 . Let s_3 be the classifying space of S^3 , $\beta_3': s_3 \to B_4$ the mapping induced by β_3 , and $\varphi: S^4 \to s_3$ the characteristic map of the above bundle $S^3 \to S^7 \xrightarrow{\nu} S^4$. Then we have $\bar{\beta}_4 = \beta_3' \circ \varphi$ and so $\bar{\beta}_4 \circ \nu = \beta_3' \circ \varphi \circ \nu$. But $\varphi \circ \nu = 0$ (cf. [2]). So we have

LEMMA 2. $\bar{\beta}_n \circ \nu = 0 \quad n \ge 4$.

Denote by $P_3(C)$, $P_1(Q)$ the 3-dimension complex projective space and the 1-dimension quaternion projective space respectively. Define the map $\phi: P_3(C) \to P_1(Q) = S_4$ by $\phi[z_1, z_2, z_3, z_4] = [z_1 + z_2 j, z_3 + z_4 j]$, where j denotes the usual element of Q, then we have an S^2 -bundle $(P_3(C), S^4, \phi)$.

Suppose that $\mathfrak{p}: S^7 \to P_3(C)$ be the natural map $\mathfrak{p}(z_1, z_2, z_3, z_4) = [z_1, z_2, z_3, z_4]$, then we have $\phi_*(\{\mathfrak{p}\}) = \nu$. Let Δ' be the boundary homomorphism of the homotopy exact sequence of the bundle $(P_3(C), S^4, \phi)$. Since $\Delta'(\iota_4)$ is the attaching map of 4-dimensional cell e^4 to S^2 in the cell decomposition of $P_3(C)$. ([5]), we have $\Delta'(\iota_4) = \eta$, where η denotes the Hopf map $S^3 \to S^2$. Thus the associated principal bundle with the bundle $(P_3(C), S^4, \phi)$ is the SO(3)-bundle with the characteristic map $\{\rho\}$. Let P be the projection $SO(3) \to S^2$ and consider the following commutative diagram, where Δ'' denotes the boundary homomorphism of the homotopy exact sequence of the associated principal bundle.

$$\longrightarrow \pi_{7}(P_{8}(C)) \xrightarrow{\phi_{*}} \pi_{7}(S^{4}) \xrightarrow{\Delta'} \pi_{6}(S^{2}) \longrightarrow$$

$$\uparrow id \qquad \uparrow P_{*}$$

$$\longrightarrow \pi_{7}(S^{4}) \xrightarrow{\Delta''} \pi_{6}(SO(3)) \longrightarrow$$

Then we have $P_* \Delta''(\nu) = \Delta'(\nu) = \Delta' \phi_* \{ \mathfrak{p} \} = 0$. Since P_* is an isomorphism and $\Delta''(\nu) = \Delta_3(\bar{\alpha}_3 \circ \nu)$ we have $\bar{\alpha}_3 \circ \nu = 0$, moreover $\bar{\alpha}_4 \circ \nu = i_*(\bar{\alpha}_3) \circ \nu = i_*(\bar{\alpha}_3 \circ \nu) = 0$, where i denotes the injection $SO(3) \rightarrow SO(4)$.

LEMMA 3. $\bar{\alpha}_n \circ \nu = 0 \ n \ge 3$.

Let α_0 be the inner automorphism $SO(4) \to SO(4)$ defined by a matrix who se determinant is -1 and $\bar{\alpha}_0$ be the induced homeomorphism, $B_4 \to B_4$, by α_0 . Since $\alpha_{0*}(\alpha_3) = \alpha_3$, $\alpha_{0*}(\beta_3) = \alpha_3 - \beta_3$ (see § 22 of [2]). We have $\alpha_{0*}(\bar{\alpha}_4) = \bar{\alpha}_4$, $\bar{\alpha}_{0*}(\bar{\beta}_4) = \bar{\alpha}_4 - \bar{\beta}_4$.

Thus Lemma 2 yields

$$(\bar{\alpha}_4 - \bar{\beta}_4) \circ \nu = \{\bar{\alpha}_{0*}(\bar{\beta}_4)\} \circ \nu = \bar{\alpha}_{0*}(\bar{\beta}_4 \circ \nu) = \bar{\alpha}_{0*}(0) = 0.$$

On the other hand, Lemma 1, Lemma 2, Lemma 3 imply

$$(\bar{\alpha}_4 - \bar{\beta}_4) \circ \nu = [\bar{\beta}_4, \bar{\beta}_4] - [\bar{\alpha}_4, \bar{\beta}_4],$$

Therefore we have

LEMMA 4. $[\bar{\alpha}_4, \bar{\beta}_4] = [\bar{\beta}_4, \bar{\beta}_4].$

Let ω denote the generator of $\pi_6(S^3) \cong Z_{12}$ and <, > denote the Samelson product. Since $\{\rho\}_*$, β_{4*} , $i_*\{\rho\}_*$ are all isomorphisms we have by [4]:

- (1.1) $\Delta_3[\bar{\alpha}_3, \bar{\alpha}_3] = -\langle \{\rho\}, \{\rho\} \rangle = \{\rho\}_*\omega$ is an element of order 12,
- (1.2) $\Delta_{4}[\bar{\alpha}_{4}, \bar{\alpha}_{4}] = i_{*}\{\rho\}_{*}\omega$ is an element of order 12,
- (1.3) $\Delta_4[\bar{\beta}_4, \bar{\beta}_4] = -\langle \beta_3, \beta_3 \rangle = \beta_{3*}\omega$ is an element of order 12,
- (1.4) $\Delta_k \lceil \bar{\beta}_k, \bar{\beta}_k \rceil = 0 \text{ if } k \ge 5.$

LEMMA 5. $m\bar{\alpha}_3$, $m\bar{\alpha}_4 + l\bar{\beta}_4$ are extendable over Ω if and only if $\frac{m(m-1)}{2} \equiv 0$, $\frac{l(l-1+2m)}{2} \equiv 0 \pmod{12}$ respectively.

For
$$(m\bar{\alpha}_3) \circ \nu = m(\bar{\alpha}_3 \circ \nu) + \frac{m(m-1)}{2} [\bar{\alpha}_3, \bar{\alpha}_3]$$
 by Lemma 1
$$= \frac{m(m-1)}{2} [\bar{\alpha}_3, \bar{\alpha}_3]$$
 by Lemma 3.

Since $[\bar{\alpha}_3, \bar{\alpha}_3]$ has the order 12 by (1.1) we have the first case.

$$=\bar{\alpha}_4 \circ \left\{\frac{m(m-1)}{2}E\omega\right\} + \bar{\beta}_4 \circ \left\{\frac{l(l-1+2m)}{2}E\omega\right\}$$
 by (1.2), (1.3).

Since $\pi_7(B_4) \approx \bar{\alpha}_4 \circ E\pi_6(S^3) + \bar{\beta}_4 \circ E\pi_6(S^3)$ and $E\omega$ has the order 12 we obtain the second case.

By the Theorem 4 in the paper of Barcus and Barratt [1], the homotopy classes of extension over $\mathcal Q$ of an extendable map $f: S^4 \to B_n$ are in 1-1 correspondence with $\pi_8(B_n)/A_n$, where A_n is a subgroup $\{\xi \circ E\nu \pm \lceil f_*(\iota_4), \xi \rceil; \xi \in \pi_8(B_n)\}$. Since $\pi_5(B_n)$ is a torsion group and $\pi_8(B_n)$ ($n \ge 5$) has no torsion we obtain

LEMMA 6. If $n \ge 5$ we have $A_n = 0$.

In the case n=3 we have $\pi_8(B_3)\cong Z_2[\bar{\alpha}_3\circ E^2\eta\circ E\nu]$ and $\pi_5(B_3)\cong Z_2[\bar{\alpha}_3\circ E^2\eta]$. Suppose that $f=m\bar{\alpha}_3$, then we have (cf. [6])

$$egin{aligned} A_3 &= \{ar{lpha}_3 \circ (E^2 \eta \circ E
u) + m [ar{lpha}_3, ar{lpha}_3 \circ E^2 \eta] \} \ &= \{ar{lpha}_3 \circ E^2 \eta \circ E
u + m [ar{lpha}_3, ar{lpha}_3] \circ E^5 \eta \} \ &= \{ar{lpha}_3 \circ (E^2 \eta \circ E
u) + m ar{lpha}_3 \circ E \omega \circ E^5 \eta \} = \{(m+1) ar{lpha}_3 \circ E^2 \eta \circ E
u \} \;. \end{aligned}$$

Thus we have

LEMMA 7. If m is even,
$$A_3 = \pi_8(B_3)$$
 and if m is odd, $A_3 = 0$.

In the case n=4 we have $\pi_5(B_4) \approx Z_2[\bar{\alpha}_4 \circ E^2\eta] + Z_2[\bar{\beta}_4 \circ E^2\eta]$. Suppose that $f = m\bar{\alpha}_4 + l\bar{\beta}_4$. Then we have

$$A_4 = a\bar{\alpha}_4 \circ (E^2\eta \circ E\nu) + b\bar{\beta}_4(E^2\eta \circ E\nu) + [m\bar{\alpha}_4 + l\bar{\beta}_4, a\bar{\alpha}_4 \circ E^2\eta + b\bar{\beta}_4 \circ E^2\eta]$$
,

where a, b are both 0 or 1.

On the other hand,

$$\begin{split} & [m\bar{\alpha}_4 + l\bar{\beta}_4, a\bar{\alpha}_4 \circ E^2\eta + b\bar{\beta}_4 \circ E^2\eta] = am[\bar{\alpha}_4, \bar{\alpha}_4 \circ E^2\eta] \\ & + bm[\bar{\alpha}_4, \bar{\beta}_4 \circ E^2\eta] + al[\bar{\beta}_4, \bar{\alpha}_4 \circ E^2\eta] + lb[\bar{\beta}_4, \bar{\beta}_4 \circ E^2\eta] \\ & = am[\bar{\alpha}_4, \bar{\alpha}_4] \circ E^5\eta + bm[\bar{\alpha}_4, \bar{\beta}_4] \circ E^5\eta + al[\bar{\beta}_4, \bar{\alpha}_4] \circ E^5\eta \\ & + lb[\bar{\beta}_4, \bar{\beta}_4] \circ E^5\eta = am\bar{\alpha}_{4*}(E\omega \circ E^5\eta) + (bm + al + lb)\bar{\beta}_{4*}(E\omega \circ E^5\eta) \end{split}$$

therefore $A_n = a(m+1)\alpha_{4*}(E^2\eta \circ E\nu) + (b+bm+al+lb)\bar{\beta}_{4*}(E^2\eta \circ E\nu)$, where a,b are both 0 or 1. Since $\pi_8(B_4) \cong \bar{\alpha}_{4*}(E\pi_7(S^3)) + \bar{\beta}_4(E\pi_7(S^3))$, we obtain

LEMMA 8.

If m is even and l is even,
$$A_4 = \pi_8(B_4)$$

if m is even and l is odd, $A_4 = (\bar{\alpha}_4 + \bar{\beta}_4)(E\pi_7(S^3))$
if m is odd and l is even, $A_4 = 0$
if m is odd and l is odd, $A_4 = \bar{\beta}_{4*}(E\pi_7(S^3))$.

From Lemma 2 all maps: $S^4 \to B_n$ are extendable over \mathcal{Q} if $n \ge 5$, $n \ne 8$. Since $\pi_8(B_8) \cong \mathbb{Z} + \mathbb{Z}$, $\pi_8(B_n) \cong \mathbb{Z}$ $(n \ge 5, n \ne 8)$, we obtain by Lemma 6 the proof of

Theorem in the case $n \ge 5$. From Lemma 5 $m\bar{\alpha}_3$ is extendable over $\mathcal Q$ if and only if $\frac{m(m-1)}{2} \equiv 0 \pmod{12}$. Since $\pi_8(B_3) \cong Z_2$ we obtain the case n=3 of the Theorem by Lemma 7. From Lemma 5 $m\bar{\alpha}_4 + l\bar{\beta}_4$ is extendable over $\mathcal Q$ if and only if $\frac{m(m-1)}{2} \equiv 0$, $\frac{l(l-1+2m)}{2} \equiv 0 \pmod{12}$. Then from Lemma 8 we have the case n=4 of the Theorem.

2. Let $\xi_r^s(k)$ $(k \ge 5, k \ne 8)$, $\xi_r^{s,t}(8)$, $\xi_m^*(3)$, $\xi_m^{**}(4)$ be SO(k), SO(8), SO(3), SO(4)-bundles, corresponding to the pair (r, s), (r, s, t), (m, *), (m, l, **) in Theorem respectively. Let $p_i(\xi(k))$ denote the *i*-th Pontrjagin classes of the bundle $\xi(k)$. Then we have

(2.1)
$$p_{1}(\xi_{r}^{s}(k)) = 2re^{4}, \ k \geq 5. \qquad p_{1}(\xi_{r}^{s,t}(8)) = 2re^{4}$$

$$p_{1}(\xi_{m}^{*}(3)) = 4me^{4}, \qquad p_{1}(\xi_{m,t}^{**}(4)) = 2(2m+t)e^{4}$$
(2.2)
$$p_{2}\{\xi_{r}^{s}(k)\} - p_{2}\{\xi_{r}^{0}(k)\} = 48 se^{8} \quad \text{if} \quad k = 5$$

$$= 24 se^{8} \quad \text{if} \quad k = 6$$

$$= 12 se^{8} \quad \text{if} \quad k = 7$$

$$= 6 se^{8} \quad \text{if} \quad k \geq 9$$
(2.3)
$$p_{2}(\xi_{r}^{s,t}(8)) - p_{2}(\xi_{r}^{0}(8)) = 6(2s-t)e^{8}$$

(2.4) $p_2(\xi_{m,t}^{**}(4))$ is independent on **, that is, $p_2(\xi_{m,t}^{**}(4))$ is determined only by the first Pontrjagin class and Euler class, where e^4 , e^8 denote generators of $H^4(\Omega,Z)$, $H^8(\Omega,Z)$ respectively. For (2.1) follows from Theorem 4.1 of [3]. Let $\Omega_1 \cup \Omega_2$ be the space obtained by identifying S^4 of Ω_1 with S^4 of Ω_2 , where Ω_i is a copy of Ω . Define a map $F: S^8 \to \Omega_1 \cup \Omega_2$ as follows

 $F \mid E_+^8 =$ the characteristic map of the cell e^8 of Ω_1

 $F \mid E_{-}^{8} =$ the characteristic map of the cell e^{8} of Ω_{2}

where E_+^8 , E_-^8 are the upper, and the lower-hemisphere of S^8 respectively. Let f,g be two extensions of an extendable map: $S^4 \to B_k$ over \mathcal{Q} . We define a map $f \cup g: \mathcal{Q}_1 \cup \mathcal{Q}_2 \to B_k$ such that $f \cup g \mid \mathcal{Q}_1 = f$ and $f \cup g \mid \mathcal{Q}_2 = g$. Then we can identify $\{f \cup g\}_*(\{F\}) \in \pi_8(B_k)$ with the integer s if $k \ge 5$, $k \ne 8$ and the pair of integers (s,t) if k=8. Let $\xi(f \cup g)$ be the bundle over S^8 whose characteristic map is $\{f \cup g\}_*(\{F\})$ and we put $ae^8 = p_2(\xi_m(k)) = p_2(\xi_r^{s,t}(8))$, and $be^8 = p_2(\xi_m^{s,t}(k)) = p_2(\xi_r^{s,t}(8))$, $(k \ge 5, k \ne 8)$.

Then $p_2\{\xi(f \cup g)\} = F^*(ae^8) - F^*(be^8) = a(s^8) - b(s^8)$, where s^8 is the generator of $H^8(S^8, \mathbb{Z})$. On the other hand we can compute $p_2(\xi(f \cup g))$ from Theorem 4.4 of [3]. Thus we obtain (2.2), (2.3), (2.4) from $p_2(\xi(f \cup g))$.

By the above result we have

(2.5) If $k \ge 5$, $k \ne 8$, two SO(k)-bundles over Ω are equivalent if and only if their first and second Pontrjagin classes coincide with each other.

If k=8, two SO(k)-bundles over Ω are equivalent if and only if their first

and second Pontrjagin classes and Euler class coincide with each other.

In the case of SO(3), SO(4)-bundles, a bundle over Ω is trivial if and only if the first and second Pontrjagin classes, and Euler class are all trivial.

Next we consider realizable cohomology classes of Ω as Pontrjagin classes. Let B be the S^3 bundle, $S^{11} \to \Omega$ as usual. We may take B as $B_{0,1}^{**}(4)$. Since $p_1(B) = 2(e^4)$, $p_2(B) = 1(e^8)$, we have $p_2(B_{0,2}^{**}(4)) = 1$, and $p_2(B_1^0(k)) = 1(e^8)$, $p_2(B_1^0, 0(8))$, $(k \ge 5, k \ne 8)$. If $\frac{m(m-1)}{2} = 0 \pmod{12}$, there exists a map $\lambda: \Omega \to \Omega$ such that $\lambda \mid S^4$ is of degree m. Hence we have

$$p_2(B_{0,m}^{**}(4)) = m^2$$
, $p_2(B_m^0(k)) = m^2$ $(k \ge 5, k \ne 8)$, $p_2(B_m^{0,0}(8)) = m^2$.

Combining these results with (2.2), (2.3), (2.4) we can know in some case which cohomology classes of Ω are realizable as second Pontrjagin classes.

Musashi Institute of Technology University of Tokyo

References

- [1] W.D. Barcus and M.G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
- [2] N. E. Steenrod, Topology of fibre bundles, 1951.
- [3] I. Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Jap., 9 (1957), 250-262.
- [4] I. M. James, N. Stein and M.G. Barratt, Whitehead Products and projective spaces, J. Math. and Mech., 9 (1960), 813-820.
- [5] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres II, Proc. London Math. Soc., 5 (1955), 148-166.
- [6] H. Toda, Generalized Whitehead products and homotopy groups of spheres, J. Inst. Polytech. Osaka City Univ., 3 (1952), 43-82.