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Introduction

L. Sario [12] introduced the notion of weakness of an ideal boundary
component of a Riemann surface1) and properties of weak boundary components
have been studied by his students. In this paper we use Jurchescu [3] $s$

modified definition as follows.
Let $\gamma$ be an ideal boundary component of a Riemann surface $R$ in Stoilow’s

sense and $\{S_{n}\}$ be its defining system. Here we suppose that $\{S_{n}\}$ is defined
by a canonical exhaustion $\{R_{n}\}$ of $R$ , that is, $S_{n}$ is a connected component of
$R-R_{n}$ . We put $\partial S_{n}=\gamma_{n}$ and $\partial R_{n}=\gamma_{n}\cup(\bigcup_{i}\beta_{n}^{i})$ , where each $\beta_{n}^{i}$ is a connected

component of $\partial R_{n}$ . Let $t_{n}$ be the harmonic function in $R_{n}$– $R_{0}$ which satisfies
the following boundary conditions:

$t_{n}=\left\{\begin{array}{l}d_{n}^{\gamma}(>0) and \int dt_{n}^{*}=1 on \gamma_{n}\\d_{n}^{i}(d_{n}^{\gamma}>d_{n}^{i}>0) and \int dt_{n}^{*}=0 on \beta_{n}\\0 on \partial R_{0},\end{array}\right.$

where $t_{n}^{*}$ is the conjugate harmonic function of $t_{n}$ . Then the Dirichlet integral
$D(t_{n})$ of $t_{n}$ over $R_{n}-R_{0}$ equals $d_{n}^{\gamma}$ and there always exists the limit of $D(t_{n})$

and
$\lim_{n\rightarrow\infty}D(t_{n})=d^{\gamma}(\leqq\infty)$ .

DEFINITION. $\gamma$ is said to be weak when $ d^{\gamma}=\infty$ .
The property $ d^{\gamma}=\infty$ does not depend on the choice of the exhaustion $\{R_{n}\}$ .

If $\gamma$ is not weak, in $R-R_{0}$ , there exists the unique extremal harmonic
function $t^{r}(=\lim_{n\rightarrow\infty}t.)$ with a finite Dirichlet integral. It has the minimal

Dirichlet integral among those functions $\{t\}$ in $R-R_{0}$ which satisfy the follow-
ing conditions:

1) In the case of a plane region Grotzsch first introduced the notion ” vollkom-
menpunktf\"ormig ” which corresponds to ” weak ”.
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$t=0$ on $\partial R_{0}$

$\int_{\gamma_{n}}dt^{*}=1$ and $\int_{\beta_{n}^{i}}dt^{*}=0$
,

and $D_{R-R_{0}}(t)=D_{R-R_{0}}(t^{\gamma})+D_{R-R_{0}}(t-t^{\gamma})$ .
In this paper we give three criterions for the weakness of $\gamma$ (\S 1) and

study some problems of classification of Riemann surfaces (\S 3). In the case
of a bordered Riemann surface we give analogous criterions according to Jur-
chescu [4] $s$ modified definition (\S 2) and study the properties of subregions of
a Riemann surface.

\S 1. Criterions of weakness.

Let $\{R_{n}\}$ be a canonical exhaustion of $R$ and $S_{n}$ be the component of
$R-R_{n}$ which isaneighborhood of $\gamma^{2)}$ . $Weput\partial S_{n}=\gamma_{n}$ and consider Nevanlinna’s
function $\omega_{\gamma_{n}}$ with respect to $\gamma_{n}$ , which we construct in the proof of Theorem
1. $\omega_{\gamma}$ means the limit of $\omega_{\gamma_{n}}$ when $n$ tends to $\infty$ and $\gamma_{n}$ to $\gamma$ . Then we can
find the following

THEOREM 1. $\gamma$ is weak if and only if $\omega_{\gamma}\equiv 0$ .
PROOF. If $\gamma$ is not weak, there exists the non-constant extremal function

$t^{\gamma}=\lim_{n\rightarrow\infty}t_{n}$ in $R-R_{0}$ such that $ D_{R-R_{0}}(t^{\gamma})=d^{\gamma}<\infty$ .

We construct the harmonic function $u_{n}$ of $R_{n}-R_{0}$ as follows

$u_{n}=\left\{\begin{array}{l}d_{n} on \gamma_{n} and \int_{\tau_{n}}du_{n}^{*}=1\\0 on \partial(R_{n}-R_{0})-\gamma_{n}.\end{array}\right.$

Then $D_{R_{n}-R_{0}}(u_{n})=\int_{\gamma_{n}}u_{n}du_{n}^{*}=d_{n}$ , and for $n>m$

$0\leqq D_{R_{m}-R_{0}}(u_{n}-u_{m})=D(u_{n})-2\int_{\text{{\it \^{a}}}(R_{m}-R_{0})}u_{m}du_{n}^{*}+D(u_{m})$

$=D(u_{n})-D(u_{m})$ ,

so $d_{n}=D_{R_{n}-R_{0}}(u_{n})>D_{R_{m}-R_{0}}(u_{n})\geqq D_{R_{m}-R_{0}}(u_{m})=d_{m}$ . Therefore $\{d_{n}\}$ is monotone
increasing, and its limit $d$ is finite, because

$0\leqq D_{Rn-R_{0}}(t^{\gamma}-u_{n})=D_{Rn-R_{0}}(t^{\gamma})-D_{Rn-R_{0}}(u_{n})$ and $ D_{R-R_{0}}(t^{r})<\infty$ .
The sequence $\{u_{n}\}$ is uniformly bounded $(0\leqq u_{n}\leqq d)$ , so it converges uniformly
on every compact set. We put $v_{n}=u_{n}/d_{n}$ , then

$v_{n}=\left\{\begin{array}{l}1 on \gamma_{n}\\0 on \partial(R_{n}-R_{0})-\gamma_{n},\end{array}\right.$

2) By a ”Neighborhood of $\gamma$ we mean an end of $R$ which belongs to a defining
system of $\gamma$
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and $v=\lim_{n\rightarrow\infty}v_{n}=\lim u_{n}/\lim d_{n}$ converges uniformly on every compact set.

Here we construct Nevanlinna’s function $\omega_{\gamma_{n}}$ as follows and compare it
with $v$ . Let $S_{n}$ be an end of $R$, whose relative boundary is $\gamma_{n}$ , and for $m>n$ ,
let $R_{m}^{\prime}=(R-R_{0}-S_{n})_{\cap}R_{m}$ . In $R_{m}^{f}$ we consider the following harmonic function

$\omega_{nm}=\left\{\begin{array}{l}1 on \gamma_{n}\\0 on \partial R_{m}^{\prime}-\gamma_{n}.\end{array}\right.$

$\omega_{nm}\geqq v_{m}$ in $R_{n}-R_{0}$ , so
$\omega_{n}=_{R_{m}}\lim_{\rightarrow(R-R_{0}-S_{n})}\omega_{nm}\geqq\lim_{m\rightarrow\infty}v_{m}=v$

on $R-R_{0}-S_{n}$ , and

$\omega_{r_{n}}=\lim_{n\rightarrow\infty}\omega_{n}\geqq\lim_{m\rightarrow\infty}v_{m}=v$ . Therefore, on putting $\omega_{\gamma}=\lim_{n\rightarrow\infty}\omega_{\mathcal{T}n}$ we have

$\sup_{R-R_{0}}\omega_{\gamma}>\sup_{R-R_{0}}v>0$ and $\omega_{\gamma}=0$ on $\partial R_{0}$ .

Consequently $\omega_{\gamma}$ is not a constant.
Conversely, we suppose that $\gamma$ is weak. We consider the following har-

monic function $v_{nm}^{\prime}$ in $R_{m}^{\prime}$ .

$v_{nm}^{\prime}=\left\{\begin{array}{l}k_{nm}(>0) on \gamma_{n} and \int_{\gamma_{n}}dv_{nm}^{\prime*}=1\\l_{nm}(0<l_{nm}<k_{nm}) on \partial R_{n}-\partial R_{0}-\gamma_{n} and \int_{(\theta R_{n}-\partial R_{0}-\gamma_{n})}dv_{nm}^{\gamma*}=0\\0 on \partial R_{0}.\end{array}\right.$

If we put $v_{nm}=v_{nm}^{\prime}/k_{nm},$ $\{v_{nm}\}$ is uniformly bounded for $m$ , so we can choose
a convergent subsequence which we denote by $\{v_{nm}\}$ again. Since $k_{nm}=D_{R_{rn}^{\prime}}(v_{nm}^{\prime})$

is monotone increasing for $m$ , we get

$v_{n}^{\prime}=\lim_{m\rightarrow\infty}v_{nm}^{\prime}=\lim_{m\rightarrow\infty}k_{nm}\lim_{m\rightarrow\infty}v_{nm}=k_{n}v_{n}$ ,

while, for the extremal function $t_{n},$ $D_{Rn-R_{0}}(t_{n})\leqq D_{R-Sn-R_{0}}(v_{n}^{\prime})=k_{n}$ . If $\gamma$ is weak
$\lim k_{n}=\infty$ . Hence

$D_{R-s_{n}-R_{0}}(v_{n})=\lim_{m\rightarrow\infty}D_{R_{ln}^{\prime}}(v_{m})=\lim_{m\rightarrow\infty}D_{R_{\tau n}^{\prime}}(v_{nm})=\lim_{m\rightarrow\infty}1/k_{nm}=1/k_{n}$

tends to zero, if $\gamma$ is weak. But Nevanlinna’s function satisfies the inequality
$v_{n}\geqq\omega_{\gamma_{n}}$ , and for all $m>n,$ $v_{n}\geqq\omega_{\gamma_{n}}>\omega_{\gamma_{m}}$ on $R-S_{n}-R_{0}$ . Therefore, if $\lim_{n\rightarrow\infty}v_{n}=0$ ,

we have $\omega_{\gamma}=0$ . $q.e$ . $d$ .
The above constructed $\omega_{r}$ has a relation with the harmonic measure of

Royden’s harmonic boundary [5]. Each $\gamma_{n}=\partial S_{n}$ divides $R$ into two parts,
one of which is $S_{n}$ and the other is $R-S_{n}$ . Let $R^{*}$ be Royden [ll]’s com-
pactification of $R-R_{0},$ $\Delta$ be the harmonic boundary of it and $\Delta_{n}$ be the har-
monic boundary of the ideal boundary of $S_{n}$ , that is, $\Delta_{n}=\overline{S}_{n\cap}\Delta$ where $S_{n}$ is
the closure of $S_{n}$ in $R^{*}$ . We define the harmonic boundary component $\gamma_{\Delta}$
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which corresponds to $\gamma$ by $\gamma_{\Delta}=\cap\Delta_{n}$ . Both the harmonic measure $\Omega_{\Delta_{n}}$ of $\Delta_{n}$

and Nevanlinna’s function $\omega_{r_{n}}$ are bounded harmonic functions with $finite\backslash $

Dirichlet integral (we denote it by $HBD$) in $R-R_{0}$ . Since

$\omega_{\gamma_{n}}=\left\{\begin{array}{l}0 on \Delta-\Delta_{n}\\1 on \Delta_{n},\end{array}\right.$

$\omega_{\gamma_{n}}=\Omega_{\Delta_{n}}$ on $\Delta$ , and $\omega_{\gamma_{n}}=\Omega_{\Delta_{n}}$ on $R^{*}$ . $\{\omega_{r_{n}}\}$ decreases monotone when $n$ in-
creases. $\{\Omega_{\Delta_{n}}\}$ also decreases by the way of construction of $\Omega_{\Delta_{n}}$ and by the
fact $\Delta_{n}\supset\Delta_{n+1}[5]$ . Then $\Omega_{\gamma_{\Delta}}=\lim\Omega_{\Delta_{n}}$ is the harmonic measure of $\gamma_{\Delta}$ , and
$\Omega_{r_{\Delta}}=\omega_{\gamma}$ in $R-R_{0}$ because $\Omega_{\Delta_{n}}=\omega_{\gamma_{n}}$ in $R-R_{0}$ . Therefore, $\Omega_{\tau_{\Delta}}=\omega_{\gamma}$ on $R^{*}$ and
by Theorem 1 we get the following

THEOREM 2. $\gamma$ is weak if and only if $\Omega_{\gamma_{\Delta}}\equiv 0$ .
This theorem gives an example of a Riemann surface each of its harmonic$\cdot\cdot$

boundary components has a vanishing harmonic measure, while $R^{*}-R$ has a
positive harmonic measure.

Namely, let $S$ be a compact $N_{SD}$-set in the extended plane $W$ and have
a positive capacity, then the Riemann surface $W-S$ is the example, because-
every boundary component of $W-S$ is weak [3].

THEOREM 3. Let $u$ be an arbitrary HD-function defined in a neighborhood“

of $\gamma$ . $\gamma$ is weak if and only if we can find for $u$ a sequence of dividing cycles

$\gamma_{n}$ which tends to $\gamma$ and is such that $\lim_{n\rightarrow\infty}\int_{\gamma_{n}}du^{*}=0$ .

PROOF. Let $w=u+iu^{*}$ and $c$ be a dividing cycle, then

$|\int_{c}du^{*}|\leqq\int_{c}|du^{*}|$ .

If $\gamma$ is weak, the perimeter of $\gamma$ with respect to any point of $R$ is zero [3].

so the extremal length $\lambda_{tc\dagger}$ of the family $\{c\}$ of dividing cycles which separate

$\gamma$ from a parametric disk of a point of $R$ is zero. Therefore $\inf_{\{c\}}|\int du^{*}|=0_{r}$

and we can find a sequence $\{\gamma_{n}\}\subset\{c\}$ for which $\lim_{n\rightarrow\infty}\int_{\tau_{n}}du^{*}=0$ .
If $\gamma$ is not weak, there exists Jurchescu [3] $s$ extremal function $u\in HD$

in $R-R_{0}$ and for which $\int_{c}du^{*}=1$ , so $\inf_{\{c\}}\int du^{*}=1$ . Therefore, there is no
sequence such as in Theorem 3. $q$ . $e$ . $d_{\sim}$

\S 2. Subregions.

We consider a subregion $R$ of a Riemann surface together with its relative
boundary $\partial R$ and put $X=RU\partial R$ . An ideal boundary component $\gamma$ of this
subregion is defined by a family $\{S_{n}\}$ of non-compact region $S_{n}$ of $X$ which
satisfies the following condition: $S_{n}^{\prime}\supset S_{n+1}^{\prime},$ $\cap S_{n+1}^{\prime}=\emptyset$ . ( $S_{n}^{\prime}$ is the closure of $S_{\eta}$
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in $X.$) Compact exhaustion $\{X_{n}\}$ of $X$ consists of compact regions $X_{n}$ on $X$.
Here we may suppose that $S_{n}$ is a connected component of $X-X_{n}$ .

Now, let $\gamma_{n}$ be a portion of $\partial X_{n}\cap R$ which separates $\gamma$ from $X_{0}$ , and put
$\partial X_{n\cap}R=\gamma_{n}\cup(\bigcup_{i}ffl_{n})$ .

DEFINITION 1. A harmonic function $u$ in $X_{n}-X_{0}$ is said to be admissible
when it satisfies the following conditions:

$u=0$ on $\partial X_{0}$ , $\int_{\gamma_{n}}du^{*}=1$ ,
$\int_{\beta_{n}^{i}}du^{*}=0$

$\frac{\partial u}{\partial n}=0$ on $\partial X_{\cap}(X_{n}-X_{0})$ .

LEMMA (Jurchescu [4]). There exists the harmonic function among admissible

functions of $X_{n}-X_{0}$ such that

1. $u_{n}=const$. $=\left\{\begin{array}{l}d_{n}^{\gamma}\\d_{n}^{i}\end{array}\right.$ $onon$ $r_{\beta_{n}^{n_{i}^{3)}}}$

2. $d_{n}=D(u_{n})=\min D(u)$, where $\min$ is taken over the class of admissible
functions of $X_{n}-X_{0}$ .

DEFINITION 2. $\gamma$ is said to be parabolic when $\lim_{n\rightarrow\infty}D(u_{n})=\infty$ .
In the case of subregions we modify Nevanlinna’s function $\omega_{\gamma_{n}}^{\prime}$ in $X_{n}-X_{0}$

by the condition $\frac{\partial\omega_{\gamma_{n}}^{\prime}}{\partial n}=0$ on $\partial R\cap(X_{n}-X_{0})$ , and get the following theorem

similar to Theorem 1.
THEOREM 4. $\gamma$ is parabolic if and only if $\omega_{\gamma}^{\prime}\equiv 0$ .
A harmonic boundary component $\gamma_{\Delta}$ is defined by $\gamma_{\Delta}=\bigcap_{n}\Delta_{n}$ , where

$\Delta_{n}=\overline{S}_{n\cap}\Delta$ and $\Delta$ is the harmonic boundary of $X-X_{0}$ and $S_{n}$ is the closure of
$S_{n}$ in $(X-X_{0})^{*}$ .

Denoting the harmonic measure of $\gamma_{\Delta}$ by $\Omega_{r_{\Delta}}^{\prime}$ , we get the following
THEOREM 5. If $\gamma$ is parabolic, then $\Omega_{r_{\Delta}}^{\prime}\equiv 0$ .
PROOF. $\gamma_{\Delta}=\cap\Delta_{n}n$ is compact because $\Delta_{n}=\overline{S}_{n}\cap\Delta$ is compact. Let $l2_{\gamma_{\Delta}}^{\prime}$ be

the harmonic measure of $\gamma_{\Delta}$ , then

$\Omega_{r_{\Delta}}^{\prime}=\left\{\begin{array}{l}1 on \gamma_{\Delta}\\0 on \Delta-\gamma_{\Delta}.\end{array}\right.$

And modified Nevanlinna’s function $\omega_{\gamma_{n}}^{\prime}$ satisfies the following boundary con-
dition:

$\omega_{\gamma_{n}}^{\prime}=\left\{\begin{array}{l}1 on \gamma_{\Delta}\\\geqq 0 on \Delta-\gamma_{\Delta}.\end{array}\right.$

3) $d_{n}^{\gamma}=D(u_{n})$ is monotone increasing with $n[4]$
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Therefore, $\omega_{\gamma_{n}}^{\prime}-\Omega_{\gamma_{\Delta}}^{\prime}\geqq 0$ on the harmonic boundary of $X-S_{n}-X_{0}$ , and by
Nakai’s theorem [6] $\omega_{r_{n}}^{\prime}-Q_{r_{\Delta}}^{\prime}\geqq 0$ on $X-S_{n}-X_{0}$ . This inequality holds for all
$\gamma_{n}$ , so we can conclude $\omega_{\gamma}^{\prime}\geqq\Omega_{\gamma_{\Delta}}^{\prime}$ . Consequently, if $\gamma$ is parabolic $\Omega_{r_{\Delta}}^{\prime}\equiv 0$ .

\S 3. An application to the classification of Riemann surfaces and of
subregions.

As a direct consequence of Theorem 3, we can enunciate, if $R\in O_{HD}-O_{a}$ ,
$R$ has only one non-weak ideal boundary component; if $R\in O_{HD}-O_{G},$ $R$ has the
unique harmonic boundary point (which corresponds to an HD-indivisible set
in Constantinescu-Cornea [1] $s$ sense) which is contained in one ideal boundary
component. Then the harmonic measure of the ideal boundary of $R$ measured
in R-(compact region) is an HD-function which does not satisfy the condition
of Theorem 3.

In the case of a subregion, every subregion of class $NO_{HD}-M_{0}$ has only one
non-parabolic ideal boundary component, where $NO_{HD}$ denotes a class of sub-
regions on which there exist no non-constant HD-functions whose normal
derivatives on the relative boundary are zero, and $j\psi_{0}$ a class of subregions
whose doubles belong to $O_{G}[4]$ .

This proposition is due to the following facts: If $G\in NO_{HD}-j\psi_{0}$ the ideal
boundary of the double $\hat{G}$ has two symmetric harmonic boundary points
(symmetric HD-indivisible sets) or $\hat{G}$ belongs to $O_{HD}-O_{G}[5]$ , and, since each
harmonic boundary point is contained in one ideal boundary component, $G$ has
only one non-parabolic component. The same proposition holds for $NO_{HB}-M_{0}$

(cf. [2]).

In the light of this proposition, we consider a metrical criterion when $R$

has infinite genus. Let $ d\rho$ be a conformal metric on $R$ , and $\Gamma_{\rho}=\{P;P\in R$ ,
$d(P_{0}, P)=\rho\}$ be the geodesic circle about $P_{0}\in R$ with radius $ d(P_{0}, P)=\rho$ . We
divide $\Gamma_{\rho}$ into dividing cycles $\Gamma_{i}$ , that is, $\Gamma_{\rho}=\bigcup_{i}\Gamma_{i}$ , and let $L_{i}(\rho)$ be the length

of $\Gamma_{i}$ measured by $ d\rho$ . Putting $L(\rho)=\max_{i}L_{i}(\rho)$ , according to Royden, if

$\int_{L^{-}(}^{p_{\infty d}}-\frac{\rho}{\rho)}=\infty$ , ( $\rho_{\infty}=d(P_{0}$ , ideal boundary of $R)$)

then $R$ belongs to $O_{FD}[11]$ . While, for the family $\{\Gamma_{\gamma}\}$ of dividing cycles
$\Gamma_{\gamma}\subset\Gamma_{\rho}$ which separate $\gamma$ and $P_{0}$ , Savage [13] showed that, if

$\int^{\rho}-L_{r}^{-}(\overline{\rho)}=\infty$ ($L_{\gamma}(\rho)=1ength$ of $\Gamma_{\gamma}$),

then $\gamma$ is weak. But if

$\int^{\rho_{\infty}}\frac{d\rho}{L(\rho)}=\infty$ , then $\int^{\beta\infty}\frac{d\rho}{L_{\gamma}(\rho)}=\infty$
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for all ideal boundary components $\gamma$ , that is, all components are weak. How-
ever, if $R\in O_{HD}-O_{a},$ $R$ has a non-weak boundary component $\gamma$ , and

$\int^{\rho\infty}\frac{d\rho}{L_{\gamma}(\rho)}<\infty$ .
Therefore,

$\int^{\rho\infty}\frac{d\rho}{L(\rho)}<\infty$ for $R\in O_{HD}-O_{G}$ .

Consequently we get the following

THEOREM 6. If $R\in O_{HD}$ and $\int^{\rho}\infty\frac{d\rho}{L(\rho)}=\infty$ for a conformal metric $ d\rho$ , then

$R\in O_{a}$ . In other words, if $R\in O_{HD}-O_{G},$ $\int^{\rho}\infty\frac{d\rho}{L(\rho)}<\infty$ for all conformal metrics.

REMARK. The converse of Savage’s theorem is true, that is, if $\gamma$ is weak,

there exists a conformal metric for which $\int\frac{d\rho}{L_{\gamma}(\rho)}=\infty$ . If $\gamma$ is weak, there

exists a canonical exhaustion $\{R_{n}\}$ for which $\sum_{n}\mu_{n}^{\gamma}=\infty$ , where $\mu_{n}^{\gamma}$ is modulus

of a component $F_{n}^{\gamma}$ of $R_{n}-R_{n-1}$ which is contained in $S_{n}[9]$ . We construct
Noshiro’s graph [8] of $R$ with respect to $\{R_{n}\}$ , By the piecewise conformal
mapping of $R$ into the graph, euclidian metric of the graph induces a conformal
metric $d\rho=\rho(z)|dz|$ on $R$ . On the other hand, the extremal harmonic function
which gives modulus of $F_{n}^{\gamma}$ induces a conformal metric $dl$ on $F_{n}^{\gamma}$ . The metrics
$ d\rho$ and $dl$ are homothetic on $F_{n}^{\gamma}$ , that is, geodesic lines of each metric coincide.
Therefore,

$\alpha_{n}^{\gamma}\leqq\int_{(p_{n}^{\gamma})}\frac{d\rho}{L_{\gamma}(\rho)}$ and $\Sigma\mu_{n}^{\gamma}\leqq\int_{(R)}\frac{d\rho}{L_{\gamma}(\rho)}$ .

Therefore, if $\gamma$ is weak $\int\frac{d\rho}{L_{\gamma}(\rho)}=\infty$ for $d\rho=\rho(z)|dz|$ .

Ritsumeikan University
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