On weak boundary components of a Riemann surface

Dedicated to Professor Y. Akizuki on his 60th birthday

By Tatsuo FUJI'I'E

(Received March 15, 1963) (Revised July 6, 1963)

Introduction

L. Sario [12] introduced the notion of weakness of an ideal boundary component of a Riemann surface¹⁾ and properties of weak boundary components have been studied by his students. In this paper we use Jurchescu [3]'s modified definition as follows.

Let γ be an ideal boundary component of a Riemann surface R in Stoïlow's sense and $\{S_n\}$ be its defining system. Here we suppose that $\{S_n\}$ is defined by a canonical exhaustion $\{R_n\}$ of R, that is, S_n is a connected component of $R-R_n$. We put $\partial S_n = \gamma_n$ and $\partial R_n = \gamma_n \cup (\bigcup_i \beta_n^i)$, where each β_n^i is a connected component of ∂R_n . Let t_n be the harmonic function in $R_n - R_0$ which satisfies the following boundary conditions:

$$t_n = \begin{cases} d_n^r (>0) \text{ and } \int dt_n^* = 1 & \text{on } \gamma_n \\ d_n^i (d_n^r > d_n^i > 0) \text{ and } \int dt_n^* = 0 & \text{on } \beta_n^i \\ 0 & \text{on } \partial R_0 \end{cases}$$

where t_n^* is the conjugate harmonic function of t_n . Then the Dirichlet integral $D(t_n)$ of t_n over $R_n - R_0$ equals d_n^r and there always exists the limit of $D(t_n)$ and

$$\lim_{n\to\infty} D(t_n) = d^{\gamma} (\leq \infty).$$

DEFINITION. γ is said to be weak when $d^{\gamma} = \infty$.

The property $d^r = \infty$ does not depend on the choice of the exhaustion $\{R_n\}$. If γ is not weak, in $R-R_0$, there exists the unique *extremal* harmonic

function $t^{\gamma} (= \lim_{n \to \infty} t_n)$ with a finite Dirichlet integral. It has the minimal Dirichlet integral among those functions $\{t\}$ in $R-R_0$ which satisfy the following conditions:

¹⁾ In the case of a plane region Grötzsch first introduced the notion "vollkommenpunktförmig" which corresponds to "weak".

Weak boundary components of a Riemann surface

$$t=0$$
 on ∂R_0
 $\int_{\gamma_n} dt^*=1$ and $\int_{\beta_n^i} dt^*=0$,

and $D_{R-R_0}(t) = D_{R-R_0}(t^{\gamma}) + D_{R-R_0}(t-t^{\gamma})$.

In this paper we give three criterions for the weakness of γ (§1) and study some problems of classification of Riemann surfaces (§3). In the case of a bordered Riemann surface we give analogous criterions according to Jurchescu [4]'s modified definition (§2) and study the properties of subregions of a Riemann surface.

§1. Criterions of weakness.

Let $\{R_n\}$ be a canonical exhaustion of R and S_n be the component of $R-R_n$ which is a neighborhood of γ^{2} . We put $\partial S_n = \gamma_n$ and consider Nevanlinna's function ω_{r_n} with respect to γ_n , which we construct in the proof of Theorem 1. ω_r means the limit of ω_{r_n} when n tends to ∞ and γ_n to γ . Then we can find the following

THEOREM 1. γ is weak if and only if $\omega_{\gamma} \equiv 0$.

PROOF. If γ is not weak, there exists the non-constant extremal function $t^{\gamma} = \lim_{n \to \infty} t_n$ in $R - R_0$ such that $D_{R-R_0}(t^{\gamma}) = d^{\gamma} < \infty$.

We construct the harmonic function u_n of $R_n - R_0$ as follows

$$u_n = \begin{cases} d_n & \text{on } \gamma_n & \text{and } \int_{\gamma_n} du_n^* = 1 \\ 0 & \text{on } \partial(R_n - R_0) - \gamma_n. \end{cases}$$

Then $D_{R_n-R_0}(u_n) = \int_{r_n} u_n du_n^* = d_n$, and for n > m

$$0 \leq D_{R_m - R_0}(u_n - u_m) = D(u_n) - 2 \int_{\partial(R_m - R_0)} u_m du_n^* + D(u_m)$$

= $D(u_n) - D(u_m)$,

so $d_n = D_{R_n-R_0}(u_n) > D_{R_m-R_0}(u_n) \ge D_{R_m-R_0}(u_m) = d_m$. Therefore $\{d_n\}$ is monotone increasing, and its limit d is finite, because

$$0 \leq D_{R_n - R_0}(t^r - u_n) = D_{R_n - R_0}(t^r) - D_{R_n - R_0}(u_n) \text{ and } D_{R_n - R_0}(t^r) < \infty.$$

The sequence $\{u_n\}$ is uniformly bounded $(0 \le u_n \le d)$, so it converges uniformly on every compact set. We put $v_n = u_n/d_n$, then

$$v_n = \begin{cases} 1 & \text{on} & \gamma_n \\ 0 & \text{on} & \partial(R_n - R_0) - \gamma_n \end{cases}$$

²⁾ By a "Neighborhood of γ " we mean an end of R which belongs to a defining system of γ .

and $v = \lim_{n \to \infty} v_n = \lim_{n \to \infty} u_n / \lim_{n \to \infty} d_n$ converges uniformly on every compact set.

Here we construct Nevanlinna's function ω_{r_n} as follows and compare it with v. Let S_n be an end of R, whose relative boundary is γ_n , and for m > n, let $R'_m = (R - R_0 - S_n) \cap R_m$. In R'_m we consider the following harmonic function

$$\omega_{nm} = \begin{cases} 1 & \text{on} & \gamma_n \\ 0 & \text{on} & \partial R'_m - \gamma_n \end{cases}$$

 $\omega_{nm} \ge v_m$ in $R_n - R_0$, so $\omega_n = \lim_{R'_m \to (R-R_0 - S_n)} \omega_{nm} \ge \lim_{m \to \infty} v_m = v$ on $R - R_0 - S_n$, and

 $\omega_{r_n} = \lim_{n \to \infty} \omega_n \ge \lim_{m \to \infty} v_m = v$. Therefore, on putting $\omega_r = \lim_{n \to \infty} \omega_{r_n}$ we have

$$\sup_{R-R_0}\omega_{\tau}\!>\!\sup_{R-R_0}v\!>\!0\quad\text{and}\quad\omega_{\tau}\!=\!0\quad\text{on}\quad\partial R_0.$$

Consequently ω_r is not a constant.

Conversely, we suppose that γ is weak. We consider the following harmonic function v'_{nm} in R'_m .

$$v'_{nm} = \begin{cases} k_{nm} (>0) & \text{on } \gamma_n \text{ and } \int_{\gamma_n} dv'^*_{nm} = 1 \\ l_{nm} (0 < l_{nm} < k_{nm}) & \text{on } \partial R_n - \partial R_0 - \gamma_n \text{ and } \int_{(\partial R_n - \partial R_0 - \gamma_n)} dv'^*_{nm} = 0 \\ 0 & \text{on } \partial R_0. \end{cases}$$

If we put $v_{nm} = v'_{nm}/k_{nm}$, $\{v_{nm}\}$ is uniformly bounded for *m*, so we can choose a convergent subsequence which we denote by $\{v_{nm}\}$ again. Since $k_{nm} = D_{R'_m}(v'_{nm})$ is monotone increasing for *m*, we get

$$v'_n = \lim_{m \to \infty} v'_{nm} = \lim_{m \to \infty} k_{nm} \lim_{m \to \infty} v_{nm} = k_n v_n$$
 ,

while, for the extremal function t_n , $D_{R_n-R_0}(t_n) \leq D_{R-S_n-R_0}(v'_n) = k_n$. If γ is weak $\lim k_n = \infty$. Hence

$$D_{R-S_n-R_0}(v_n) = \lim_{m \to \infty} D_{R'_m}(v_m) = \lim_{m \to \infty} D_{R'_m}(v_{nm}) = \lim_{m \to \infty} \frac{1}{k_{nm}} = \frac{1}{k_n}$$

tends to zero, if γ is weak. But Nevanlinna's function satisfies the inequality $v_n \ge \omega_{r_n}$, and for all m > n, $v_n \ge \omega_{r_n} > \omega_{r_m}$ on $R - S_n - R_0$. Therefore, if $\lim_{n \to \infty} v_n = 0$, we have $\omega_r = 0$. q. e. d.

The above constructed ω_r has a relation with the harmonic measure of Royden's harmonic boundary [5]. Each $\gamma_n = \partial S_n$ divides R into two parts, one of which is S_n and the other is $R-S_n$. Let R^* be Royden [11]'s compactification of $R-R_0$, Δ be the harmonic boundary of it and Δ_n be the harmonic boundary of the ideal boundary of S_n , that is, $\Delta_n = \overline{S}_n \cap \Delta$ where \overline{S}_n is the closure of S_n in R^* . We define the harmonic boundary component γ_A

398

which corresponds to γ by $\gamma_{\mathcal{A}} = \bigcap \mathcal{A}_n$. Both the harmonic measure $\mathcal{Q}_{\mathcal{A}_n}$ of \mathcal{A}_n and Nevanlinna's function ω_{r_n} are bounded harmonic functions with finite Dirichlet integral (we denote it by HBD) in $R-R_0$. Since

$$\omega_{\mathbf{r}_n} = \left\{ \begin{array}{ccc} 0 & \mathrm{on} & \mathcal{\Delta} - \mathcal{\Delta}_n \\ 1 & \mathrm{on} & \mathcal{\Delta}_n \end{array} \right.$$

 $\omega_{r_n} = \mathcal{Q}_{\mathcal{A}_n}$ on \mathcal{A} , and $\omega_{r_n} = \mathcal{Q}_{\mathcal{A}_n}$ on R^* . $\{\omega_{r_n}\}$ decreases monotone when n increases. $\{\mathcal{Q}_{\mathcal{A}_n}\}$ also decreases by the way of construction of $\mathcal{Q}_{\mathcal{A}_n}$ and by the fact $\mathcal{A}_n \supset \mathcal{A}_{n+1}$ [5]. Then $\mathcal{Q}_{r_{\mathcal{A}}} = \lim \mathcal{Q}_{\mathcal{A}_n}$ is the harmonic measure of $\gamma_{\mathcal{A}}$, and $\mathcal{Q}_{r_{\mathcal{A}}} = \omega_r$ in $R - R_0$ because $\mathcal{Q}_{\mathcal{A}_n} = \omega_{r_n}$ in $R - R_0$. Therefore, $\mathcal{Q}_{r_{\mathcal{A}}} = \omega_r$ on R^* and by Theorem 1 we get the following

THEOREM 2. γ is weak if and only if $\Omega_{\gamma_A} \equiv 0$.

This theorem gives an example of a Riemann surface each of its harmonic boundary components has a vanishing harmonic measure, while R^*-R has a positive harmonic measure.

Namely, let S be a compact N_{SD} -set in the extended plane W and have a positive capacity, then the Riemann surface W-S is the example, because every boundary component of W-S is weak [3].

THEOREM 3. Let u be an arbitrary HD-function defined in a neighborhood of γ . γ is weak if and only if we can find for u a sequence of dividing cycles γ_n which tends to γ and is such that $\lim_{n\to\infty} \int_{\gamma_n} du^* = 0$.

PROOF. Let $w = u + iu^*$ and c be a dividing cycle, then

$$\left|\int_{c} du^{*}\right| \leq \int_{c} |du^{*}|.$$

If r is weak, the perimeter of r with respect to any point of R is zero [3], so the extremal length $\lambda_{(c)}$ of the family $\{c\}$ of dividing cycles which separate r from a parametric disk of a point of R is zero. Therefore $\inf_{\{c\}} \left| \int du^* \right| = 0$, and we can find a sequence $\{r_n\} \subset \{c\}$ for which $\lim_{n \to \infty} \int_{r_n} du^* = 0$.

If γ is not weak, there exists Jurchescu [3]'s extremal function $u \in HD$ in $R-R_0$ and for which $\int_c du^* = 1$, so $\inf_{\{c\}} \int du^* = 1$. Therefore, there is no sequence such as in Theorem 3. q.e.d.

§2. Subregions.

We consider a subregion R of a Riemann surface together with its relative boundary ∂R and put $X = R \cup \partial R$. An ideal boundary component γ of this subregion is defined by a family $\{S_n\}$ of non-compact region S_n of X which satisfies the following condition: $S'_n \supset S'_{n+1} = \phi$. (S'_n is the closure of S_n in X.) Compact exhaustion $\{X_n\}$ of X consists of compact regions X_n on X. Here we may suppose that S_n is a connected component of $X-X_n$.

Now, let γ_n be a portion of $\partial X_n \cap R$ which separates γ from X_0 , and put $\partial X_n \cap R = \gamma_n \cup (\bigcup_i \beta_n^i)$.

DEFINITION 1. A harmonic function u in $X_n - X_0$ is said to be *admissible* when it satisfies the following conditions:

$$u=0$$
 on ∂X_0 , $\int_{r_n} du^* = 1$, $\int_{\beta_n^i} du^* = 0$
 $\frac{\partial u}{\partial n} = 0$ on $\partial X \cap (X_n - X_0)$.

LEMMA (Jurchescu [4]). There exists the harmonic function among admissible functions of $X_n - X_0$ such that

1.
$$u_n = const. = \begin{cases} d_n^r & on & \gamma_n^{(3)} \\ d_n^i & on & \beta_n^i \end{cases}$$

2. $d_n = D(u_n) = \min D(u)$, where min is taken over the class of admissible functions of $X_n - X_0$.

DEFINITION 2. γ is said to be parabolic when $\lim_{n\to\infty} D(u_n) = \infty$.

In the case of subregions we modify Nevanlinna's function ω'_{r_n} in $X_n - X_0$ by the condition $\frac{\partial \omega'_{r_n}}{\partial n} = 0$ on $\partial R \cap (X_n - X_0)$, and get the following theorem similar to Theorem 1.

THEOREM 4. γ is parabolic if and only if $\omega'_r \equiv 0$.

A harmonic boundary component γ_{Δ} is defined by $\gamma_{\Delta} = \bigcap_{n} \Delta_{n}$, where $\Delta_{n} = \overline{S}_{n} \cap \Delta$ and Δ is the harmonic boundary of $X - X_{0}$ and \overline{S}_{n} is the closure of S_{n} in $(X - X_{0})^{*}$.

Denoting the harmonic measure of γ_{Δ} by $\Omega'_{r_{\Delta}}$, we get the following THEOREM 5. If γ is parabolic, then $\Omega'_{r_{\Delta}} \equiv 0$.

PROOF. $r_{\Delta} = \bigcap_{n} \Delta_{n}$ is compact because $\overline{\Delta}_{n} = \overline{S}_{n} \cap \Delta$ is compact. Let $\Omega'_{r_{\Delta}}$ be the harmonic measure of γ_{Δ} , then

$$\mathcal{Q}_{r_{\mathcal{A}}}^{\prime} = \left\{ \begin{array}{ccc} 1 & \text{on} & r_{\mathcal{A}} \\ \\ 0 & \text{on} & \mathcal{A} - r_{\mathcal{A}} \end{array} \right.$$

And modified Nevanlinna's function $\omega_{\tau_n}^{\prime}$ satisfies the following boundary condition:

$$\omega_{\tau_n}' = \left\{ \begin{array}{ccc} 1 & \text{on} & \tau_{\varDelta} \\ \\ \geq 0 & \text{on} & \varDelta - \tau_{\varDelta} \end{array} \right.$$

3) $d_n^{\tau} = D(u_n)$ is monotone increasing with n [4]

400

Therefore, $\omega'_{r_n} - \mathcal{Q}'_{r_d} \ge 0$ on the harmonic boundary of $X - S_n - X_0$, and by Nakai's theorem [6] $\omega'_{r_n} - \mathcal{Q}'_{r_d} \ge 0$ on $X - S_n - X_0$. This inequality holds for all γ_n , so we can conclude $\omega'_r \ge \mathcal{Q}'_{r_d}$. Consequently, if γ is parabolic $\mathcal{Q}'_{r_d} \ge 0$.

\S 3. An application to the classification of Riemann surfaces and of subregions.

As a direct consequence of Theorem 3, we can enunciate, if $R \in O_{HD} - O_G$, R has only one non-weak ideal boundary component; if $R \in O_{HD} - O_G$, R has the unique harmonic boundary point (which corresponds to an *HD*-indivisible set in Constantinescu-Cornea [1]'s sense) which is contained in one ideal boundary component. Then the harmonic measure of the ideal boundary of R measured in R-(compact region) is an *HD*-function which does not satisfy the condition of Theorem 3.

In the case of a subregion, every subregion of class $NO_{HD}-M_0$ has only one non-parabolic ideal boundary component, where NO_{HD} denotes a class of subregions on which there exist no non-constant HD-functions whose normal derivatives on the relative boundary are zero, and M_0 a class of subregions whose doubles belong to O_G [4].

This proposition is due to the following facts: If $G \in NO_{HD}-M_0$ the ideal boundary of the double \hat{G} has two symmetric harmonic boundary points (symmetric *HD*-indivisible sets) or \hat{G} belongs to $O_{HD}-O_G$ [5], and, since each harmonic boundary point is contained in one ideal boundary component, G has only one non-parabolic component. The same proposition holds for $NO_{HB}-M_0$ (cf. [2]).

In the light of this proposition, we consider a metrical criterion when R has infinite genus. Let $d\rho$ be a conformal metric on R, and $\Gamma_{\rho} = \{P; P \in R, d(P_0, P) = \rho\}$ be the geodesic circle about $P_0 \in R$ with radius $d(P_0, P) = \rho$. We divide Γ_{ρ} into dividing cycles Γ_i , that is, $\Gamma_{\rho} = \bigcup_i \Gamma_i$, and let $L_i(\rho)$ be the length of Γ_i measured by $d\rho$. Putting $L(\rho) = \max L_i(\rho)$, according to Royden, if

$$\int_{-L(\rho)}^{\rho_{\infty}} - \frac{d\rho}{L(\rho)} = \infty$$
, $(\rho_{\infty} = d(P_0, \text{ ideal boundary of } R))$

then R belongs to O_{FD} [11]. While, for the family $\{\Gamma_{\gamma}\}$ of dividing cycles $\Gamma_{\gamma} \subset \Gamma_{\rho}$ which separate γ and P_0 , Savage [13] showed that, if

$$\int_{-L_{r}(\rho)}^{\infty} \frac{d\rho}{L_{r}(\rho)} = \infty, \quad (L_{r}(\rho) = \text{length of } \Gamma_{r}),$$

then γ is weak. But if

$$\int^{\rho_{\infty}} \frac{d\rho}{L(\rho)} = \infty , \text{ then } \int^{\rho_{\infty}} \frac{d\rho}{L_{r}(\rho)} = \infty$$

Т. Гилие

for all ideal boundary components γ , that is, all components are weak. However, if $R \in O_{HD} - O_G$, R has a non-weak boundary component γ , and

$$\int^{\rho_{\infty}} \frac{d\rho}{L_{r}(\rho)} < \infty$$

Therefore,

$$\int_{-\infty}^{\rho_{\infty}} \frac{d\rho}{L(\rho)} < \infty \quad \text{for} \quad R \in O_{HD} - O_G \,.$$

Consequently we get the following

THEOREM 6. If $R \in O_{HD}$ and $\int_{-\infty}^{\infty} \frac{d\rho}{L(\rho)} = \infty$ for a conformal metric $d\rho$, then $R \in O_{G}$. In other words, if $R \in O_{HD} - O_{G}$, $\int_{-\infty}^{\infty} \frac{d\rho}{L(\rho)} < \infty$ for all conformal metrics.

REMARK. The converse of Savage's theorem is true, that is, if γ is weak, there exists a conformal metric for which $\int \frac{d\rho}{L_r(\rho)} = \infty$. If γ is weak, there exists a canonical exhaustion $\{R_n\}$ for which $\sum_n \mu_n^r = \infty$, where μ_n^r is modulus of a component F_n^r of $R_n - R_{n-1}$ which is contained in S_n [9]. We construct Noshiro's graph [8] of R with respect to $\{R_n\}$. By the piecewise conformal mapping of R into the graph, euclidian metric of the graph induces a conformal metric $d\rho = \rho(z)|dz|$ on R. On the other hand, the extremal harmonic function which gives modulus of F_n^r induces a conformal metric dl on F_n^r . The metrics $d\rho$ and dl are homothetic on F_n^r , that is, geodesic lines of each metric coincide. Therefore,

$$\mu_n^r \leq \int_{(F_n^r)} \frac{d\rho}{L_r(\rho)}$$
 and $\sum \mu_n^r \leq \int_{(R)} \frac{d\rho}{L_r(\rho)}$.

Therefore, if γ is weak $\int \frac{d\rho}{L_r(\rho)} = \infty$ for $d\rho = \rho(z) |dz|$.

Ritsumeikan University

References

- [1] C. Constantinescu und A. Cornea, Über den idealen Rand und einige seiner Anwedungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J., 13 (1958), 169-233.
- [2] T. Fuji-i-e, Notes on subregions of a Riemann surface, Mem. Inst. Sci. and Eng. Ritsumeikan Univ., 5 (1960), 1-3.
- [3] M. Jurchescu, Modulus of a boundary component, Pacific J. Math., 8 (1958), 791-809.
- [4] M. Jurchescu, Bordered Riemann surfaces, Math. Ann., 143 (1961), 264-292.
- [5] Y. Kusunoki and S. Mori, On the harmonic boundary of an open Riemann surface, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math., 2 (1960), 209-223.

- [6] M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17 (1960), 181-218.
- [7] R. Nevanlinna, Uniformisierung, Springer Verlag, Berlin, 1952.
- [8] K. Noshiro, Open Riemann surfaces with null boundary, Nagoya Math. J., 3 (1951), 73-79.
- [9] K. Oikawa, On a criterion for the weakness of an ideal boundary component, Pacific J. Math., 9 (1959), 1233-1238.
- [10] H. L. Royden, On the ideal boundary of a Riemann surface, Contribution to the theory of Riemann surfaces, Princeton Univ. Press, Princeton, 1953, 107-109.
- [11] H. L. Royden, On a class of nullbounded Riemann surfaces, Comment. Math. Helv., 34 (1960), 52-66.
- [12] L. Sario, Capacity of the boundary and of a boundary component, Ann. of Math. (2), 59 (1954), 135-144.
- [13] N. Savage, Weak boundary components of an Riemann surface, Duke Math. J., 24 (1957), 79-95.