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Introduction

L. Sario introduced the notion of weakness of an ideal boundary
component of a Riemann surface? and properties of weak boundary components
have been studied by his students. In this paper we use Jurchescu [37]s.
modified definition as follows.

Let 7 be an ideal boundary component of a Riemann surface R in Stoilow’s
sense and {S,} be its defining system. Here we suppose that {S,} is defined
by a canonical exhaustion {R,} of R, that is, S, is a connected component of
R—R,. We put 8S,=7, and 9R, =7, U(U B%), where each f is a connected

component of OR,. Let £, be the harmonic function in R,— R, which satisfies
the following boundary conditions:

dr(>0) and jdt;;:l on 7,
ty=1 di(d?>di>0) and jdt;k:o on g,
0 on OR,,

where ¢} is the conjugate harmonic function of #,. Then the Dirichlet integral
D(t,) of t, over R,—R, equals d% and there always exists the limit of D(¢,)

and
lim D{,)=d7 (£ ).

n- 00

DEFINITION. 7 is said to be weak when d7=co.
The property d"=o0 does not depend on the choice of the exhaustion {R,}.
If v is not weak, in R—R, there exists the unique extremal harmonic
function ¢7(=lim¢,) with a finite Dirichlet integral. It has the minimal

n— 0

Dirichlet integral among those functions {¢#} in R— R, which satisfy the follow-
ing conditions:

1) In the case of a plane region Grotzsch first introduced the notion “vollkom-
menpunktférmig” which corresponds to “ weak”.
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t=0 on 0OR,
j di*=1 and f dt* =0,
n 13%

and Dg_gp ()= Dr_g(t")+ Dg_g(t—1").

In this paper we give three criterions for the weakness of  (§1) and
study some problems of classification of Riemann surfaces (§3). In the case
of a bordered Riemann surface we give analogous criterions according to Jur-
chescu [4]'s modified definition (§2) and study the properties of subregions of
a Riemann surface.

§1. Criterions of weakness.

Let {R,} be a canonical exhaustion of R and S, be the component of
R—R, which is a neighborhood of y». We put 8S,=7, and consider Nevanlinna’s
function w,, with respect to 7, which we construct in the proof of [Theoreml
1. ®, means the limit of ®,, when » tends to oo and 7, to y. Then we can
find the following

THEOREM 1. 7 is weak if and only if w,=0.

Proor. If y is not weak, there exists the non-constant extremal function
f"=1limt¢, in R—R, such that Dy z (") =d" < co.

n—-x

We construct the harmonic function #, of R,—R, as follows

d, on r, and jdui’f:
U, = n

0 on a(Rn_RO)_—rn-

Then Dg, g (t,) :f u,duf —d,, and for n>m
Tn

0= Dayorttn—ttn) = D)2 snditi-+Diaty)

= D(tn)—D(ttm)
80 dy, = Dg,—r%4) > Dgp-rt%n) = Dg,y—go(ttn) = dy. Therefore {d,} is monotone
increasing, and its limit 4 is finite, because
0 < Dpg, rt"—t,) = Dgy-rft")—Dgp-rtt,) and Dz g (") <co.
The sequence {#,} is uniformly bounded (0 <%, <d), so it converges uniformly
on every compact set. We put v,=u,/d,, then
1 on 7,

Uy, =

L0 on AR,—RY—1,

2) By a “Neighborhood of y” we mean an end of R which belongs to a defining
system of 7.
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and v =lim »,=lim«,/lim d, converges uniformly on every compact set.

n—roco

Here we construct Nevanlinna’s function ,, as follows and compare it
with ». Let S, be an end of R, whose relative boundary is r,, and for m > n,
let R, =(R—R,—S,)n\ Rn. In R}, we consider the following harmonic function

1 on 7,
Wy =
0 on OR,—7,.
@y =V i Ry,—R,, SO ®,= lim @pm = limov, =v on R—R,—S,, and
Rjp~(R—Ro~Sp) Mmoo

®y, = lim w, = limv,,=v. Therefore, on putting o, = lim w;, we have
n—roco

n~»00 m— oo

supw;>supv >0 and w;,=0 on &R,.

R-Ry R-Ry
Consequently ®; is not a constant.

Conversely, we suppose that y is weak. We consider the following har-
monic function v}, in R},

R (> 0) on 7, and jl dvi¥ =1
™
Vhn =3 Ly (0< Lpm < kpm) on OR,—OR,—7n and j dv% =0
(0Rp-0Ry~1n)
0 on OR,.

If we put v, ="0m/Bem, {Van} is uniformly bounded for m, so we can choose
a convergent subsequence which we denote by {v,.,,} again. Since &, = Dgry,(V7m)
is monotone increasing for m, we get

v, = 1lim v}, = lim &, lim v, = £, 0, ,

m—» oo m=—rco m-—»oo

while, for the extremal function ¢,, Dg,-r(ts) = Dgr-gn-r¥n) =k, 1f 7 is weak
lim &k, =oco. Hence

Dr-sgy-ro(®n) = 1im Dyg; () = lim Dy (@) = 1im 1/ ey =1/,

tends to zero, if 7 is weak. But Nevanlinna’s function satisfies the inequality
v, = oy, and for all m > #n, v, = @y, > @y, on R—S,—R,. Therefore, if limv, =0,

- n—+

we have w;=0. q.e.d.

The above constructed o, has a relation with the harmonic measure of
Royden’s harmonic boundary [6] Each r,=4S, divides R into two parts,
one of which is S, and the other is R—S,. Let R* be Royden [11]s com-
pactification of R—R,, 4 be the harmonic boundary of it and 4, be the har-
monic boundary of the ideal boundary of S,, that is, An:§nmd where S, is
the closure of S, in R*. We define the harmonic boundary component 74
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which corresponds to y by 74= 4, Both the harmonic measure 24, of 4,
and Nevanlinna’s function @y, are bounded harmonic functions with finite
Dirichlet integral (we denote it by HBD) in R—R,. Since

0 on 4—4,
1 on 4,,

Wy, =84, on 4, and w,,=2,4, on R*. {w;} decreases monotone when #» in-
creases. {£4,} also decreases by the way of construction of £,4, and by the
fact 4,D4,,, [5]. Then £;,=1im 2,4, is the harmonic measure of r, and
£y,=w; in R—R, because 24, =y, in R—R,. Therefore, 2;,=®; on R* and
by we get the following

THEOREM 2. 7 is weak if and only if 2:,=0.

This theorem gives an example of a Riemann surface each of its harmonic
boundary components has a vanishing harmonic measure, while R*—R has a
positive harmonic measure.

Namely, let S be a compact Ngy-set in the extended plane W and have
a positive capacity, then the Riemann surface W—S is the example, because
every boundary component of W—S is weak [3].

THEOREM 3. Let u be an arbitvary HD-function defined in a neighborhood
of r. 71 is weak if and only if we can find for u a sequence of dividing cycles

C()‘rn =

7a Which tends to r and is such that limf du*=0.
Tn

n—0

PrROOF. Let w=u-+iu* and ¢ be a dividing cycle, then
]fcdu*{gfcmu*[.

If r is weak, the perimeter of y with respect to any point of R is zero [3],
so the extremal length 2, of the family {¢} of dividing cycles which separate

7 from a parametric disk of a point of R is zero. Therefore 1{n}f”du* =0,

and we can find a sequence {r,} C {c} for which limf du*=0.
Tn

n—roo

If 7 is not weak, there exists Jurchescu [37s extremal function # < HD

in R—R, and for which j‘du*:l, so inf|\du*=1. Therefore, there is no

{c}

sequence such as in Theorem 3. q.e.d.

§2. Subregions.

We consider a subregion R of a Riemann surface together with its relative
boundary éR and put X=R\U4R. An ideal boundary component 7 of this
subregion is defined by a family {S,} of non-compact region S, of X which
satisfies the following condition: S; D Sp41, N Spuu=¢. (S, is the closure of S,
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in X.) Compact exhaustion {X,} of X consists of compact regions X, on X.
Here we may suppose that S, is a connected component of X—X,.

Now, let 7, be a portion of X, R which separates r from X, and put
0XaNR=7.Y(JB).

DEFINITION 1. A harmonic function # in X,—X, is said to be admissible
‘when it satisfies the following conditions:

u=0 on 0X,, | dw=1, [ du*=0
Tn B:z

Ju
F i 0 on A XN(X,—X,).
LEMMA (Jurchescu [4]). There exists the havmonic function among admissible
Junctions of X,—X, such that
ar om r,®

di om B
2. d,= D(u,)= min D(u), where min is taken over the class of admissible
functions of X,—X,.
DEFINITION 2. 7 is said to be parabolic when lim D(#,)= co.

N0
In the case of subregions we modify Nevanlinna’s function @7, in X,—X,

/
Tn

9
by the condition 5 =0 on IR ~\(X,~X,), and get the following theorem

1. #u,=const:=

similar to Theorem 1.
THEOREM 4. 7 is parabolic if and only if w;=0.
A harmonic boundary component 7, is defined by ry=/\4, where

4,=S,n 4 and 4 is the harmonic boundary of X—X, and S, is the closure of
S, in (X—X)*.
Denoting the harmonic measure of r4 by £r, we get the following
THEOREM 5. If r is parabolic, then 27 ,=0.
PrOOF. “:QA,L is compact because 4,=S,N4 is compact. Let £;, be

the harmonic measure of 74 then

1 on 7y
o~
0 on d—ry,.
And modified Nevanlinna’s function o7, satisfies the following boundary con-
dition:
1 on T4
Wy, = l
=0 on 4d—r4.

3) d}=D(u,) is monotone increasing with » [4]
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Therefore, ®f,—£7,=0 on the harmonic boundary of X—S,—X, and by
Nakai’s theorem [6] wf,—£2f,=0 on X—S,—X,. This inequality holds for all
7n SO we can conclude w;= 27, Consequently, if  is parabolic £;,=0.

§3. An application to the classification of Riemann surfaces and of
subregions.

As a direct consequence of we can enunciate, if R < Ogp—O0y,
R has only one non-weak ideal boundary component; if R & Ogp—0Oq, R has the
unique harmonic boundary point (which corresponds to an HD-indivisible set
in Constantinescu-Cornea [1]'s sense) which is contained in one ideal boundary
component. Then the harmonic measure of the ideal boundary of R measured
in R-(compact region) is an HD-function which does not satisfy the condition
of

In the case of a subregion, every subregion of class NOgp— M, has only one
non-parabolic ideal boundary component, where NOgp denotes a class of sub-
regions on which there exist no non-constant HD-functions whose normal
derivatives on the relative boundary are zero, and A, a class of subregions
whose doubles belong to O, [4].

This proposition is due to the following facts: If G & NOgxp—M, the ideal
boundary of the double G has two symmetric harmonic boundary points
(symmetric HD-indivisible sets) or G belongs to Onp—0O4 [5], and, since each
harmonic boundary point is contained in one ideal boundary component, G has
only one non-parabolic component. The same proposition holds for NOgxgg—M,
(cf. [2].

In the light of this proposition, we consider a metrical criterion when R
has infinite genus. Let do be a conformal metric on R, and I'y={P; PR,
d(P,, P)=p} be the geodesic circle about P, R with radius d(P,, P)=p. We
divide I', into dividing cycles I';, that is, I'y = kijI*i, and let L, (p) be the length

of I'; measured by dp. Putting L(0)=max L(p), according to Royden, if

b ch%f =00, (p-=d(P, ideal boundary of R))

then R belongs to Ozp [11]. While, for the family {I';} of dividing cycles
I';c I', which separate y and P,, Savage showed that, if

o dp
L{0)
then 7 is weak. But if

=00, (LT<,O): length of FT),

o _dp_ _ b _dp
o) = co, then (o) ~ ©o
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for all ideal boundary components 7, that is, all components are weak. How-
ever, if R € Oyzp—0O4 R has a non-weak boundary component y, and

P dp
LT(.O) <.
Therefore,
Poo d
L(g) <oo for Re OHD*OG

Consequently we get the following

THEOREM 6. If R & Ogp and j L( Ty = —oco for a conformal metric do, then

R & 0Og. In other words, if R < Oxp—0O0g, b= < oo for all conformal metrics.

L()

REMARK. The converse of Savage’s theorem is true, that is, if r is weak,

there exists a conformal metric for which f—l;%:oo. If r is weak, there
T

exists a canonical exhaustion {R,} for which 3 #¥ = co, where ! is modulus

of a component F? of R,—R,_, which is contained in S, [9]. We construct
Noshiro’s graph [8] of R with respect to {R,}. By the piecewise conformal
mapping of R into the graph, euclidian metric of the graph induces a conformal
metric do=p(2)|dz} on R. On the other hand, the extremal harmonic function
which gives modulus of F'Z induces a conformal metric d/ on F.. The metrics
dp and dl are homothetic on F, that is, geodesic lines of each metric coincide.
Therefore,

do

do
T R s el
UL = f and X uh < w Lo

(FTI;) LT(IO)
Therefore, if y is weak IL ) =oo for do=p(2)|dz|.
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