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1. Introduction. A subgroup $H$ of a finite group $G$ is called a Hall sub-
group if the order $|H|$ of $H$ is relatively prime to the index $[G:H]$ . A
normal subgroup $N$ of $G$ is a normal complement to $H$ if the conditions $NH=G$
and $N_{\cap}H=\{1\}$ are satisfied. The purpose of this note is to prove a result
giving a necessary and sufficient condition for $H$ to have a normal comple-
ment. Let $\pi$ denote a set of prime numbers. A z-number is an integer all
of whose prime divisors belong to $\pi$. The complementary set to $\pi$ is denoted
by $\pi^{\prime}$ . A subgroup $H$ is called a z-Hall subgroup if $|H|$ is a $\pi$-number but
$[G:H]$ is a $\pi^{\prime}$ -number. The main result of this note is the following theorem.

THEOREM 1. Let $H$ be a $\pi$-Hall subgroup of G. Then $H$ has a normal
complement if and only if the following two conditions are satisfied:
(1) two elements of $H$ which are conjugate in $G$ are already conjugate in $H$ ;

and
(2) if $x\in H$ satisfies the condition $C_{G}(x)\neq G$ , then $C_{H}(x)$ is a $\pi$-Hall subgroup

of $C_{G}(x)$ and has a normal complement in $C_{G}(x)$ .
We use the standard notation. $C_{G}(S)$ is the centralizer of a subset $S$ and

the normalizer is denoted by $N_{G}(S)$ .
We will mention a few consequences. The classical theorem of Frobenius

asserts that if a subgroup $H$ of a finite group $G$ satisfies
$H_{\cap}x^{-1}Hx=\{1\}$ for all $x\in\in H$ ,

then $H$ has a normal complement consisting of elements which are contained
in none of the conjugate subgroups of $H$ together with the identity element.
In this case $H$ is a Hall subgroup of $G$ . If $1\neq x\in H$ and $y^{-1}xy\in H$, then $y$

must belong to $H$. It is now easy to verify the conditions (1) and (2) for $H$.
Therefore our theorem yields the theorem of Frobenius. Consider next the
case when a Sylow subgroup $S$ of $G$ satisfies the condition $N_{G}(S)=C_{G}(S)$ .
Then $S$ is necessary abelian and the classical theorem of Burnside asserts
the existence of a normal complement to S. This is also proved by using
Theorem 1. We will use induction on the order of $G$ . The first condition
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(1) is precisely the lemma of Burnside. The second one is trivially satisfied
by inductive hypothesis. More applications may be found in the last section.

2. Proof of Theorem 1. Suppose that $H$ has a normal complement $N$.
Let $x$ and $y$ be two elements of $H$ such that $y=z^{-1}xz$ with $z\in G$ . By assump-
tionG $=NHsothatz=nhwheren\in Nandh\in H$. Then we have y $=h^{-1}n^{-1}xnh$ .
Hence

$x^{-1}hyh^{-1}=x^{-1}n^{-1}xn$ .
The left side of this equation belongs to $H$, while the other belongs to $N$.
Hence we have

$1=x^{-1}hyh^{-1}=x^{-1}n^{-1}xn$ .
The first equality yields the condition (1). If in particular $x=y$ , the above
two equalities yield the condition (2) in Theorem 1.

Assume conversely that (1) and (2) are satisfied by $H$. Let $H_{0}$ denote the
intersection of $H$ and the center of $G$ . Since $H$ is a $\pi$-Hall subgroup, $H_{0}$ is
the set of central $\pi$-elements of $G$ . The following lemmas are proved under
the assumptions (1) and (2).

LEMMA 1. A $\pi$-element of $G$ is conjugate to an element of $H$.
PROOF. Let $x$ be a $\pi$-element. If $x$ is in the center of $G,$ $x$ is contained

in $H_{0}\subseteqq H$. The element $x$ is a product of mutually commuting elements
$x_{1},$ $x_{2}$ , of prime power orders. If $x$ is not in the center of $G$ , at least one
of the factors, say $x_{i}$ , is not contained in the center of $G$ . Then $C_{G}(x_{1})\neq G$ .
By a Sylow’s theorem $x_{1}$ is conjugate to an element $y$ of $H$. Then $x$ is con-
jugate to a z-element of $C_{G}(y)$ . By (2), $C_{G}(y)$ is a semi-direct product of $C_{H}(y)$

and its complement. Hence by the theorem of Schur-Zassenhaus ([4], p. 132)
$x$ is conjugate to an element of $H$.

Let $x$ be an element of $G$ . Then $x$ is a product of two commuting ele-
ments $x_{1}$ and $x_{2}$ where $x_{1}$ is a $\pi$-element and $x_{2}$ is a $\pi^{\prime}$ -element. This decom-
position is unique. We call $x_{1}$ the $\pi$-factor of $x$.

Let $\theta$ be an irreducible character of $H/H_{0}$ with degree $d$. Define a func-
tion $\varphi$ on $G$ by the formula

$\varphi(x)=\theta(y)-d$

where $y$ is an element of $H$ conjugate to the $\pi$-factor of $x$ . By Lemma 1 we
can find such an element $y$ and by (1), $\varphi$ is well-defined. By definition $\varphi$ is
a class function. We want to prove that $\varphi$ is a generalized character of $G$ .
According to a theorem of Brauer [1] it sufEices to show that the restriction
of $\varphi$ on an elementary subgroup $E$ is a generalized character. It suffices to
consider the case when $E$ is a subgroup of $C_{G}(x)$ with $x\in H-H_{0}$ . The asser-
tion follows then from the condition (2).
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LEMMA 2. The function $\varphi$ is equal to $\chi-d$ where $\chi$ is an irreducible
character of $G$ .

PROOF. Since $\varphi$ is a generalized character, the assertion follows from
the equations

$(1/|G|)\sum_{x\in G}\varphi(x)=-d$ and $(1/|G|)\sum_{x\in G}|\varphi(x)|^{2}=1+d^{2}$ .

The computation is easy. Let $x_{1},$ $\cdots$ , $x_{m}$ be the set of representatives of con-
jugate classes of $H$ in $H-H_{0}$ . Then $\varphi(x)=0$ unless the $\pi$-factor of $x$ is con-
jugate to one of the elements $x_{i}$ $(i=1,2, , m)$ . Hence

$(1/|G|)\sum_{x\in G}\varphi(x)=(1/|G )$ $\sum_{i}[G:C_{G}(x_{i})]\Sigma^{\prime}\varphi(x_{i}y)$

where in the second summation $y$ ranges over $\pi^{\prime}$ -elements in $C_{G}(x_{i})$ . Hence
the above summation is equal to $(1/|H|)\sum_{x\in H}(\theta(x)-d)=-d$. The second equa-
tion is proved similarly.

Let $N(\theta)$ be the kernel of the representation with character $\chi$ in Lemma
2. Then $N(\theta)$ contains all the $\pi^{\prime}$ -elements of $G$ . Let $N_{0}$ be the intersection
of $N(\theta)$ where $\theta$ ranges all the irreducible characters of $H/H_{0}$ . It follows
easily that $N_{0}H=G$ and $N_{0}\cap H=H_{0}$ . $H_{0}$ is by definition a central Hall sub-
group of $N_{0}$ . Hence by a theorem of Schur [4], $N_{0}$ is a direct product of $H_{0}$

and a subgroup $N$. Since $N$ is a characteristic subgroup of $N_{0},$ $N$ is the
normal complement of $H$.

3. The second formulation. We say that a $\pi$-Hall subgroup $H$ of $G$

satisfies the condition $F_{\pi}$ if every nilpotent $\pi$-subgroup of $G$ is contained in
a conjugate subgroup of $H$. If we omit the word nilpotent, then we obtain
the condition $D_{\pi}$ of P. Hall. $F_{\pi}$ is weaker than $D_{\pi}$ . In fact $F_{\pi}$ does not im-
ply the conjugacy of two distinct n-Hall subgroups. By a theorem of Schur-
Zassenhaus ([4], p. 132), the existence of a normal complement to $H$ implies
the condition $F_{\pi}$ . As a matter of fact the existence of a normal complement
to $H$ implies $D_{\pi}$ but the derivation of $D_{\pi}$ requires a deep result of Feit and
Thompson [2].

LEMMA 3. Let $H$ be a $\pi$-Hall subgroup satisfying (1) of Theorem 1 and
$F_{\pi}$ . Then for $x\in H,$ $C_{H}(x)$ is a $\pi$-Hall subgroup of $C_{G}(x)$ .

PROOF. Let $P$ be a Sylow group of $C_{H}(x)$ . It suffices to show that $P$ is
a Sylow group of $C_{G}(x)$ . By a theorem of Sylow $P$ is a part of a Sylow
group $S$ of $C_{G}(x)$ . The group $E$ generated by $S$ and $x$ is elementary. Hence
by $F_{\pi}$ a conjugate subgroup $E^{t}$ is contained in $H$ Since both $x$ and $x^{t}$ are
in $H$, they are conjugate in $H$ by (1). Hence there exists an element $u$ of $H$

so that $x=x^{tu}$ . Then $E^{tu}\subseteqq H$ and $S^{tu}\subseteqq H$. Since $P$ is a Sylow group of $H$

we have $|P|\geqq|S^{tu}|=|S|$ . Hence $P=S$.
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By the same method we can prove that $C_{H}(x)$ satisfies $F_{\pi}$ . This suggests
the following formulation.

THEOREM 2. Let $H$ be a $\pi$-Hall subgroup of G. $H$ has a normal comple-
ment if and only if the following two conditions are satisfied:
(1) for any subset $S$ of $H$, two elements of $C_{H}(S)$ are conjugate in $C_{G}(S)$ if and

only if they are conjugate in $C_{H}(S)$ ; and
\langle 2) $H$ satisfies the condition $F_{\pi}$ .

PROOF. Use induction on the order of $G$ . By Lemma 3 and the remark
just made $C_{H}(S)$ satisfies the same assumptions as $H$. Hence if $C_{G}(S)\neq G$ the
inductive hypothesis says that $C_{H}(S)$ has a normal complement in $C_{G}(S)$ .
Theorem 1 is applicable and yields the existence of a normal complement to
$H$ under (1) and (2).

4. Applications. In the introduction we derived the transfer theorem of
Burnside. In the same way we can prove a theorem of Frobenius asserting
the existence of a normal $p$-complement of a group $G$ under the condition
that $N_{G}(U)/C_{G}(U)$ is a $p$-group whenever $U$ is a $p$-subgroup of $G$ . Recently
Kochendorffer and Zappa have remarked that a normal complement to a Hall
subgroup $H$ gives a “ distinguished “ set of representatives from cosets of $H$.
A set of elements $T$ is a distinguished set of coset representatives if $T$ con-
tains one and only one element of each coset of $H$ and if $T^{h}=T$ for $h\in H$.
They have verified that the existence of a distinguished set of coset repre-
sentatives and the condition $D_{\pi}$ are necessary and sufficient conditions for
the existence of a normal complement under the various restrictions on the
structure of $H$. The weakest restriction on $H$ given in [3] is the solvability
of $H$ If $T$ is a distinguished set of coset representatives and if an element
$t\in T$ transforms an element $x\in H$ into $H$, then $t$ commutes with $x$. Hence
the existence of $T$ implies the condition (1) of Theorem 2. Hence without
assuming the solvability of $H$ we have the same conclusion as a theorem of
Zappa.

THEOREM 3. Let $H$ be a $\pi$-Hall subgroup of G. There exists a normal
complement to $H$ if and only if there is a distinguished set of coset representa-
tives of $H$ and $H$ satisfies the condition $F_{\pi}$ .
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