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Let p be a fixed odd prime, and let ¢g,=p""' for any integer n=0. Let
F, denote the cyclotomic field of ¢,-th roots of unity over the rational field;
and @,, the local cyclotomic field of g,-th roots of unity over the p-adic num-
ber field. The main purpose of the present paper is to introduce three com-
pact modules X, 9), and 3 into the theory of cyclotomic fields F, and @,
n=0. They are defined as inverse limits of certain subgroups ¥,, 9., and 3,
respectively, of the additive group of @, n=0, and %) is a submodule of
X;3, a submodule of ¥). We shall determine the algebraic structure of ¥X/3
by direct computation, and we shall also show by class field theory how X/9)
and /3 are related respectively to the ideal class groups and the unit groups
of the fields F,,n =0. Using these results, we shall then study the group-
theoretical meaning of the classical class number formula for F, as noted in

a previous paper [10].

§1.

1.1. Let Z, Z,, Q and Q, denote the ring of rational integers, the ring of
p-adic integers, the rational field, and the p-adic number field respectively.
We shall fix an algebraic closure £ of @,, and consider all algebraic extensions
of @ and @, as subfields of 2.

Let F denote the union of all F,,n=0; and @, the union of all @, n=0.
Then both F/Q and @/Q, are abelian extensions, and their Galois groups are
identified in a natural way. Put

GC=GF/Q=G(2/Q,)",
Grn=GIW/@)=G(9./Qy,
I'=GF/F)=G(®/D,)),
I'n=GF/F)=G(D/,), n=0,

* The present research was supported in part by the National Science Foundation
grant NSF-GP-379.

1) G( / 7 shall denote the Galois group of the Galois extension in the paren-
thesis.
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so that I'=I",,G,=G/I',.

Let W, (n =0) denote the group of all g,-th roots of unity in F, (in @,),
and let W be the union of all W,,n=0. Let U be the multiplicative group
of all p-adic units in @,. Then there exists an isomorphism

£:G-U
such that
COZ CK(O’) ,
for any ¢ in G and ¢ in W. The image of I' under & is the subgroup U, of

all w in U such that u=1 modp. Let V denote the subgroup of all (p—1)-st
roots of unity in U; V is a cyclic group of order p—1, and

Let 4 denote the subgroup of G, corresponding to V¥V under x. Then
G=Ix4,

and 4 is canonically isomorphic to G,.

For any u in U, let o(u) denote the inverse image of u under x; o(u) is
the element of G such that (" =" for any { in W. We denote by o(u),
the image of o(u) under the natural homomorphism G—G, (n=0). Clearly
o(u), depends only upon the residue class of # mod g,.

In general, for any group & and any additive abelian group A, let A[&]
denote the set of all maps f:&—A such that f(x)=0 except for a finite
number of x’s in . Defining f+g by

S+ =r(x0)+gx),

we make A[@] into a module. If A is a ring, A[®] is nothing but the addi-
tive group of the group ring of & over A. If there is a homomorphism G— @,
we can also make A[®] into a G-module, by defining of as

(00 =r(s""x), re®,
where s denotes the image of ¢ under G —@.

For any integer i, we define an element ’c of the group ring Z,[G] by

e=(p—D7 X v=%(v), ve V.

The elements %, ¢, ---,77% form a system of orthogonal idempotents in Z,[G]
with 2% =1. We also put
fe= 3 ‘e, “e= 3 t,

i even i odd
Then *et-e=1, *¢7e=0. [t Aisa Z,[G]-module, we define submodules of A

by
tTA="eA, “A="¢eA, tA="¢A, 0i1<p—2.
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Then we obtain the direct decompositions
A=1TADP A="AP'AD --- PP?A.
1.2. Let
R, = ZP[Gn]’ &= Qp[Gn] ’ n=0.

By means of the natural homomorphism G—G,, both R, and &, become G-
modules and hence, also Z,[G]-modules. Let %Y denote the submodule of all
a0 (0 € Gy, ap <€ Zy) in N, such that 3} a,=0, and let

0 0

s21-7), - an '+ 2“91; an - ERnf'ﬂ. y
where

f=ai' T (a= 3 )o@, 0=a<qn@p=1.

Clearly %, and B, are Z,[G |-submodules of &,.
Let m=n =0. Then the natural homomorphism G, —G, defines a Z,[G]-
homomorphism

toym ' ©n— &,
in the obvious manner. There also exists an injective Z,[G ]-homomorphism
thn:©, &,
such that
t;n,n ° tn,m(a) = Vp,m& , Q< @m ,
where

m-—n_.

Vo= 3 o(L4pyP".

=0

Since t,,n(0(a)n) =0(a),, we see easily that &, (M) ="N,, &, () =N, and
tn,m(f’m) = gn .

Hence
baym) =Wy, 1, (D) =B, .

Let % and B denote the inverse limits of A, and B,, n =0, respectively,
relative to the maps ¢,,,, m=n:

A= 1lim A, B=1mB,.

A, is a compact submodule of &, in the natural topology of &, defined by
the p-adic topology of Q,. Hence % is a compact Z,[G]-module, and B is a
closed submodule of NA. Since B,, n =0, is compact, the compact Z,[G]-module
A/B is the inverse limit of A, /B, n=0:
N/B = lim A, /B, .
Hence
=A/BVB) = lim *N,,/*B,, ‘A/B)=1im 9, /"B, , 0izp-2

b



Some modules in the theory of cyclotomic fields 45

where *(U/WB) etc. denote the components of the decompositions of respective
modules defined in 1.1.

Let
tfn:tEEny ZEn:iS‘fn, 0§1§p—2

Then

T, =P 2o, o€ Gy,
o) '

&, =gy = QCa—qpo(a)y,, 0=a<qu(a,p)=1,
and
(2) k(o)o=&,="E, mod R, oG,

PROPOSITION 1.
W, =B, DR, "B,=Z,"¢,,

W, ="R,, "B,=0, i even, i 0,
N, =N, 8B, = RE, = RE,, 1odd,i+# p—2,
pe2g| — P~2B

ProoOF. It is clear that N, =“8,+*RY and B, =R,¢,="R,¢, for every 1.
Let 7 be even. It follows from (1) that *&,="‘¢*&,="€, or *£,=0 according
as 1=0 or 1#0. Since °B,=N,*¢,=2Z,*¢, and Z,"¢,N\ "R}, =0, we obtain
N, ="B,P'N,. We also see from the above that “B,=NR,&,=0 and N, ="N,=*R,,
for 10.

Next, let 7 be odd and 1% p—2. It then follows from (2) that *&,="'"¢&,
1s contained in *R% =*¢N%. Hence N, = N,'&,+ R =R =R,

To prove the last equality, we consider cohomology groups of I'/I",. It
follows from (2) that

k(0)oP=2E, ="7"2¢,  mod P2RY = 2R, | oG,

and that ?~2,/?~2R, is a cyclic group of order ¢, generated by the coset of
p-2£ . The above congruence then shows that H*({I"/I',, ?72N,/?2R,)=0 for
every k. Since P*R,=Z,[I'/I",] as (I'/I",)-modules, we also have H%I'/I',,
=2R,)=0. Hence H*I'/T",,?~*N,)=0. However, as ?~2, is a free Z,-module
of rank p", #72, is isomorphic to p(*~2,), and H*I"/I,, p(*2A,)=0. There-
fore, H*(I'/T",,, ?~*N,,/p(*~2A,) =0 for every k, and we see that ?=29(,/p(*~2),)
=(Z/pZ)I'/T",] as (I'/T",)-modules. On the other hand, since ?~2£, generates
p=29 /P72, it is not contained in the submoduie p(P~2U,)+?72R, of index p in
p=2)(,.. Hence the cosets of p?72¢,, 0 I'/I",, form a basis of the abelian group
=2, /PPN, It follows that P=20, =7-2B,+p(*~2W,), and hence that #~2Y,
= PP,

It also follows from the above proof that
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Ay N\ Ry =B DR,
W/ W N\ R) = (B /("B DU /PR,
Since [?~2N,,: ?7*R, ] =¢q,, we obtain
[R,: %, ARI=p",
[, 0, A\ R, = p2et,

&)

Now, let i be the inverse limit of 9%, n =0, relative to ¢, ,: R,—R,, m=n,
and let N° be defined similarly. 3t is a compact Z,[G]-module, and R° is a
closed submodule of R. Since ¢,  (*€.)="'¢, m=mn, the elements *6,,n=0,
determine an element ‘¢ in ®. It then follows immediately from the above
proposition that

o /B) = RO,
YN/BY="%R, t even, 10,
YA/B) = “R/IRE, 7 odd, i#=p—2,
P~2(/B) =0 .

In general, for any compact Z,[I"]-module A, we put
AP =A/w, A, n=0,
where
®, = 1—0o(1-4+p)P". n=0.

PROPOSITION 2. The natural homomorphisms ~(N/B)— N,/ B, and (N/B)

— M, /B, 1+ 0, induce isomorphisms
“(A/BY™ =N, /7B, ,
L(S)I/%)(n) = 7‘Q['n/l%n s 1 +* O: n —_>—_ 0.

Proor. Let 10 and m=n=0. We first notice that H*1I",/I",,, N,,) =0
for every k& For i=p—2, this can be shown similarly as in the proof of the
previous proposition. For i+ p—2, it follows from “U,, ='R,,.

Since ., 0 ty,m(Q) = vy n, @ € N, and since ¢, , is injective, we see from
HI /T, N,,) =0 that the kernel of ¢, ,: ", — ™A, is »,,. Therefore, the
kernel of N, /"B, —N,/*B, is @, (N,./"B,). Since this holds for every m=n,
the kernel of ‘(A/B)—N,/"B, is »,'N/B). As W/B)—U,/"B, is surjective,
we obtain an isomorphism ‘(U/B)™®—U,/*B,. The isomorphism ~(A/B)™
= -),/~B, is a consequence of what has just been proved.

1.3. Let 4 denote the local ring of formal power series in an indeter-
minate T' with coefficients in Z,:

A=Z,[[T]].
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Since “R,="'eN, is isomorphic to Z,[I'/I',] as algebras over Z,, there
exists a ring isomorphism over Z,:

Ra— A/A—A+T)H"),
which maps *so(1-+p), to the coset of 14-7 mod (1—(1-+7)?"); here (1—(1+7)"")

denotes the principal ideal of 4 generated by 1—(1-+7")?". These isomorphisms,
for n =0, then define a topological ring isomorphism over Z,:

R— A,

mapping ‘eo(14-p) to 1+7. We see easily that R} corresponds to (7")/(1—(1
+T)P™) so that ‘M0—(T") under the above isomorphism. For odd i+ p—2, let
Lg___)lg

under the same isomorphism. We shall next describe the power series ‘g.
For any ¢ in @, there exist a rational integer &6 and a power of p,p™

(m=0), such that p™z=5b modp™, 0<b<p™ The rational number b/p™ is

then uniquely determined by a, and hence will be denoted by <{ay. If a is a

rational number with its denominator a power of p, then {(a) is nothing but
the fractional part of a:<{a)=a—[a]. With this notation, we may write ~&,

in the form
“ta=o(2( 2 Do@n),

where a ranges over any system of representatives of U/(14-¢,Z,). Since
v(1-+p)°, 0Ze<prve V.,

form such a system of representatives, we obtain
[ - P R N ﬂk‘i@i e
ety ="o( 2 SCELE Bot),001492)

=e(2n (P S py),

for any odd 1 # p—2. Hence we see that
'g(T)= 1Lm g(T),
where ‘g (T) denotes the polynomial of degree at most p™ defined by
) pP—1 (1 ° . .
0= 5 5P vy
e=0 v qn
We notice that

(M ="gu(T)="gT) modA—1+T)Y", mz=n.
Hence

g (0) = ‘gy(0) = j,— " av(ay',

a=1



48 K. Iwasawa

where v(a) denotes the element of V such that »(a)=a mod p.

Now the following proposition is an immediate consequence of what is
stated in the above:

PROPOSITION 3. Let A=Z,[[T]1] be made into a Z,[I']-module so that

o(1+px=AQ+T)x

for any x in A. Then, as Z,[I']-modules,

WA/BY=(T)=TA (= A1),

N/ B)= A, 1even, 10,

/B~ A/(g), i odd, 1 #p—2,

EAU/B)=0,
where (*g) denotes the principal ideal of A generated by the 'g defined in the
above.

Let y be any character of U/(1+¢,Z,) with values in £. Then there
exists an integer i such that y(v)=10" for every v in V. With i fixed, let

Da=1 (- Pex@),

where 0=<Za<gq,(a,p)=1, and where y ranges over all characters of
U/(1+q,Z,) satisfying y(v)=v’,v = V. Then the classical formula for the first
factor ~h, of the class number of F, states that

%) “h,=2g, TI (—%JDO 0=i=p—2,3, =1

Hence ‘D, # 0 for every odd index i (0 <7< p—2). Furthermore, it is easy to
see that 'D, is a p-adic integer for 7= p—2 and ¢,*2D, is a p-adic unit®.

PROPOSITION 4. The compact I'-module ~(N/B) is strictly I'-finite®, and the
order of ~(W/BY™ =N,/ B, is equal to the exact power of p dividing the first
factor ~h, of the class number of F, n=0). For any odd i, the I"-module
YN/W) is also strictly I'-finite, and if i +# p—2, the order of “W/B)™="W,/*B,
is equal to the exact power of p dividing the p-adic integer D, + 0.

Proor. We may write ‘D, in the form:

D=1 (Z (D),

where { ranges over all p"-th roots of unity in £. Hence we see that ‘D, is
equal to the determinant of the circulant matrix whose first row is
2) See [5] §5.
3) See [10] §2

4) For the theory of I'-finite modules which will be used throughout the paper,

see and [1T7]
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VAP N Y L . :
( 2< t >v, ),e=0,1,+,p"~1. On the other hand, it follows

from that for odd i+ p—2, we have
W/B)™ = A/(g, 1—1+T 3"

=A"/Cgn), n=0,
where

AP = Ao, A="5 Z,0+TY .
e=0

Since 1+T)Y"=1 on A™, we see from the above that ‘(A/B)Y™ is finite, and
its order is equal to the exact power of p dividing ‘D,# 0. On the other
hand, we know that ¢,»2D, is a p-adic unit, that ~(U/B)™ is the direct sum
of *(A/BVB)™ with odd 7, and that »72A/B)™ = »-2Y, /P~2B,=0. Hence it follows.
from (I) that the order of ~(A/B)™ is equal to the exact power of p dividing
~ho,.

For odd i+ p—2, let p*™*» denote the order of *A/BV)™. Using UA/B)
= A4/Cg), we may express the characteristic function c(n ;1) of the I'-module
N/B) as follows®: By Weierstrass’ preparation theorem, there exist an
integer ¢; =0, a unit "u(7") in A=Z,[[T]], and a polynomial *m(7) of the
form:

‘m(T)="ay+ - +iadi—1Tdi~l+Tdi , ‘a € ply.
such that
'g(T)=p*uw(TYm(T).
The integers d;=0 and ¢; =0 then give the invariants of *(2/B); namely, for
all sufficiently large #n, we have

cn;)=dn+ep"+r;,
with an integer r; independent of n. It follows in particular that the invariant

e; is positive if and only if ‘g(7) is divisible by p in 4= Z,[[7T]], namely, i1f
and only if for every n=0,

2<£(L;;]>_)_ =0 mod p , 0Ze<p®,
or equivalently
§<—C;%>viz mod p,

for any a in U®.
1.4. The algebra &,=Q,[G,] has an involution a— a* such that p*=p™*
for any p in G,. We see easily that Rk =0, (R*=R}, and

5) See [11] The ring 4 was first introduced by Serre into the theory of I'-finite
modules.

6) See [T]
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Wk =B+, B =M, L5,
‘where

gr=0 S (a— 2 P Vo(@nt,  0=a<g, @ p=1.

The homomorphism ¢, ,: ©,—©,, m=n, commutes with the involutions on
®, and &,, and maps % onto ¥. Hence if we denote by W* the inverse
limit of %A¥,n =0, relative to £, ,, then the maps N,—A}¥, n =0, define a topo-
logical Z,-isomorphism
W — Yx
such that
(caY* =0 la*, oeG.

The inverse limit of BF,n =0, gives a closed submodule B* of A* and the
above isomorphism induces similar isomorphisms B—B¥ and N/B— W/ B*.
Since
(Feyf=re, (e)¥='e, O=i=p-2,1+j=p—-1,
‘we have
Q=CWE, O =CWF, i+j=p-1.
“These modules will be denoted simply by ** and “U* respectively, and simi-
larly for the submodules of B* and W*/B*,
Let
Res:Q,—Q,/Z,

be the natural homomorphism of the additive group @, so that Res(a), c = Q,,
denotes the residue class of ¢ mod Z, For each n=0, we define a non-
degenerate symmetric pairing &, X &,—Q,/Z, by

(e, B)rn=TRes (3 asbyp),
0

for any a=>ap0 and f=2 b0 (0 =G,) in &,. Then we see easily that
0 0

(o, 0f),=(a, B)n, ape,oeG,
(ar, Bn=(a, Br*), a,Bres,,
(tn, (), B =(t, ], o BV » aes,, e, m=n.

PROPOSITION 5. For each n=0, there exists a non-degemerate pairing
O,
U /Br) X QA /BE)—Qy/ Zy
such that
(Gx: Gy*)n - (x: y*>n 1 g G ’
(o, X), ) = (X, b0, i Y Dim m=n,
tor x in ~(N,/B,) and y* in ~OF /BEX) or in ~(AX /BE).
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Proor. We first notice that since ¢, , Q20 ) =15 0%, (%) =, A% and
similarly 4, (B})= v, .8k, tn . induces homomorphisms A} /B —A%/B, and
- /B — W/ B, m = .

Now the pairing («, f), on &, induces a non-degenerate pairing &, X &,
—Q,/Z, For any subgroup A of "©,, let A+ denote the annihilator of A in
~&,. Since “N,/7B, is finite, it follows from B,="N,7¢, that ~¢, has an
inverse in the algebra ~&,. Therefore, &} =("&,)* also has an inverse in "&,,
As (TR)L =N, it follows from ("R, &,, B, =R, BE)*), that

(Bt =CROH(CEN)T = "R (CEF)T.
Since N, = "B,+"R), ="-B,+"N,, we have
(-‘mn}L - (~%1L>J‘ N (—'Stn)L = ﬂéRn(ﬁgﬁ )_1 m —g{n s
and
B /W) = "R (CEX )/ CRACEE ) N\ "R
= "R,/ RN TRLER)
= (CR,EE TR/ TRLER
= "Wk /B
Clearly the pairing on ~&, induces a non-degenerate pairing of =%,/~8, and
BOL/CUL)E into Q,/Z,. Using the above isomorphisms, we then obtain a
pairing (x, y*), : (Wo/B) X WS /~B¥)—Q,/ Z,,.

Let a be an element of ~¥, representing x in ~N,/~B,, and let F be an
element of ~R, representing y* in W /~BF, where "W =-BF +-R,. Then, by
the definition,

(.X, y*)n - (as ﬂ(—-fj: )—'l)n - (CK—E;I, B)n .
Hence it is clear that (ox,oy*),=(x,y*), for any o in G. Next, let x be in

W,/ B, and let a be an element of ~N,, representing x. Using the fact that
tn,m 18 @ ring homomorphism mapping ~&,, to ~&,, m=n, we have

(tn,m(-x): y*)n = (tn,m(a)—‘g'r—zly B)n = (tn,m(a—f;tl)x ﬁ)n
=(a &, th, o BDn
= (]C, tvln,n<y*))m .
Hence the proposition is proved.
PROPOSITION 6. The I'-modules ~(N/B) and N/B), with odd i, are regular
and self-adjoint®.
PrOOF. For each n =0, we define a pairing ~(%,/B,) X “N,./B,)—Q,/Z, by

(X, V= (2, Y, x,y€ (/B
where the right-hand side denotes the pairing of —(,./®B,) and -~ /B}) given

7) See [8], §5.
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in It is clear that (x,%), is non-degenerate and satisfies
(0%, ) =(%, 0, oG,
(g (), YDn = (X, E10, i YD mzn,

for x in ~(%,/B,) and y in ~N,/B,) or in ~(A,/B,). Since “(A/BY™ =-(N,./B,),
the existence of (x,y), shows that ~(A/B) is self-adjoint. It is easy to see
that for each odd ¢, (x,y), induces a pairing “(N,/B,) X ‘N./B,)—Q,/Z, with
similar properties. Hence /®B) is also self-adjoint. Since every self-adjoint
I'-module is regular, the proposition is completely proved.

We note that we can obtain a similar result for any strictly I'-finite
I'-module of the type A4/(g),g< A.

1.5. The group W, which is the union of all W,,n =0, the group of ¢,-th
roots of unity in £, is isomorphic to the additive group @,/Z,. In the fol-
lowing, we shall fix an isomorphism

c:W—-Q,/Z,,
and denote by {, the g,-th root of unity in W, such that

(&,)=Res <-ql~n—> , n=0.

Let o, denote the ring of all integers in the local cyclotomic field @,, and
let b, be the unique prime ideal of o,;p, is the principal ideal generated by
T,=1-¢,.

The additive group of the field @,, which we shall denote again by @,
is a locally compact abelian group in its natural p,-adic topology. Let T,
and 7T, , (m=n=0) denote the trace map from @, to @, and that from @,
to @, respectively, and let

{a, By = Res (T'(af))
for any «,f in &, Then we have a non-degenerate, symmetric pairing
D, X 0,—Q,/Z, such that
la, Brn=Xa’ B, afe,oeq,
a, B =AT0u), B>n., aEDy,LED,m=n.

For any closed subgroup A of @,, we denote by At the annihilator of A in
¢, relative to this pairing. Then AL is a closed subgroup of @, such that
(A)r=A, and A and @,/AL, as well as AL and @,/A4, form a pair of mutu-
ally dual locally compact abelian groups in the sense of Pontrjagin. If A is
in particular a non-zero ideal of @,, then A+ = A-'d;! where

bn - an;pn
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is the different of @,/Q,. In the following, any pairing of locally compact
abelian groups with similar properties will be simply called a dual pairing.
Let @* denote the multiplicative group of @, ; @} is also a locally compact
group in the p,-adic topology. Let U, denote the subgroup of all local units
in @, and let
Uno=1+D,.

Then U, is an open, compact subgroup of @}, and
o¥=1,%xU,, U,=U, XV,
where 11, denotes the cyclic subgroup of @} generated by =,.
Let ¥, be the set of all elements of the form log a with « in U,,:
¥,=log U,,.

¥, is an open, compact Z,-submodule of @,, invariant under G. Let
X,=2%;

X, is the set of all a in @, such that T, (alog 3) is contained in Z, for any
B in U,,,. By the duality, X, is also an open, compact Z,-submodule of @,,
invariant under G.

Let

ﬁnzqzlic;‘zqglzc,ﬁs, n=0.
$=0 $=0

PROPOSITION 7. The (p—1)p" elements 8), o € G,, form a normal basis of
0,./Q, (as well as that of F,/Q), and they generate over Z, a submodule M, of
index pP"~t in gylo,:

[gn'on: D] =p? .

ProoOr. We use induction on n. Since 8,= p~1{;?, the lemma is obvious
for n=0. Let n>0. It follows from the induction assumption that g, ,M,_,
is a free Z,-module of rank (p—1)p™~!, with index p*"™'-! in 0,_,. On the
other hand, it is easy to see that o, =0,_,+¢,IR, and that ¢,,_, is contained
in 0,-y N g M, Hence we obtain from 0,/¢, M, = 0,1/ N g.M,) that

(002 @] = (0,211 My ]
- [Dn-—l : Qn~—lslnn—-1]l:Qn~ISD?n-—l : Qnmn——lj

— pp"“l-l p(p—-np""‘l
p— pp”-l .

It follows that (p—1)p" elements 6, are linearly independent over @, and
form a normal basis of @,/Q,. Considering the action of the Galois group of
0p/Ppy on g, M,, we then see that ¢, M, ,=0,,"\¢M,. Hence we obtain
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from the above that [o,: ¢, ] =p"""1, q.e.d.
LEMMA. Let
CKZZC,;@Z, ,OEGn,
0

with ¢p in Z, satisfying 2, c,=90. Then a is contained in X,.
0
Proor. Let p(m) (m = 1) be the Mobius’ function, and let

o £(m)
= I (Q—mm) ™,

(m7751=1
for any integer a =1®. Then these elements ¢ generate the group U, =1+,
topologically. Hence an element « in @, belongs to X, if and only if
{a,log 7@>,=0 for every a=1.

Since
(p—Dp™, it pij,
T"(C{l): '_ﬁp”’ lf pn+1 *]’ pnIJ’
0, if prrg,
we have

T my=5 (1 (D) T

= x (P w (),

A ey
for any ¢ prime to p. Using
log £ = — 33 p=mar”,
€=0
we obtain
ips 091 —e ¢
@ Ta'tilogriy=—p={ ¥ (~1y(*%")
€=0 [Eips(pn'l'l)
ost=ap®
—pt (_l)t(ape)}'
tEips(pn) t
ost=ap®
The series
5 D p—e 1Y ape
© {2 o))
0=t=ap®

converges for m =0, because 3 (—1)‘(0? ):(1—1)“109:0_ Since the series

0=t=ap®
on the right-hand side of (4) converges, we see by induction on m that the
series (5) converges for every m =0. Hence

8) See [2], §7.
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T(g7'C7" log t@) = —go > (_1)z<a§>e)}

e
+ ip—(&rl){ » (_l)z<ape)} .
e=0 t=ipS(p"™) ¢
0=t=ap®
Using
e e+t
(4)=C5) mae,
we have

—“'s(l’")(— Dt( ) - szipsgl:(ang - 1){ (ap +1> + { (ape ) < pCH) }]

o=t=ap® ostp=aptt!

apetl

= » (" )4,
= ipS L (pntly t
ost=apet!

where 7, =0 mod p***2. It follows that

T(gn'Cat*" log Ti) = — gﬂp {L W%MS 1)t(afe)}

+3pe w0}
=0 t=ipStipn H)
ost=qpctl

+ % p——(e+1)re
e=0

=— S pe (A
- EOP Logfzg,;p—:;l() 1)( t >}

00 e pe
+§0p {t Z%iﬁﬁ’;ﬂ)( 1)t<at )} mod Z, .

Taking the sum over s=0,1,---,n, we obtain for p=o0(3), that
t(aD°
o (%))

2 ape
= ‘oé’fziZ;;g 1( } )} modZ,.

T (02 log ) = E p—e{
t=i(p™tY)
ost=ap®

However, if {=1:mod p™*!, then ¢ is prime to p, and

(a‘be) = ——(GPEMI =0 modp°.

9) See [2] Hilfssatz 2.
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Hence the first sum on the right-hand side of the above is contained in
Thearefore,

T/0,log ) =u® modZ,,
where

we=5{ 2 o))
o=t=ap®

It then follows that
T alog )= coul® =0 mod Z, .
0

Hence a is contained in X,.

1.6. Now, by there exists a Z,[G]-isomorphism

-such that
@(0)=0,
for any p in G,. Since
N0, =T0)=— 1=, 0 <Gy,
0 P
‘we have
@n()PEP):l, :OEGn-
0
Let
Py = RIS n=0
qn  Tn
“Then
2 aﬁz(a) :q i 2 a}’ a
e a

pR—=s |

'3 3 (3 @tka)s
(cfp)zqs

n
—- — — =3
=q;' 2 X P*TalrT
$=0 0==a<qs
a,p) =)

70— 1 T —3
+an BT 5 g
R

— 'S ate—gp :%),ZZT’,“
a=0

Cu _ P21

Hence
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Pn=Qn' 2 (a——@gg)ﬁi(“’, 0=a<qm(ap=1,
and we have
PalEn) = tn .
Since
Ty n(0n)=10.,, mz=znz=0,

we also see that the following diagram is commutative:

Pm
S, — 0,

[n |Ten
Pn
@n — D,

THEOREM 1. The map ¢,:S,— D, defines a Z,[Gl-isomorphism
A, — X, , n=0.

Proor. [t follows from the lemma in 1.5 that ¢,(R) is contained in X,.
It also follows from Artin-Hasse’s explicit formula for Hilbert’s norm residue
symbol in @, that ¢, =@,(£,) is contained in X,**. Hence ¢,(N,) = ¢, (R, E,+RY)
is a submodule of X,.

The annihilator of p2*“*'=log (1+p2"*") relative to the pairing {«, £, is
PP =q;'p;'. Hence X, =(log (14p,))t is contained in ¢;'p;*, and [g;;': X,
=[log (1+p,): log (1-+pr"+)]. However, the kernel of the log map: 1-b,
—log(1+p,) is W,, and W, ({1+p2")=1. Hence [log (1-+p,): log (14pz"+1)]
=g [1+D, : 102" ) =" p?", and

rC[ZlD;' : %w] :pp"-n—1 ‘

On the other hand, it follows from (3) that [¢,(0.): 0., N\ RDI=D", [¢.(A):
0,00, A RD]=p*+. By [Proposition 7, M, =¢,(R,) has index p?"! in g;'o,.
Hence [g7'0;': ¢(R,)] = p*", and we obtain from the above that
LG 1 @ Q)] = p
Since ¢,(3,) is contained in X,, we see that ¢,(,)=1X%,, q.e.d.
Let
Sn - §07L(§Bn) ) n ; 0 .

3. is the submodule of X, generated over Z, by the conjugates g, o< G,, of
ty. Clearly we have Z,[GJ-isomorphisms

EBn —’871 , 82In/EBn e v)en/Sn .

Since the diagram

10) See [2] and 3.1 below.
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Pm
S)Im - xm
1tﬂ,77! JTn,m ’ mgn;o,

AN, —s %,

is commutative, we obtain 7, .(¥,)=%,, and similarly 7, .(8,)=23.. Hence,
let ¥ and 3 denote the inverse limits of X, and 3,, n =0, relative to T}, .. : X,—%,
and T,m: Bn— 3, m=n, respectively:
X=1imX,, 3=1m3,.
X is a compact Z,[G]-module, and 3 is a closed submodule of ¥. From the
above, we obtain immediately the following
THEOREM 2. The maps ¢,:S,—@,,n =0, induce Z,[Gl-isomorphisms:

A-%, B-3, A/B—-X/3.

We now see the structure of the compact Z,[G]-modules ¥, 3 and ¥/3
from the propositions in 1.2-1.4. We note in particular that ~(¥/3) is a regular
strictly I'-finite I'-module such that

X/ ="%,/"8, =W, /B, , nz0,

and that the order of =(X/3)™ is equal to the exact power of p dividing the
first factor ~h, of the class number of F,.

§2.

21. For m=zn=0, let N, and N,,, denote the norm map from @, to Q,
and that from @, to @, respectively. The restriction of N, on F, obviously
gives the norm map from F, to @, and similarly for the restriction of N, ,
on F,.

Let P, be the set of all « in F, such that the principal ideal (@) in F, is
a power of the prime ideal (x,). P, is a subgroup of the multiplicative group
F¥ of the field F,, and

P,=1,xXE,,

where £, is the group of all units of F,.
Let *F, denote the maximal real subfield of F,, and let *F'¥ be its multi-
plicative group. Put

TP, =% FF¥ NPy, L, ="FYNE,.
Then *F, is the group of all units of *F,, and
tP, =%, X*E,, E,="E,xW,,

where *11, denotes the cyclic subgroup of *F'¥ generated by *n, =L, 6 = a(—1).
It follows immediately from the definition that
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P,=F~P,, m=n=0,
and similarly for *P,, E,, and *E,.
For any m =n, Ny n(Pn) is a subgroup of P,. Let
Pi=N\Nynu(Pp).

Since N, (7n)=r,, ©, is contained in P;, and
P,=1,XFE},
with
Ey=PiNE,= N\ Nyu(Ey).

Since N, (") =*7,, N m(Cn)=C,, We also have

tPL="%,X*E}!, E,=*E,xXW,,
where

PL="FENPL= () Nom(Pa),  *Bi="FfNE,= () NynCEn).

It follows that

PP, =P, /P, =E,/E,="E,/*E}, n=0.

Let @, denote the subgroup of F} generated by =z, and its conjugates
n%, o € G,. Since P is invariant under G, @, is contained in P/. Let

Co=E.NQ.=E,NQ,.
Then

Q,=1,XC,.
Since # %= —¢,, =W, is contained in @,. It follows that
Co="C, X W,, Qu="I, X *C,,
where *Q,=Q,N*F¥ and *C,=C,N*F}. Hence
Po/Qn="Pu/*Qn=E,/C,="E,/*C,,
P /Qu="P,[*Qu=E, [C,="E,/*C,, nz0.
Let » be a fixed primitive root mod p?, and let

e, 1s a so-called circular unit of the cyclotomic field F,, and we see readily
that *C, is generated by +¢, 0= G,. Hence the classical formula for the
second factor *h, of the class number of F, states that

(1D th,=["E,:"C,]'V.
11) See [5] §1;
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It follows in particular that *F£,/*C, is a finite group.
Let *G, denote the Galois group of *F,/Q. Since *P,/*Q, is finite and
since

1-¢HA— n FoT—1
1+8 — il—cczg((l—gzlg = Fg2-l G:G(?’)n,

we see that the subgroup of *Q, generated by 'z}, o *G,, is G-isomorphic
to Z[*G,] and has a finite index in *@Q, which is a power of 2. Hence the
cohomology groups
HY T /Ty, *Qum) =0,

for any £ and m=n=0.

PROPOSITION 8. The group *P; has a G-subgroup P! such that P/ =Z[*G,]
as G-groups and such that the index [YP}, : P} is finite and prime to p.

ProoF. For any m =0, let M, denote the extension of F, obtained by
adjoining all g,-th roots of elements in *P,, and let M be the union of the
increasing sequence of subfields M/, m =0, in £. Since E,,=*FE, X W, and
since *z?""/*z, belongs to *E, for any [=m, M is nothing but the abelian
extension of F obtained by adjoining p'-th roots of elements in £, for all /
and m=0. Let M, be the maximal abelian extension of F,, contained in M.
Clearly F'is a subfield of M,. Let A, denote the character group of the
compact abelian Galois group GWM,./F). For ahy x in A, and o in G, we
define y° by

xo(u)= x(u™), ue G(Mu/F),

'=s"ys with an element s in G(M,,/Q) which induces ¢ on F. We

where us™
then have
=), r€Ay0,teG,
and A, becomes a Z,[G]-module. For the structure of A,, we know the
following'®: Let J,="((Q,/Z,)[G,]). Then there exist an integer n, =0 and
a fixed finite p-primary Z,[G]-module D such that whenever m =n,, the
Z,[G]-modules A,, and J, have submodules B, and D,, respectively, with the
property
An/Bn =D, B,=7./D,., D,=D.

Since D is finite, p°D =0 for some e =0.

Now, given n =0, we choose an m such that m = n, n;,2e. It is easy to see
that M, =F, and GWFM,,/F)=GWM!/F,). Let A}, be the submodule of
A,, corresponding to the sub-extension FM,/F of M/F. Then by the theory

of Kummer extensions, there exists an isomorphism f: *P,/(*P,)% — A, such
that

12) See [97, §10, Theorem 17.
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S =r(0) (%), oG,

for any x in *P,/(*P,)*. Such an isomorphism or homomorphism of Z,[G]-
modules will be called in general a k-isomorphism or z-homomorphism',

As an abelian group, *P,,/{+1} is isomorphic to Z°, s:%r(;b—l)pm. Hence

AL, =P, /("P)tm = (Z/q.Z Y. Let Aj,=p°A;. Since A,/B,=D and p°D=0,
A/ is a submodule of B, isomorphic to (Z/q,-.Z)’. Let J;, be the submodule
of all x in J, such that ¢,-.x=0. Since p°D,,=0 and m = 2e¢, D, is contained
in pJ.. ldentifying B, with J,/D,, put B, =/,/D,. Then B/ is contained
in A” and AZ/B,, =D, B.L/pB,=],/t/n= " (Z/pZ)G,]). Clearly finduces a
e-isomorphism g: *P,/(*Py)im-e— A = p*A},. Let S, be the subgroup of *P,
containing (*P,)¢=m-¢ such that S, /(*P,)im-e— B}, under g. Then g defines
k-isomorphisms *P,/S,,— D and S,,/S.— ~(Z/pZ)G,]). It follows that S, /St
is Z,[GJ-isomorphic to *(Z/pZ)G,)=(Z/pZ)*G,]. Let a; be an element
of S, such that the cosets of («/,)’, 0o € *G,, form a basis of S,/SE, and let
S,;, be the subgroup of S,, generated by these («},)’. We then see easily that
S! = Z[*G,] as G-groups and that the index of S/ in S, is finite and prime
to p. It follows that H*I",/I",, S,)=0 for every k. Hence N, .(Sn)=2F,N Sn
=*P, "\ Su-

Since *P,/S, is k-isomorphic to a fixed finite module D, N,,,(*P,) is con-
tained in S,, whenever m is sufficiently large. N, .(*P,) is then contained in
FounSn=Nun(Sn), and we see that N, .(*Pn)=F,N\Sn="Pu N\ Su=Nu,u(Sn)
Hence *P,/Npuw(*Pp)="*P,S./Sn and [TP,: Ny (" P)]1<[*Pn: Sul=L[D: 0]
Since N, (*P,) decreases as m increases, it follows that

TP = Npm(*Pr) = Ny (S »
whenever m is sufficiently large. We fix such an m and put
Pi=N,.(S1).
[t then follows from S/, =Z[*G,] that P!=Z[*G,] as G-groups. Since
[S.:S;] is finite and prime to p, s0 is [N, n(Sw): Ny u(SH)1=["P;: P ].
COROLLARY.
i) For any n and s=0, there exists a Z,[ GJ-isomorphism
YPL/CPOY =(Z/p'Z)[*G.].
ii) For any k and m=n=0,
HYI /T, *P)=0.
iii) For m=n=0,

13) The definition of g-isomorphisms and s-homomorphisms given here, as well
as that of #% and x? in the above, differs slightly from those given in [8] [9] We
feel that the present definitions are more adequate.
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*PL = Nyu(Pr)="PoN\*"Pr=F.,N"P},

so that the natural homomorphism P,/ P, —*P,/TP}, is injective. If mis suf-
Sficiently lavger than n, then
*Pp = Nym(*Pr) -

iv) If n is sufficiently lavge, n = n,, then

*Pp=*P*P;,, m=n,
so that *P,/*P,—*P,/*Pl is also surjective, and
* n/+P{zg+Pm/+P;n’ Mm=n="n,.

The groups *P,/*PlL,n=n, are k-isomorphic to the finite p-primary Z,[G]-
module D defined in the above.

PrRoOOF. i) Since [*P, :*P} ] is prime to p, we have

P[PPI = P[PPI = (Z/ P Z) [ *Gh] .

ii) This follows immediately from H*I',/Ty, *P,/ Py )=H*I /Ty, “P;,
=0.

iii) It has already been proved in the above that *P;, =N, (P, for
m>n. Given any m=n, choose a large [=m so that *P;,, =N, (*F,) and
*P! =N, (*P). Since N,,= N, mn° Ny, we obtain *P,=N, .(*P;). It then
follows from 7Z°(I",/I",,, *P,)=0 that *P, =N, (‘P )=F, N PL="P,"\*P}.

iv) Since D is a finite p-primary Z,[G]-module, there eXists an integer
n,=0 such that I', acts trivially on D. We may assume that p™D=0. Let
n=n, and let m be sufficiently larger than n so that *P; =N, ,(*P,). Since
*P,./S. is k-isomorphic to D, I', acts trivially on *P,/S,. Hence (*P,)*» is a
submodule of S,, and H(I',/I",, Sp)=0 implies (*P,)"»=S%. It follows that
P =tPunN\F)Sn="P,S, and *P,/S,="P,Su/Sn="Pu/NpulPm)="P./"P}.
Therefore *P,/*P.,n=n,, is g-isomorphic to D. For any m =n =n, we then
see that *P,/*P,—*P,/*P}, is surjective and *P,,="*P,*P},.

From the above, we can obtain similar results for P,,E},, and *E/,. For
example:

NpywCCE)="E}, m=zn=0.

Some of these results were already obtained in [97].
2.2. Let @F be as before the multiplicative group of the local field @,.
For any m=n, N, .(®}) is a subgroup of &F. Let
0= N Nowl@F).
mzn

and let
U,=U,N9o,, Uspo=Upon 0.

Clearly @}, U%, and U}, are subgroups of @}. Since N, (7, ==, and
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Ny,n(@)y=v for any v in V, m = n, we see immediately that

o, =M1,x U/, U,=U,xV.

PROPOSITION 9.

i) @) is a closed subgroup of OF, consisting of all a in @, such that N, («)
is a power of p, and Ul is a compact subgroup of U,, consisting of all 5 in
U, such that N, (f)=1,

i) OF=0,x U, U,=U; xU,=U, ,x U

i) Npu( @) =04, NouU=Ul, NppuUh)=Upp, mZn.

Proor. i) By local class field theory!®, Q% /N, (®}) is a cyclic group of
order (p—1)p™  Since p= Ny(rw,) is contained in N,(®P}), we see from
Q= {p} X VX U, that N (@)= {p} x U™ ; here we denote by {p} the multi-
plicative group generated by p. Again by local class field theory, an element
a in @, is contained in N, (@), m =n, if and only if N,(«) is contained in
N(@¥). Hence « is in @} if and only if N,(«) is contained in the intersection
of N(0X)={p} x U™ for all m =n, namely, in {p}. It then follows immedi-
ately that U/ consists of all # in U, such that N,(8)=1. It also follows that
@} is a closed subgroup of @%*, and that U} is a compact subgroup of U,.

ii) Let «a be any element of @¥, and let N, ()= p'a with a in Up" =U@-Y?",
Then a=5bP?"= N, (b) for some & in U, and N, (ab™)=7p" so that ab™ is
contained in @,. Hence ©% =@, U, Since Ny(b)=0P?"1?" %1 for any b+1 in
U,, we have &, ~ U,=1. Therefore @} = &, X U,. It then follows immediately
that U,=U, x U,= U, ,x U.

iiiy It is obvious that N, ,(?,) is contained in @;,m =n. Let a be any
element of @,. Then a=N, . (a’) with «’ in @F. By ii), N )= N,(«a’) is a
power of p. Hence «’ is in @/, again by ii). Therefore «a is contained in
Noyw(®@}).  Thus @ =N, .(P;). It is then clear that U, =N, (U, U,
= n,m(U;n,O)-

Now, let X, denote the inverse limit of the sequence of finite groups
0, /®.P', s =0, relative to the natural homomorphisms @} /@ — @, /O t=s:

X,=lim @, /o .
X, is a p-primary compact abelian group, and for any « in Z, and x in X,, x*
is defined as usual. Since V is the intersection of all @/’ s=0, the natural
map @, — X, imbeds @, /V=1II,X U}, in X, as a dense subgroup of X,, and
we see that

X, =1, % Ujy,
where 1T, denotes the closure of 17, in X,, consisting of all elements of the
form #%¢ with a in Z,.

14) For local and global class field theory used here and in the following, see

1] 3] and [4]
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Clearly the surjective homomorphism N, ,:®;, — @, induces a continuous
surjective homomorphism N, ,:X,— X, m=n. Let X be the inverse limit
of X,, n=0, relative to such homomorphisms:

X=limX,.

Then X is again a p-primary compact abelian group, and x® is defined for any
a in Z, and x in X. Furthermore, since @, is invariant under the action of
the Galois group G, we may extend the action of G on X,, n =0, and on X
in the natural way. Thus X,, n=0, and X are compact Z,[G]-groups.

Let ¥, be the maximal p-primary abelian extension of @, in £. Clearly
@ is contained in ¥,, and these ¥, n=0, form an increasing sequence of
subfields of £. Let ¥ be the union of all ¥,,n=0; ¥ is the maximal p-
primary abelian extension of @ contained in £. Since ¥/Q, is a Galois exten-
sion, G =G(®/Q,) acts on the abelian normal subgroup G¥/®) of G¥/Q,) in
the obvious manner.

PROPOSITION 10. There exists a canonical G-isomorphism

X—-G¥ /D)
which induces isomorphisms
XM= X, =GW,/D), n=0.
Proor. Let G ,/®)—G¥,/®), m =n, be the natural homomorphism of
Galois groups. Then by local class field theory, there exists a canonical

isomorphism X,—G®,/®) for each n =0 such that the following diagram is
commutative :

X, — G¥,/0), m=n.
Hence we have a G-isomorphism of X onto G /®) such that
X —GW /D)

L

Xn R G(w'rz/@)

is commutative. Since o(1-+p)*" generates I',=G(®/®,) topologically, and
since ¥, is the maximal abelian extension of @, contained in ¥, we see that
GV, )=GT/D)°». However, G¥/¥,) is the kernel of the surjective homo-
morphism G¥/0)— G ,/®). Hence it follows from the above diagram that
X— X, is also surjective, and its kernel is X “», thus proving X™ = X/X %=X,

2.3. Let A be any subgroup of @;. Then the closure of the image of
A under @, — X, defines a closed subgroup of X,. Since the norm, from F,
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to @, of any element in P, is a power of p, it fellows from that
P, is contained in @;. Let Y, be the closed subgroup of X, determined by
P, as stated in the above, and let Y, and Z, denote the closed subgrcups of
X, defined similarly by £, and @,, respectively.

Let

En,O::Enm Un,o; E{z,o:Eéf\ Un,os Cn,():cnf_\ Un,oy

and let £, En,o, etc. denote the closures of the respective groups in U, in the
p.-adic topology of @,. Since

i '=r(c) mody,,
we see that
E,=E,,xV, Ei=FE,xV, C=CxV.
Since [P,:II, X E,J=[F,: E,,] is prime to p, we also have
Vo,=1I,xE,,
in X,=1I, X UL, Similarly
Yi=0I,XE,, Z,=I,xC,,.

Hence it follows that

Xo/Yu=U}o/Eno=U4/E,,

X/ Y = Ulo/Efpo= U4 /EY,

Xn/Zn=Uso/Cppo=U1 /C,,

Y, /Zy=E}o/Cpo=E}/C,, n=0.

It is clear that for any m=n, N, ,,: X,— X, maps Y,, Y, and Z, into
Y. Y} and Z, respectively. Hence we may define the inverse limits:
Y=1limY,, Y'=IlimY},, J=limZ,,

relative to the homomorphisms N, ,, m =n, and we may consider Y, ¥Y” and

Z as closed Z,[G]-subgroups of X. However, by [Proposition 8 N, (2= P,
whenever m is sufficiently larger than n. Hence also N, (Y,)=Y/ for m>n,

and we see that
Y=Y".
PROPOSITION 11. X/Y is the inverse limit of U, /E},n=0, and the naturat
homomorphism X/Y — UL /E! induces an isomorphism (X/Y )P —UL/E! :
X/Y=1limUL/E,, (X/Y)™=U,/E,.

Stmilarly,
X/Z=1lim U}, /C,, X/ ZYm=UL/C,.

PROOF. Since N, . (Pr)=2P;,, m=n, we have N, (Y, )=Y,, m=n.
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Hence the natural homomorphism X-—X, maps Y’ onto Y,. Since Y =1Y,
X/Y=1limX,/Y,=1mU,/E,. By [Proposition 10, the kernel of X— X, is
X%x. Hence the kernel of X—X,,/Y/ is Y'X“». Since X—X,/Y/ is surjec-
tive, we have X,/Y/ /= X/Y’'X»=(X/Y")"». The proof is similar for X/Z.

For each n =0, let L, denote the maximal unramified p-primary abelian
extension of /£, contained in £, and let L,=FL/. Then the union of the
increasing sequence of subfields L,,n =0, in £ defines the maximal unramified
p-primary abelian extension L over Fin £. Let K, be the maximal p-primary
abelian extension of F,, in £, such that no prime ideal of F, different from
(7,) is ramified in that extension. The union of the increasing sequence of
subfields K,,n=0, in £ again defines a p-primary abelian extension K of F,
containing the above L. Since K is obviously a Galois extension of @, the
Galois group G of F/Q acts on the abelian normal subgroup G(K/F) of G(K/Q).
Similarly G also acts on G(L/F) and G(K/L)}®.

PROPOSITION 12. There exists a G-isomorphism:

GK/L)— XY .
Proor. We know that
X/Y =1limX,/Y,=limU,/E,.

By class field theory, there exists a canonical G-isomorphism G(K,/L})
—U,/E,, inducing a G-isomorphism G(K,/L,)— U,/E; . Let G(K,/Ln)
—G(K,/L,) be the homomorphism obtained by restricting the action of
G(K,,/L,) on K,. Then the following diagram is commutative:

G(Km/Lm> - U;n/E_‘m

l l

G(K./Ly) —> U, /E,, m=n.

Since G(K/L) is the inverse limit of G(X,/L,),n=0, relative to G, /L,)
—G(K,/L,), m=n, we obtain from the above a G-isomorphism G(K/L)—X/Y.

2.4. As in the proof of [Proposition 11, we see that

Y)Z=Y'/Z=1im Y, /Z,=lim E, /C,.
Let *@, be the closure of *F, in @,, and let

YE =0, ~E,, *C,=*D,NChn, n=0.

15) For the extensions L/F and K/F, see [9], §5, §6.
16) See [9] §6.
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Then *E’ and *C, are also closures of *E, and *C, in U,, and EL="%E. X W,
C,=+C, x W, so that

EL)C,="E, /*C,="(E,/C).
Hence
Y/Z=*(Y/Z).

In general, for any finite abelian group &, let (%), denote the Sylow p-
subgroup of &. Since *E,/*C, is a finite group, sois *E, /*C,. Let A denote
the inverse limit of the p-groups (*£;/*C,), n =0, relative to the homomor-
phisms Ny, p: CEL/TC)p— (T E; /7Ch)y, m =n. Clearly A is a compact p-primary
Z,[G]l-group. Since N, (‘E,)="E,, m=n, Ny ,:CEL/TCp—CE,/*C,), is
surjective. Hence A—(*E,/*C,), is also surjective for every n=0. On the
other hand, as H*(I",/T",,, *P.)=H*1I",/T",, *Q,)=0 for any & and m =n =0,
we see that the kernel of N, ,.: E,/*Chp="PL/"Qun—"FE,/*C,="P,/"Q, is
(*EL/TCp)?n  Therefore, the kernel of N, ,:(*E,/*Ch),—(CE,/*C,), is
(*E}/*C,)%n, and hence the kernel of A—(*E} /*C,), is A“». Thus we obtain
a Z,[ G]-isomorphism

AP =A/A—(TE; [7C)yp n=0.

Since *E. /*C, is finite, *E,*C,/*C, is also finite. Hence *E,*C, is closed
in U, and we see that *E,=*E/*C,. Therefore, the injection *E,—*E,
induces a surjective homomorphism *E, /*C,—*E,/*C,. As *E,/*C,=Y./Z,
is a finite p-group, (*E, /*C,),—*E} /*C,= E} /C, is also surjective. Hence we
obtain a surjective Z,[GJ-homomorphism
A—-Y/Z.

We shall next show that it is injective.

Suppose that there exists an element a=+1 in the kernel of A—Y/Z.
Since A is a p-primary compact group, there is an integer d=1 such that «
is not contained in A?®. For each n=0, let a, denote the image of a under
A—(CE,/*C,), and let a, be an element of *E} representing a, mod *C,.
Since a is in the kernel of A—Y/Z, a, is mapped to the identity under
(*EL /*C,),—*E, /*C,. Hence a, is contained in *C,, and there exist an element
B, in *E, A UJ» and an element y, in *C, such that a, = B,r,. As N, .(an)
=a,, m=n, we have a,*C,= N, ,(2,)*C, = Ny, n(Bn)*C,. Since a is not con-
tained in A% «a, does not belong to ("*E{,)pd“fc,, whenever n is sufficiently
large. Hence N,,,(B.), m =n, is not contained in (*E w* if n is large. On
the other hand, it follows from Corollary iii), iv) of that there
exists an integer e=0 such that (*P,/*P,)* =1 for every n=0. In the fol-
lowing, we shall fix an n such that n = d-e and that N, .(f,) is not contained
in (*E,)? for any m =n.

For each m=n, let B, denote the multiplicative group generated by
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m o€ G. Then B, is a G-subgroup of "&£, ~ U%", and N, .(B,) is not con-
tained in (*E,). Let D,, D,, and D/ denote the images of B, under the
natural homomorphisms *+Pj, —*tP./(*P)PY,  tP,—*P, /(*P,)m,  and TP,
—*P, /(*P,)"™ respectively. Let 7, be the rank of D,,. As an abelian group,

*Pr/{*+1} is isomorphic to Z* where s:-%—(p~1)pm. Hence *P,/(FP,)™

= (Z/qnZ)* and (*PLY*/(* Py = (Z)qn-oZ)'. We then see easily that DJ, con-
tains a subgroup isomorphic to (Z/g,-«Z)™. Now the kernel of the natural
homomorphism *P}/(* P, ) —*+P,/(*P,)' is a subgroup of (*P,)tm/(*P, )i
=+pP,/*P,, and Dj, is mapped onto D/ under that homomorphism. Since
(*P,/*P:)?*=1, it follows from the above that D/, contains a subgroup isomor-
phic to (Z/qu—g—oZ) ™.

Let L/ denote the abelian extension of F, generated by the g,-th roots
of elements in B,. Since *P, N\ (F})m ="*Pin the Galois group G(L}/F,) is
isomorphic to D} = B, (*P,)™/("P,) as abelian groups. On the other hand,
since B, is contained in *E;, N U L//F, is unramified. Hence L, is con-
tained in the maximal unramified abelian p-extension L; over F,. It then
follows from the above that the Galois group G(L./F,) contains a subgroup
isomorphic to (Z/@u_s-Z)™. However, since G(L/F) is a strictly I'-finite
I'-group, there exists an integer /=0 such that the rank of G(L.,/F)* does
not exceed a fixed integer r =0 for every m =0'". Hence we see that r, =7
whenever m = d-+e-+f.

Now, since D,, is a subgroup of *P.,/(*P.)** with rank 7,, it follows from
the above that the order of D, does not exceed p* for any m=n,d+e+s.
Hence we can find a large m such that N, .(D,)=1. As D,, = B, (*P.)/(*P.)",
N, (B, is then contained in (+*P.)**.  On the other hand, Corollary iii) of
implies that (* P)?*" N F, = (*Plp A\ F )P =(*P,)*. 1t also follows
from *P,=*II, X *E, that (*P,)** N E,=(*E,)*". Hence the group Ny, n(Bn).
which is obviously a subgroup of E,, must be contained in (*E%)**. However
we have chosen n so that N, ,(B,) is not contained in (*£ »* for any m=n.
Hence we have a contradiction, and we see that there exists no a=1 in the
kernel of A—Y/Z. Thus the homomorphism A—Y/Z is injective, and the
following proposition is proved:

PrROPOSITION 13. Y/Z is the inverse limit of (*E, /*C,),, n=0 relative to
Non 1 CEL/TCR)py—CEL /7Co)p, m=n, and the natural homomorphism Y/Z
—(*E} /*C,), induces an isomorphism (Y/Z)™ —(YEL J*Cyyp:

Y/Z=lm(E, /[*C)p, (Y2 =(E,/*Co,. nz0.

17) See [97, §5 and [8], 1.4
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3.1. For any «, £ in @F, let
(e, B)n

denote Hilbert’s norm residue symbol for the power ¢, in the local field @,.
The symbol («, 3), defines a pairing
OF X OF — W,

with the following properties!®:

D (a,f,=(B, a3, (@, )= (a, B, oG,

i) (a, B2 = (Np, m(@), B, acsQf, e, m=n,

iii) (a, 8),=1 if and only if « is the norm of an element in (Dn(ﬁq?f ),

iv) (a,®0F)=1 (or (@¥,a)=1) if and only if « belongs to (@*)=; hence
(a, B), induces a non-degenerate pairing

(@F /(@3 )in) X (D3 /(DFYom)— W, .

v) (Artin-Hasse’s explicit formula) For any 4 in U,,, both ¢;'T,(log 8)
and ¢,'T(,;"'log ) are contained in Z,, and

-1
(Cn; B)n e C;qn T,og 5] ,

(T, B = i TCn™a 108 B>

Let 2 be an element of U, ,; and &, an element of ¥,. Since T.(¢,%X, log 8)=0
mod g, Z,, (Tn¢log® depends only upon the coset & of & modg,X,. Hence we
may write {Zn@ o8 for (Tnlogh

PROPOSITION 14. There exists a unique map

Do O — X/ qn %
such that
(@, B)y = LEnnt oz as®,,feUy,,.
dn 1S a surjective g-homomorphism :
Po(a”) = k(o) (@), ac@,,0sC.

PROOF. Let a be fixed in @,. Since N, sntiWone)= W, (a, W,),=1 by
i) and iii). As W, is the kernel of the log map: U, ,—%,, («, 8), depends only
upon log B for any # in U,, Hence log 8—«((«, f3),) defines a homomorphism
8, —Q,/Zy: W—Q,/Z, being the homomorphism fixed in 1.5. Since @,/%,

is dual to ¥,, there exists an element «” in @, such that «((«, 8),)=<a”, log 5>,
for any # in U,,, We then have

(a, B), = Lfnerioz,

18) See 47, 11, §11, §19 and [2].
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with a’=g,a”. Since T,(a’log ) is in Z, for any B in U, a’ is contained
in X,. Let ¢, (@) denote the coset of a’ mod ¢,%¥,. Then we have

(@, B = (Fnn®log B> e Unp.
It is clear from the definition of X, that ¢,(«) is uniquely determined for «

by the above equality. Since («, 8), is multiplicative in «, it follows in parti-
cular that ¢, : 0, —X%,/q,%X, is a homomorphism. It also follows from i) that

(a®, B, =(a, BE® = Cf,(“)T"(%(a) log B
= [Ln®@dn@ log 89 ceG,pBeU,,.
Hence by the uniqueness mentioned above, we have
(a”) = g(o)P (), ceG,ac ;.

To show that ¢, is surjective, let &’ be any element of X,. Let ¢:0F— W,
be an extension of the homomorphism U, ,— W, defined by B— (In® iz,
such an extension exists because @F=1,X U, x V. Since Wir=1, ¢ is
trivial on (@F ). Hence it follows from iv) that there exists an a in O}
such that

(&, By = Lm0z B> BE Uyy.
Since («, {,), =i 02t =1, « is contained in N, pn41(DF 1) =Ny, 2041(Dlprs X Uy,
=@} X Un. As («, B), is unchanged when « is replaced by any element of
aUji», we may assume that « is contained in @;. Then we have «a’ = ¢,(«)
and we see that ¢, is surjective.

Let f: X—X be any r-homomorphism. Then

f(x®) = w, f(x) modg,X, re X,

Hence f maps X“» into ®,¥+¢,X. Since X,= X" =X/X"» by
and since ®,X+4¢,X is contained in the kernel of X —X,/¢,X,, we see that J
induces a homomorphism X,—¥,/¢.X,, and hence also a homomorphism
O, — xn/ann
THEOREM 4. There exists a unique g-isomorphism
f: X—%

which induces ¢, : D, —X,/q., X, for every n=0.
Proor. Let m=mn. For any « in @, and A4 in U,,, we have
(Vo) D)o = (@, D" = CEmImc@ 1056
— C%'nm,,muﬁm(a)) loz &
This shows that
P Noy @) = T (Pl ), ae b,

namely that the following diagram is commutative:
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Oy — %m/mem

an,m JT’H/,W)
On — X,/q.%, m=n.

Since (@} )™ is contained in the kernel of ¢,, ¢, induces a homomorphism
Jfo: X, —%,/q,%,. For these f,, n=0, we then have commutative diagrams
similar to the one in the above. Since X is also the inverse limit of X,/g.X.,,
n =0, we obtain a continuous homomorphism f: X—X which induces f, and
¢, for every n=0. By [Proposition 14, ¢, is a surjective x-homomorphism.
Hence f, and f are also surjective xg-homomorphisms.

Suppose that f(x)=0 for an element x in X. Let x, be the image of x
under X—X,, and let «, be an element of @ representing x, mod (@} )™=,
Then f(x)=0 implies f{(x,)=0 and ¢,(a,)=0. It follows that («a,, #),=1 for
every B in U,, and hence also for every g in U,=U,,X V¥V, n=0. Since
xn:Nn,2n+1<x2n+1>y we have a'rLENn,Zn—Pl(a?n—!—l) mod (@}, ). As ﬂn:”3?+1ﬁ with
B in U,,+,, we see that

(am nn)n = (Nn.2n+l(a2n+1)7 nn)n = (“2n+1’ ﬂvz)g;vl+]
= (Agpr1, Tonr1)9os i (Agpay, Bana
=1.
[t then follows from @} =1, X U, that («,, @%),=1. Therefore, by iv), «,
is contained in (@} ), and x, belongs to X¢» for every n=0. Hence x=1,
and f is injective. As X is compact, f is then a topological isomorphism. The
uniqueness is obvious.

The definition of ¢,, and hence also the definition of f depend upon the
choice of the sequence of roots of unity {,, n» =0, namely, the choice of the
isomorphism ¢: W—@Q,/Z,. Nevertheless, fis essentially unique in the follow-
ing sense; let (/:W—@Q,/Z, be any other isomorphism and let f/: X—¥ be
the g-isomorphism defined by ¢/. Then there exists a p-adic unit # such that
Q) =u’/({) for every ¢ in W, and such that

fB)=uf(x), reX.

Let 3 be the submodule of X defined in 1.6, and let Z be the subgroup of
X defined in 2.3. Then:
PROPOSITION 15.

f(Z)=3.
Proor. Let f(Z)=23’, and let 3; be the image of 3’ under X—X,. It
follows from Artin-Hasse’s explicit formula that

(/)n(nn) = lun"}“an"n, .
Hence
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D) = £(0) 15+ g X ceG,

by [Proposition 14  Therefore ¢,(Q,)=3.+2.%X.)/q.X,, and consequently
S ZD)=3Bnt+a.X,)/q,%,. However, since

7
X — X

|
Xp — X, /q.%,

1s commutative, we see that £,(Z,) = (3. +¢.X,)/¢.X.. Hence 3,+¢.X,=3/ +¢.%X,.
We then obtain 3=3/, q.e.d.

3.2. Let
D=r(Y),

and let %), be the image of ¥ under X—X, n=0). 9 is a closed Z,[G]-
submodule of X containing 3, and

/9= 1mX,/,,
/8= 1mD./3,,

in the obvious manner. Similarly for *(X/9)), etc.

It follows from Corollary i) of that for each n=0, there
exists an element «, in *P} such that *P, /(*P,)? is generated by the cosets
of af, p=*G,. Using the same corollary, we also see readily that we may
choose «, so that N, .. (a,)=a,, n=0. Lety, denote the image of «, under
*P,—+Y,=(Y.)**. Then *Y}is geﬁerated by v, over Z,[G], and N, ,(Vn) =In
forany m=n=0. Let y be the element of *Y determined by these v,,n=0. It
follows from the above that the elements y°, 6 € G, generate a dense subgroup
of *Y. Hence f(¥)’,0 € G, also generate a dense subgroup of ~)=r(Y).

Let 7 be odd and 1+ p—2. By and [Proposition 1, we have
Z,[Gl-isomorphisms ‘X—"R—A=Z,[[T]]. Let ‘h be the element of A cor-
responding to «(f(y)) in . Then we have isomorphisms of compact I'-modules

W—(Ch)y=Ah, X/ — A/Ch).
Since ‘83— (‘¢) under the same map ‘X — A4, we see that the ideal (%) is con-
tained in (°4), namely, that
for some ‘. in A. It follows that
‘V/3)="9/"B=A/Ck).
Since P2(X/3) = »2(N/B)=10, we have

PE/Y) ="4(D/3)=0.
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Hence the above result also holds for i=p—2, if we put simply P2g=7?"%}
=Pl

PROPOSITION 16. Both ~(X/0) and ~(0)/3)=0/3 are regular strictly I'-finite
I'-modules, and

XD =X/ s
“D/3)" ="Da/"3n» n=0.

Proor. We first notice that since (Y/Z)=Y/Z and Y/Z is k-isomorphic
o 9/3, we have “(0)/3)=9/3. We also know by Theorem 2 that ~(X/3) is
strictly I'-finite. Hence both “(X/9) and ~(9)/3) are strictly I'-finite. Let 7 be
any odd index. Then “X/9) is strictly I'-finite, and “(¥/9) = A/(h). As we
have noticed in 1.4, a strictly I'-finite I"-module of the type 4/(g) is always
regular. Hence “(%/%) is regular. Therefore =(X/9), the direct sum of such
X/, is also regular. Similarly ~(9/3) is regular.

Since “(X/3)™ ="%,/~3, by Theorem 2, we see immediately that =~(X/9)"™
=-%¥,/9,, n=0. On the other hand, as ~(X/9) is regular, we have ~(X/9)™
=~(X/3)™/~(Y/3)™. Hence ~(Y/3)™ and 9,/ 8. have the same finite order.
However, it is clear that w,(7(%)/3)) is contained in the kernel of the natural
homomorphism ~(9/3)— %./~3,. Hence we see from the above that ~(9/3)™
= ~(9/3)/0,(~(V/3)— "Vu/"3. is an isomorphism.

Now, the map f: X—X induces k-isomorphisms

X/Y =X/,
Y/Z—9/3.
X/Z—-%/3.

Of these six Z,[GJ-groups, the arithmetic properties of X/Y and Y/Z are
given by Proposition 12 and Proposition 13 respectively, and the algebraic
structure of ¥/3 is described in Theorem 2. Using these facts, we shall next
study some arithmetic consequences of the above k-isomorphisms.

3.3. Let S, denote the Sylow p-subgroup of the ideal class group of F,,
n=0. The injection of the ideal group of F, into the ideal group of F,, m =n,
induces a homomorphism S,—S,. Let S denote the direct limit of S,,n=0,
relative to these maps S, — Sy, m=n. Clearly S,,n=0, and S are Z,[G]-groups
in the natural manner so that *S,, *S, etc. are defined. It is known that
=S,— S, is injective for any m =n'®. Hence we may consider =S simply as
the union of all S, n =0,

Let L/F and K/F be the abelian extensions defined in 2.3. Let ¢ be an
ideal class in =S and let a be an ideal of an F, representing the class c.

19) See [9], §10, Theorem 15.
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Then a*™=(a) for some integer m =0 and for some a in F¥. Let « be a
p™th root of a in £. It follows from the definition of K that « is contained
in K. For any g in *G(X/F), we put

(g, c)=da®™),;

since «af™! is a p™-th root of unity in W, the right-hand side is an element of
Q,/Z, We can then show that (g, ¢) depends only upon g and ¢, and defines
a dual pairing of the compact abelian group +iG(K/F) and the discrete abelian
group ~S into Q,/Z,:
TGK/F)X ~S—Q,/Z,,
such that
(g% ¢)=r(o)g, 0), oG,

Let L’/F denote the maximal sub-extension of L/F such that the Galois
group G(L'/F) is a regular I'-group. It is known that L/L’ is a finite exten-
sion and ~G(L/F)=-"G(L’/F)*. Let =S’ and —S” denote the annihilators of
*G(K/L") and *G(X/L) in —S respectively, with respect to the above pairing.
Then we have similar pairings

TGK/L) X (CS/7SN—Qy/Z,,
TG(K/L) X (~S/=S")—Qy/Z,,
TG /)X S - Qy/ Zy,
tG(L/FY X ~S" —Qy/Z, .

Clearly —S’ is contained in ~S”, and ~S”/=S’ is dual to the finite group *G(L/L’).
Since *G(L’/F) is a regular I'-group, ~S’ is also regular. It follows that ~5
is the maximal regular subgroup of the discrete I'-finite I'-group ~S”.

PrOPOSITION 17. Let ¢ be an element of ovder p™, m =0, in =S,. Then
the following properties for ¢ arve equivalent:

i) ¢ is contained in =S}, ="S" N\ "S,,

i) There exist an integer s=m and an ideal a in the class ¢ such that
ar* =(a) with an element a in F} 0%,

iil) For any integer s=m and for any ideal a in the class c, there exists
an element a in F} n\O% such that a**=(a).

Proor. Clearly iii) implies ii). Let s, a, and a be as stated in ii). Let
{=mn, s, and let « be a p*-th root of ¢ in £. By the assumption on a, F(a)/F,
is an unramified abelian p-extension so that « is contained in L/, and hence
in L. Consequently a®'=1 for every g in G(K/L), and (*G(K/L),c)=0.
Therefore, ¢ is contained in ~S”, and we see that ii) implies i).

20) See [9], §8.
21) See [97, §10, Theorem 16.
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Suppose next that ¢ belongs to -S”. Let s and a be as stated in iii).
Since ¢ is an element of ~S,, we have ¢'*9=1 for 6 =o(—1). Let ¢, =2
Then c¢=c¢l"%. Let a, be an ideal of ¢,, prime to (z,). Since ¢ =1, we have
a?’ =(a,) with some qa, in FF'¥ N U,. Let a,=ql"%, a,=al™% so that g, is an ideal
of the class ¢ satisfying a?'=(a,),al*¥=1. Let a be a p*th root of a, in K.
Since (*G(K/L),c)=1, it follows from the definition of the pairing that af=1
for every g in *G(K/L). On the other hand, we see from a}*?=1 that af'=1
for every g in “G(K/L). Hence af~'=1 for any g in G(K/L), and a« must he
an element of L. Let /=n,s. Then F(a)/F, is an unramified cyclic exten-
sion, and the principal prime ideal (m) is completely decomposed in Fy«).
Hence a, is contained in @?°, and consequently in ~U?". However ~U, is the
direct product of W, and a subgroup which is G-isomorphic to (Z,[G,])**. It
follows that a,={,a; where 1 is a suitable integer and aj is an element of
~U%. Thus a?’=(a4) with a4 in F*~®@2". Since a and a, belong to the same
class ¢, there exists an element & in £} such that a=ba,. Then a?*=(a) with
a=>br*a, in I3 ~O0%'. Hence i) implies iii).

THEOREM 5. There exists a dual pairing of the compact abelian group
“(X/9) and the discrete abelian group ~S/=S" into Q,/Z,:

X/ X (S/~S")—Qy/Z,,
such that
&, =0, ceCG,
Jor any % in “(X/9) and ¢ in ~S/"S".

ProoF. By Proposition 12, *G(K/L)=*(X/Y). Hence the map: X/Y—-X/9)
induces a g-isomorphism *G(K/L)—~(X/%). Combining this with the pairing
*G(K/L) X (~S/~S")—®,/Z, we obtain a pairing ~(X¥/9) X (~S/~S")—Q,/Z, as
stated in the theorem.

Suppose that ¢: W—Q,/Z, is replaced by ¢:W—Q,/Z, Then (=u
with » in U, and s is replaced by f/=uf. Hence (% ¢) is unchanged, and we
see that the pairing is canonically defined. More precisely, the value of (%, ¢)
can be computed explicitly as follows: Let ¢ be an element of -S, (n=0)
representing ¢, and let a be any ideal of the class ¢, prime to (z,). Let
ar™ =(a), m =0, with an element a in F'}. We may assume that ¢ =1 mod =,
because every non-zero residue class mod 7, contains a unit of F,. Let x be
an element of ~X representing %, and let x, be the image of x under “X—~¥%,.
Then:

PROPOSITION 18.

(%, 5) = Res (pmen(xn IOg Cl)) .
Proor. We fix an s=m,n. Let a be a p™-th root of ¢ in K. Let g be

22) See [97] §11, Theorem 19.
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the element of *G(K/L) corresponding to ¥ in ~(¥/9), and let g’ be the restric-
tion of g on K;. We choose an element & in U} such that g’ is mapped to &
mod E, under the isomorphism G(K,/L)— U, /E,= X,/Y,. Then Pb)=f{b)=x,
mod ¢, X,, where x, denotes the image of x under “X¥—~X,, and ¢, and f; are
the maps defined in 3.1. Hence it follows from the definition of (% &) and
(, ) that

(% O=(g o=afF ) =da®™)

= (b, ar™TT)g) = pT((D, a)s)

= prIm (s leg @)

=p*17" Res (¢;'T(x, log a))

=Res (p~"T (T, (xs) log a))

:‘Res (p~"T(x,l0g a)), g.e.d.

The formula indicates clearly that the pairing is independent of the choice
of c: W—@Q,/Z, and that (#°,¢°)=(%,¢) for any o in G. It is to be noted that
we can also define (&, ¢) by the above formula and then prove directly that
it gives a dual pairing of ~(X/9) and —-S/~S” into Q,/Z,.

3.4. It is known that the discrete I'-group —S is regular and that S,
consists of all those elements in =S which are invariant under the automor-
phisms of I',=GF/F,)*». Hence N, ,:~S,—~S, induces an isomorphism
“Sw=-=5,/"Son—-S,, m=n=0.

Let ¢, be any element of =S,. Since N, ,:"S,—"S,, m=n=0, is surjec-
tive, we can find ¢,,n =1, so that N, ,(c,)=c, for any m=n=0. For each
n=0, we then define a Z,[G]-homomorphism

On - SLRn_’—‘Sn ’
by
oala) =3, acR,.
Since ¢;*=c, we have p,(R.)=0.(NR,). We also know by a classical result
on cyclotomic fields?® that o,(@)=rc§y=1 for any « in R, \N.EF. Let ¥ and
BF be the Z,[G]-modules defined in 1.4. Then ~2¥ =B N, and ~BF =N,~&F
so that
“WE /B =R/ CR N RTES ) = "N/ CR N RED) .
Hence it follows from the above that p, induces a Z,[GJ-homomorphism
P UE /B S, .

Since N, (cn)=c¢n, m=n=0, we have

23) See [9], §10.
24) See [10], §3.
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On=0m°lmn, mznz=0,

for the homomorphism £, ., : =¥ /~BF —-Wk /~B% defined in 1.2. It then follows
that
pzotn,m:pgno"'n.m:Nn,mOpv/ny WLGgO

Hence the maps p;,n=0, define a homomorphism from the inverse limit
—(W*/B*) of —Wr/B*¥ n=0, into the inverse limit of -S,, n =0, relative to the
homomorphisms N, ,:~S,—"S,. However, we can see by class field theory
that the inverse limit of —S,, n =0, is canonically isomorphic to the inverse
limit of ~G(L, /F,), n =0, relative to the natural maps ~G(L.,/F,)—~G(L,/F,),
m=n =0, namely, to the Galois group “G(L/F). Thus we obtain a Z,[G]-
homomorphism
o7 /BF)—~G(L/F),

depending upon the sequence of elements ¢,, n = 0.

Suppose that ¢, ,¢c{” generate ~S, over Z,[G]. Let pY:=()*/B¥)
—~G(L/F) be the homomorphism defined by a sequence of elements ¢{, n =0,
starting with ¢ (1=7=<7). We then see easily that the homomorphism
o0~k /BFY —~G(L/F) defined by these o@, .-, 0 is surjective. Hence ~G(L/F)
is always a homomorphic image of the Z,[GJ]-module ~(*/B*)" for some
integer r=1. We shall next consider the case »=1.

In general, let A be a p-primary compact G-module on which G of course
acts countinuously. For simplicity, we call A G-cyclic when A contains an
element @ such that the elements oa, 0 € G, generate a dense subgroup of A.
For example, both ~% and ~3 are G-cyclic modules.

Let A="AP-A="ADP --- P?2A be the decompositions of A defined as
usual. Then we see easily that each of the following conditions is necessary
and sufficient for A to be G-cyclic:

1) A®=A/A% is G-cyclic,

2) Both *A and ~A are G-cyclic,

3) Every 'A,0=:1=<p—2, is a I''module of the type 4/(g), g< 4,

4) Every 'A©="*A/"A*, 0<i<p—2,is cyclic over Z,, namely, every 'A®
is either isomorphic to Z, or to a finite cyclic group with order a power of p.

For the Galois group G(L/F), we have natural isomorphisms G(L/F)®
—G(L{/Fy)—S,. Hence G(L/F) is G-cyclic if and only if the finite group S,
is G-cyclic.

PROPOSITION 19. The following properties for S, are equivalent:

1) S, 1s G-¢yclic,

i) =S, is G-cyclic,

iii) S, is cyclic for every index 1,

iv) 'S, is cyclic for every odd 1i.



78 K. Iwasawa

Proor. It is sufficient to show that iv) implies iii). Let —S{» denote the
subgroup of all ¢ in ~=S, such that ¢?=1. Then the pairing *G(K/F)X~5—Q,/Z,
in 3.3 induces a non-degenerate pairing

CFGK/F)/*GEKF)P) X =SSP —Qy/Z,, ,
such that
(&’ ¢)=r(o)(g, ) ced.
Hence we see that
rank ‘G(K,/F,) =rank /S, ,

for any even 7 and odd j such that i+j=1 modp—1. On the other hand,
since ‘G(K,/L,)='U;/*E,=1U},/'E,, as stated in the proof of
12, and since rank®Uj;,=0 or 1 according as i=0 or 1+ 0, we know that
rank ‘G(K,/Ly) =<1 for any even index i. Hence rank ‘G(K,/F,) is either equal
to rank ‘G(L,/F,) or equal to 1+rank ‘G(L,/F,). However, by class field theory,
‘G(L,/F,) is isomorphic to S,. Therefore, it follows from the above that

(6) rank ‘S, < rank /S, < 1-++rank ‘S, ,

for even 7 and odd j satisfying i+j=1 mod p—1. Hence if 7S, is cyclic, so is
‘S,, and we see that iii) follows from iv).
PROPOSITION 20. Suppose that S, is G-cyclic. Then there exist Z,[G]-
1somorphisms
TG /F)—-YY/Z)»=Y/Z,

~G(L'|F)="G(L/F)—~(*/B*).
There also exist dual pairings

/WX CS/S) =R/ Zy,

/B XS = Qp/Zy,

“X/BX-5—Q,/Z,,

such that
[x%, ¢ 1=1[xc], ceG.

PrROOF. Since S, is G-cyclic, so is =S, by Proposition 19. Hence —S, has
an element ¢, whose conjugates ¢, o0 € G, generate —=S,. Let ¢,, n =1, be chosen
from =S, as stated in the above. Since N,,.(c,)=¢, and since N, ,:~S,—"S,
induces an isomorphism of =S,/-S¢ onto —S,, ~S,/~S?° is generated by the
cosets of ¢5,0= G. We then see that =S, itself is generated by ¢4, 0 G, and
the map p0,:R,—=S, is surjective. Since p,("N,)= 0Ny, of:W¥ /~B*
="R,/CR, N\ R.EF)—-S, is also surjective. However, —A¥ /~BF is isomorphic
to ~A,/~B, as abelian groups so that the order of —A¥ /~BVF is equal to the
exact power of p dividing the first factor —h, of the class number of F,,
namely, to the order of =S,. Hence p, must be an isomorphism. Therefore
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o0:~(W¥/PB*¥)—-G(L/F) is also an isomorphism.

By Proposition 5, we have a non-degenerate pairing (~,/~8,) X (-2} /~8})
—Q,/Z, for each n=0. Using the isomorphisms ¢, : ~(X/3)™="%,/~8,—~ W,./~B,
and pl: A /~B* -5, we obtain a non-degenerate pairing [x,c],: (X/3)™
X =S,—Q,/Z, such that

(%%, =[x ¢ln, oG,

[N, (0, ¢ln=1[x¢ln, mznz=0,

where the element x in the second equality stands for an arbitrary element
in ~(¥/3)™. Since ~(¥/3) is the inverse limit of ~(X¥/3)™, n=0, and =S is the
direct limit of -S,,n=0, it is clear that the above pairings [x,c],, n =0,
define a dual pairing

“(%/B)X ~S—Qp/ Z, .

such that [(x?,¢°1=[x,c] for any ¢ in G.

Now, let A and B denote the annihilators of =S’ and —=S” in ~(X/3) respec-
tively, with regard to the above pairing of <(¥/3) and =S. Then we have
similar pairings

C(X/B)/AX~S"-Qy/Z,,
BX(S/~S")—Q,/Z,.

Hence it follows from that B is Z,[G]-isomorphic to —(X¥/9) and
consequently that ‘B = ¥/0)= A/Ch) for every odd i; here A=Z,[[T]], and
‘h is an element of A as defined in 3.2. On the other hand, we know that
there exists a Z,[G]-isomorphism *A:%¥/3)— 4/(’g) for each odd i. Let b be
the image of 1 mod(‘4) under an isomorphism A/(*h)—'B, and let *f be an
element of A such that i/l("b):‘f‘ mod (*g). Then Y(CB)=(_Y,"g)/(g), and we
see from the isomorphisms A/Ch)—:B—*!(B) that an element u of 4 belongs
to (‘h) if and only if u'f is contained in (‘g). Since ‘g="'h’k, it follows that
‘f is divisible by ‘% in A:°f="‘k’*k, and that ‘%2’ is not a zero-divisor mod (*h).
As h# 0, we then see that (‘*k’,%h) is a primary ideal of 4, belonging to the
maximal ideal of the 2-dimensional local ring 4. Hence A/(k’,%h) is a finite
module. Let ‘A’ be the inverse image of (*k)/(*g) under ‘A:%X/3)— A/(g).
Since (f, 'g)=(Ck’,h)(°k), we have ‘A’ /B = (k)/(*f, ‘g) = A/Ck’,'h) and (X/3)/'A’
= A/Ck)="(V/3). Hence ‘A’/'B is finite and (X/3)/*A’ is a regular I'-module.
On the other hand, as A/B is dual to -57/~S’, A/B is finite, and so is *A/'B.
Since Y(¥/3)/°A is dual to the regular I'-module ~'S’, {X/3)/'A is also regular.
Therefore both *A’/*B and 'A/'B are finite submodules of the I'-module
(X/3)/'B with regular factor modules, and we see that ‘A’='A?®. It follows

25) A discrete [’-finite module has a unique maximal regular submodule. See

83 14
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that (¥/3)/'A=%%/3) for every odd i, and we have a Z,[G]-isomorphism

“X/3/A==D/B).

Combining it with (=(X/3)/A) X ~S'—@Q,/Z,, we obtain a dual pairing ~(9/3)
XS —Q,/Z,.

The pairing ~(¥/3) X ~S—@,/Z, also induces a similar pairing A X (=S/~S")
—Q,/Z, However, it has been proved in the above that ‘A = (*k)/(*g) = A/(*h)
=(X/Y). Hence A=-(X/¥), and we have a pairing ~(¥/9) X (~S/~S")—Q,/Z,.

Finally, combining the pairing ~(9)/3) X =S’ —Q,/Z, with the g-isomorphism
w(Y/Z)—=(Y/3), we obtain a dual pairing *(YV/Z) X ~-S’"—Q,/Z, such that
[y, ¢"1=«x(a)Ly,c] for any ¢ in G. As stated in 3.3, there also exists a dual
pairing *G(L'/F)x =S —Q,/Z, such that (g’ ¢’)=«k(c)g,c) for any o in G.
It follows that *(Y/Z)=Y/Z is Z,[G]-isomorphic to *G(L’'/F").

Since ~G(L/FY™=~G(L; /F,)=~S,, n = 0, the isomorphism ~G(L /F)=~(* /B*%)
implies

=S, = Wk /BE, n=0.

As stated in [10], this gives us a group-theoretical interpretation of the
p-part of the classical class number formula (I) for the first factor —h, of the
class number of F,. We also notice that the existence of a Z,[G]-isomorphism
~G(L/F)—~(*/B*) implies conversely that S, is G-cyclic, because —S,=~UF/~B*
="R /Ry N\ REH and N, is G-cyclic.

To obtain a similar result from *G(L'/F)= Y /Z, we assume that G(L/F)
is a regular I'-groups. Then L’= L, and *GL'/F)™ =+G(L/F)Y™ =+*S, n=0.
On the other hand, the regularity of G(L/F) also implies E,=F,, n=0%® so
that (Y/Z)™ =(*E,/*C,), by Proposition 13, Hence we see from *G(L'/F)=Y/Z
that

*Su = (*Bu/*Coy s n=0,

as Z,[G]l-groups. This may be considered as a group-theoretical interpretation
of the p-part of the classical class number formula for the second factor
+h, of the class number of F,, because the p-part of (II) simply states that
the order of *S, is equal to the order of (*£,/*C,),. - Without assuming that
G(L/F) is regular, we can still obtain a certain group-theoretical relation
between *S, and (*E,/*C,), by using Corollary iv) of But we
omit the detail here.

Finally, we notice that unlike the pairing given in [Theorem 5|, the isomor-
phisms and the pairings in the preceding proposition are not canonical. We
feel that some essential link is still missing in the relation between ~(X/3)
and —S.

26) See [9], §9, Theorem 14.
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3.5. Suppose now that the prime number p is properly irregular; namely,
that the second factor *h, of the class number of F, is prime to p. Then
*Se=1, and it follows from (6) that 7S, is cyclic for every odd.;. Hence S, is
G-cyclic by and we see from [Proposition 20| that ~S, = =3 /~B¥,
n=0. However, in this case, we can also proceed as follows, without refer-
ring to the result of 34.

It is known that the assumption on *h, implies that *4, is not divisible
by p for any n=0?" Hence the class number formula shows that
(*E,/*Cy)p=1. it then follows from [Proposition 13 that Y/Z=1. Therefore
“D/3)=9/3=0, and “(X¥/9)=-(X/3). On the other hand, the fact that i,
is prime to p also implies that *S,=1and *G(L, /F,)=1, n=0. Hence *S=1,
~S=S, *G(L/F)=1, and consequently =S” =1, because ~S” is dual to *G(L/F)
as explained in 3.3. We then see from that there exists a canonical
dual pairing

X/B)XS—Q,/Z,

such that [x?,¢“]=1[x,c] for any o in G. Hence we also have, for each n =0,
a similar non-degenerate pairing

—‘xn/-‘an X Sn ""Qp/Zp .

It follows in particular that —X,/~3, is finite. Hence -%,/~%8, 1s also finite by
The proof of then shows that 'D,+#0 for every

odd 7 and that the order of S,, which equals the order of —X,/~3,, is equal to
the exact power of p dividing 2¢, IT (——éﬂDn). Since S, =S, this is nothing

but the p-part of the class number formula (I). We also see from
5 that S, is Z,[G]-isomorphic to ~Wk /~BF.

There exists an essential difference between the above proof and the one
which uses [Proposition 200 Whereas the isomorphism S, =-S5, = -3 /-8*
obtained from [Proposition 20| is not canonical, the pairing ~X,/~3, X S,—Q,/Z,
in the above is canonical and is explicitly given by [Proposition 18 Further-
more, in the proof of [Proposition 20, we had to use the class number formula
(D in the form that —S, and ~%} /~B} have the same order. However, in the
above proof, in addition to the assumption that *h, is not divisible by p, we
have used only the class number formula to the effect that [*£,:%C,] is
finite and prime to p, and have proved the p-part of the class number formula
(I) by purely algebraic deduction.

Massachusetts Institute of Technology

27) See [6]
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