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Let $V$ be a complete non-singular variety. We denote the universal domain
by $K$ and its characteristic by $p$ . All vector spaces and their dimensions will
mean those with respect to $K$ Differential forms of the first kind of degree
$r$ on $V$ are, as is well known, elements of $H^{0}(V, \Omega^{r})$ where $\Omega^{r}$ is the sheaf of
germs of holomorphic differential forms of degree $r$ . The dimension of this
space is denoted by $h^{r,0}$ . We define the differential forms of the second kind
on $V$ after Picard and Rosenlicht [9] as follows. Let to be a differential form
of degree $r\geqq 1$ on $V$ ; we call $\omega$ to be of the second kind at a point $P$ of $V$

if there exists a differential form $\theta_{P}$ of degree $r-1$ on $V$ such that $\omega-d\theta_{P}$

is holomorphic at $P$ ; if $\omega$ is of the second kind at every point of $V$, we call
$\omega$ to be of the second kind on $V$. We denote by $9_{2}^{(r)}(V)$ the space of all closed
differential forms of the second kind of degree $r$ on $V$, and by $9_{e}^{(r)}(V)$ that
of all exact differential forms among them. The dimension of the factor space
$9_{2}^{(1)}(V)/9_{e}^{(1)}(V)$ is known to be: (1) $2h^{1,0}$ or $h^{1,0}$ respectively, in case $\dim V=1$ ,
according as $p=0$ or $>1$ (Rosenlicht [9]), (2) $2h^{1,0}$ in case $K=C,$ $\dim V$ being
arbitrary (Hodge-Atiyah [5]).

Our purpose in \S 1 is to show that the dimension of the factor space
9$2(1)(V)/9_{e}^{(1)}(V)$ is $h^{1,0}$ , whenever $p>1,$ $\dim V$ being arbitrary. We shall prove
this in making use of the operator $C$ of Cartier; a proof of this fact in case
$\dim V=1$ , making also use of $C$, has been given by Cartier (Tamagawa’s
lecture in Tokyo University 1960) and Barsotti [2, p. 63], but even in this
case our proof is based on other property of $C$ than that used by them.
Theorem 2 generalizes Theorem 2 of [9]. In \S 2, we shall give some results
on closed semi-invariant differential forms on modular abelian varieties; in
case of characteristic zero, the corresponding results are found in Barsotti [1].

In \S 3 we shall prove the following result. It is known that the dimension $q$

of the Albanese variety of a variety $V$ is $\leqq h^{1,0}$ (Igusa [6]); there is a famous
example of $V$ due to Igusa [7] for which the strict inequality $q<h^{1,0}$ holds.
We shall prove that if $V$ is defined over a field of prime characteristic $p$ and
if $V$ has p-torsion divisors, then the inequality $q<h^{1,0}$ holds.
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$NoTATIONS$ : $K(U)$ denotes the field of all rational functions on a variety
$U$. If $W$ is a subvariety of $U$, then $0_{W}$ and $\mathfrak{p}_{W}$ denote respectively the local
ring of $W$ on $U$ over $K$ and the ideal of non-units of $0_{W}$ . A prime divisor on
$U$ means a simple subvariety of $U$ of codimension 1; a prime divisor $W$ gives
rise to a discrete valuation of rank 1 of the field $K(U)$ over $K$ which will be
denoted by $v_{W}$ .

\S 1. Differential forms of the second kind.

Let $U$ be a variety defined over a field of prime characteristic $p$ , and ru
be a closed differential form of degree $r\geqq 1$ on $U$. Let $\{x_{1}$ , $\cdot$ .. , $x_{m}\}$ be a
separating transcendence basis of $K(U)$ over $K$. Then $\omega$ is known to be
written uniquely in the form

to
$=d\theta+\sum_{i_{1}<\cdots<i_{\gamma}}z_{\dot{b}1^{\theta}r}x_{i}dx_{i_{1}}\wedge\cdots\wedge x_{i}^{p_{r}-1}dx_{i_{\mathcal{T}}}$

, $z_{i_{1}\cdots ir}\in K(U)$ ,

and the operator $C$ is defined by the formula

(1) Cto $=\sum_{i_{1}<\cdots<i_{T}}z_{i_{1}\cdots i_{r}}dx_{i_{1}}\Lambda\ldots\wedge dx_{i_{r}}$ ,

which is independent of the choice of $\{x_{1}, \cdots , x_{m}\}$ . $C$ is $p^{-1}$-semi-linear in the
sense

$C(\omega+\omega^{\prime})=C\omega+C\omega^{\prime}$ , $ C(z^{p}\omega)=zC\omega$ $(z\in K(U))$ .
If to is a closed differential form of degree 1, (1) is equivalent to the formula

(2) $(C\omega(D))^{p}=\omega(D^{p})-D^{p-1}(\omega(D))$ ,

and $C\omega=0$ if and only if $\omega$ is exact, and $ C\omega=\omega$ if and only if $\omega\dot{i}S$ of the

form $\frac{df}{f}$ with $f\in K(U)$ . (Cf. Cartier [4].)

THEOREM 1. Let $V$ be a complete non-singular variety which is defined
over a field of prime characteristic $p$ . Then $\omega\rightarrow C\omega$ induces a $p^{-1}$ -semi-
linear bijective homomorphism 9 $2(1)(V)/\mathscr{D}_{e}^{(1)}(V)\rightarrow H^{0}(V, \Omega^{1})$ ; especially we have
$\dim 9_{2}^{(1)}(V)/9_{e}^{(1)}(V)=h^{1,0}$ .

We first prove the following
LEMMA 1. Let $V$ be as in Theorem 1, and let $\omega$ be a closed differential

form of degree $r\geqq 1$ on V. If $ C\omega$ is holomorphic at $P\in V$, then $\omega$ is of the
second kind at P. Especially if $ C\omega$ is of the first kind on $V$, then $\omega$ is of the
second kind on $V$ .

PROOF. Let $\{x_{1}, \cdot , x_{m}\}$ be a set of uniformizing coordinates of $P$ on $V$ .
Then if $\omega$ is of the form $\omega=d\theta+\sum_{i_{1}<\cdots<i_{\gamma}}z_{i_{1}\cdots i\gamma}^{p}x_{i}^{p_{1}-1}dx_{i_{1}}\wedge\cdots$ A $x_{ir}^{p-1}dx_{i_{r}}$ , we have

$C\omega=\sum_{i_{1}<\cdots<i_{\gamma}}z_{i_{1}\cdots i\gamma}dx_{i_{1}}\Lambda\ldots\wedge dx_{i_{\gamma}}$ . If $ C\omega$ is holomorphic at $P$, then we have

$z_{t_{1}\cdots i_{T}}\in 0_{P}$ and so $z_{i_{1}\cdots i\gamma}^{p}x_{i}^{p_{1}-1}\ldots x_{i}^{p_{r}-1}\in 0_{P}$ , which implies that $\omega-d\theta$ is holomorphic
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at $P$ . This completes the proof.
LEMMA 2. Let $V$ be as in Theorem 1, and let $\omega$ be a closed differential

form of degree 1 on V. If $\omega$ is of the second kind at $P\in V$, then $ C\omega$ is holo-
morphic at P. Especially if $\omega$ is of the second kind on $V$, then Cru is of the
first kind on $V$.

PROOF. Let $\theta=\omega-df$ be holomorphic at $P$ . Take any derivation $D$ of
$K(V)$ over $K$ with $Do_{P}\subseteqq \mathfrak{o}_{P}$ ; then we have $\theta(D)\in \mathfrak{o}_{P},$ $D^{p-1}\theta(D)\in 0_{P}$ and $\theta(D^{p})$

$\in \mathfrak{o}_{P}$ , since $\theta$ is holomorphic at $P$ . It follows from this and the formula (2)
that $(C\theta(D))^{p}\in 0_{P}$ . Since the local ring $0_{P}$ of a simple point $P$ is integrally
closed in $K(V)$ and since $C\theta(D)\in K(V)$ , we must have $C\theta(D)\in \mathfrak{o}_{P}$ . Thus
$ C\omega=C\theta$ is holomorphic at $P$ .

Theorem 1 is now an immediate consequence of Lemma 1, Lemma 2 and
the fact that $C$ maps the set of all closed differential forms on $V$ onto that
of all differential forms.

As a corollary to Lemma 1 and Lemma 2, we have
COROLLARY. Let $V$ be as in Theorem 1. If a closed differential form $\omega$

of degree 1 on $V$ is of the second kind at every prime divisor of $V$, then $\omega$ is
of the second kind on $V$ .

PROOF. It follows from the assumption and Lemma 2 that $ C\omega$ is holomor-
phic at each prime divisor of V. $ C\omega$ is then of the first kind on $V$ (cf. Zariski
[11, p. 26, Proposition 8.7]). $\omega$ is therefore of the second kind on $V$ by Lemma 1.

THEOREM 2. Let $U$ be a variety defined over a field of prime characteristic
$p$ . Let $\omega$ be a closed differential form of degree 1 on U. If $\omega$ can be approx-
imated arbitrarily closely at a prime divisor $W$ on $U(i$ . $e$ . for each natural
number $n$ , there exists $f_{n}\in K(U)$ such that $v_{W}(\omega-df_{n})\geqq n)$ , then ru is exact.

PROOF. Let $x=x_{1}$ be a uniformizing parameter of $W$ on $Ui$ . $e$ . $\mathfrak{p}_{W}=0_{W}X$

(which we shall denote by $\mathfrak{p}$ below),
$a_{\partial}nd\{x_{1}, x_{2}, \cdots ’ x_{m}\}$

be a set of uniformizing

coordinates of $W$ on $U$. Put $\partial_{i}=\overline{\partial}_{X_{i}^{-}}(1\leqq i\leqq m)$ and $\theta_{n}=\omega-df_{n}=z_{1}dx_{1}+\cdots$

$+z_{m}dx_{m},$ $z_{i}\in K(U)$ . Denoting $v=v_{W}$ , we have $v(\theta_{n})=_{1\leqq i}{\rm Min}_{\leqq m}\{v(z_{\dot{t}})\}\geqq n$ . Since

$\partial_{i}^{p}=0$ , we have $(C\theta_{n}(\partial_{i}))^{p}=-\partial_{i}^{p-1}(\theta_{n}(\partial_{i}))$ by the formula (2). Since $\theta_{n}(\partial_{i})=z_{i}$

$\in \mathfrak{p}^{v(zi)}\subseteqq \mathfrak{p}^{n}=0_{W}x^{n},$
$z_{i}$ is of the form $z_{i}=x^{n}u_{i}$ with $u_{i}\in 0_{W}$ , so that we have

$\partial_{i}(\theta_{n}(\partial_{i}))=\partial_{i}(x^{n}u_{i})=nx^{n-1}\cdot\partial_{i}x\cdot u_{i}+x^{n}\cdot\partial_{i}u_{i}\in \mathfrak{v}^{n-1},$ $\partial_{i}^{2}(\theta_{n}(\partial_{i}))\in \mathfrak{p}^{n-2},$
$\cdots,$

$\partial_{i}^{p-1}(\theta_{n}(\partial_{i}))$

$\in \mathfrak{p}^{n-(p-1)}(n\geqq p-1)$ . We have therefore $(C\theta_{n}(\partial_{i}))^{p}\in \mathfrak{p}^{n-(p-1)}$ . Putting $a_{i}=C\omega(\partial_{i})$

$=C\theta_{n}(\partial_{i})\in K(U)$ (which is independent of $n$), we have $a_{i}^{p}\in\bigcap_{n=p-1}^{\infty}\mathfrak{p}^{n-(p-1)}=\{0\}$ ,

$a_{i}^{p}=0$ and $a_{i}=0(1\leqq i\leqq m)$ . Thus we have $C\omega=a_{1}dx_{1}+\cdots+a_{m}dx_{m}=0$ , and
that $\omega=df$ with some $f\in K(U)$ , which completes the proof.
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\S 2. Invariant and semi-invariant differential forms on abelian varieties.

Let $A$ be an abelian variety. A differential form $\omega$ of degree $r\geqq 1$ on $A$

is said to be invariant if $\omega\circ T.-\omega=0$ for any $a\in A$ , where $T_{a}$ denotes the
translation by $a$ ; $\omega$ is said to be semi-invariant if for any $ a\in A\omega\circ T_{\alpha}-\omega$ is
exact. (Cf. Barsotti [1].) The space of all closed semi-invariant differential
forms of degree $r$ on $A$ will be denoted by $\mathscr{D}_{s^{(r)}}(A)$ . Clearly we have $9_{e}^{(\gamma)}(A)$

$\subseteqq 9_{s^{(r)}}(A)$ .
PROPOSITION 1. Let $\omega$ be a closed differential form of degree $\geqq 1$ on an

abelian variety A which is defined over a field of prime characteristic $p$ . Then
$\omega$ is semi-invariant if and only if $ C\omega$ is invariant.

PROOF. For a given $a\in A,$ $\omega\circ T_{a}-\omega$ is exact if and only if $ C(\omega\circ T_{a})=C\omega$ ;
and this is so if and only if $(C\omega)\circ T_{a}=C\omega$ , since $(C\omega)\circ T_{a}=C(\omega\circ T_{a})$ . Propo-
sition 1 is an immediate consequence of this and the definition of ” semi-
invariant “.

Proposition 1 may be stated also as follows.
COROLLARY 1. Let $A$ be as in Proposition 1. $\omega\rightarrow C\omega$ induces a $p^{-}$ ’-semi-

linear bijective homomorphism $9_{s^{(r)}}(A)/9_{e}^{(r)}(A)\rightarrow H^{0}(A, \Omega^{r})$ ; especially we have
$\dim 9_{s^{(r)}}(A)/9_{e}^{(r)}(A)=h^{r,0}(1\leqq r\leqq\dim A)$ .

COROLLARY 2. Let $A$ and $\omega$ be as in Proposition 1. (1): If $\omega$ is semi-
invariant, then $\omega$ is of the second kind on A. (2): If $\omega$ is of degree 1 then $\omega$

is semi-invariant if and only if to is of the second kind on $A$ .
PROOF. Note that a differential form $\omega$ of degree $r\geqq 1$ on $A$ is invariant

if and only if it is of the first kind on A. (1) follows immediately from Prop-
osition 1 and Lemma 1. (2) follows from Lemma 2 and Proposition 1.

\S 3. $p$-torsions and the inequality $q<h^{1,0}$ 1).

Let $V$ be a complete non-singular variety defined over a field of prime

characteristic $p$ , and $ V^{\varphi}\rightarrow$ $A$ be the Albanese variety of $V$. Pic (V) and Pic $(A)$

denote the group of all divisor classes (with respect to the linear equivalence)
on $V$ and $A$ respectively; Pic $(V)_{p}$ and Pic $(A)_{p}$ denote respectively the sub-
group of the elements in Pic (V) and Pic $(A)$ whose orders divide $p$ . We shall
denote the algebraic and linear equivalence relations between divisors by $\equiv$

and $\sim$ respectively. If $\mathfrak{a}$ is a divisor on $A$ with $\mathfrak{a}\sim 0$ , then $\varphi^{-1}(\mathfrak{a})\sim 0$ on $V$ (if
it is defined); $\mathfrak{a}\rightarrow\varphi^{-1}(\mathfrak{a})$ induces a homomorphism $\varphi^{*}:$ Pic $(A)\rightarrow Pic(V)$ and
Pic $(A)_{p}\rightarrow Pic(V)_{p}$ (Lang [8, p. 236, p. 65]). A divisor $X$ on $V$ is said to be
p-torsion if $X\not\equiv O$ but $pX\equiv 0$ . $\omega\rightarrow\omega\circ\varphi$ induces the homomorphism $\delta\varphi$ of the
space $H^{0}(A, \Omega^{1})$ into the subspace of closed differential forms in $H^{0}(V, \Omega^{1})$ ,

and which is known to be injective (Igusa [6]). $\rightarrow C(V)$ denotes the additive

1) We owe to D. Mumford the formulation which follows.
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group of differential forms in $H^{0}(V, \Omega^{1})$ which are invariant by $C;X(A_{0}^{\backslash }$

denotes the similar group on A. $\delta\varphi$ induces an injective homomorphism oi
$X(A)$ into $X(V)$ , since $ C(\omega\circ\varphi)=(C\omega)\circ\varphi$ for $\omega\in\angle(A)$ .

We use the following result of Cartier [3, Theorem 5].
(3) Notations being as above, the group Pic $(V)_{p}$ is canonically isomorphic

to $-\mathcal{L}(V)$ .
The proof of this fact is not published. However, a proof of this fact in

case $\dim V=1$ is given in Serre [10, p. 28, Proposition 10], and it can be
applied to the case of $\dim V\geqq 1$ . In fact, note that a differential form on $V$

is of the first kind on $V$ if and only if it is holomorphic at every primc
divisor of $V$ (cf. [11, p. 26, Proposition 8.7]). Then, as in the proof of [10

Proposition 10], it can be seen that $Cl(X)^{2)}\rightarrow\underline{d}\underline{f}f$ with $pX=(f)$ gives an
injective homomorphism $\theta$ : Pic $(V)_{p}\rightarrow_{e}\mathcal{L}(V)$ . In order to see that $\theta$ is surjec-

tive, we have only to show that, if a differential form $\frac{df}{f}(f\in K(V))$ is

holomorphic at a prime divisor $W$ on $V$, then $v_{W}(f)\equiv 0(mod p)$ . Let $t$ be a
uniformizing parameter of $W$ on $V$, and let $f=t^{e}u$ with a unit $u$ in $\mathfrak{o}_{W}$ and

$e=v_{W}(J^{\cdot})$ . We have $\frac{df}{f}=e\frac{dt}{t}+\frac{du}{u}$ . The differential form $\frac{dt}{t}$ is not

holomorphic at $W$, since the derivation $D=\frac{\partial}{\partial t}$ of $K(V)/K$ is holomorphic at

$W$ and $\frac{dt}{t}(D)=\frac{1}{t}\not\in 0_{W}$ ; this implies $e\equiv 0(mod p)$ since $e\frac{dt}{t}=\frac{dfdu}{fu}$ is

holomorphic at $W$. Thus we see that $\theta$ is bijective.
PROPOSITION 2. Notations being as above, $\varphi^{*}:$ Pic $(A)_{p}\rightarrow Pic(V)_{p}$ is sur-

iective if and only if $V$ has no p-torsion divisor.
PROOF. $\hat{V}$ denotes the subgroup of Pic (V) of classes which are represented

by divisors algebraically equivalent to zero ( $i$ . $e$ . the Picard variety of $V$ ) $;\hat{A}$

denotes the similar group on $A$ . If $D$ is a Poincar\’e divisor for $A$ , then $ D\circ\varphi$

is a Poincar\’e divisor for $V;\varphi^{*}$ gives therefore a canonical bijective homo-
morphism $\hat{A}\rightarrow\hat{V}$. (Cf. Lang [8, p. 148, Proposition 1 and Theorem 1].)

If $V$ has no $p$-torsion divisor, then Pic $(V)_{p}$ is a subgroup of $\hat{V};\varphi^{*}$ maps
therefore Pic $(A)_{p}$ onto Pic $(V)_{p}$ isomorphically, since the abelian variety $A$ has
no $p$ -torsion divisor.

Conversely, if $V$ has a divisor $X$ such that $X\not\equiv O$ but $pX\equiv 0$ , then we can
find a divisor $Y$ on $V$ such that $Y\equiv X$ and $pY\sim O$ (Lang [8, p. 101, Corollary
4 to Theorem 4]). Then $y=Cl(Y)\in Pic(V)_{p}$ can not be an image from
$Pic(A)_{p}$ , which shows that $\varphi^{*}:$ $Pic(A)_{p}\rightarrow Pic(V)_{p}$ is not surjective. Proposi-
tion 2 is thereby proved.

2) $Cl(X)$ denotes the linear equivalence class containing the divisor $X$.
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$\theta$ denotes the canonical isomorphism $Pic(V)_{p}\rightarrow\rightarrow C(V)$ in (3).
PROPOSITION 3. Notations being as above, the following diagram is com-

mutative.
$\varphi^{*}$

Pic $(V)_{p}-$ Pic $(A)_{p}$

Zll $\theta$ $ l||\theta$

$\delta\varphi$

$X(V)-X(A)$
PROOF. Let $a=Cl(tI)\in Pic(A)_{p}$ with $p\mathfrak{a}=(\alpha),$ $\alpha\in K(A)$ . Then we have

$\theta(a)=\frac{d\alpha}{\alpha}\in X(A)$ and $\varphi^{*}(a)=Cl(\varphi^{-1}(0))\in Pic(V)_{p}$ . It will not be difficult to

see here that $\alpha\circ\varphi$ is defined and is not constant $0$ . This being so, we have
$p\varphi^{*}(a)=Cl(p\varphi^{-1}(\mathfrak{a}))=Cl(\varphi^{-1}(\alpha))=Cl((\alpha\circ\varphi))$ . It follows from this that $\theta(\varphi^{*}(a))$

$=\frac{d(\alpha\circ\varphi)}{\alpha\circ\varphi}=\delta\varphi(\theta(a))$ , which implies the commutativity of the diagram.

In view of the commutative diagram in Proposition 3, Proposition 2 is
equivalent to the following.

THEOREM 3. Let $V$ be a complete non-singular variety which is defined over
$a$ field of prime characteristic $p$ , and $ V^{\varphi}\rightarrow$ $A$ be its Albanese variety. Denote by
$X(V)$ the additive group of differential forms $\omega\in H^{0}(V, \Omega^{1})$ such that $ C\omega=\omega$ ,

and $by\rightarrow C(A)$ the similar group on A. Then $\delta\varphi:\mathcal{L}(A)\rightarrow\rightarrow C(V)$ is surjective if
and only if $V$ has no p-torsion divisor.

COROLLARY. Let $V,$ $p$ and $A$ be as in Theorem 3, and $q$ the dimension of
A. If $V$ has a p-torsion divisor, then we have $q<h^{1,0}$ .

PROOF. If $V$ has a $p$ -torsion divisor, then we may find by Theorem 3 a

differential form $\frac{d}{f}f_{-}\in 1i(V)$ which is not an image from $\Leftrightarrow C(A)$ . Assume for

a moment that $\underline{d}f_{-}f=\omega\circ\varphi$ for some differential form to of the first kind on
$A$ . We have $ C(\omega\circ\varphi)=(C\omega)\circ\varphi$ , since $\omega$ is closed. (Cf. [1, p. 93, 2.1].) Since

$(C\omega-\omega)\circ\varphi=C(\omega\circ\varphi)-\omega\circ\varphi=C(\frac{df}{f})-\frac{df}{f}=0$ , and since $ C\omega-\omega$ is of the first

kind by Lemma 2, we would have $C\omega-\omega=0$ because of the injectivity of $\delta\varphi$ .
$\omega$ would be therefore of the form $\omega=\frac{d\alpha}{\alpha}$ with $\alpha\in K(A)$ . This would imply

that $\frac{df}{f}=\omega\circ\varphi$ is an image from $\rightarrow C(A)$ , which is a contradiction.

Musashi Institute of Technology, Tokyo
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