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§1. Introduction.

Variational formulas for a class of analytic functions are generally useful
in solving extremal problems for the class of functions. Recently Robertson
[1, 2] has investigated some extremal problems for the class of analytic func-
tions p(z) normalized so that p(0)=1 and with positive real part in the unit
circle by making use of the variational formula
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where a, ¢ are arbitrary complex numbers such that |a| <1, [¢]|=1, and p is
a sufficiently small positive number.

This formula has been derived from the following one established by
Hummel [3, 4] for the class of analytic functions f(z) normalized so that
J®)=0, f/(0)=1 and starlike with respect to the origin in the unit circle:
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In this paper we shall establish a new variational formula for the class
of functions with positive real part. Some of the extremal problems taken
up in the above papers by Robertson can be solved in more general forms
and more directly by our new formula. This will be shown in examples of its
applications.

§2. A variational formula for functions with positive real part.

LEMMA 1. Let f(2) be analytic in |z] <1 and let |a| <1, then for |z|<1
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PRrROOF. Since [ f(z)—f(a)]/(z—«a) is analytic in [z] =<1, we have
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On the other hand

s lz|<1.
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Hence (2.1) follows.

We now denote by P the class of normalized functions p(z)=1-+pz+ -
+prz*+ -+ analytic and with positive real part in the unit circle. Our formula
for this class is given by

THEOREM 1. Let p(z) € P. Then there exists a function p*(z) = p(z)+0p(z)
belonging to P and with op(2) of the form
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where «, ¢ ave arbitrary complex numbers such that |a|<1, |e|=1, and p is
a sufficiently small positive number.

PrROOF. Setting f(z)=1+p[e/(l—az)+iz/(z—a)], f(z) is continuous and
positive on |z|=1 for a, ¢, and p given above. Hence R[ p(rz)f(z)] is con-
tinuous and positive on |z|=1 for » in 0 <7 < 1. Therefore the function

o@= 5[ SHERLGOAOUe,  E=ev,

is analytic in |z| <1 and has a positive real part continuous in |z|<1. Making
use of Lemma 1, we obtain
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Let g(2)=1im g,(2), then g(2) is analytic and has a positive real part in [z] <l.
r—1
Since g(0)=1+pR(e+&p(a)) >0, the function
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is a member of P. After a brief calculation we have p*(z) = p(2)+0p(z), where
0p(z) is a function of the form (2.2). Thus the theorem is proved.
From Theorem 1 we have at once
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COROLLARY 1. Let p(2)=1+ ipkz"eP. Then there exists a function
k=1

P2 =1+ i(;bﬁ—ﬁpk)z’“ belonging to P and with 0py of the form
=1
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where «, ¢ and p are given in the theorem.

§3. An extremal problem connected with the coefficients of p(z).

Making use of (1.1), Robertson [1] has proved without assuming Carathé-
odory’s theorem the following.

THEOREM A. Let p(z)=1+pz+ -+ +pe2*+ - € P. Then |p| <2 for all
k, and p,=2 for a given n when and only when p(z) is of the form

ce e n_l n -
G.1) ﬂ@:1+m?#1j£”ﬂ Y2 pew=h,  0<E<n.

On the other hand Hummel has proved, making use of (1.2), the
following.

THEOREM BY. Let S be the class of normalized analytic functions stariike
with respect to the origin in the unit circle, and let F(w,, --- ,w,) be analytic
with vespect to wy, -, w, in |wy|<k, k=2 --,n  Then any function
f(2)=z+a,z2+ - +a,z"+ --- in S which maximizes RF(a,, -+ , a,) must be of
the form

f(z)zz/ﬁlo—ékz)“k, 1E0=1, =0, épkzz, m=n—1.

As is easily seen, B is equivalent to

THEOREM C. Let F(w,, -, w,) be analytic with respect to wy, -+, w, in
lwel =2, k=1, .-, n. Then any function pz)=1+pz+ - - piz+ - nTP
which maximizes RE(p,, --- , pn) must be of the form

(3.2) PR = 3 if?‘z 1Exl=1, =0, =1, m=n.
k=1 jr4 k=1

In this section we shall study the same kind of problem more in detail
by applying our formula.

The above facts A, B and C, of course, can be derived immediately from
Carathéodory’s theorem concerning the coefficient region of p(z). We
however do not assume the theorem of Carathéodory in the present discussion,
since our purpose is to show a variational method.

1) Cf. Komatu [é].
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LEMMA 2. Let a rational function p(z) be a member of P, and let Rp(z)=0
Sor |z|=1. Then p(z) has no poles in |z|+1 but has at least one pole on
|z]=1. Moreover all poles on |z|=1 of p(z) are simple.

ProoF. By virtue of the reflection principle p(z) has no poles also in |z| > 1.
Therefore if p(z) has not any pole on |z|=1, then p(z) must be a constant.
This however contradicts the assumption that p(0)=1 and Rp(e?¥)=0. Hence
p(z) has inevitably at least one pole on |z|=1. Next, let ¢ be a pole of p(2).
If this pble is of order larger than one, then for 7 less than and sufficiently
close to one the image curve of the arc C:z=re", §—0=0=<p+7, 0>0,
under p(z) cuts the imaginary axis in at least one point. This also contradicts
the assumption that Rp(z) >0 for |z] <1. Thus the lemma is proved.

LEMMA 3. Let A(z) be a polynomial of z, and let 17(2):A(z)/klin[1 (z—E,

1&el=1, k=1, .-, m, be a member of P. If Rp(2)=0 for |z|=1, then p(2) has
a representation of the form (3.2).

PrOOF. Let the set of all poles of p(z) be {&,---,&}. Then from the
facts stated in the preceding lemma p(z) must be written in the form

Cr
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p(z):c+k§i_}l 1

> lel=1,

where each —&,¢, is the residue of p(z) at é&,.

Since Rp(z) >0 for |z| <1, the sign of Jp(z) on |z|=1 must change from
negative to positive as z passes each &, in the positive direction. From this
it follows that each ¢; is real and positive, for we have ic; = 0p(&xe?)+-0(8)

[4
when |@] is small. Next, because of p(0)=1 we have c=1—- 3 ¢,. Hence
k=1

_ < _CExZ
p(z)“—l—l'kgl l—GkZ ’ Ck>0.
Moreover from the fact that Rp(z)=0 for |z|=1 and R[ez/(1—e2)]=—1/2
for |z|=1, we have éckzz. Hence
k=1

1+e,2

Cy
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p)= 2t

On the other hand from the assumptions {e,, :--, ¢} is clearly a subset of
{£,, -+, En}. Consequently p(z) is representable in the form (3.2).

THEOREM 2. Let F(w,, -+, w,) be analytic with rvespect to w,, -, w, in
Jw| = max |pel, k=1, ,n, and let Ax=Fy(py, ", pn), k=1 ,n If

P =1+p,z+ -+ +pp2*+ -+ is a function in P which maximizes (or minimizes)
RF(Dy, ++ , bn), then the coefficients p,, -+ , v, of p(2) satisfy the equality

@3.3) R kz %= max (or min)23t 2,2
=1 zl =1 k=1
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If further Ay, k=1, -, n, are not all zero for this p(z), then the number of
points & on |z|=1 at which
(34) RS 2,5 = max (or min) % 3 A2t

k=1 2l =1 k=1

holds for p(z) is mot larger than n, and if we denote all of such & by &,
k=1, .-, m(Zn), then p(z) must be of the form

%, 16z &,

Proor. It suffices to prove the theorem only for the maximum problem.
Since P is compact, there exists the function p(z) which maximizes
RE(Dy, -+, Pp) in P. From (2.3) we have

2 SRE(py, -+, b= 2R 3 Adbi+o(L)
o P k=1

=R [e{ BAF+2 2 Py —pla) Fim2a)
1
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Since ORF(p,, -+, pu) =0 for arbitrary ¢ and a such that |e]=1, |a|<1, we
have on replacing a by z

Hy=5E,  lz1<1,

if B(z) =0, where

A@)= 3 (=i + B (b —Aubirs )

ZV

B&) =3 {® 20— (T + A ) }

We here remark that B(z)=0 occurs only when A;,=:-+=2,=0. Since on
lz]=1 A(z) is pure imaginary and B(2) is real, p(2) is a rational function
satisfying Rp(z)=0 for |z|=1. Therefore by Lemma 2 B(2) has at least one
zero on |z|=1 in view of the fact that A(z) has no poles on |z|=1. Hence

(3.6) min B(z) <0.

lz] =1
Next since the function ¢(z) =(1-+az)/(1—az), |a| <1, is a member of P, if
we set
= EEED )o@+,
then p*(2) is also a member of P. For this variation we have dp, = p(2a*—p,)
+o0(p), and p(z) must satisfy also



292 K. SAKAGUCHI

ORF(pr, -+, pa)= B 33 A2A*—p)+0(p) 20,
so that

a%k"z Gebe—22aH =0, lal<l.
=1

Letting |a|—1, we have B(a)=0 for |a|=1, namely
3.7 B(z)=0 for |z|=1,
which combined with yields I|I;n—r11 B(z)=0, i. e,

kil R(Aepr)—max 3 201,24 =0
- k=1

|2l =1

Hence follows. Therefore we see further that if we denote by {&,, -, &n}
the set of all points & on |z|=1 at which holds, then the set of their
conjugates {&,, ---, &,} coincides with that of all zeros on |z|=1 of B(2),
where each multiple zero is taken into consideration only once. On the other
hand B(z) is of the form B,(2)/z", where B,(z) is a polynomial of degree at
most 27, and furthermore each zero on |z|=1 of B(z2), namely that of B,(z),
is of even order on account of [3.7) Hence m < n.

Finally from p(z) has poles only on |z|=1 in the whole plane
and these poles are all simple. Therefore p(z) must reduce to the form

P& =) 3 &0,

where A,(z) is a polynomial which may have some z—&, as its factors. Thus
by p(z) is representable in the form [35). This completes the proof.
COROLLARY 2. Let A, k=1, -+, n, be constants. Then we have

3.8) max (or min) R ﬁ) AxPr = max (or min) 2R i‘, Au2¥ .
pepP f=1 2l =1 k=1

If further A, k=1, .-, n, are not all zero, then a mnecessary and sufficient
condition that p(z) be a function in P which maximizes (or minimizes) R > Az D
k=1

1s that p(z) is of the form (3.5) where {&, -+, &n}, m<mn, is the set of all
poinits & on |z|=1 at which (34) holds.
Proor. From the theorem the coefficients p,, -, p, of p(z) which max-

imizes (or minimizes) R Zn) Axpr, in P satisfy [3.3). Hence holds. Next it is
k=1

clear from the theorem that the extremal function p(z) must be of the form
with &, defined in this corollary. Therefore it suffices to prove the
converse. Let p(z)=1+pz+ - +p2*+ .- be a function of the form
with &, defined in this corollary, then clearly p(z) e P, and
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R b= 2R D Afb= 3 1, max (or min) 23 3 A2t
v=1 k=1 y=1 2zl =1 k=1

k=1
. n
=max (or min) R D} by
pEP k=1

on account of and [(3.8) Hence the converse holds, and so the proof is
completed.

From this corollary we have at once

COROLLARY 3. We have rgleegc (or min)p, =2(or —2). Moreover a necessary

and sufficient condition that p(z) be a function in P which satisfies p, = 2(or —2)
for a given n is that p(2) is of the form

(B9 pO=Bmde,  &@=10r -, @20, Zpm=1,
k=1 k =1

where &, k=1, --- ,n, are n roots of the equation & =1(or —1).

is equivalent to A, for any function p(z) given'[by
(3.1) can be written in the form (3.9) if p(z) = P, and conversely any function
p(z) given by (3.9) can be written in the form (3.1).

§4. Another extremal problem connected with the values of p(z) and its
derivatives.

Robertson has proved, making use of (1.1), the following.
THEOREM D. Let F(w) be analytic in Rw>0. Then on |z|=r<1

min RF(p(z)) = min zRF(Jii) .
pEP |l =7

1—z

THEOREM E. Let F(w,, w,) be analytic with vespect to w, w, in Rw,>0,
[w,| < +oo. Then on |z|=r<1

min RF(p(z), zp'(2)) = mﬁl{; RE(p(2), z2Di(2)) ,
pEP «,0,

where

_ 1da 1426 l—a (14-2¢7%
p@="5 ()t ()

l=a=<1, 0=60=2r, 0=¢=2x.

z=re?,

Our formula permits us to solve this kind of problem in a more general
form as follows.

THEOREM 3. Let F(w,, wy, -+ , W,) be analytic with respect to w,, w,, - , w,
in Rw, >0, |we|<+oo, k=1, ,n, and let A= F, (p(c), p'(c), -, p™(c)).
=0, --,n, jc|<l. If p(2) is a function in P which maximizes (or minimizes)
RE(p(c), p'(c), -+, p™(c)) for a given ¢ in |z| <1, then p(z) satisfies
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“4.1) ?R}E‘Séolk p®(c) = rlr_ll%x (or min) N ki:)olkqi("’(c, z),
where
1—|—cz © 22"
¢(C, Z)——- , ¢( )(C Z)—[ de ¢(C Z)] m, kgl.

If further A, k=0, --- , n, are not all zero for this p(z), then the number of
points & on |z|=1 at which

“.2) R ki_ozkw(c, £)= max (or min) % éoquwc, 2)

holds for p(z) is not larger than n+1, and if we denote all of such & by
&, k=0, -+, m(Z n), then p(z) must be of the form

43 pO=3m e, w20, Bm=l.

PROOF. Our proof will be carried forward in parallel with that of Theorem
2. It suffices to prove the theorem only for the maximum problem. .Since P
is compact, there exists the function p(z) which maximizes REF(p(c), -+, p™(c))
in P. If we set

M= 9 D=1"2g, Q=g a= 1T,

¢1(Z> = ¢1(Z, C_() - p(Z)¢(Z, a)’ ¢1(2) = ¢1(2, a) :p(2)¢(2, C() 2

then from (2.2) we have

—5—5;0(2:):s[¢1<z>—p<7><z><z>—¢<z>>—1]
— [ y(2) ) p(2)— @) —1T+a(L) ,

and hence

R O L OREER W HTRORVE

= RLE Q=T+ 2 (PO Agf(c))

—p(@) 35 D™+ 2b ()~ LT — A (N} +0(1)

Since ORF(p(c), -+, p™(c)) =0 for arbitrary ¢ and a such that |e¢]=1, |a| <],
we have on replacing a by z

pa=52-,  lz1<1,
if B(z) =0, where

A@) = 2=t 33 {1, D—Agiile, 2}
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B@) = 3 {20 ()~ ™, D+ 2 (e, ),

and (k) denotes the k-th derivative with respect to the first variable. We
here remark that B(z)=0 occurs too only when 4, - =4,=0, and both A(2)
and B(z) are rational fractions with denominator [(1—éz)(z—c)* L.
Since ¢(z, a) = ¢(z, 1/a) and ¢ (z, @) = ¢,(z, 1/a), we have for |z| <1, |a|=1
¢(k>(2’ 0() — ¢(k)(z, 1/6() — ¢(k)(z’ 0‘() ,
(2, a) = ¢F(z, 1/a) = ¢{(z, @) .
From this we see that on |z|]=1 A(z) is pure imaginary while B(z) is real.
Hence Np(z)=0 for |z|=1. Therefore by B(z) has at least one zero
on |z|=1 in view of the fact that A(z) has no poles on |z|=1, so that

(4.4) min B(z) < 0.

|zl =1

Next since ¢(z) € P, the function

2 =LTEEE. oyt o)~ e+ ol

is also a member of P. For this variation, p(z) must satisfy

ORF(p(c), =+, p™(c)) = pR é}) Ap®(c)—p®(c))+0(p) =0
too, so that

S%k% {2 p®()—2p®(c, @)} =0, lal<1.

Letting |a|—1, we have B(a)=0 for |a|=1, namely
4.5) B(z)=0 for lz]=1,
which combined with yields min B(z)=0, i. e,

ol =1

R 3 2 pP()—max R 3} ,6%(c, 2)=0.
=0 lod =1 k=0

Hence follows. Therefore we see further that if we denote by {&, -, &,}
the set of all points & on |z|=1 at which holds, then the set of their
conjugates {&,, ---, &,} coincides with that of all zeros on |z|=1 of B(2),
where each multiple zero is taken into consideration only once. On the other
hand B(z) is of the form B,(z)/[(1—z)(z—c)]**, where B,(z) is a polynomial
of degree at most 2(n+1), and furthermore each zero on |z|=1 of B(z), namely
that of B,(z), is of even order on account of [(4.5). Hence m<n.

The last part of the theorem also can be proved just as in the proof of
Theorem 2

COROLLARY 4. Let A, k=0, ---,n, be constants. Then for ¢ given in
|z| <1 we have
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(4.6) max (or min) e}%kzo 2,p(c) = max (or min) % > 2,6%9(c, ).
= = zl =1 k=0

If further Ay, k=0, ---, n, are not all zero, then a necessary and sufficient
condition that p(z) be a function in P which maximizes (or minimizes)

R :V_‘(,}ka"‘)(c) is that p(z) is of the form (4.3) where {&, -+, &n}, m=mn, is the
k=
set of all points & on |z|=1 at which (4.2) holds.

This corollary can be proved in the same way as used in the proof of

[Theorem D is a special case of We shall finally show another
corollary which is a generalization of E.

COROLLARY b. Let F(wy, wy, -+, w,) be analytic with respect to wy, w,, -+, W,
in Rw, >0, |wy| < oo, k=1, -+, n. Then for v in 0= r<1 we have

max (or min) RF(p(z), zp'(2), -+, 2"p™(2))

@) Hneer
= max (or min) RECPU(r), 100, =+, "B
#x-%
where
48  p@=Fmr,  l&l=1, w20, Zm=

Movreover any function p(z) in P which maximizes (or minimizes) Illlqu (or min)
RE(P(2), 2p'(2), -+ , 2"p™(2)) must be of the form (4.8). o
ProoF. It suffices to prove the corollary for the maximum problem. Let
Gw,y, Wy, -+ , Wy) = Flw,, rw,, --- , r"w,). Then we have
ril?l)’( E}%G(p(r)) p/(r): Tt p(n)(r))

4.9
= max %F(P(Z) zp'(2), -+, 2"p™(2))

lel =7,p
from the fact that if p(z) € P, then p,(2) = p(e¥z) € P and r*p{¥(r) = (re0)ep®(reif)
for an arbitrary real . On the other hand from Theorem 3 any function
p(z) which maximizes RG(p(), p'(¥), -+, p™(r)) must be of the form (4.8).
Moreover every function p,(z) given by (4.8) is clearly a member of P. Hence
(4.7) holds. Next let p(2) be a function in P which satisfies for z, = re®

RE(p@), -, @)= max REDE), -, 9,

then because of (4.9) we have, for p,(z) =p(e®z) € P,
RGC(Po(7), - <">(r))—max RG(P@), ==+, p7()).

Therefore from Theorem 3 p,(z) must be of the form (4.8), so that the function
p(2) = p(e~*z) also must be of the same form. This completes the proof.
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