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The purpose of this paper is to extend some of the results in the theory
of semi-groups of operators in Banach spaces to the case of locally convex
topological vector spaces.

We consider a vector space ac with two locally convex topologies $\tau$ and $\sigma$

which satisfy the conditions: $(T1)\tau$ is stronger than $\sigma;(T2)\tau$ has a base
of neighborhoods of $0$ composed of convex, circled and $\sigma$ -closed sets; $(T3)\mathfrak{X}_{\tau}$

is sequentially complete; $(T4)$ every continuous function $f(t)$ from $[0,1]$ to $\mathfrak{X}_{\sigma}$

is Riemann integrable in $\sigma$ . We shall call a family of linear operators $\{T_{t}\}_{f\geqq 0}$

in $\mathfrak{X}$ a $(\tau, \sigma)$ semi-group if it satisfies the conditions: $(S1)T_{0}=I$ (identity);
$(S2)T_{t+s}=T_{t}T_{s}$ ; $(S3)\{T_{\iota}\}$ is equicontinuous in $\mathfrak{L}(\mathfrak{X}_{\tau}, \mathfrak{X}_{\tau});(S4)T_{t}$ is, for every
$t$ , a $\sigma$ -sequentially closed operator; $(S5)T_{t}x$ is a $\sigma$ -continuous function for
every $x$ .

The well-known Hille-Yosida theory deals with the case $\tau=\sigma$ and when
$\mathfrak{X}_{\tau}$ is a Banach space. The results have been generalized by Schwartz [8]

when $X_{\tau}$ is a quasi-complete locally convex space. The theory in the case
when $\mathfrak{X}$ is an adjoint space of a Banach space, $\tau$ is the strong topology and $\sigma$

is the weak’ topology is known as the theory of adjoint semi-groups by Feller
[2] and Phillips [7].

In \S 1 we give several sufficient conditions to assure the above assumptions.
Especially it is shown that if $ce_{\tau}$ is quasi-complete and if $\{T_{t}\}$ satisfies $(S1)-$

$(S3)$ and the condition that $T_{t}x$ converges weakly to $x$ as $t\rightarrow 0$ for every $x$,

then $\{T_{t}\}$ is a $(\tau, \tau)$ semi-group. \S 2 is of preliminary nature.
The infinitesimal generators. $A_{\tau}$ and $A_{\sigma}$ are defined as usual by

$A_{\tau}x=\tau-\lim_{t\rightarrow 0}\div(T_{t}-I)x$ and $A_{\sigma}x=\sigma-\lim_{t\rightarrow 0}\div(T_{t}-I)x$ .

Thanks to the above assumptions, we can show that the Laplace transform

$R(\lambda)x=\int_{0^{\infty}}e^{-\lambda t}T_{t}xdt$ , ${\rm Re}\lambda>0$

is convergent as an improper $\sigma$ -Riemann integral. $\{(\lambda R(\lambda))^{m}\}$ is equicontinuous
in $\mathfrak{L}(\mathfrak{X}_{\tau}, X_{r})$ with $\{T_{t}\}$ and $R(\lambda)$ is the resolvent of a $\tau$ -closed linear operator
$A$ , which we call the generator of $\{T_{t}\}$ . We are mainly concerned in \S 3
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with $R(\lambda),$ $A$ and its relationship with $A_{\tau}$ and $A_{\sigma}$ , and prove that the relation
$A_{\tau}\subset A\subset A_{\sigma}$ holds and the last two coincide if $T_{t}$ is a a-weakly continuous.
operator for every $t$ . We seek also for the condition to certify the $\sigma$ -weak
continuity of $R(\lambda)$ , which is used in \S 7 to define dual semi-groups.

The domain $\mathfrak{D}(A)$ of $A$ is $\sigma$ -dense, but it is not necessarily $\tau$ -dense. We
prove in \S 4 that $T_{t}x$ is $\tau$ -continuous for $t\geqq 0$ if and only if $x\in \mathfrak{D}(A)^{r},$ the $\cdot$

$\tau$ -closure of $\mathfrak{D}(A)$ , and that the restriction $S_{t}$ of $T_{t}$ to $\mathfrak{D}(A)^{\tau}$ becomes a $(\tau, \tau)$

semi-group. It will be of some interest that the generator $A_{0}$ of $S_{t}$ coincides.
with $A_{r}$ . \S 5 is again of preliminary nature.

A complete characterization of the generators of $(\tau, \tau)$ semi-groups has.
been given by Hille, Yosida and Schwartz. In \S 6 we give a simple proof for
it and a generalization to a special class of $(\tau, \sigma)$ semi-groups including the
duals of strongly continuous semi-groups in Banach spaces.

The notion of adjoint semi-groups is generalized in \S 7, and is used to,

prove the uniqueness of the solution of the equation

$\frac{d}{dt}x(t)=Ax(t)$ with $x(O)=x_{0}$ .

It is proved that a $\tau$ -continuously differentiable solution is unconditionally
unique and that if the dual space $\mathfrak{X}_{\sigma}^{\prime}$ is quasi-complete relative to the Mackey
topology $\tau(\mathfrak{X}_{0^{\prime}}, \mathfrak{X})$ and if $T_{t}$ is a $\sigma$-weakly continuous operator for every $t$ , then
even a $\sigma$ -weakly continuously differentiable solution is unique. (We note that
this is the case for the duals of strongly continuous semi-groups in Banach
spaces.) Previously we know that $x(t)=T_{t}x_{0}$ gives a $\tau$ -continuously differentiable
solution if $x_{0}\in \mathfrak{D}(A_{0})$ , and a $\sigma$ -continuously differentiable solution if $x_{0}\in \mathfrak{D}(A)$

The above theorem proves their uniqueness.
We develop in \S 8 the general theory of analytic functions with values in

locally convex spaces, and finally in \S 9 we investigate the analytic semi-group’
$T_{t}$ such that $T_{t}$ is analytically extendable to the sector $|\arg t|<\theta$ and give
various characterizations. This part considerably overlaps Yosida [10].

1. $(\tau, \sigma)$ semi-group of operators.

Let ee be a vector space over the complex number field. We assume that
$\mathfrak{X}$ admits two locally convex topological structures $\tau$ and $\sigma$ which satisfy the
following conditions:
$(T1)$ $\tau$ is stronger than $\sigma$ .
$(T2)$ There is a fundamental system of $\tau$ -neighborhoods of $0$ composed of

convex, circled and $\sigma$ -closed sets.
$(T3)$ ee is sequentially complete relative to the topology $\tau$ .
$(T4)$ Every $\sigma$ -continuous $\mathfrak{X}$ -valued function $f(t)$ on the interval $[0,1]$ is
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Riemann integrable in $\sigma,$
$i$ . $e.$ , the Riemann sum

$S(f, \Delta)=\sum_{i=1}^{n}f(tj)(t_{i}-t_{i-1})$

$\Delta$ : $0=t_{0}\leqq t_{1}^{\prime}\leqq t_{1}\leqq\ldots\leqq t_{n-1}\leqq t_{n}^{\prime}\leqq t_{n}=1$

converges to an element $\chi\in \mathfrak{X}$ relative to $\sigma$ when $\Delta$ becomes finer.
$(T3)$ may be replaced by a weaker condition that for every convex circled

$\sigma$ -closed and $\tau$ -bounded set $B$ the normed space $\mathfrak{X}_{B}$ generated by $B$ is complete.
$(T3)$ will be used only in this form.

We shall give several sufficient conditions to assure $(T1)-(T4)$ in the
following three propositions.

PROPOSITION 1.1. If $(T1)$ and $(T2)$ are satisfied and if ee is $s$ equentially
complete relative to $\sigma$ , then $(T3)$ and $(T4)$ hold.

PROOF. Let $\chi_{n}$ be a $\tau$ -Cauchy sequence. By $(T1)x$. is also a $\sigma$ -Cauchy
sequence. Thus it converges to an element $x$ relative to $\sigma$ . Take an arbitrary
a-closed $\tau$ -neighborhood $V$ of $0$ . By assumption $\chi_{n}-\chi_{m}\in V$ holds for sufficiently
large $m$ and $n$ . Letting $m$ tend to infinity, we obtain $x_{n}-x\in V$ by $(T2)$ .
This proves that $x_{n}\rightarrow x$ relative to $\tau$ .

To prove $(T4)$ let $f(t)$ be a $\sigma$ -continuous function on $[0,1]$ . Since $f(t)$

is uniformly continuous, the totality of the Riemann sums $S(f, \Delta)$ forms a
a-Cauchy net, and $S(f, \Delta_{n})=1/n\sum f(i/n),$ $n=1,2,$ $\cdots$ , an equivalent Cauchy
sequence. Since ee is $\sigma$-sequentially complete, $S(f, \Delta_{n})$ converges. Hence $f(t)$

is Riemann integrable.
PROPOSITION 1.2. If ee is quasi-complete (relative to the Mackey topology),

then the original topology $\tau$ and the weak topology $\sigma$ satisfy $(T1)-(T4)$ .
PROOF. $(T1),$ $(T2)$ and $(T3)$ are evident.
As for $(T4)$ a general result is known ([3], Chap. V, \S 3. 3, Proposition

4), but we give here a direct proof for convenience sake.
If $f(t)$ is a weakly continuous $\mathfrak{X}$-valued function on $[0,1]$ , then

$F(x^{\prime})=\int_{0^{1}}\langle f(t), x^{\prime}\rangle dt$

converges for every $x^{\prime}\in \mathfrak{X}^{\prime}$ (the dual space of X) and represents a linear form
on $\mathfrak{X}^{f}$ . We shall show that $ F(x^{\prime})=\langle x, x^{\prime}\rangle$ for an $x\in \mathfrak{X}$ . Then it will easily
follow that $x$ is the weak limit of the Riemann sums.

The range $\{f(t)\}$ forms a weakly compact and separable subset in $\mathfrak{X}$ .
Therefore it generates a separable closed subspace $\mathfrak{X}_{f}$ of $\mathfrak{X}$ . $\mathfrak{X}_{f}$ is quasi-
complete with $\mathfrak{X}$ . And the weak topology of a closed subspace $\mathfrak{X}_{f}$ coincides
with the induced topology from the weak topology of $\mathfrak{X}$ . Thus we may assume
that $\mathfrak{X}$ itself is separable and quasi-complete without loss of generality.

For a moment let ee be complete. Then by a theorem of Banach (cf. [1],
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Chap. IV, \S 2 Th\’eor\‘eme 4 and Remarque after the theorem.) a linear form
$F(x^{\prime})$ on the dual space $\mathfrak{X}^{\prime}$ is identified with an element $x\in \mathfrak{X}$ if its restriction
to every equicontinuous set in $\mathfrak{X}^{\prime}$ is weakly* continuous, or since ee is sepa-
rable, if for every sequence $x_{n}^{\prime}\in \mathfrak{X}^{\prime}$ which converges weakly* to an element
$x^{\prime}$ we have $F(x_{n}^{\prime})\rightarrow F(x^{\prime})$ . But this immediately follows from Lebesgue’s
theorem.

When $\mathfrak{X}$ is not complete, the Riemann sum converges weakly to an element
$x$ in the completion $\hat{\mathfrak{X}}$ of $\mathfrak{X}$ . $x$ lies in the closed convex hull in ee of the range
$\{f(t)\}$ . However, ee being quasi-complete, the closed convex hull in ee of a
bounded set is complete, and hence closed in $\hat{\mathfrak{X}},$

$i$ . $e.$ , it is also the closed
convex hull in $\hat{\mathfrak{X}}$ . This proves $x\in \mathfrak{X}$ .

PROPOSITION 1.3. Let $\mathfrak{X}=\mathfrak{Y}^{\prime}$ be the dual space of a tonnel\’e space $\mathfrak{Y}$ . Then
the strong topology $\tau$ and the weak* topology $\sigma$ satisfy the conditions $(T1)-$

$(T4)$ .
PROOF. $(T1)$ is clear. The set of the polar sets $B^{o}$ of bounded sets $B$

in $\mathfrak{Y}$ forms a fundamental system of $\tau$ -neighborhoods of $0$ . $B^{o}$ is clearly
weakly* closed. Hence $(T2)$ holds. By the Banach-Steinhaus theorem ee is
quasi-complete, hence sequentially complete relative to the weak* topology $\sigma$ .
This implies $(T3)$ , and $(T4)$ by Proposition 1.1.

The assumption in the proposition may be a little relaxed. Let us call
a locally convex space $\mathfrak{Y}$ countably tonnel\’e if every barrel (closed convex and
circled subset which absorbs every point in $\mathfrak{Y}$) which is the intersection of a
countable family of neighborhoods of $0$ is a neighborhood of $0$ . Then it is
shown by a standard argument that every weak* Cauchy sequence $x_{n}$ in $\mathfrak{Y}^{\prime}$

is equicontinuous and thus converges to an element in $\mathfrak{Y}^{\prime}$ . (cf. Proposition 8.9.)

DEFINITION. We shall call a system of linear operators $T_{t},$ $t\geqq 0$ , in ee a
$\sigma$ -continuous semi-group of $\tau$ -equicontinuous operators, or a $(\tau, \sigma)$ semi-group
for short, if it satisfies the following conditions:

\langle$S1$) $T_{0}=I=the$ identity operator.
$(S2)$ $T_{t+s}=T_{t}T_{s}$ for every $t,$ $s\geqq 0$ .
\langle$S3$) $\{T_{t}\}_{c\geqq 0}$ is equicontinuous in $\mathfrak{L}(\mathfrak{X}_{r}, \mathfrak{X}_{\tau})$ .
\langle$S4$) $T_{t}$ is for every $t\geqq 0$ a sequentially closed operator relative to $\sigma,$

$i$ . $e.$ ,
$x_{n}\rightarrow x(\sigma)$ and $y_{n}=T_{t}x_{n}\rightarrow y(\sigma)$ imply $y=T_{c^{X}}$ .

$(S5)$ $\sigma-\lim_{s\rightarrow t}T_{s}x=T_{t}x$ for every $x\in \mathfrak{X}$ and every $t\geqq 0$ .
$(S3)$ means that for any $\tau$ -neighborhood $V$ of $0$ there is another $\tau$ -neigh-

borhood $U$ of $0$ such that $T_{t}(U)\subset V$ for all $t$ . Since we can take for $U$ and
$V$ convex circled and $\sigma$ -closed subsets, $(S3)$ has an alternative expression that
for any $\tau$ -continuous and $\sigma$ -lower semi-continuous semi-norm $p(x)$ on ee (we
shall call such a semi-norm a $(\tau, \sigma)$ semi-norm.), there is another $(\tau, \sigma)$ semi-
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norm $q(x)$ such that
$p(T_{t}x)\leqq q(x)$ for all $t\geqq 0$ and all $x\in \mathfrak{X}$ .

$(S4)$ is certainly satisfied if $T_{t}$ is $\sigma$ -continuous, or if $\sigma$ is stronger than
the weak topology associated with $\tau$ .

In certain circumstances the condition $(S5)$ may be replaced by a weaker
one. The following three propositions give such conditions.

PROPOSITION 1.4. Let a semi-group of operators $\{T_{t}\}$ in ee satisfy $(S1)-$

$(S3)$ and
$(S5)_{\tau^{\prime}}$

$\tau-\lim_{t\rightarrow 0}T_{t}x=x$ for every $x$ in a dense set $\mathfrak{D}$ of $\mathfrak{X}$ .

Then $(S5)$ holds with $\sigma$ replaced by $\tau$ .
PROOF. Let $x\in \mathfrak{D}$ . We have

$T_{t}x-T_{s}x=T_{s}(T_{t\leftarrow s}x-x)$ or $=T_{t}(x-T_{s-t}x)$

according as $t\geqq s$ or $t<s$ . When $s$ tends to $t$ , the term in the bracket tends
to $0$ relative to $\tau$ . Thus from the equi-continuity of $T_{t}$ it follows that $T_{t}x$

$-T_{s}x\rightarrow 0$ . Next let $x$ be an arbitrary element of $\mathfrak{X}$ . For any $\tau$ -continuous
semi-norm $p(x)$ and $\epsilon>0$ , we can find a $y\in \mathfrak{D}$ such that $ p(T_{t}x-T_{t}y)\leqq\epsilon$ for all
$t$ . We have

$p(T_{t}x-T_{s}x)\leqq p(T_{t}x-T_{t}y)+p(T_{t}y-T_{s}y)+p(T_{s}y-T_{s}x)$

$\leqq 2\epsilon+p(T_{t}y-T_{s}y)$ .
This proves that $T_{t}x$ is $\tau$ -continuous in $t$ .

PROPOSITION 1.5. If a semi-group of operators $\{T_{t}\}$ satisfies $(S1)-(S3)$

and
$(S5)^{\prime\prime}$

$\sigma-\lim_{t\rightarrow 0}T_{t}x=x$ uniformly on every $\tau$ -bounded set in $\mathfrak{X}$ ,

then $(S5)$ holds.
PROOF. This easily follows from the identity

$T_{t}x-T_{s}x=(T_{r-s}-I)T_{s}x$ or $=(I-T_{s\leftarrow t})T_{t}x$

and the boundedness of $\{T_{t}x\}$ .
PROPOSITION 1.6. Let X be quasi-complete relative to (the Mackey topology

asscociated with) a locally convex topology $\tau$ , and let $\sigma$ be the weak topology
associated with $\tau$ . If a semi-group of opera tors $T_{t},$ $t\geqq 0$ , satisfies $(S1)-(S3)$

and
$(S5)^{\prime}$ $\sigma-\lim T_{t}x=x$ for every $x$ in a $T_{t}$-invariant dense set $\mathfrak{D}$ of $\mathfrak{X}$ ,

then it satisfies $(S5)$ with $\sigma$ replaced by $\tau$ .
PROOF. It follows from the semi-group property $(S2)$ and $(S5)^{\prime}$ that $T_{t}x$

is weakly right continuous for $t\geqq 0$ , and from $(S3)$ that it is uniformly
bounded.

We define the integral
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$I(\alpha, x)=\frac{1}{\alpha}\int_{0^{\alpha}}T_{t}xdt$ , $ 0<\alpha<\infty$ ,

as the Dunford-Pettis integral

$\langle I(\alpha, x), x^{\prime}\rangle=\frac{1}{\alpha}\int_{0^{\alpha}}\langle T_{t}x, x^{\prime}\rangle dt$ for $x^{\prime}\in \mathfrak{X}^{\prime}$ .

It is clear that the function $\langle T_{t}x, x^{\prime}\rangle$ , which is bounded and right continuous,

is integrable in the sense of Lebesgue. Since $\{T_{t}x\}$ is bounded, it easily
follows that $I(\alpha, x)$ belongs to the bidual space $\mathfrak{X}^{\prime\prime}$ . We shall show that
$I(\alpha, x)\in \mathfrak{X}$ . We have for any $t\geqq 0$

$\langle T_{t}x, x^{\prime}\rangle=\lim_{n\rightarrow\infty}\langle g_{n}(t), x^{\prime}\rangle$ ,

where $g_{n}(t)$ is the step function:

$g_{n}(t)=T_{m\alpha/2^{nX}}$ for $(m-1)\alpha/2^{n}<t\leqq m\alpha/2^{n}$ .

This shows that the range $\{T_{t}x\}$ is separable and by Lebesgue’s theorem

$\frac{1}{\alpha}\int_{0^{\alpha}}\langle T_{t}x, x^{\prime}\rangle dt=\lim_{n\rightarrow\infty}\frac{1}{\alpha}\int_{0^{\alpha}}\langle g_{n}(t), x^{\prime}\rangle dl$

$=\lim_{n\rightarrow\infty}\frac{1}{2^{n}\alpha}\sum_{m=1}^{2^{n}}\langle T_{m\alpha/2^{nX,X^{\prime}}}\rangle$ .

Thus $I(\alpha, x)$ is the weak limit in $\mathfrak{X}^{\prime\prime}$ of a sequence from a bounded set in ce,
the convex hull of $\{T_{t}x\}$ . Now following the same argument as in the proof
of Proposition 1.2, we obtain $ I(\alpha, x)\in$ ce.

We shall show that $(S5)$ holds for any $y=I(\alpha, x)$ with $x\in \mathfrak{D}$ . We have
for any $\chi^{\prime}\in \mathfrak{X}^{\prime}$

$\langle T_{t}y, x^{\prime}\rangle=\langle y, T_{t}^{\prime}x^{\prime}\rangle=\frac{1}{\alpha}\int_{0^{\alpha}}\langle T_{s}x, T_{t}^{\prime}x^{\prime}\rangle ds=\frac{1}{\alpha}\int_{0^{\alpha}}\langle T_{\iota-\vdash s}x, x^{\prime}\rangle ds$ ,

thus

$T_{t}y-T_{t+h}y=\frac{1}{\alpha}(\int_{\iota^{t\dashv h}}-\int_{t+\alpha}^{\iota+\alpha+h})T_{s}xds$ .

So noticing that for any $\tau$ -continuous semi-norm $p(x)$ on X there is a $\tau$ -con-
tinuous semi-norm $q(x)$ such that $p(T_{t}x)\leqq q(x)$ , we have

$ p(T_{t}y-T_{t+h}y)\leqq 2|h|q(x)/\alpha$ .
On the other hand it follows from $(S5)^{\prime}$ that

$x=\sigma-\lim_{\alpha\rightarrow 0}I(\alpha, x)$ for any $x\in \mathfrak{D}$ .

Therefore the set $\{I(\alpha, x)\}$ is dense in N. This completes the proof.
Hitherto we have concerned ourselves more with the topology $\tau$ . However,

it is possible to start only with the topology $\sigma$ .
For a vector space X with a locally convex topology $\sigma$ , the set of all
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barrels of ee forms a fundamental system of neighborhoods of $0$ for a locally
convex topology $\tau$ . We shall call this topology $\tau$ the strong topology associated
with $0$ . $\tau$ is always stronger than $\sigma$ , and is equal to $\sigma$ if and only if X is
tonnel\’e relative to $\sigma$ .

PROPOSITION 1.7. Let ee be a locally convex topological vector space with
the topology $\sigma$ . We assume that ee is sequentially complete. Let a semi-group
of operators $T_{t},$ $t\geqq 0$ , in ee satisfy $(S1),$ $(S2),$ $(S5)$ and the following two
conditions:
$(S3)^{\prime}$ $\{T_{t}x\}_{t\geqq 0}$ is bounded for every $x\in \mathfrak{X}$ .
$(S4)^{\prime}$ $T_{t}$ is a $\sigma$ -weakly continuous operator in X for every $t\geqq 0$ .
Then $T_{t}$ is a $(\tau, \sigma)$ semi-group with the $\sigma$ -strong topology $\tau$ .

PROOF. In view of the definition of $\tau$ and Proposition 1.1 the conditions
$(T1)-(T4)$ are valid for the topologies $\tau$ and $\sigma$ . Clearly $(S4)^{\prime}$ implies $(S4)$ .
To prove $(S3)$ it is sufficient to show that $U=\cap T_{t^{-1}}(V)$ is a barrel for any
barrel $V$ in $\mathfrak{X}$ . Obviously $U$ satisfies the conditions for the barrels except
that it absorbs every point $x$ in $\mathfrak{X}$ . However, it follows from the sequential
completeness of ee that a barrel absorbs every bounded set (cf. [1], Chap. III,
\S 3, Lemme 1). This proves that $\{T_{t}x\}\subset\lambda V$ , hence $\chi\in\lambda U$ for a $\lambda>0$ , com-
pleting the proof.

COROLLARY. If, in addition to the assumptions of Proposition 1.7, X $is$

tonnel\’e, then a semi-group of operators $T_{t}$ satisfying the conditions of Pro-
position 1.7 is equicontinuous.

2. Operators and resolvents.

Before getting into the discussions we shall review a few results about
operators and resolvents in locally convex spaces.

Let $A$ be a linear operator with the domain $\mathfrak{D}(A)$ and the range $\mathfrak{R}(A)$ in
a locally convex space X. $A$ is said to be closed if the graph $\mathfrak{G}(A)=\{(x, Ax)i$

$x\in \mathfrak{D}(A)\}$ is closed in $\mathfrak{X}\times \mathfrak{X}$ .
A complex number $\lambda$ is said to belong to the $re$ solvent set $\rho(A)$ if $(\lambda I-A)$

has an inverse $(\lambda I-A)^{-J}$ which belongs to $\mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ (i. e. $(\lambda I-A)^{-1}$ is defined on
ee and continuous). We denote $(\lambda I-A)^{-1}$ by $R(\lambda, A)$ or $R(\lambda)$ and call it the
resolvent of $A$ .

PROPOSITION 2.1. $LetA$ be a closed linear operator with a non-empty resolvenl
set. If $\lambda$ and $\mu\in\rho(A)$ , then we have
$(R1)$ $(\lambda-\mu)R(\lambda)R(\mu)=(\lambda-\mu)R(\mu)R(\lambda)=R(\mu)-R(\lambda)$ ,

$(R2)$ $R(\lambda)x=0$ implies $x=0$ .
Conversely if a family of operators $R(\lambda)\in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ defined for $\lambda$ in a non-

empty set $\Lambda$ of complex numbers satisfies $(R1)$ and $(R2)$ for a $\lambda\in\Lambda$ and any
$\mu\in\Lambda$ , then $R(\lambda)$ is identical with the resolvent $R(\lambda, A)$ of a closed linear
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operator $A$ with the resolvent set $\rho(A)\supset\Lambda$ .
PROPOSITION 2.2. Let X be sequentially complete. If $\rho(A)\ni\lambda$ and $\{(cR(\lambda))^{n}\}$

is equicontinuous for a $c>0$ , then any number $\mu$ with $|\mu-\lambda|<c$ belongs to
the resolvent set, and we have

(2.1) $R(\mu)x=\sum_{n=0}^{\infty}(R(\lambda))^{n+J}(\lambda-\mu)^{n}x$ .

DEFINITION. A family of operators $R(\lambda)\in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ defined for $\lambda\in\Lambda$ and
satisfying $(R1)$ for any $\lambda,$ $\mu\in\Lambda$ is called a pseudo-resolvent.

PROPOSITION 2.3. Let $\{R(\text{{\it \‘{A}}})\}_{\text{{\it \‘{A}}}\in A}$ be a pseudo-resolvent. Then the kernel
$\mathfrak{R}(R(\lambda))=\{x;R(\lambda)x=0\}$ and the image $\mathfrak{R}(R(\lambda))=\{R(\lambda)x;x\in \mathfrak{X}\}$ do not depend
on $\lambda\in\Lambda$ . $\{R(\lambda)\}$ is the resolvent of an operator $A$ if and only if $\mathfrak{R}(R\rangle$

$=\mathfrak{R}(R(\lambda))=\{0\}$ . In this case we have $\mathfrak{R}(R)=\mathfrak{R}(R(\lambda))=\mathfrak{D}(A)$ .
We omit the proofs of the above three propositions. They are the same

as in the case of Banach spaces. The following proposition is due to Kato
[5] and Yosida [9].

PROPOSITION 2.4. Let $\{R(\lambda)\}_{\lambda\in A}$ be a pseudo-resolvent such that $\{\lambda_{n}R(\lambda_{n})\}$

is equicontinuous for a sequence $\lambda_{n}\in\Lambda$ with $|\lambda_{n}|\rightarrow\infty$ . Then we have

(2.2) $\mathfrak{R}(R)^{\tau}=\{x\in \mathfrak{X};\lim_{n\rightarrow\infty}\lambda_{n}R(\lambda_{n})x=x\}$

and

(2.3) $\mathfrak{R}(R)\cap \mathfrak{R}(R)^{\tau}=\{0\}$ ,

where $\mathfrak{R}(R)^{\tau}$ is the closure of $\mathfrak{R}(R)$ . Thus the restriction of $R(\lambda)$ to $\mathfrak{R}(R)^{\tau}$ is
a resolvent of a closed linear operator in $\mathfrak{R}(R)^{\tau}$ .

Moreover if $\{\lambda_{n}R(\lambda_{n})x\}$ has a weakly relatively compact subsequence for
every $x\in \mathfrak{X}$ , then we have

(2.4) $\mathfrak{X}=\mathfrak{R}(R)+\mathfrak{R}(R)^{r}$ (direct sum).

Consequently $R(\lambda)$ is a resolvent if and only if $\mathfrak{R}(R)$ is dense in $\mathfrak{X}$ .
PROOF. On account of $(R1)$ we have, for any $R(\mu)y\in \mathfrak{R}(R)$ ,

(2.5) $\lambda_{n}R(\lambda_{n})R(\mu)y-R(\mu)y=\frac{\mu}{\lambda_{n}-\mu}R(\mu)y-\frac{\lambda_{n}}{\lambda_{n}-\mu}R(\lambda_{n})y\rightarrow 0$

as $ n\rightarrow\infty$ . Let $\chi\in \mathfrak{R}(R)^{\tau}$ . Then, for any continuous semi-norm $p(x)$ and $\epsilon>0$

there is a $y\in \mathfrak{R}(R)$ such that $ p(x-y)\leqq\epsilon$ and $ p(\lambda_{n}R(\lambda_{n})(x-y))\leqq\epsilon$ . Hence if $n$

becomes sufficiently large, we have $ p(\lambda_{n}R(\lambda_{n})x-x)\leqq 3\epsilon$ . This proves (2.2), and
hence (2.3).

Next let $\{\lambda_{n}R(\lambda_{n})x\}$ be weakly relatively compact (without loss of gener-
ality). Then there is a directed set $\{\nu\}$ and a function $n(\nu)$ with $ n(\nu)\rightarrow\infty$

such that $\lambda_{n(\nu)}R(\lambda_{n(\nu)})x$ converges weakly to an element $x_{1}\in \mathfrak{X}$ . $x_{1}$ belongs to
$\mathfrak{R}(R)^{\tau}$ , so that we have $\lambda_{n(\nu)}R(\lambda_{n(\nu)})(x-x_{1})\rightarrow 0$ weakly. On the other hand from
(2.5) with $y=x-x_{1}$ we have
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$R(\mu)(x-x_{1})-R(\mu)\lambda_{n(\nu)}R(\lambda_{n(\nu)})(x-x_{1})\rightarrow 0$

strongly for any fixed $\mu$ . Since $R(\mu)$ is weakly continuous, we have thus
$x-x_{1}\in \mathfrak{R}(R)$ .

3. Infinitesimal generators and Laplace transform.

Let $T_{t}$ , $t\geqq 0$, be a $(\tau, \sigma)$ -semi-group of operators in $\mathfrak{X}$ . We define its
$\tau-(resp. \sigma-)$ infinitesimal generator $A_{\tau}$ (resp. $A_{\sigma}$) by

$A_{\tau}x=\tau-\lim_{t\rightarrow 0}\div(T_{t}x-x)$ $(resp$ . $A_{\sigma}x=\sigma-\lim_{t\rightarrow 0}\frac{1}{t}(T_{c^{X}}-x))$

when the right hand side exists.
It was crucial in the theory of semi-groups of operators in Banach spaces

that the infinitesimal generator $A$ has its resolvent $R(\lambda, A)=(\lambda I-A)^{-1}$ which
is representable as the Laplace transform of $T_{t}$ .

The Laplace transform of $T_{t}x$

\langle 3.1) $R(\lambda)x=\int_{0^{\infty}}e^{-\lambda t}T_{t}xdt$ , for ${\rm Re}\lambda>0$ ,

is defined in our case as an improper $\sigma$ -Riemann integral. In fact, it follows
from $(T4)$ and $(S5)$ that

$R_{N}(\lambda)x=\int_{0^{N}}e^{-\lambda t}T_{t}xdt$

exists as a $\sigma$ -Riemann integral and from $(S3)$ and $(T2)$ that for any $(\tau, \sigma)$

semi-norm $p(x)$ there is another $q(x)$ such that

$p(R_{N}(\lambda)x-R_{M}(\lambda)x)=p(\int_{v\wedge}^{N}e^{-\lambda t}T_{t}xdt)$

$\leqq({\rm Re}\lambda)^{-1}|e^{-{\rm Re}\lambda N}-e^{-{\rm Re}\lambda M}|q(x)$ .
This shows that $R_{N}(\lambda)x$ is a $\tau$ -Cauchy sequence. Thus $R(\lambda)x=\tau-\lim_{N\rightarrow\infty}R_{N}(\lambda)x$

exists.
We shall examine properties of $R(\lambda)x$ . We see that R(\‘A) is a linear

operator from ce to X and continuous relative to the topolygy $\tau$ . Moreover
we have

PROPOSITION 3.1. Let $J(\lambda)=({\rm Re}\lambda)^{-1}R(\lambda)$ . Then the family of operators
$\{J(\lambda)^{m}\}_{{\rm Re}\lambda>0,m=0,1,2}\ldots$ . is equicontinuous in $\mathfrak{L}(\mathfrak{X}_{\tau}, \mathfrak{X}_{\tau})$ with $\{T_{t}\}_{t\geqq 0}$ .

PROOF. By considering the Riemann sum, we can deduce from $(S2)$ and
$(S4)$ that

(3.2) $T_{t}R(\lambda)x=R(\lambda)T_{t}x$ .

Hence we have
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(3.3) $R(\mu)R(\lambda)x=\int_{0^{\infty}}e^{-l^{\ell S}}ds\int_{0^{\infty}}e^{-\lambda t}T_{t+s}xdt$ ,

in the sense of an improper $\sigma$ -Riemann integral.
Now let $y^{\prime}$ be an element of the dual space of $\vee \mathfrak{X}$ relative to $\sigma$ . We have

$\langle R(\lambda)^{2}x, y^{\prime}\rangle=\int_{0^{\infty}}e^{-\lambda s}ds\int_{0^{\infty}}e^{-\lambda t}\langle T_{t+s}x, y^{\prime}\rangle dt$

$=\int_{0^{\infty}}te^{-\lambda t}\langle T_{t}x, y^{\prime}\rangle dt$ .

This shows

$R(\lambda)^{2}x=\int_{0^{\infty}}te^{-\lambda t}T_{t}xdt$ .

The existence of the right hand side as an improper a-Riemann integral is
easily shown. Repeating the same arguments $m-1$ times we have

\langle 3.4) $R(\lambda)^{7n}x=\frac{1}{(m-1)!}\int_{0^{\infty}}t^{m-1}e^{-\lambda t}T_{t}xdt$ .

Thus for any $(\tau, \sigma)$ semi-norm $p(x)$ there is a $(\tau, \sigma)$ semi-norm $q(x)$ such that

$p(J(\lambda)^{m}x)\leqq\frac{({\rm Re}\lambda)1\prime\}}{(m-1)!}\int_{0^{\infty}}t^{m-I}e^{-{\rm Re}\text{{\it \‘{A}}} t}dt\cdot\sup_{t\geqq 0}p(T_{t}x)\leqq q(x)$ .

Corresponding problem whether $R(\lambda)$ is $\sigma$ -continuous is rather difficult.
We can not except that $\{R(\lambda)\}$ is $\sigma$ -equicontinuous. For, $\tau$ -equicontinuous
family of operators is, even relative to the $\tau$ -weak topology, not necessarily
equicontinuous. Nevertheless we can state the following propositions.

PROPOSITION 3.2. Let $\mathfrak{B}$ be a family of convex circled $\sigma$ -closed and $\sigma-$

bounded subsets of $\mathfrak{X}$ . If a $(\tau, \sigma)$ semi-group $T_{t}$ satisfies the following $\mathfrak{B}$ -locally
equibounded property:
$(S3)_{\mathfrak{B}}^{\prime\prime}$ For every $B\in \mathfrak{B}$ there is a $D\in \mathfrak{B}$ such that $\cup T_{t}(B)\subset D$ ,
then $\{J(\lambda)^{m}\}_{{\rm Re}\lambda>0,m\Leftarrow J,2}\ldots$ . has the same property.

PROOF. The proof is similar to the preceding one.
PROPOSITION 3.3. If we denote by $\mathfrak{B}_{\tau}$ the set of $\sigma$ -closed convex circled

$\tau$ -bounded sets, $a(\tau, \sigma)$ semi-group $T_{t}$ satisfies $(S3)_{\mathfrak{B}_{\tau}}^{\prime\prime}$ .
PROOF. From $(T2)$ we see that the $\sigma$ -closed convex circled hull of a

$\tau$ -bounded set is $\tau$ -bounded. Let $B$ be a $\tau$ -bounded set and let $V$ be an
arbitrary $\tau$ -neighborhood of $0$ . Then there is a $\tau$ -neighborhood $U$ of $0$ such
that $T_{t}(U)\subset V$ . For a $\alpha>0$ we have $B\subset\alpha U$, therefore $T_{t}(B)\subset\alpha V$ . This
shows that $\cup T_{t}(B)$ is $\tau$ -bounded.

PROPOSITION 3.4. If X is sequentially complete relative to (the Mackey
topology associated with) $\sigma$, or if the dual space $\mathfrak{X}_{\sigma^{\prime}}$ relative to $\sigma$ is sequentially
complete relative to (the Mackey topology associated with) the weak* topology

$\sigma^{*}$ , then we have $\mathfrak{B}_{r}=\mathfrak{B}_{\sigma}$ . Thus $(S3)_{\mathfrak{B}\sigma}^{\prime\prime}$ is satisfied with the set of all $\sigma-$
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bounded sets $B_{\sigma}$ for any $(\tau, \sigma)$ semt-group $T_{t}$ .
PROOF. We see from $(T2)$ that a family of barrels relative to $\sigma$ forms

a fundamental system of $\tau$ -neighborhood of $0$ . If X is sequentially complete,
a barrel absorbs every bounded set. Let $\mathfrak{X}_{\sigma^{\prime}}$ be sequentially complete relative
to the Mackey topology. If $V$ and $B$ are a convex circled and a-closed $\tau-$

neighborhood of $0$ and a $0$-bounded set, then the polar sets $V^{o}$ and $B^{o}$ are a
bounded set and a barrel relative to $0^{*}$ . By assumption it follows that $B^{o}$

absorbs $V^{o}$ , hence $V$ absorbs $B$ .
PROPOSITION 3.5. Let a $(\tau, \sigma)$ semi-group $T_{t}$ satisfy $(S4)^{\prime}$ (cf. Proposition

1.7.). Then, for any $\lambda$ with ${\rm Re}\lambda>0,$ $R(\lambda)$ is $\sigma$ -weakly continuous on every
$\tau$ -bounded and $\sigma$ -weakly compact set in $\mathfrak{X}$ . In particular it is sequentially
$o$ -weakly continuous on every $\tau$ -bounded set.

PROOF. Let $B$ be a $\tau$ -bounded and $\sigma$ -weakly compact set. We have to
show that $x,$ $x_{\nu}\in B$ and $\langle x_{\nu}, y^{\prime}\rangle\rightarrow\langle x, y^{\prime}\rangle$ for every $y^{\prime}\in \mathfrak{X}_{\sigma^{\prime}}$ imply that
$\langle R(\lambda)x_{\nu}, y^{\prime}\rangle\rightarrow\langle R(\lambda)x, y^{\prime}\rangle$ for every $y^{\prime}\in \mathfrak{X}_{\sigma^{\prime}}$ , where $\{\nu\}$ is a directed set. The
family of continuous functions $\{\langle T_{t}x, y^{\prime}\rangle\}_{x\in B}$ for $t\geqq 0$ is uniformly bounded
for a fixed $y^{\prime}$ . We shall show that $\{\langle T_{t}x, y^{\prime}\rangle\}_{x\in B}$ is a metrizable subset of
the space of all functions $CR^{+}$ with the pointwise topology. Then Lebesgue’s

theorem will show that the mapping which maps $\langle T_{\iota}x, y^{\prime}\rangle$ to $\langle R(\lambda)x, y^{\prime}\rangle$ is
continuous. Since we know by $(S4)^{\prime}$ that the mapping which carries $\chi$ to
$\langle T_{\iota}x, y^{f}\rangle$ is continuous, this will prove the proposition.

We note that $\{\langle T_{t}x, y^{\prime}\rangle\}_{x\in B}$ is compact as the image of the compact set
$B$ by a continuous mapping. Consider the projection $\pi$ from $C^{R^{+}}$ to $C^{N}$ which
maps $f(t)$ , $t\geqq 0$ , to $f(t_{i})$ , $i=1,2,$ $\cdots$ , where $t_{j}’ s$ are nonnegative rational
numbers suitably indexed. Clearly $\pi$ is continuous and maps the compact
set $\{\langle T_{t}x, y^{\prime}\rangle\}_{x\in B}$ in a one-to-one way into the metrizable space $C^{N}$ . Thus
$\{\langle T_{t}x, y^{\prime}\rangle\}_{x\in B}$ is homeomorphic to a metrizable set. This completes the proof.

PROPOSITION 3.6. Let $T_{t}$ satisfy $(S4)^{\prime}$ . $IJ^{-}$ the dual space $\mathfrak{X}_{\sigma^{\prime}}$ of ac with $\sigma$

is quasi-complete relative to the Mackey topology $\tau(\mathfrak{X}_{\sigma^{\prime}}, \mathfrak{X})$ , then $R(\lambda)$ is o-weakly
continuous.

PROOF. Let $y$ be an arbitrary element in $\mathfrak{X}_{\sigma^{f}}$ . From Proposition 3.5 and
Grothendieck’s theorem ([3], Chap. II, Th\’eor\‘eme 10) it follows that $\langle R(\lambda)x, y\rangle$

$=\langle x,\hat{y}\rangle$ for a $\hat{y}$ in the completion $\hat{\mathfrak{X}}^{\prime}$ of the space $\mathfrak{X}_{\sigma^{f}}$ relative to the Mackey
topology. It suffices to show that $\hat{y}\in \mathfrak{X}_{d^{\prime}}$ . Since $R(\lambda)x$ is the a-limit of the
Riemann sums $S(e^{-\lambda t}T_{t}x, \Delta),\hat{y}$ is the weak* limit of $S(e^{-\text{{\it \‘{A}}} t}T_{\iota}^{\prime}y, \Delta)$ . Note that
$S(e^{-\lambda\iota}T_{t}^{\prime}y, \Delta)$ is bounded (see Propositions 3.4 and 5.4). Then the same argument
as in the proof of Proposition 1.2 leads to $y\in \mathfrak{X}_{\sigma^{\prime}}$ .

We now turn to the problem how $R(\lambda)x$ behaves when $\lambda$ tends to $+\infty$ .
PROPOSITION 3.7. We have

(3.5) $J(m\lambda)^{m}x\rightarrow x$ $(\sigma)$ for any $x\in \mathfrak{X}$
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and uniformly in $m=1,2,$ $\cdots$ when $\lambda>0$ tends to $+\infty$ . Moreover the conver-
gence is uniform for $x$ in a convex $\sigma$ -closed and $\tau$ -bounded set $C$ if $T_{t}x$ con-
verges to $x$ uniformly in $x\in C$ when $t$ tends to $0$ .

PROOF. Let $\pi(x)$ be a $\sigma$ -continuous semi-norms. For any $\epsilon>0$ there is a
$\delta$ such that $\pi(T_{t}x-x)\leqq\epsilon$ for $ 0\leqq t\leqq\delta$ and $x\in C$. Thus we have

$\pi((m-1)!^{-1}\int_{0^{\delta}}(\lambda mt)^{m-1}e^{-\lambda mt}(T_{t}x-x)\lambda mdt)\leqq\epsilon$ .

It is easily shown that $(m-1)]^{-1}\int_{\delta^{\infty}}(\lambda mt)^{m-1}e^{-\lambda ml}\lambda mdt$ tend to $0$ uniformly in

$m$ , and $\{T_{t}x-x\}$ is uniformly bounded relative to $\tau$ . This proves (3.5).

PROPOSITION 3.8. $R(\lambda)$ is the resolvent $(\lambda I-A)^{-1}$ of a $\tau$ -closed operator $A$

with a $\sigma$ -dense domain of definition.
PROOF. From (3.3) we get for $\mu\neq\lambda$

$R(\mu)R(\lambda)x=\int_{0^{\infty}}T_{r}xdr\int_{0^{r}}e^{-\mu(r-t)}e^{-\lambda t}dt$

$=(\mu-\lambda)^{-1}(R(\lambda)x-R(\mu)x)$ .
Thus $R(\lambda)$ satisfies the resolvent equation. In order to prove $\mathfrak{R}(R)=\{0\}$ , it is
sufficient to show that
(3.6) $A_{\sigma}R(\lambda)x=(\lambda R(\lambda)-I)x$ for every $x\in \mathfrak{X}$ .
We have

$\frac{T_{h}-I}{h}R(\lambda)x=\frac{1}{h}\int_{0^{\infty}}e^{-\lambda s}T_{h+s}xds-\frac{1}{h}\int_{0^{\infty}}e^{-\lambda s}T_{s}xds$

$=\frac{e^{\lambda h}-1}{h}\int_{0^{\infty}}e^{-\lambda s}T_{s}xds-e^{\lambda h}\frac{1}{h}\int_{0^{h}}e^{-\lambda s}T_{s}xds$ .

When $h$ tends to zero, the first term converges to $\lambda R(\lambda)x$ in any topology and
as in Proposition 3.7 we have

$\frac{1}{h}\int_{0^{h}}e^{-\lambda s}T_{s}xds\rightarrow\chi$ $(\sigma)$ .

Thus (3.6) follows. (3.5) shows that $\mathfrak{D}(A)=\mathfrak{R}(R(\lambda))$ is $\sigma$ -dense.
We shall call $A$ the infinitesimal generator of $\{T_{t}\}$ . From the uniqueness

of the Laplace transform follows the
PROPOSITION 3.9. The infinitesimal generator $A$ determines the semi-group

$\{T_{t}\}$ uniquely.
Next we shall examine the relationship between $A,$ $A_{\tau}$ and $A_{\sigma}$ . First of

an we have $A_{\sigma}\supset A$ from the above proof. The following proposition charac-
terize the domain $\mathfrak{D}(A)$ of $A$ .

PROPOSITION 3.10. We have $x\in \mathfrak{D}(A)$ and $Ax=y$ if and only if

(3.7) $T_{t}x-x=\int_{0^{t}}T_{s}yds$
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for every $t$ in the sense of a $\sigma$ -Riemann integral.
PROOF. Let $x\in \mathfrak{D}(A)$ and $y=Ax$ . Then for an element $z$ we have

$x=R(\lambda)z$ and $y=\lambda R(\lambda)z-z$ . Since the both sides of (3.7) are $\sigma$ -continuous
function, the equality follows from the identity of their Laplace transforms.
The Laplace transform of the left hand side is

$R(\mu)R(\lambda)z-\mu^{-1}R(\lambda)z$ ,

and that of the right hand side is equal to

$\int_{0^{\infty}}e^{-l^{i}}dt\int_{0^{t}}T_{s}\{\lambda R(\lambda)z-z\}ds=\mu^{-1}R(\mu)(\lambda R(\lambda)z-z)$ .

Their equality follows from the resolvent equation.
Conversely (3.7) implies $R(\lambda)(\lambda x-y)=x$ . For,

$\int_{0^{\infty}}e^{-\lambda t}T_{t}(\lambda x-y)dt=\int_{0^{\infty}}e^{-\lambda t}\{\lambda x+\lambda\int_{0}^{t}T_{s}yds-T_{t}y\}dt$

$=x+\int_{0^{\infty}}T_{s}yds\int_{s^{\infty}}\lambda e^{-\text{{\it \‘{A}}}\iota}dt-\int_{0^{\infty}}e^{-\lambda t}T_{t}ydt$

$=x$ .
This proves $\chi\in \mathfrak{D}(A)$ and $Ax=y$ .

$CoROLLARY$ . We have

$x=\int_{\alpha}^{\beta}T_{t}zdt\in \mathfrak{D}(A)$ and $Ax=T_{\beta}z-T_{\alpha}z$

for any $z\in \mathfrak{X}$ and $ 0\leqq\alpha<\beta<\infty$ .
PROOF. (3.7) is easily proved with $y=T_{\beta}z-T_{\alpha}z$ .
PROPOSITION 3.11. If $T_{t}$ is a $\sigma$ -weakly continuous operator for every $t\geqq 0$ ,

then we have $A_{\sigma}=A$ .
PROOF. We have only to show that $A_{\sigma}\subset A$ . Let $x$ be an element in

$\mathfrak{D}(A_{\sigma})$ . For every $y^{\prime}\in \mathfrak{X}_{\sigma}^{\prime}$ we have

$\langle T_{t}A_{\sigma}x, y^{\prime}\rangle=\langle A_{\sigma}x, T_{t}^{\prime}y^{\prime}\rangle=\lim_{h\rightarrow 0}h^{-1}\langle(T_{h}-I)x, T_{t}^{\prime}y^{\prime}\rangle$

$=\lim_{h\rightarrow 0}h^{-1}\langle(T_{t+h}-T_{t})x, y^{\prime}\rangle$ .
Since $\langle T_{t}A_{\sigma}x, y^{\prime}\rangle$ is continuous, this shows that $\langle T_{t}x, \gamma^{\prime}\rangle$ is differentiable.
Thus we have

$\langle T_{t}x, y^{\prime}\rangle-\langle x, y^{\prime}\rangle=\int_{0}^{t}\langle T_{t}A_{\sigma}x, y^{\prime}\rangle dt$ .

From this we have (3.7), hence $\chi\in \mathfrak{D}(A)$ and $Ax=A_{\sigma}x$.
PROPOSITION 3.12. $A_{\tau}\subset A$ for every $(\tau, \sigma)$ -semi-group of operators.
PROOF. The same proof as in the previous proposition is applicable. $T_{\iota}^{\prime}y^{\prime}$

may not be in $\mathfrak{X}_{\sigma}^{\prime}$ , but it always belongs to $\mathfrak{X}_{\tau^{\prime}}$ .
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PROPOSITION 3.13. If $x\in \mathfrak{D}(A)$ , then $T_{t}x\in \mathfrak{D}(A)$ for every $t$ and we have
$AT_{t}x=T_{t}Ax$. Moreover the $\mathfrak{X}$-valued function $x(t)=T_{t}x$ is continuously dif-
ferentiable in $t$ relative to $\sigma$ and satisfies the differential equation

(3.8) $\frac{d}{dx}x(t)=Ax(t)$ .

PROOF. The commutativity $AT_{t}=T_{t}A$ follows from (3.2) easily. (3.7)
proves that $T_{t}x$ is continuously differentiable and $d/dtT_{t}x=T_{t}Ax$ .

4. $\tau$-center.

For a $(\tau, \sigma)$ semi-group $T_{t},$ $T_{t}x$ is not necessarily $\tau$ -continuous. The follow-
ing proposition characterizes such an $\chi$ that $T_{t}x$ is $\tau$ -continuous.

PROPOSITION 4.1. Let $T_{t}$ be a $(\tau, \sigma)$ semi-group and $A$ be its generator.
For an $x\in \mathfrak{X},$ $T_{t}x$ is $\tau$ -continuous for $t\geqq 0$ if and only if $\chi\in \mathfrak{D}(A)^{r}$ , the $\tau$ -closure
of the domain of A. And then $T_{t}x$ belongs to $\mathfrak{D}(A)^{\tau}$ for any $t$ .

PROOF. If $T_{t}x$ is $\tau$ -continuous at $0$ , we obtain $J(\lambda)x\rightarrow x(\tau)$ as $\lambda\rightarrow\infty$ by
the same way as in Proposition 3.7. Since $J(\lambda)x\in \mathfrak{D}(A)$ , we have $x\in \mathfrak{D}(A)^{\tau}$ .

If $x\in \mathfrak{D}(A)$ , we have (3.7). Hence for any $(\tau, \sigma)$ semi-norm $p(x)$

$p(T_{\iota^{\chi}}-T_{s}x)\leqq|t-s|\cdot\sup_{r\geqq 0}p(T_{r}Ax)$

holds. This shows that $T_{t}x$ is $\tau-(Lipschitz)$ continuous. If $x\in \mathfrak{D}(A)^{\tau}$, then for
any $(\tau, \sigma)$ semi-norm $p(x)$ and $\epsilon>0$ there is a $y\in \mathfrak{D}(A)$ such that $ p(T_{t}(x-y))\leqq\epsilon$

for any $t$ . Thus we have

$p(T_{\iota^{\chi}}-T_{s}x)\leqq p(T_{t}(x-y))+p(T_{t}y-T_{s}y)+p(T_{s}(x-y))$

$\leqq 2\epsilon+p(T_{t}y-T_{s}y)$ .
When $|t-s|$ is sufficiently small, the right hand side becomes less than $ 3\epsilon$ .
$T_{t}x\in \mathfrak{D}(A)^{\tau}$ is proved similarly from the equicontinuity of $T_{t}$ and the fact
that $x\in \mathfrak{D}(A)$ implies $T_{t}x\in \mathfrak{D}(A)$ .

COROLLARY 1. If $\sigma$ is stronger than the weak topology associated with $\tau$ ,

then $T_{t}x$ is $\tau$ -continuous for any $x\in \mathfrak{X}$ .
PROOF. $\mathfrak{D}(A)^{\tau}=\mathfrak{D}(A)^{\sigma}=\mathfrak{X}$ .
COROLLARY 2. If every $\tau$ -bounded sequence has a $\tau$ -weakly relatively com-

pact subsequence, or in particular if X with the topology $\tau$ is semi-reflexive,
then every $(\tau, \sigma)$ semi-group $T_{t}$ is $\tau$ -continuous.

PROOF. For every $x\in \mathfrak{X}$ , $\{nR(n)x\}$ is bounded, hence has a weakly
relatively compact subsequence. From Proposition 2.4 it follows that $\mathfrak{D}(A)^{r}$

$=\mathfrak{R}(R)^{\tau}=\mathfrak{X}$ .
We shall denote $\mathfrak{D}(A)^{\tau}$ by $\mathfrak{X}_{0}$ . The above proposition shows that the

restriction of $T_{t}$ to $\mathfrak{X}_{0}$ gives a $(\tau, \tau)$ semi-group in $\mathfrak{X}_{0}$ . We shall call this
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restriction the $\tau$ -center of $T_{t}$ after Feller [2] and denote it by $T_{0t}$ .
PROPOSITION 4.2. $\mathfrak{X}_{0}$ is the $\tau$ -closure of the set of elements $x_{a\beta}$ of the form

(4.1) $\chi_{a\beta}=\int_{\alpha}^{\beta}T_{t}xdt$

with $\chi\in \mathfrak{X}$ and $ 0\leqq\alpha<\beta<\infty$ .
PROOF. By Corollary of Proposition 3.10 we have $x_{\alpha\beta}\in \mathfrak{D}(A)\subset \mathfrak{X}_{0}$ . Con-

versely if $x\in \mathfrak{X}_{0}$ , then $T_{t}x$ is $\tau$ -continuous. Thus we have

$h^{-1}x_{0h}=\frac{1}{h}\int_{0^{h}}T_{t}xdt\rightarrow x$

relative to $\tau$ as $h\rightarrow 0$ .
PROPOSITION 4.3. Let $R_{0}(\lambda)$ and $A_{0}$ be the Laplace transform and the

generator of $T_{0t}$ respectively. Then $R_{0}(\lambda)$ is simply the restriction of $R(\lambda)$ to
$\mathfrak{X}_{0}$ and $A_{0}$ is the maximal restriction of $A$ with the range in $\mathfrak{X}_{0}$ .

PROOF. If $x\in \mathfrak{X}_{0}$ , the integral in (3.1) converges in the sense of a $\tau$ -Riemann
integral. Thus we have $R(\lambda)x=R_{0}(\lambda)x$ . Hence it follows that $A_{0}\subset A$ . By
definition we have $\mathfrak{R}(A_{0})\subset \mathfrak{X}_{0}$ . Conversely if $x\in \mathfrak{D}(A)$ and $Ax\in \mathfrak{X}_{0}$ , then we
have (3.7) in the sense of a $\tau$ -Riemann integral. Thus it follows from Prop-
osition 3.10 applied to $T_{0t}$ and $\mathfrak{X}_{0}$ that $x\in \mathfrak{D}(A_{0})$ and $A_{0}x=Ax$ .

PROPOSITION 4.4. $A_{0}$ coincides with the $\tau$ -infinitesimal generator $A_{\tau}$ . If
$x\in \mathfrak{D}(A_{0})$ , then $x(t)=T_{t}x$ is continuously differentiable in $t$ relative to $\tau$ and
satisfies the differential equation (3.8) and $x(O)=x$ .

PROOF. The latter part is a special case of Proposition 3.13. Thus we
have especially $A_{0}\subset A_{\tau}$ . Conversely let $x\in \mathfrak{D}(A_{r})$ . Then $Ax$ is the $\tau$ -limit of
$h^{-1}(T_{h}x-x)$ where $T_{h}x$ and $x$ are elements in $\mathfrak{D}(A)\subset \mathfrak{X}_{0}$ . Thus we have $Ax\in \mathfrak{X}_{0}$ .
The uniqueness of the solution will be proved in \S 7.

5. Dual operators.

Let $\mathfrak{X}$ and $\mathfrak{Y}$ be locally convex spaces and $\mathfrak{X}^{\prime}$ and $\mathfrak{Y}^{\prime}$ be their dual spaces.
If $A$ is a linear operator with the dense domain $\mathfrak{D}(A)\subset \mathfrak{X}$ and the range
$\mathfrak{R}(A)\subset \mathfrak{Y}$ , then the dual operator $A^{\prime}$ is defined by the following equation

(5.1) $\langle Ax, y^{\prime}\rangle=\langle x, A^{\prime}y^{\prime}\rangle$ ,

which should be satisfied for all $x\in \mathfrak{D}(A)$ . $A^{\prime}$ is a linear operator with the
domain $\mathfrak{D}(A^{\prime})\subset \mathfrak{Y}^{\prime}$ and the range $\mathfrak{R}(A^{\prime})\subset \mathfrak{X}^{\prime}$ .

The results of this section are mostly due to Phillips [7].

PROPOSITION 5.1. Every dual operator $A^{\prime}$ is closed relative to the weak*
topologies of $\mathfrak{Y}^{\prime}$ and $\mathfrak{X}^{\prime}$ .

PROOF. (5.1) is equivalent to the equation

$\langle(x, Ax), (A^{f}y^{\prime}, -y^{\prime})\rangle=0$
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in $(\mathfrak{X}\times \mathfrak{Y})^{\prime}=\mathfrak{X}^{\prime}\times \mathfrak{Y}^{\prime}$ . Thus we have $\{(A^{\prime}y^{\prime}, -y^{\prime})\}=\mathfrak{G}(A)^{o}$ . This proves that
$\mathfrak{G}(A)^{\prime}=\{(y^{\prime}, A^{\prime}y^{\prime});y^{\prime}\in \mathfrak{D}(A^{\prime})\}$ is closed.

PROPOSITION 5.2. $\mathfrak{D}(A^{\prime})$ is $weakly^{*}$ dense in $\mathfrak{Y}^{\prime}$ if and only if $A$ has a closed
extension. And then its smallest closed extension is equal to the bidual $A^{\prime\prime}$ .

PROOF. If $A$ has a closed extension, the closure $\mathfrak{G}(A)^{oo}$ of the graph $\mathfrak{G}(A)$

in X $\times \mathfrak{Y}$ turns out to be the graph of the smallest closed extension of $A$ . This
shows that the set $\mathfrak{D}(A^{\prime})$ of the second components of $\mathfrak{G}(A)^{o}$ is weakly* dense
in $\mathfrak{Y}^{\prime}$ .

Conversely let $\mathfrak{D}(A^{\prime})$ be dense. The dual space of $\mathfrak{Y}^{\prime}$ (resp. $\mathfrak{X}^{\prime}$) with the
weak* topology is $\mathfrak{Y}$ (resp. X) so that the bidual $A^{\prime\prime}$ of $A$ is a linear operator
from ee to $\mathfrak{Y}$ It is easy to see that $\mathfrak{G}(A^{\prime\prime})=\mathfrak{G}(A)^{oo}$ , hence $A^{\prime\prime}$ is a closed
extension of $A$ .

PROPOSITION 5.3. We have $\mathfrak{D}(A^{\prime})=\mathfrak{Y}^{\prime}$ if and only if $A$ is continuous
relative to the weak topologies of ee and $\mathfrak{Y}$ . And then $A^{\prime}$ is continuous relative
to the weak* topologies of $\mathfrak{Y}^{\prime}$ and $\mathfrak{X}^{\prime}$ .

PROOF. $If\mathfrak{D}(A^{\prime})=\mathfrak{Y}^{\prime},$ $theequation(5.1)showsthatAisweaklycontinuous$ .
Conversely if $A$ is weakly continuous, then the form $\langle Ax, y^{\prime}\rangle$ is a (densely
defined) weakly continuous form for any $y^{\prime}\in \mathfrak{Y}^{\prime}$ Thus there is an $\chi^{\prime}\in \mathfrak{X}^{\prime}$

such that $\langle Ax, y^{\prime}\rangle=\langle x, x^{\prime}\rangle$ for all $\chi\in \mathfrak{D}(A)$ .
Let this be the case. Then the smallest closed extension $A^{\prime\prime}$ of $A$ is an

everywhere defined weakly continuous operator. From $\mathfrak{D}(A^{\prime\prime})=\mathfrak{X}$ it follows
that $A^{f}$ is weakly* continuous.

PROPOSITION 5.4. Let $\mathfrak{S}$ (resp. $S_{1}$) be a family of bounded sets in ee (resp.
$\mathfrak{Y})$ which covers ee (resp. $\mathfrak{Y}$). If a family of weakly continuous operators $\{T_{a}\}$

from $\mathfrak{X}$ to $\mathfrak{Y}$ has the $(\mathfrak{S}, \mathfrak{S}_{1})$ equibounded property that for any $B\in \mathfrak{S}$ there is
a $C\in \mathfrak{S}_{1}$ such that $T.(B)cC$ for all $\alpha$ , then the family of dual operators $\{T_{\alpha}^{\prime}\}$

is equicontinuous relative to the topologies of uniform convergence on $\mathfrak{S}_{1}$ and
$\mathfrak{S}$ . Especially if $\{T_{\alpha}\}$ is locally equibounded, thus in particular if it is equi-
continuous relative to the original topologies of ee and $\mathfrak{Y}$ , then {T\’a} is strongly
equicontinuous.

PROOF. The set of polar sets $B^{o}$ of $B\in \mathfrak{S}_{1}$ (resp. S) forms a base of
neighborhoods of $0$ relative to the topology of uniform convergence on $S_{1}$

(resp. S). Let $B\in \mathfrak{S}$ and $C\in \mathfrak{S}_{1}$ be such that $T.(B)cC$ . Then
$\sup|\langle x, T_{\alpha}^{\prime}y^{\prime}\rangle|=\sup|\langle T_{\alpha}x, y^{\prime}\rangle|\leqq 1$

for $x\in B$ and $y^{\prime}\in C^{o}$ proves that $T_{\alpha^{\prime}}(C^{o})\subset B^{o}$ and hence the proposition.
PROPOSITION 5.5. $A^{\prime}$ is one to one if and only if the range $\mathfrak{R}(A)$ is dense

in $\mathfrak{Y}$ .
PROPOSITION 5.6. If $\mathfrak{R}(A^{\prime})$ is $weakly^{*}$ dense in X then $A$ has an inverse.

If $A$ is closed, the converse is also true.
PROOF. The above two propositions follow easily from the equation (5.1)
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and the Hahn-Banach theorem. We note that if $A$ is closed, then we have
$A=A^{f\prime}$ .

PROPOSITION 5.7. If $\mathfrak{D}(A)$ and $\mathfrak{R}(A)$ are dense in ee and $\mathfrak{Y}$ respectively,
and if $A$ has an inverse $A^{\sim 1}$ , then $(A^{\prime})^{-1}$ and $(A^{-1})^{\prime}$ exist and we have $(A^{\prime})^{-1}$

$=(A^{-1})^{\prime}$ .
PROOF. The existence of $(A^{\prime})^{-1}$ follows from Proposition 5.5, and that of

$(A^{-1})^{\prime}$ is clear.
If $y\in \mathfrak{D}(A^{-1})$ and $x^{\prime}\in \mathfrak{D}((A^{\prime})^{-1})$ , then we have

$\langle A^{-1}y, x^{\prime}\rangle=\langle A^{-1}y, A^{\prime}(A^{\prime})^{-1}x^{\prime}\rangle=\langle y, (A^{\prime})^{-1}x^{\prime}\rangle$ .
This proves that $x^{\prime}\in \mathfrak{D}((A^{-1})^{\prime})$ and $(A^{-1})^{\prime}x^{\prime}=(A^{\prime})^{-1}x^{\prime}$ .

Next, let $\chi\in \mathfrak{D}(A)$ and $\chi^{\prime}\in \mathfrak{D}((A^{-1})^{\prime})$ . Then

$\langle Ax, (A^{-1})^{\prime}x^{\prime}\rangle=\langle A^{-1}Ax, x^{\prime}\rangle=\langle x, x^{\prime}\rangle$

proves that $(A^{-1})^{\prime}x^{\prime}\in \mathfrak{D}(A^{\prime})$ and $A^{\prime}(A^{-1})^{\prime}x^{\prime}=x$ , and hence $(A^{-1})^{\prime}\subset(A^{\prime})^{-1}$ .
PROPOSITION 5.8. Let $A$ be a densely defined operator from X to X, and

$B$ be a weakly continuous operator from ee to X. Then we have

(5.2) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

and

(5.3) $(BA)^{\prime}=A^{\prime}B^{\prime}$ .
PROOF. If $x\in \mathfrak{D}(A)$ and $x^{\prime}\in \mathfrak{D}(A^{\prime})$ , then we have

$\langle(A+B)x, x^{\prime}\rangle=\langle x, (A^{\prime}+B^{\prime})x^{\prime}\rangle$ .
Thus it follows that $(A+B)^{\prime}\supset A^{\prime}+B^{\prime}$ . Replacing $A+B$ by $A$ and $B$ by $-B$ ,

we have $A^{\prime}\supset(A+B)^{\prime}-B^{\prime}$ , and hence $(A+B)^{\prime}\subset A^{\prime}+B^{\prime}$ .
Similarly

$\langle Ax, B^{\prime}x^{\prime}\rangle=\langle BAx, x^{\prime}\rangle=\langle x, (BA)^{\prime}x^{\prime}\rangle$

proves $(BA)^{\prime}\subset A^{\prime}B^{\prime}$ , and
$\langle BAx, x^{\prime}\rangle=\langle Ax, B^{\prime}x^{\prime}\rangle=\langle x, A^{\prime}B^{\prime}x^{\prime}\rangle$

proves $A^{\prime}B^{\prime}\subset(BA)^{\prime}$ .
PROPOSITION 5.9. Let $A$ be a densely defined operator with a nonempty

resolvent set. If $\lambda$ belongs to the resolvent set $\rho(A)$ , then $\lambda$ belongs to $\rho(A^{f})$

and we have

(5.4) $(\lambda I-A^{\prime})^{-1}=((\lambda I-A)^{-1})^{\prime}$ .

6. Generation of semi-groups.

The problem of this section is to constuct a semi-group $T_{t}$ with a given
infinitesimal generator $A$ . First we consider the case when $\sigma=\tau$ . The
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following generalization of the Hille-Yosida theorem is due to Schwartz [8].

PROPOSITION 6.1. Let $\mathfrak{X}_{\tau}$ be a sequentially complete locally convex space.
Then, an operator $A$ is the infinitesimal generator of a $(\tau, \tau)$ semi-group of
operators if and only if it satisfies the following conditions:
$(G1)$ $A$ is a closed linear operator with a dense domain $\mathfrak{D}(A)$ .
$(G2)$ There is a sequence of positive numbers $\lambda_{n}$ with $\lambda_{n}\rightarrow\infty$ such that

$\lambda_{n}\in\rho(A)$ and the family of operators $\{(I-\lambda_{n}^{-1}A)^{-m}\}$ is equicontinuous
in $n,$ $m=1,2,$ $\cdots$

PROOF. Necessity follows from Propositions 3.1 and 3.7. We shall prove
the sufficiency by the second method of Hille-Phillips [4].

As in Proposition 3.1 we set $J(\lambda)={\rm Re}\lambda R(\lambda)$ for $\lambda\in\rho(A)$ . When $\lambda>0$ , we
have $J(\lambda)=(I-\lambda^{-1}A)^{-1}$ . First we shall prove
$(G2)^{\prime\prime}$ Every $\lambda$ with ${\rm Re}\lambda>0$ belongs to the resolvent set $\rho(A)$ , and $\{J(\lambda)^{m}\}$

is equicontinuous in ${\rm Re}\lambda>0$ and $m=0,1,2$ , .
It follows from Proposition 2.2 that $\lambda\in\rho(A)$ if $|\lambda-\lambda_{n}|<\lambda_{n}$ . Letting $n$

sufficiently large, we see that every $\lambda$ with ${\rm Re}\lambda>0$ belongs to $\rho(A)$ . By
Proposition 2.2 we have also

(6.1) $R(\lambda)^{m}x=\sum_{k=0}^{\infty}\left(\begin{array}{l}m+k-1\\k\end{array}\right)(\lambda_{n}-\lambda)^{k}R(\lambda_{n})^{m+k}x$ .

Thus for any continuous semi-norm $p(x)$ we have
$p(J(\lambda)^{m}x)\leqq(Re\lambda/(|\lambda_{n}|-|\lambda_{n}-\lambda|))^{m}\sup p(J(\lambda_{n})^{m}x)$ .

Let $n$ tend to $\infty$ . Then the factor in the bracket tends to 1.
Next we shall show that

$(G1)^{\prime\prime}J(\lambda)^{m}x\rightarrow x$ for any $x\in \mathfrak{X}$ and $m$ as $\lambda\rightarrow\infty$ .
Since $\mathfrak{D}(A)$ is dense, Proposition 2.4 proves $(G1)^{\prime f}$ for $m=1$ . If $m>1$ , we.
have $J(\lambda)^{m}x-x=J(\lambda)(J(\lambda)^{m-1}x-x)+(J(\lambda)x-x)$ . $J(\lambda)$ being equicontinuous, both
terms converge to $0$ .

We now define

(6.2) $T_{t^{(n)}}=I(\frac{n}{t})^{n}=(I-\frac{tA}{n})^{-n}$

It follows from $(G2)^{\prime\prime}$ that $T_{\iota^{(n)}}$ is equicontinuous in $t>0$ and $n=1,2$ , $\cdot$ .. ,

and from $(G1)^{ff}$ that for every $x\in \mathfrak{X}$ and $n,$ $T_{t^{(n)}}x\rightarrow x$ as $t\rightarrow 0$ . We see easily
that $T_{t^{(n)}}x$ is differentiable (even analytic) in $t>0$ , and for $x\in \mathfrak{D}(A)$ we have

(6.3) $\frac{d}{dt}T_{c^{(n)}}x=(I-\frac{tA}{n})^{-n-1}Ax=T_{t^{(n)}}J(\frac{n}{t})Ax$ ,

thus

(6.4) $T_{t^{(n)}}x-x=\int_{0^{t}}T_{s^{(n)}}J(n/s)Axds$ .

We shall prove that $T_{t^{(n)}}x$ has a limit. If $x\in \mathfrak{D}(A)$ , we have
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$T_{t^{(n)}}x-T_{t^{(m)}}x=\int_{0^{t}}\frac{d}{ds}(T_{\iota-s}^{(m)}T_{s^{(n)}}x)ds$

$=\int_{0^{t}}T_{t-s}^{(m)}T_{s^{(n)}}(J(n/s)-J(m/(t-s)))Axds$ .

Since $T_{t-s}^{(m)}T_{s^{(n)}}$ is equicontinuous, for any continuous semi-norm $p(x)$ there is
a continuous semi-norm $q(x)$ such that

(6.5) $p(T_{t^{(n)}}x-T_{t^{(m)}}x)\leqq t\sup_{\leqq 0s_{\Leftarrow}<\iota}q((J(n/s)-J(m/(t-s)))Ax)$ .

Therefore by $(G1)^{\prime\prime}T_{\iota^{(n)}}x$ forms a Cauchy sequence. Since $\mathfrak{D}(A)$ is dense and
$T_{r^{(n)}}$ is equicontinuous, it follows that $T_{\iota^{(n)}}x$ is a Cauchy sequence for every $x$.
Let

(6.6) $T_{t}x=\lim_{n\rightarrow\infty}T_{t^{(n)}}x$

be its limit. As is seen from (6.5) the convergence is uniform on every interval
($j\leqq t\leqq t_{0}$ . Thus $T_{t}x$ is continuous for $t\geqq 0$ .

The semi-group property $(S2)$ is proved as follows. We have
$T_{t}^{(mn)}x=(T_{\iota/m}^{(n)})^{m}x$ .

Thus letting $n$ tends to $\infty$ , we obtain

(6.7) $T_{t}x=(T_{\iota/m})^{m}x$ .
for any $x\in \mathfrak{X}$ and $m$ . The proof is similar to that of $(G1)^{\prime\prime}$ . (6. 7) with the
continuity proves $(S2)$ .

At last we have to show that $A$ is the infinitesimal generator of $T_{t}$ . Let
$x\in \mathfrak{D}(A)$ . We have

$T_{s^{(n)}}J(n/s)Ax-T_{s}Ax=T_{s^{(n)}}(J(n/s)-I)Ax+(T_{s^{(n)}}-T_{s})Ax\rightarrow 0$

uniformly in $s\in[0, t]$ as $ n\rightarrow\infty$ . Therefore letting $n$ tend to $\infty$ in (6.3), we
obtain

\langle 6.8) $T_{t}x-x=\int_{0^{t}}T_{s}Axds$ .

This shows that $A$ is a restriction of the infinitesimal generator $\hat{A}$ of $T_{t}$ by
Proposition 3.10. However $(I-A)$ and $(I-\hat{A})$ both map $\mathfrak{D}(A)$ and $\mathfrak{D}(\hat{A})$ onto
$\mathfrak{X}$ in a one-to-one way. Thus they must coincide with each other. This
completes the proof.

When $\sigma$ is strictly weaker than (the weak topology associated with) $\tau$ , a
complete characterization of the generators of $(\tau, \sigma)$ semi-groups seems very
difficult. We deal only with a special case, which includes the duals of con-
tinuous semi-groups in Banach spaces.

PROPOSITION 6.2. Let X be a vector space with local convex topologies
$\tau$ and $\sigma$ satisfying $(T1)-(T4)$ , and let $\mathfrak{B}$ be a family of convex circled and
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e-weakly compact sets which covers $\mathfrak{X}$ . Assume that the dual space $\mathfrak{X}_{\sigma^{\prime}}$ relative
to $\sigma$ is quasi-complete relative to the topology of uniform convergence on the
sets of B. Then the infinitesimal generator $A$ of a $(\tau, \sigma)$ semi-group with the
B-locally equibounded property $(S3)_{\mathfrak{B}}^{\prime\prime}$ satisfies the conditions:
$\lambda G1)^{\prime}$ $A$ is a $\sigma$ -closed linear operator with a $\sigma$ -dense domain.
$(G2)^{\prime}$ $\{(I-\lambda_{n}^{-1}A)^{-m}\}_{n,m=1,2},\cdots$ is $\tau$ -equicontinuous and $\mathfrak{B}$-locally equibounded for

a sequence $\lambda_{n}\rightarrow\infty$ .
\langle $G3)^{\prime}$ $(I-\lambda^{-1}A)^{-1}$ is a $\sigma$ -weakly continuous operator for every $\lambda>0$ .
$\backslash \backslash (G4)^{\prime}$ For every $x$ we have

$(I-n^{-1}tA)^{-n}x\rightarrow x$ (a)

as $t\rightarrow 0$ uniformly in $n=1,2,$ $\cdots$

Conversely if an operator $A$ satisfies the conditions $(G1)^{\prime}-(G3)^{\prime}$ , then it
generates a $(\tau, \omega)$ semi-group $T_{t}$ with the property $(S3)_{\mathfrak{B}}^{\prime\prime}$ , where cv is the
topology in X of uniform convergence on the compact sets in $\mathfrak{X}_{\sigma_{\mathfrak{B}}}^{\prime}$ . Moreover
if $(G4)^{f}$ is satisfied, lhen $T_{t}x$ is $\sigma$ -right continuous for every $x$ , and if the
convergence in $(G4)^{\prime}$ is uniform on every $\tau$ -bounded set in $\mathfrak{B}$, then $T_{t}$ is a
$(\tau, \sigma)$ semi-group.

PROOF. Necessity follows from Propositions 3.1, 3.2, 3.6 and 3.7. To prove
sufficiency, let $A$ be an operator satisfying $(G1)^{\prime}-(G3)^{\prime}$ , and let $\mathfrak{Y}$ be the
locally convex space $\mathfrak{X}_{\sigma^{\prime}}$ with the topology of uniform convergence on B. It
follows from Mackey’s theorem ([1], Chap. IV, \S 2, Theorem 2) that Qj’ $=X$ .
According to the propositions in \S 5, we see from $(G1)^{\prime}$ that the dual operator
$A^{\prime}$ of $A$ is a closed linear operator with a dense domain in $\mathfrak{Y}$ , and from $(G2)^{\prime}$

and $(G3)$ ‘ that $\{(I-\lambda_{n}^{-1}A^{\prime})^{-m}\}$ is equicontinuous in $\mathfrak{Y}$ . Thus $A^{\prime}$ satisfies the
conditions $(G1)$ and $(G2)$ in Proposition 6.1. Let $T_{t}^{\prime}$ be the semi-group in $\mathfrak{Y}$

generated by $A^{\prime}$ , and let $T_{t}$ be its dual operator $T_{\iota}^{\prime\prime}$ . We shall prove that $T_{t}$

is the desired semi-group.
$(S1)$ and $(S2)$ follow from corresponding properties for $T_{t}^{\prime}$ . Here we

note that

\langle 6.9) $ T_{t}x=\sigma$-weak $\lim_{n\rightarrow\infty}(I-\frac{tA}{n})^{-n}x$

for every $x\in \mathfrak{X}$ . By the same way as in the preceding proof it is proved
from $(G2)^{\prime}$ that $\{(I-n^{-1}tA)^{-n}\}_{t>0,n=1,2},\cdots$ is $\tau$ -equicontinuous. Thus for any $(\tau, \sigma)$

semi-norm $p(x)$ there is a $(\tau, \sigma)$ semi-norm $q(x)$ such that $p((I-n^{-1}tA)^{-n}x)\leqq q(x)$ .
Since the set $\{x;p(x)\leqq c\}$ is $\sigma$-weakly closed, it follows that $p(T_{t}x)\leqq q(x)$ .
This proves that $\{T_{t}\}$ is $\tau$ -equicontinuous. The B-local equiboundedness $(S3)_{\mathfrak{B}}^{\prime\prime}$

is proved by a similar way. $(S4)$ is clear. To prove $(S5)$ relative to $\omega$ , it
is sufficient to show that when $s$ tends to $t,$ $T_{s}^{\prime}y$ converges to $T_{t}^{\prime}y$ uniformly

\langle ) $n$ every compact set in $\mathfrak{Y}$ . But this follows from $(S3)$ and $(S5)$ for $T_{t}^{\prime}$ by
the Ascoli-Arzela theorem.
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The topology $\omega$ may not satisfy the condition $(T4)$ . However, since the
range $T_{t}x$ is contained in a convex circled and weakly complete set for every
$x$ , it is easily shown that the integrals (3.1) and (3.7) converge in ee relative
to $\omega$ . If $\chi\in \mathfrak{D}(A)$ , then we have

$\int_{0}^{t}\langle T_{s^{(n)}}Ax, y\rangle ds=\int_{0^{f}}\langle x, T_{s}^{\prime(n)}A^{\prime}y\rangle ds$

for every $y\in \mathfrak{D}(A^{\prime})$ . When $n$ tends to $\infty$ , the left hand side tends $tO^{t}$

$\int_{0}^{t}\langle T_{s}Ax, y\rangle ds$ , and the right hand side tends to $\int_{0}^{t}\langle x, T_{s}^{\prime}A^{\prime}y\rangle ds=\langle x, T_{t}^{\prime}y-y\rangle$

$=\langle T_{t}x-x, y\rangle$ . Thus we obtain (6.8.). By the same way as in the proof of
Proposition 6.1, we can show that $A$ is the infinitesimal generator of $T_{t}$ .

When $(G4)^{\prime}$ is satisfied, (6.9) proves that $T_{t}x$ is a-right continuous at $0$,

and hence at every $t$ by the semi-group property. The last statement follows
from Proposition 1.5.

7. Dual semi-groups.

We shall give a generalization of Phillips’ theorem [7].

PROPOSITION 7.1. Let $T_{t}$ be a $(\tau, \sigma)$ semi-group of operators in X satisfying
the condition $(S4)^{\prime}$ . In the dual space $\mathfrak{X}_{\sigma^{\prime}}$ , let $\tau^{\prime}$ be the topology of uniform
convergence on $\tau$ -bounded sets in $\mathfrak{X}$ and $\sigma^{\prime}$ be the weak* topology relative to

$\sigma$ . If $X_{\sigma}^{\prime}$ is quasi-complete relative to the Mackey topology $\tau(\mathfrak{X}_{\sigma^{\prime}}, \mathfrak{X})$ (e.g. if $\mathfrak{X}_{(\Gamma}$

is tonnel\’e or if $\mathfrak{X}_{\sigma}$ is the weak dual space of a quasi-complete tonnel\’e space),

then the family of dual operators $\{T_{t}^{\prime}\}$ forms a $(\tau^{\prime}, \sigma^{\prime})$ semi-group in $\mathfrak{X}_{\sigma}^{\prime}$.
Moreover the Laplace transform and the infinitesimal generator of $T_{t}^{\prime}$ are
equal to the dual operators of the Laplace transform $R(\lambda)$ and the generator
$A$ of $T_{t}$ respectively.

PROOF. $(T1)$ and $(T2)$ are clear, and $(T4)$ follows from Proposition 1.2.
In view of Proposition 3.4, we see that $\tau^{\prime}$ is the strong topology associated
with the duality of $\mathfrak{X}^{\prime}$ and $\mathfrak{X}$ . Thus it is stronger than the Mackey topology.
Now $(T3)$ follows as in Proposition 1.1.

Further, $(S1),$ $(S2),$ $(S4)$ and $(S5)$ are clear, and by Proposition 5.4 we
have $(S3)$ .

Let $\tilde{R}(\lambda)$ and $\tilde{A}$ be the Laplace transform and the generator of $T_{t}^{\prime}$ respec-
tively. We have

$\langle R(\lambda)x, x^{\prime}\rangle=\int_{0^{\infty}}e^{-\lambda\iota}\langle T_{t}x, x^{\prime}\rangle dt$

$=\int_{0^{\infty}}e^{-\lambda\iota}\langle x, T_{t}^{\prime}x^{\prime}\rangle dt$

$=\langle x,\tilde{R}(\lambda)x^{\prime}\rangle$



Semi-groups of operators 251

for every $\chi\in \mathfrak{X}$ and $\chi^{\prime}\in \mathfrak{X}^{\prime}$ . Hence it follows that $\tilde{R}(\lambda)=R(\lambda)^{\gamma}$ , and this
implies by Proposition 5.7 $\tilde{A}=A^{\prime}$ .

DEFINITION. Let X and $T_{t}$ satisfy the conditions in Proposition 7.1. We
denote by $\chi+the\tau^{\prime}$-closure $\mathfrak{D}(A^{\prime})^{T^{\prime}}$ of $\mathfrak{D}(A^{\prime})$ , and by $T_{t^{+}}$ the restriction of $T_{t}^{f}$

to $\mathfrak{X}^{+}$ . We shall call $T_{t^{+}}$ the dual semi-group of $T_{t}$ .
PROPOSITION 7.2. The dual semi-group $T_{t^{+}}$ is $a(\tau^{\prime}, \tau^{\prime})$ semi-group in $\chi+$ .

The infinitesimal generator $A^{+}$ of $T_{t^{+}}$ is the largest restriction of $A^{\prime}$ with the
range in $\mathfrak{X}^{+}$ .

PROOF. Although this is a consequence of Propositions 4.1 and 4.3, we
shall give another proof based on Proposition 6.1.

It follows by Propositions 5.9 and 5.4 that $A^{\prime}$ has the resolvent $R(\lambda, A^{\prime})$

$=(\lambda I-A^{\prime})^{-1}$ such that $\{({\rm Re}\lambda R(\lambda, A^{\prime}))^{m}\}_{{\rm Re}\lambda>0,m=1,2},\cdots$ is equicontinuous as a family
of operators from $\mathfrak{X}_{r}^{\prime}$ , to $\mathfrak{X}_{\tau}^{\prime},$ .

Let $R(\lambda)$ be the restriction of $R(\lambda, A^{\prime})$ to $\chi+$ . $R(\lambda)$ satisfies the resolvent
equation and $\mathfrak{R}(R)=\{0\}$ by Proposition 2.4. Thus it is the resolvent of a
closed linear operator $A^{+}$ in $\mathfrak{X}^{+}$ . By Proposition 2.4 we have also $\tau^{\prime}-\lim_{\lambda\rightarrow\infty}\lambda R(\lambda)x$

$=x$ for every $x\in \mathfrak{X}^{+}$ . Thus $A^{+}$ satisfies $(G1)$ and $(G2)$ , and so it generates
a $(\tau^{\prime}, \tau^{\prime})$ semi-group $T_{t^{+}}$ in $\chi+$ . We shall show that $T_{t^{+}}$ is the restriction of
$T_{t}^{\prime}$ to $\chi+$ . For every $x\in \mathfrak{X}$ and $x^{\prime}\in\chi+$ , we have

$\langle(I-tA/m)^{-m}x, x^{\prime}\rangle=\langle x, (I-tA^{+}/m)^{-\prime n}x^{\prime}\rangle$ .

Let $m$ tends to $\infty$ . Then Proposition 6.1 proves $\langle T_{t}x, x^{\prime}\rangle=\langle x, T_{t^{+}}x^{\prime}\rangle$ . Hence
we have $T_{t}^{\prime}x^{\prime}=T_{t^{+}}x^{\prime}$ .

It remains to show that $A^{+}$ is the maximal restriction of $A^{\prime}$ with the
range in $\chi+$ . By the definition we have $A^{+}\subset A^{\prime}$ . On the other hand if
$x^{\prime}\in \mathfrak{D}(A^{\prime})$ and $A^{\prime}x^{\prime}\in \mathfrak{X}^{+}$ , then we have $(\lambda I-A^{\prime})x^{\prime}\in \mathfrak{X}^{+}$ . Hence we obtain

$x^{\prime}=(\lambda I-A^{+})^{-1}(\lambda I-A^{\prime})x\in \mathfrak{D}(A^{+})$ .

As an application of the dual semi-group we shall show the uniqueness
of the solution of the Cauchy problem for the differential equation

$’(7.1)$ $\frac{d}{dt}x(t)=Ax(t)$ .

PROPOSITION 7.3. Let $T_{t}$ be a $(\tau, \sigma)$ semi-group with a dual semi-group
$T_{t^{+}}$ , and let $A$ be its infinitesimal generator. Let an $\mathfrak{X}$ -valued function $x(t)$

satisfy the conditions: i) $x(t)$ is continuous relative to the a-weak topology
on $[0, \delta]$ and $x(0)=0$ ; ii) $x(t)$ is differentiable relative to the $\sigma$ -weak topology,
belongs to $\mathfrak{D}(A)$ and satisfies the equation (7.1) on $(0, \delta)$ . Then $x(t)$ is identi-
cally equal to $0$ .

PROOF. For every $a\in(O, \delta)$ and every $\chi^{+}\in \mathfrak{X}^{+}$ we have
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$\langle\frac{T_{a\sim s}x(s)-T_{a-t}x(t)}{s-t},$ $x^{+}\rangle=\langle\frac{x(s)-x(t)}{s-t}Ax(t),$ $ T_{a^{+}-t}x^{+}\rangle$

$+\langle\frac{x(s)-x(t)}{s-t}Ax(t),$ $(T_{a^{+}-s}-T_{a^{+}-t})x^{+}\rangle$

$+\langle T_{a-s}Ax(t),$ $ x^{+}\rangle$

$+\langle\frac{T_{a\sim s}-T_{a\sim t}}{s-t}x(t),$ $ x^{+}\rangle$ .
Let $s$ tend to $t\in(O, a)$ . Then the first term tends to $0$ because of the differ-
entiability of $x(t)$ . By Proposition 3.4 and the $\tau^{\prime}$ -continuity of $T_{\alpha^{+}-t}x^{+}$ the
second term also tends to $0$ . The third term converges to $\langle T_{a-t}Ax(t), x^{+}\rangle$ ,

and finally from Proposition 3.13 we see that the fourth term converges to
$\langle-T_{a-t}Ax(t), x^{+}\rangle$ . Thus we have

$\frac{d}{dt}\langle T_{a\sim t}x(t), x^{+}\rangle=0$

for any $t\in(O, a)$ . Similarly we have

$\langle T_{a\sim t}x(t), x^{-\vdash}\rangle=\langle x(t), T_{a^{+}}x^{+}\rangle+\langle x(t), (T_{a^{+}-t}-T_{a^{+}})x^{+}\rangle\rightarrow 0$

as $t\rightarrow 0$ , and

$\langle T_{a-t}x(t), x\rangle=\langle x(t), x^{+}\rangle+\langle x(t), (T_{a^{+}-l}-I)x^{+}\rangle\rightarrow\langle x(a), x^{+}\rangle$

as $t\rightarrow a$ . Hence we obtain $\langle x(a), x^{+}\rangle=0$ . Since $\mathfrak{X}^{+}$ is weakly* dense in $\mathfrak{X}^{\prime}$ ,

this proves $x(a)=0$ .
By a similar way we can prove a uniqueness theorem weaker but with

no stringent condition on the topologies.
PROPOSITION 7.4. Let $T_{t}$ be a $(\tau, \sigma)$ semi-group, and $A$ be its infinitesimal

generator. A solution $x(t)$ of (7.1) which is $\tau$ -continuous on $[0, \delta]$ and
$\tau$ -differentiable on $(0, \delta)$ and satisfies $x(O)=0$ is identically equal to $0$ .

PROOF. We have

$\underline{T_{a-}}\frac{s^{X(s)-T_{c-t}x(t)}}{s-t}=T_{a-s}(\frac{x(s)-x(t)}{s-t}Ax(t))$

$+T_{\alpha-s}Ax(t)+\frac{T_{a-s}-T_{a\sim t}}{s-t}x(t)$ .

When $s$ tends to $t$ , the first term tends to $0$ relative to $\tau$ by the equicontinuity
of $\{T_{a-s}\}$ , and the second and the third terms tend to $T_{a-t}Ax(t)$ and $-T_{a-t}Ax(t\rangle$

relative to $\sigma$ respectively. Thus $T_{a-t}x(t)$ is continuously differentiable relative
to $\sigma$ and the derivative vanishes. Similarly it follows from the equicontinuity
of $\{T_{a-t}\}$ that $T_{a-t}x(t)$ is $\tau$ -continuous on $[0, a]$ . Consequently we have $x(a)$

$=T_{a}x(0)=0$ .
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Proposition 7.4 verifies the uniqueness of the solution given in Proposition
4.4, and Proposition 7.3 verifies the uniqueness of the solution given in Prop-
osition 3.13 under the conditions that $\mathfrak{X}_{\sigma^{\prime}}$ is quasi-complete relative to the
Mackey topology $\tau(\mathfrak{X}_{0^{\prime}}., \mathfrak{X})$ and that $T_{t}$ satisfies $(S4)^{\prime}$ .

8. Analytic functions in locally convex spaces.

In this section we shall develop the theory of analytic functions with
values in locally convex spaces as a preparation for the next section.

DEFINITION. Let X be a locally convex space over the complex number
field, and let $f(\zeta)=f(\xi+i\eta)$ be an $\mathfrak{X}$ -valued function defined in a domain on
the complex plane. We call $f(\zeta)$ analytic if it satisfies the conditions:
(A 1) $f(\zeta)$ is infinitely differentiable as an $\mathfrak{X}$-valued function of real variables

$\xi$ and $\eta$ .
(A 2) It satisfies the Cauchy-Riemann differential equation

$\frac{\partial}{\partial\overline{\zeta}}f(\zeta)=\frac{1}{2}(\frac{\partial}{\partial\xi}+i\frac{\partial}{\partial\eta})f(\zeta)=0$ .

PROPOSITION 8.1. If $f(\zeta)$ is an analytic function, then its derived functions
$f^{(n)}(\zeta)$ are analytic and we have

(8.1) $\oint f(\zeta)d\zeta=0$ ,

(8.2) $\frac{n!}{2\pi i}\oint\frac{f(\zeta)}{(\zeta-\alpha)^{n+1}}d\zeta=f^{(n)}(\alpha)$

for any closed curve encircling $\alpha$ , where the integrals are taken in the sense
of Riemann and $f^{(n)}(\alpha)=\partial^{n}f(\xi+i\eta)/\partial\xi^{n}|_{\xi+i\eta=\alpha}$ .

PROOF. We remark that for any $\chi^{\prime}\in \mathfrak{X}^{\prime}\langle f(\zeta), x^{\prime}\rangle$ is analytic as a numeri-
cal function and we have $\langle f(\zeta), x^{\prime}\rangle^{(n)}=\langle f^{(n)}(\zeta), x^{\prime}\rangle$ . Thus $f^{(n)}(\zeta)$ satisfies
(A 2). Since $f(\zeta)$ is continuous, the Riemann sums form a Cauchy net, and as
the above remark shows they converge weakly to the right hand side. By
the same argument as in the proof of Proposition 1.1, we see that the Riemann
sums converge to the right hand side relative to the original topology of $\mathfrak{X}$ .

PROPOSITION 8.2. If $f(\zeta)$ is analytic in the circle $|\zeta-\alpha|<\rho$ , then $r^{n}f^{(n)}(\alpha)/n$ !
converges to $0$ for any $|r|<\rho$ , and we have

(8.3) $f(\zeta)=\sum_{n=0}^{\infty}\frac{f^{(n)}(\alpha)}{n!}(\zeta-\alpha)^{n}$

for any $\zeta$ with $|\zeta-\alpha|<\rho$ , where the series converges uniformly on every
compact set in the circle in the sense of Mackey, a fortiori relative to the
original topology.

PROOF. The assertions easily follow from the integral formula (8.2). We
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have only to take for the path of integration the circle with the radius $\rho^{\prime}$ ,
$ r<\rho^{\prime}<\rho$ and note that $\{f(\zeta)\}$ on the circle forms a compact, hence a bounded
set in $\mathfrak{X}$ .

PROPOSITION 8.3. We assume that every continuous function defined on
$[0,1]$ and with values in ee is Riemann integrable. Then, every $\mathfrak{X}$ -valued
continuous function $f(\zeta)$ which satisfies (8.1) for any closed curve is analytic.

PROOF. From the assumptions we easily obtain Cauchy’s integral formula

(8.4) $\frac{1}{2\pi i}\oint\frac{f(\zeta)}{(\zeta-\alpha)}d\zeta=f(\alpha)$ .
Thus we have

$\frac{f(\alpha+\xi)-f(\alpha)}{\xi}-\frac{1}{2\pi i}\oint\frac{1}{(\zeta-\alpha)^{2}}f(\zeta)d\zeta$

$=\frac{1}{2\pi i}\oint(\frac{11}{(\zeta-\alpha-\xi)(\zeta-\alpha)(\zeta-\alpha)^{2}})f(\zeta)d\zeta$ .

When $\xi$ tends to $0$ , the right hand side converges to $0$ . This shows that $f(\zeta)$

is differentiable. Similarly, or noting that $f^{(n-1)}(\zeta)$ satisfies the assumptions
in the proposition, we see that $f(\zeta)$ is infinitely differentiable. The Cauchy-
Riemann equation is proved similarly.

REMARK. In order to assert (8.1), it is sufficient to show that $\langle f(\zeta), x^{\prime}\rangle$

is analytic for $X^{\prime}$ in a total set of $\mathfrak{X}^{\prime}$ .
PROPOSITION 8.4. Let ee be sequentially complete, and let $\{a_{n}\}$ be a sequence

of elements in $\mathfrak{X}$ such that $\{\rho^{n}a_{n}\}$ is bounded for a $\rho>0$ . Then

(8.5) $f(\zeta)=\sum_{n=0}^{\infty}a_{n}\zeta^{n}$

converges for $|\zeta|<\rho$ and represents an analytic function such thal $a_{n}$

$=f^{(n)}(0)/n$ !.
PROOF. The convergence follows from the sequential completeness. We

see easily that $f(\zeta)$ is continuous and satisfies (8.1). The last statement easily
follows from (8.2).

PROPOSITION 8.5. If X is sequentially complete (relative to the Mackey
topology), every scalarly analytic function (i. e. a function $f(\zeta)$ such that
$\langle f(\zeta), x^{\prime}\rangle$ is analytic for every $x^{\prime}\in \mathfrak{X}^{f}$) is analytic.

PROOF. Since $\mathfrak{X}$ is sequentially complete, the scalarly infinitely differ-
entiable function $f(\zeta)$ is infinitely differentiable (cf. [3], Chap. III, \S 8, Proposi-
tion 15). From Proposition 8.3 it follows that a continuous and scalarly
analytic function is analytic.

PROPOSITION 8.6. Let two locally convex topologies $\tau$ and $\sigma$ in X satisfy
the conditions $(T1)$ and $(T2)$ . If an X-valued function $f(\zeta)$ is $\sigma$-analytic and
$\tau$ -bounded on every compact subset of the domain of definition, then it is
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$\tau$ -analytic.
PROOF. We have

(8.6) $f^{(n)}(\zeta)=\int_{\alpha^{\zeta}}f^{(n+1)}(z)dz+f^{(n)}(\alpha)$

in the sense of a $\sigma$ -Riemann integral. The proof is similar to that of Propo-
sition 8.1. If $\rho$ is small, there is a convex circled and $\tau$ -bounded set $B$ such
that $f^{(n+1)}(z)\in B$ for any $z$ with $|z-\alpha|<\rho$ . Because of $(T2)$ we may assume
that $B$ is $\sigma$ -closed. Thus we have, for $\zeta$ with $|\zeta-\alpha|<\rho,$ $f^{(n)}(\zeta)-f^{(n)}(\alpha)$

$\in|\zeta-\alpha|B$ . This shows that $f^{(n)}(\zeta)$ is continuous relative to $\tau$ . Now the
Riemann sums which define the integral of (8.6) form a Cauchy net relative
to $\tau$ and converge relative to $\sigma$ . Hence, as in the proof of Proposition 1.1,
we see that it converges to the same limit relative to $\tau$ . We have thus (8.6)

in the sense of a $\tau$ -Riemann integral. This shows that $f^{(n)}(\zeta)$ is differentiable
relative to $\tau$ and its derivative is $f^{(n+1)}(\zeta)$ . Thus $f(\zeta)$ satisfies (A 1). (A 2)

is clear.
COROLLARY. If $\mathfrak{X}_{\sigma}$ satisfies the condition in Proposition 3.4, then every

analytic function $f(\zeta)$ is also analytic relative $lo$ the strong topology associated
with the original topology.

PROOF. The original topology and the strong topology have the same
family of bounded sets. $(T2)$ is evident.

DEFINITION. An X-valued function $f(\xi)$ defined on a real interval is called
a real analytic function if it is infinitely differentiable and if it is represented
by the Taylor series (8.3) around every point $\alpha$ in the interval with a positive
radius of convergence.

PROPOSITION 8.7. Let ee be sequentially complete. Then, an infinitely

differentiable function $f(\xi)$ is real analylic if and only if for every compact
set $K$ in the interval there is a $\rho_{K}>0$ such that $\{\rho_{K}^{n}f^{(n)}(\xi)/n!\}_{\xi\in K,n=0,1,2}\ldots$ . is
bounded. In this case $f(\xi)$ can be extended to a complex analytic function
$f(\zeta)$ defined at least for $\zeta$ with dis $(\zeta, K)<\rho_{K}$ .

PROOF. If $f(\xi)$ is represented by (8.3) for $|\xi-\alpha|<\rho$ , then it is easily
proved that, with $\rho_{1}=\rho/3,$ $\{\rho_{1}^{n}f^{(n)}(\xi)/n!\}_{|^{\underline{\wedge}}\sim a|<\rho_{1},n=0,1},\ldots$ is bounded. Thus only
if part follows.

Conversely if $f(\xi)$ satisfies the conditions, then the Taylor series converges
and expresses an analytic function $f_{\alpha}(\zeta)$ for $\zeta$ with $|\zeta-\alpha|<\rho_{\{\alpha\}}$ . We have to
show that $f_{\alpha}(\zeta)=f_{\beta}(\zeta)$ when $\zeta$ belongs to the intersection of the two disks.
To do so, it is sufficient to show that $\langle f_{\alpha}(\xi), x^{\prime}\rangle=\langle f(\xi), x^{\prime}\rangle$ for real $\xi$ with
$|\xi-\alpha|<\rho_{\{\alpha\}}$ and $x^{\prime}\in \mathfrak{X}^{\prime}$ . But this is easily proved by estimating the residual
term in the Taylor expansion. This completes the proof.

Next we consider operator valued functions. Let ee and $\mathfrak{Y}$ be two locally
convex spaces. We denote by $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ the space of continuous linear operators
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from ee to $\mathfrak{Y}$ with the topology of the uniform convergence on every set in
$\mathfrak{S}$ , where $\mathfrak{S}$ is a family of bounded sets in ce which covers $\mathfrak{X}$ . $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ is a
locally convex space.

As a corollary of Proposition 8.6 we have the
PROPOSITION 8.8. Let $f(\zeta)$ be an $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ valued analytic function. If

$\{f(\zeta)\}_{\zeta\in K}$ is equicontinuous for every compact set $K$ in the domain, then $f(\zeta)$

is analytic in $\mathfrak{L}_{\mathfrak{B}}(\mathfrak{X}, \mathfrak{Y})$ with $\mathfrak{B}$ the set of all bounded sets in X.
We shall call such an analytic function $f(\zeta)$ a locally equicontinuous

analytic function.
PROPOSITION 8.9. An analytic function $f(\zeta)$ with values in $\mathfrak{L}(\mathfrak{X}, \mathfrak{Y})$ is locally

equicontinuous if and only if $\{\rho_{1}^{n}f^{(n)}(\alpha)/n !\}$ is equicontinuous for every $\alpha$

with a $\rho_{1}>0$ .
PROOF. It is sufficient to note that the closed convex circled hull of equi-

continuous set is equicontinuous.
COROLLARY 1. An analytic function $f(\zeta)$ in $\mathfrak{L}(\mathfrak{X}, \mathfrak{Y})$ is locally equicontinuous

if and only if its derived function $f^{\prime}(\zeta)$ is locally equicontinuous.
COROLLARY 2. Assume that every set in $\mathfrak{X}$ which is an intersection of a

countable set of convex circled and closed neighborhoods of $0$ and absorbs
every set in $\mathfrak{S}$ is a neighborhood of $0$ (e.g., ee is a tonnel\’e space or a $DF$

space). Then every $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ analytic function is locally equicontinuous.
PROOF. It is sufficient to show that every countable and $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ bounded

set $\{u_{n}\}$ of continuous linear operators is equicontinuous. Let $V$ be a convex
circled and closed neighborhood of $0$ in $\mathfrak{Y}$ The set $U=\cap u_{n}^{-1}(V)$ is the inter-
section of a countable set of convex circled and closed neighborhoods and,

since $\{u_{n}\}$ is bounded, absorbs every set in S. Thus $U$ is a neighborhood
of $0$ .

PROPOSITION 8.10. Let ee be countably tonnel\’e (cf. Proposition 1.3) and VJ
be sequentially complete. Then, an $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ valued function $f(\zeta)$ is analytic if
and only if $\langle f(\zeta)x, y^{\prime}\rangle$ is analytic for every $\chi\in$ ee and $y^{\prime}\in \mathfrak{Y}^{\prime}$ . In this case
every analylic function is locally equicontinuous.

PROOF. Only if part is evident. To prove the converse first we consider
the case when $\mathfrak{S}$ is the set $s$ of all finite sets in X. We know that the dual
space of $\mathfrak{L}_{s}(\mathfrak{X}, \mathfrak{Y})$ is $\mathfrak{X}\otimes \mathfrak{Y}^{\prime}$ ([1], Chap. IV, \S 2, Proposition 11), and it is easily
shown that $\mathfrak{L}_{s}(\mathfrak{X}, \mathfrak{Y})$ is sequentially complete. Therefore it follows from
Proposition 8.5 that $f(\zeta)$ is analytic in $\mathfrak{L}_{s}(\mathfrak{X}, \mathfrak{Y})$ . We see by Corollary 2 of
Proposition 8.9 that $f(\zeta)$ is locally equicontinuous. Thus it is analytic in
$\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ .

PROPOSITION 8.11. Let ae, $\mathfrak{Y}$ , and 3 be locally convex spaces. If $f(\zeta)$ is a
locally equicontinuous analytic function in $\mathfrak{L}(\mathfrak{Y}, \mathfrak{Z})$ and $g(\zeta)$ is an analytic

function in $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ , then the product $f(\zeta)g(\zeta)$ is an analytic function in $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Z})$ .
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And we have

(8.7) $\frac{d}{d\zeta}(f(\zeta)g(\zeta))=\frac{\text{{\it \’{a}}}}{d\zeta}f(\zeta)\cdot g(\zeta)+f(\zeta)\cdot\frac{d}{d\zeta}g(\zeta)$ .

PROOF. First we prove the continuity in $\zeta$ . Let the disk $|\zeta-\alpha|\leqq\rho$ be
contained in the domain. For any continuous semi-norm $p(z)$ in $\mathfrak{Z}$ , there is a
continuous semi-norm $q(y)$ in $\mathfrak{Y}$ such that $p(f(\zeta)y)\leqq q(y)$ for any $y\in \mathfrak{Y}$ and $\zeta$

in the disk. We have for any $x\in \mathfrak{X}$ and any $\alpha,$ $\zeta$ in the disk
$p((f(\zeta)g(\zeta)-f(\alpha)g(\alpha))x)$

$\leqq p(f(\zeta)(g(\zeta)-g(\alpha))x)+p((f(\zeta)-f(\alpha))g(\alpha)x)$

$\leqq q((g(\zeta)-g(\alpha))x)+p((f(\zeta)-f(\alpha))g(\alpha)x)$ .
Let $x$ be in a set $B\in \mathfrak{S}$ and let $\zeta$ tend to $\alpha$ . Then the first term uniformly
tends to $0$ , and since $g(\alpha)B$ is a bounded set in $\mathfrak{Y}$ , the second term also tends
to $0$ uniformly in $x$. This proves the continuity.

Similarly we have

$p(\frac{1}{\zeta-\alpha}(f(\zeta)g(\zeta)-f(\alpha)g(\alpha))x-(f^{\prime}(\alpha)g(\alpha)+f(\alpha)g^{\prime}(\alpha))x)$

$\leqq q((\frac{g(\zeta)-g(\alpha)}{\zeta-\alpha}g^{\prime}(\alpha))x)+p((f(\zeta)-f(\alpha))g^{\prime}(\zeta)x)$

$+p((\frac{f(\zeta)-f(\alpha)}{\zeta-\alpha}f^{\prime}(\alpha))g(\alpha)x)$ .

Let $x\in B$ . When $\zeta$ tends to $\alpha$ , the first term uniformly tends to $0$ and, since
$\{g^{\prime}(\zeta)B\}_{|\zeta-\alpha|\leqq\rho}$ is bounded in $\mathfrak{Y}$ , the second term also tends to $0$ . Finally it
follows from the differentiability of $f(\zeta)$ in $\mathfrak{L}_{\mathfrak{B}}(\mathfrak{Y}, \mathfrak{Z})$ and the boundedness of
$g(\alpha)B$ that the third term converges to $0$ . This proves that $f(\zeta)g(\zeta)$ is differ-
entiable and that its derived function is given by (8.7).

Now the infinite differentiability is proved recursively. Replacing $\zeta-\alpha$

by $\overline{\zeta}-\overline{\alpha}$ we see that $f(\zeta)g(\zeta)$ satisfies the Cauchy-Riemann equation.
Lastly we give a special proposition which will be used in the next

section.
PROPOSITION 8.12. Let $\mathfrak{X}$ and $\mathfrak{Y}$ be locally convex spaces, and let $f(\zeta)$ be

an $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ -valued analytic function defined in the open sector $|\arg\zeta|<\pi/2+\theta$

with $\theta>0$ . If $\{\zeta f(\zeta)\}$ is equicontinuous in every subsector $|\arg\zeta|\leqq\pi/2+\theta-\epsilon$ ,
$\epsilon>0,$ $\zeta\neq 0$ , then the family of operators $\{\zeta^{n+1}f^{(n)}(\zeta)/n !\}$ is equicontinuous in
every sector $|\arg\zeta|\leqq\theta-\epsilon,$ $\epsilon>0,$ $\zeta\neq 0$ .

PROOF. Using the integral formula

$ f^{\prime}(\alpha)=\frac{1}{2\pi i}\int_{|\zeta-\alpha|=c|\alpha|}\frac{f(\zeta)}{(\zeta-\alpha)^{2}}d\zeta$ ,

we see easily that $\{\zeta^{2}f^{\prime}(\zeta)\}$ is equicontinuous in every subsector $|\arg\zeta|\leqq\pi/2$
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$+\theta-\epsilon$ . The assertion now follows from the following
LEMMA. Let $\mathfrak{E}$ be a convex circled closed and equicontinuous set in

$\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}, \mathfrak{Y})$ . If $g(\zeta)$ is an $\mathfrak{L}_{\tilde{\Leftrightarrow}}(\mathfrak{X}, \mathfrak{Y})$ -valued analytic function defined in the half
plane ${\rm Re}\zeta>0$ such that $\zeta^{2}g(\zeta)\in \mathfrak{E}$ , then we have $\xi^{n+2}g^{(n)}(\xi)/(n+1)!\in 2\mathfrak{E}$ for
any $\xi>0$ and $n=0,1,2,$ $\cdots$

PROOF. Deforming the path of integration in (8.2) we have

$\frac{g^{(n-1)}(\xi)}{(n-1)!}=\frac{-1}{2\pi i}\int_{\sigma/(n+1)-i\infty}^{\xi/(n+1)+i\infty}\frac{1}{(\zeta-\xi)^{n}}g(\zeta)d\zeta$ .
This yields

$\frac{\xi^{n+1}g^{(n-1)}(\xi)}{n!}\in_{2\overline{\pi n}}^{\xi^{n+1}}-(\frac{n+1}{n\xi})^{n}\int_{-}^{\infty_{\infty}}\frac{d\tau}{\tau^{2}+(\xi/(n+1))^{2}}\mathfrak{E}$

$=\frac{1}{2}(\frac{n+1}{n})^{n+1}\mathfrak{E}\subset 2\mathfrak{E}$ .

9. Analytic semi-groups.

DEFINITION. A $(\tau, \sigma)$ semi-group $T_{t}$ is called an analytic semi-group of
class $\mathfrak{H}(\theta)$ if it is real analytic in $\mathfrak{L}_{s}(\mathfrak{X}_{\tau}, \mathfrak{X}_{\sigma})$ for $t>0$ and has an analytic
continuation $T_{t}$ defined in the sector $|\arg t|<\theta$ with $\theta>0$ such that $\{T_{t}\}$ is
equicontinuous in $\mathfrak{L}(\mathfrak{X}_{r}, \mathfrak{X}_{\tau})$ on every subsector $|\arg t|\leqq\theta-\epsilon,$ $\epsilon>0$ .

PROPOSITION 9.1. If $T_{t}$ is a $(\tau, \sigma)$ -analytic semi-group of class $\mathfrak{H}(\theta)$ , then
the continuation $T_{t}$ is analytic as an $\mathfrak{L}_{\mathfrak{B}_{C}}(\mathfrak{X}_{r}, \mathfrak{X}_{r})$ -valued function in the sector
$|\arg t|<\theta$ , and satisfies the semi-gro up property $(S2)$ for any $t$ and $s$ in the
sector. Furthermore for any $x$ in the $\tau$ -center $\mathfrak{D}(A)^{\tau}$ we have $T_{t}x\rightarrow x$ relative
to $\tau$ as $t$ tends to $0$ through the Stolz region $|\arg t|\leqq\theta-\epsilon,$ $\epsilon>0$ .

PROOF. The analyticity in $\mathfrak{L}_{\mathfrak{B}_{\tau}}(\mathfrak{X}_{r}, \mathfrak{X}_{r})$ follows from Propositions 8.6 and
8.8. The unique continuation property of analytic functions proves the semi-
group property.

If $x=T_{\delta}y$ with $\delta>0$ , then clearly we have $T_{t}x\rightarrow x$ relative to $\tau$ as $t$ tends
to $0$ . Since we have $T_{\delta}y\rightarrow y(\tau)$ for any $y\in \mathfrak{X}_{0}=\mathfrak{D}(A)^{r}$ as $\delta\rightarrow 0$ , the set
$\{T_{\delta}y;y\in \mathfrak{X}_{0}, \delta>0\}$ is dense in $\mathfrak{X}_{0}$ . Now noticing that $T_{t}$ is equicontinuous on
the Stolz region $|\arg t|\leqq\theta-\epsilon$ , we can prove that for any $\chi\in \mathfrak{X}_{0}T_{t}x$ tends to
$x$ relative to $\tau$ as $t\rightarrow 0$ in the region by the same way as in the proof of
Proposition 1.4.

From now on we shall identify the original semi-group and its continuation.
PROPOSITION 9.2. Let $T_{t}$ be a $(\tau, \sigma)$ semi-group and $R(\lambda)$ be its Laplace

transform. Then the following conditions are equivalent.
(I) $T_{t}$ is an analytic semi-group of class $\mathfrak{H}(\theta)$ .
(II) $\lambda R(\lambda)$ can be continued analytically to the open sector $|\arg\lambda|<\theta+\pi/2$

as an $\mathfrak{L}_{\mathfrak{S}}(\mathfrak{X}_{\tau}, \mathfrak{X}_{r})$ -valued function and equicontinuous on every subsector
$|\arg\lambda|\leqq\theta+\pi/2-\epsilon,$ $\epsilon>0,$ $\lambda\neq 0$ .
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(III) The family of operators $\{(\lambda R(\lambda))^{n}\}_{n=0,1,2},\ldots$ is equicontinuous in $\mathfrak{L}(\mathfrak{X}_{\tau}, \mathfrak{X}_{r})$

on every sector $|\arg\lambda|\leqq\theta-\epsilon,$ $\epsilon>0,$ $\lambda\neq 0$ .
(IV) If $t>0$, then $T_{t}x\in \mathfrak{D}(A)$ for any $\chi$ and the family of operators

$\{(cntAT_{t})^{n}/n!\}_{n=0,1,2,\cdots,t>0}$ is equicontinuous is $\mathfrak{L}(\mathfrak{X}_{r}, \mathfrak{X}_{\tau})$ for any $c$ with
$ 0<c<\sin\theta$ .

PROOF. 1’ (I) implies (II). If $|\arg\lambda|<\theta+\pi/2$ , we can find an $\omega$ such
that $|\arg\lambda+\omega|<\pi/2$ and $|\omega|<\theta$ . We define $R(\lambda)$ for such $\lambda$ by

$R(\lambda)x=\int_{+0}^{e^{i\omega_{\infty}}}e^{-\lambda t}T_{t}xdt$

in the sense of an improper $\sigma$ -integral. From (I) it easliy follows that the
integral converges and represents a continuous linear operator $R(\lambda)$ independent
of the choice of $\omega$ . If $|\arg\lambda|<\pi/2$ , this operator coincides with that given
in \S 3. Since the analyticity in $\lambda$ is clear, we see that it gives an analytic
extension. We have, for any $(\tau, \sigma)$ semi-norm $p(x)$ and $x\in \mathfrak{X}$ , the estimate

$p(\lambda R(\lambda)x)\leqq\int_{0^{\infty}}|\lambda|e^{-\Gamma e(\lambda e^{i\omega})T}d\tau\cdot\sup_{\arg t=\omega}p(T_{t}x)$

(9.1)
$=\sec(\arg\lambda+\omega)q_{\omega}(x)$ ,

where $q_{\omega}(x)$ is a $(\tau, \sigma)$ semi-norm depending on $\omega$ . This proves (II).

2’ (II) is equivalent to (III). Proposition 8.12 and the relation

(9.2) $R(\lambda)^{n+I}=\frac{(-1)^{n}d^{n}}{n!\text{{\it \’{a}}}\lambda^{n}}R(\lambda)$

proves that (II) implies (III). Conversely if (III) holds, we can prove (II) by
the same way as in the proof of Proposition 6.1.

3’ (II) implies (IV). First we prove that when (II) holds, we have the
representation

(9.3) $ T_{c^{\chi}}=\frac{1}{2\pi i}\int_{\Gamma}e^{t\lambda}R(\lambda)xd\lambda$

for any $\chi\in \mathfrak{X}$ and $t>0$ , where the integral is in the sense of an improper
$\tau$ -Riemann integral and the path of integration $\Gamma$ runs from $ e^{-i0)}1\infty$ to $ e^{t\omega_{2}}\infty$

with $\pi/2<\omega_{i}<\theta+\pi/2$ .
It follows from Proposition 8.1 and (9.2) that for any $x\in \mathfrak{X}$ and $n\geqq 1$ we

have

(9.4) $(I-\frac{tA}{n})^{-n_{X}}=(\frac{n}{t}R(\frac{n}{t}))^{n}x=\frac{-1}{2\pi i}\oint_{|\lambda-n/t|=\epsilon}(1-\frac{t\lambda}{n})^{-n}R(\lambda)xd\lambda$

$=\frac{1}{2\pi i}\int_{\Gamma}(1-\frac{t\lambda}{n})^{-n}R(\text{\‘{A}})xd\lambda$

in the sense of a $\tau$ -Riemann integral. Let $n$ tends to infinity. We see easily
that the right hand side of (9.4) tends to that of (9.3) relative to $\tau$ . On the
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other hand

$(\frac{n}{t}R(\frac{n}{t}))^{n}=\frac{1}{(n-1)!}\int_{0^{\infty}}(\frac{n}{t})^{n}s^{n-1}e^{-ns/t}T_{s}xds$

shows that the left hand side of (9.4) converges to $T_{t}x$ relative to $\sigma$ . This
proves (9.3).

Next we shall show that if $t>0$ , then $T_{t}x\in \mathfrak{D}(A)$ for every $\chi$ and we have

$’(9.5)$ $ AT\iota^{\chi-}=_{2}\frac{1}{\pi i}\int_{\Gamma}\lambda e^{\lambda\iota}R(\lambda)xd\lambda$ .

Let $\mu$ be a positive number. We see easily that the integral

$s=_{2}fz,t^{\chi-\frac{1}{\pi i}\int_{\Gamma}(\mu-\lambda)e^{\lambda t}R(\lambda)xd\lambda}$

converges in the sense of a $\tau$ -Riemann integral. We have

$ R(\mu)S_{u.\iota^{\chi}}=\frac{1}{2\pi i}\int_{\Gamma}(\mu-\lambda)e^{\lambda t}R(\mu)R(\lambda)xd\lambda$

$=\frac{1}{2\pi i}\int_{\Gamma}e^{\lambda t}R(\lambda)xd\lambda-\frac{1}{2\pi i}\int_{\Gamma}e^{\lambda t}R(\mu)xd\lambda$

$=T_{t}x$ .
Hence we obtain $T_{t}x\in \mathfrak{D}(A)$ and by the equation $AT_{t}x=(\mu R(\mu)-I)S_{\mu,\iota}x(9.5)$

follows. Repeating the same arguments, we can prove that ift $>0,$ $T_{t}x\in \mathfrak{D}(A^{n})$

for every $x$ and every $n$ , and that

$ A^{n}T_{t}x=\frac{1}{2\pi i}\int_{\Gamma}\lambda^{n}e^{\lambda\iota}R(\lambda)xd\lambda$

holds. It follows by Proposition 3.13 that $A^{n}T_{nt}x=(AT_{t})^{n}x$.
Now let $\omega$ be the solution of $\cos\omega=-c$ . We can take for $\Gamma$ a curve

arbitrarily close to the rays $|\arg\lambda|=\omega$ . Therefore for any $\tau$ -continuous
semi-norm $p(x)$ we have

$p((ctAT_{t/n})^{n}/n!)\leqq\frac{1}{\pi}\int_{0^{\infty}}\frac{(ctr)^{n-1}}{n!}e^{-ctr}ctdr\sup_{|\arg\text{{\it \‘{A}}}|=\omega}p(\lambda R(\lambda)x)$

$=\frac{1}{n\pi}q_{\omega}(x)$ .

with a continuous semi-norm $q_{\omega}(x)$ depending on $\omega$ .
4’ (IV) implies (I). If it is shown that $T_{t}x$ is infinitely differentiable

relative to $\tau$ and that the derivatives are given by

(9.6) $(\frac{d}{dt})^{n}T_{t}x=(AT_{t/n})^{n}x$ ,

then (I) is an easy consequence of Proposition 8.7.
$AT_{t}x=T_{t-t_{0}}AT_{t_{0}}x\in \mathfrak{D}(A)$ proves $T_{t}x\in \mathfrak{D}(A_{0})$ . Thus it follows from Propo-
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sition 4.4 that $T_{t}x$ is differentiable relative to $\tau$ and $d/dtT_{t}x=AT_{t}x$ . Similarly
$A^{2}T_{t}x=AT_{t-t_{0}}AT_{t_{0}}x=T_{t\sim t_{0}}A^{2}T_{t_{0}}x\in \mathfrak{D}(A)$ proves the differentiability of $d/dt$

$T_{t}x$ and (9.6) for $n=2$ . The argument is the same for $n>2$ .
PROPOSITION 9.3. Let $A$ be a closed linear operator with a dense domain

relative to $\tau$ . Then, in order that $A$ be the generator of a $(\tau, \tau)$ analytic semi-
group of class $\mathfrak{H}(\theta)$ it is necessary and $suJficient$ that $A$ has the resolvent
$R(\lambda)=R(\lambda, A)$ which satisfies one of the conditions (II) or (III) of Proposition
9.2.

PROOF. We know that (II) and (III) are equivalent and that they are
necessary. To prove the sufficiency we could use the representation (9.3) as
in Hille-Phillips [4], Yosida [10] and Kato [6]. But we shall adopt here a
method related to the proof of Proposition 6.1.

We define

$T_{t^{(n)}}x=(I-tA_{-)^{-n_{X}}}n$

for $t$ with $|\arg t|<\theta$ and $ x\in\vee\not\in$ . From (III) it follows that $T_{\iota^{(n)}}$ is analytic
and equicontinuous in every subsector $|\arg t|\leqq\theta-\epsilon,$ $\epsilon>0$ . By the same way
as in \S 6, we can show that

$T_{t}x=\lim_{n\rightarrow\infty}T_{t^{(n)}}x$

exists for every $x$ and $t$ with $|\arg t|<\theta$ and that the convergence is uniform
on every compact set in the sector. Therefore $T_{t}x$ is analytic in $t$ in the
sector $|\arg t|<\theta$ , and $\{T_{t}\}$ is, as the set of limits of operators from an equi-
continuous set, equicontinuous in every subsector $|\arg t|\leqq\theta-\epsilon,$ $\epsilon>0$ . Clearly
this $T_{t}$ gives an analytic continuation of $T_{t}$ constructed in \S 6.
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